1 /* 2 * linux/drivers/clocksource/arm_arch_timer.c 3 * 4 * Copyright (C) 2011 ARM Ltd. 5 * All Rights Reserved 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/device.h> 14 #include <linux/smp.h> 15 #include <linux/cpu.h> 16 #include <linux/cpu_pm.h> 17 #include <linux/clockchips.h> 18 #include <linux/interrupt.h> 19 #include <linux/of_irq.h> 20 #include <linux/of_address.h> 21 #include <linux/io.h> 22 #include <linux/slab.h> 23 #include <linux/sched_clock.h> 24 25 #include <asm/arch_timer.h> 26 #include <asm/virt.h> 27 28 #include <clocksource/arm_arch_timer.h> 29 30 #define CNTTIDR 0x08 31 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4)) 32 33 #define CNTVCT_LO 0x08 34 #define CNTVCT_HI 0x0c 35 #define CNTFRQ 0x10 36 #define CNTP_TVAL 0x28 37 #define CNTP_CTL 0x2c 38 #define CNTV_TVAL 0x38 39 #define CNTV_CTL 0x3c 40 41 #define ARCH_CP15_TIMER BIT(0) 42 #define ARCH_MEM_TIMER BIT(1) 43 static unsigned arch_timers_present __initdata; 44 45 static void __iomem *arch_counter_base; 46 47 struct arch_timer { 48 void __iomem *base; 49 struct clock_event_device evt; 50 }; 51 52 #define to_arch_timer(e) container_of(e, struct arch_timer, evt) 53 54 static u32 arch_timer_rate; 55 56 enum ppi_nr { 57 PHYS_SECURE_PPI, 58 PHYS_NONSECURE_PPI, 59 VIRT_PPI, 60 HYP_PPI, 61 MAX_TIMER_PPI 62 }; 63 64 static int arch_timer_ppi[MAX_TIMER_PPI]; 65 66 static struct clock_event_device __percpu *arch_timer_evt; 67 68 static bool arch_timer_use_virtual = true; 69 static bool arch_timer_c3stop; 70 static bool arch_timer_mem_use_virtual; 71 72 /* 73 * Architected system timer support. 74 */ 75 76 static __always_inline 77 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val, 78 struct clock_event_device *clk) 79 { 80 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 81 struct arch_timer *timer = to_arch_timer(clk); 82 switch (reg) { 83 case ARCH_TIMER_REG_CTRL: 84 writel_relaxed(val, timer->base + CNTP_CTL); 85 break; 86 case ARCH_TIMER_REG_TVAL: 87 writel_relaxed(val, timer->base + CNTP_TVAL); 88 break; 89 } 90 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 91 struct arch_timer *timer = to_arch_timer(clk); 92 switch (reg) { 93 case ARCH_TIMER_REG_CTRL: 94 writel_relaxed(val, timer->base + CNTV_CTL); 95 break; 96 case ARCH_TIMER_REG_TVAL: 97 writel_relaxed(val, timer->base + CNTV_TVAL); 98 break; 99 } 100 } else { 101 arch_timer_reg_write_cp15(access, reg, val); 102 } 103 } 104 105 static __always_inline 106 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg, 107 struct clock_event_device *clk) 108 { 109 u32 val; 110 111 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 112 struct arch_timer *timer = to_arch_timer(clk); 113 switch (reg) { 114 case ARCH_TIMER_REG_CTRL: 115 val = readl_relaxed(timer->base + CNTP_CTL); 116 break; 117 case ARCH_TIMER_REG_TVAL: 118 val = readl_relaxed(timer->base + CNTP_TVAL); 119 break; 120 } 121 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 122 struct arch_timer *timer = to_arch_timer(clk); 123 switch (reg) { 124 case ARCH_TIMER_REG_CTRL: 125 val = readl_relaxed(timer->base + CNTV_CTL); 126 break; 127 case ARCH_TIMER_REG_TVAL: 128 val = readl_relaxed(timer->base + CNTV_TVAL); 129 break; 130 } 131 } else { 132 val = arch_timer_reg_read_cp15(access, reg); 133 } 134 135 return val; 136 } 137 138 static __always_inline irqreturn_t timer_handler(const int access, 139 struct clock_event_device *evt) 140 { 141 unsigned long ctrl; 142 143 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt); 144 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { 145 ctrl |= ARCH_TIMER_CTRL_IT_MASK; 146 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt); 147 evt->event_handler(evt); 148 return IRQ_HANDLED; 149 } 150 151 return IRQ_NONE; 152 } 153 154 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id) 155 { 156 struct clock_event_device *evt = dev_id; 157 158 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt); 159 } 160 161 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id) 162 { 163 struct clock_event_device *evt = dev_id; 164 165 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt); 166 } 167 168 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id) 169 { 170 struct clock_event_device *evt = dev_id; 171 172 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt); 173 } 174 175 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id) 176 { 177 struct clock_event_device *evt = dev_id; 178 179 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt); 180 } 181 182 static __always_inline void timer_set_mode(const int access, int mode, 183 struct clock_event_device *clk) 184 { 185 unsigned long ctrl; 186 switch (mode) { 187 case CLOCK_EVT_MODE_UNUSED: 188 case CLOCK_EVT_MODE_SHUTDOWN: 189 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 190 ctrl &= ~ARCH_TIMER_CTRL_ENABLE; 191 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 192 break; 193 default: 194 break; 195 } 196 } 197 198 static void arch_timer_set_mode_virt(enum clock_event_mode mode, 199 struct clock_event_device *clk) 200 { 201 timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode, clk); 202 } 203 204 static void arch_timer_set_mode_phys(enum clock_event_mode mode, 205 struct clock_event_device *clk) 206 { 207 timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode, clk); 208 } 209 210 static void arch_timer_set_mode_virt_mem(enum clock_event_mode mode, 211 struct clock_event_device *clk) 212 { 213 timer_set_mode(ARCH_TIMER_MEM_VIRT_ACCESS, mode, clk); 214 } 215 216 static void arch_timer_set_mode_phys_mem(enum clock_event_mode mode, 217 struct clock_event_device *clk) 218 { 219 timer_set_mode(ARCH_TIMER_MEM_PHYS_ACCESS, mode, clk); 220 } 221 222 static __always_inline void set_next_event(const int access, unsigned long evt, 223 struct clock_event_device *clk) 224 { 225 unsigned long ctrl; 226 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 227 ctrl |= ARCH_TIMER_CTRL_ENABLE; 228 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 229 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk); 230 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 231 } 232 233 static int arch_timer_set_next_event_virt(unsigned long evt, 234 struct clock_event_device *clk) 235 { 236 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk); 237 return 0; 238 } 239 240 static int arch_timer_set_next_event_phys(unsigned long evt, 241 struct clock_event_device *clk) 242 { 243 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk); 244 return 0; 245 } 246 247 static int arch_timer_set_next_event_virt_mem(unsigned long evt, 248 struct clock_event_device *clk) 249 { 250 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk); 251 return 0; 252 } 253 254 static int arch_timer_set_next_event_phys_mem(unsigned long evt, 255 struct clock_event_device *clk) 256 { 257 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk); 258 return 0; 259 } 260 261 static void __arch_timer_setup(unsigned type, 262 struct clock_event_device *clk) 263 { 264 clk->features = CLOCK_EVT_FEAT_ONESHOT; 265 266 if (type == ARCH_CP15_TIMER) { 267 if (arch_timer_c3stop) 268 clk->features |= CLOCK_EVT_FEAT_C3STOP; 269 clk->name = "arch_sys_timer"; 270 clk->rating = 450; 271 clk->cpumask = cpumask_of(smp_processor_id()); 272 if (arch_timer_use_virtual) { 273 clk->irq = arch_timer_ppi[VIRT_PPI]; 274 clk->set_mode = arch_timer_set_mode_virt; 275 clk->set_next_event = arch_timer_set_next_event_virt; 276 } else { 277 clk->irq = arch_timer_ppi[PHYS_SECURE_PPI]; 278 clk->set_mode = arch_timer_set_mode_phys; 279 clk->set_next_event = arch_timer_set_next_event_phys; 280 } 281 } else { 282 clk->features |= CLOCK_EVT_FEAT_DYNIRQ; 283 clk->name = "arch_mem_timer"; 284 clk->rating = 400; 285 clk->cpumask = cpu_all_mask; 286 if (arch_timer_mem_use_virtual) { 287 clk->set_mode = arch_timer_set_mode_virt_mem; 288 clk->set_next_event = 289 arch_timer_set_next_event_virt_mem; 290 } else { 291 clk->set_mode = arch_timer_set_mode_phys_mem; 292 clk->set_next_event = 293 arch_timer_set_next_event_phys_mem; 294 } 295 } 296 297 clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, clk); 298 299 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff); 300 } 301 302 static void arch_timer_evtstrm_enable(int divider) 303 { 304 u32 cntkctl = arch_timer_get_cntkctl(); 305 306 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK; 307 /* Set the divider and enable virtual event stream */ 308 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT) 309 | ARCH_TIMER_VIRT_EVT_EN; 310 arch_timer_set_cntkctl(cntkctl); 311 elf_hwcap |= HWCAP_EVTSTRM; 312 #ifdef CONFIG_COMPAT 313 compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM; 314 #endif 315 } 316 317 static void arch_timer_configure_evtstream(void) 318 { 319 int evt_stream_div, pos; 320 321 /* Find the closest power of two to the divisor */ 322 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ; 323 pos = fls(evt_stream_div); 324 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2)))) 325 pos--; 326 /* enable event stream */ 327 arch_timer_evtstrm_enable(min(pos, 15)); 328 } 329 330 static void arch_counter_set_user_access(void) 331 { 332 u32 cntkctl = arch_timer_get_cntkctl(); 333 334 /* Disable user access to the timers and the physical counter */ 335 /* Also disable virtual event stream */ 336 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN 337 | ARCH_TIMER_USR_VT_ACCESS_EN 338 | ARCH_TIMER_VIRT_EVT_EN 339 | ARCH_TIMER_USR_PCT_ACCESS_EN); 340 341 /* Enable user access to the virtual counter */ 342 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN; 343 344 arch_timer_set_cntkctl(cntkctl); 345 } 346 347 static int arch_timer_setup(struct clock_event_device *clk) 348 { 349 __arch_timer_setup(ARCH_CP15_TIMER, clk); 350 351 if (arch_timer_use_virtual) 352 enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0); 353 else { 354 enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0); 355 if (arch_timer_ppi[PHYS_NONSECURE_PPI]) 356 enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0); 357 } 358 359 arch_counter_set_user_access(); 360 if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM)) 361 arch_timer_configure_evtstream(); 362 363 return 0; 364 } 365 366 static void 367 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np) 368 { 369 /* Who has more than one independent system counter? */ 370 if (arch_timer_rate) 371 return; 372 373 /* Try to determine the frequency from the device tree or CNTFRQ */ 374 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) { 375 if (cntbase) 376 arch_timer_rate = readl_relaxed(cntbase + CNTFRQ); 377 else 378 arch_timer_rate = arch_timer_get_cntfrq(); 379 } 380 381 /* Check the timer frequency. */ 382 if (arch_timer_rate == 0) 383 pr_warn("Architected timer frequency not available\n"); 384 } 385 386 static void arch_timer_banner(unsigned type) 387 { 388 pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n", 389 type & ARCH_CP15_TIMER ? "cp15" : "", 390 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "", 391 type & ARCH_MEM_TIMER ? "mmio" : "", 392 (unsigned long)arch_timer_rate / 1000000, 393 (unsigned long)(arch_timer_rate / 10000) % 100, 394 type & ARCH_CP15_TIMER ? 395 arch_timer_use_virtual ? "virt" : "phys" : 396 "", 397 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "", 398 type & ARCH_MEM_TIMER ? 399 arch_timer_mem_use_virtual ? "virt" : "phys" : 400 ""); 401 } 402 403 u32 arch_timer_get_rate(void) 404 { 405 return arch_timer_rate; 406 } 407 408 static u64 arch_counter_get_cntvct_mem(void) 409 { 410 u32 vct_lo, vct_hi, tmp_hi; 411 412 do { 413 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); 414 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO); 415 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); 416 } while (vct_hi != tmp_hi); 417 418 return ((u64) vct_hi << 32) | vct_lo; 419 } 420 421 /* 422 * Default to cp15 based access because arm64 uses this function for 423 * sched_clock() before DT is probed and the cp15 method is guaranteed 424 * to exist on arm64. arm doesn't use this before DT is probed so even 425 * if we don't have the cp15 accessors we won't have a problem. 426 */ 427 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct; 428 429 static cycle_t arch_counter_read(struct clocksource *cs) 430 { 431 return arch_timer_read_counter(); 432 } 433 434 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc) 435 { 436 return arch_timer_read_counter(); 437 } 438 439 static struct clocksource clocksource_counter = { 440 .name = "arch_sys_counter", 441 .rating = 400, 442 .read = arch_counter_read, 443 .mask = CLOCKSOURCE_MASK(56), 444 .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP, 445 }; 446 447 static struct cyclecounter cyclecounter = { 448 .read = arch_counter_read_cc, 449 .mask = CLOCKSOURCE_MASK(56), 450 }; 451 452 static struct timecounter timecounter; 453 454 struct timecounter *arch_timer_get_timecounter(void) 455 { 456 return &timecounter; 457 } 458 459 static void __init arch_counter_register(unsigned type) 460 { 461 u64 start_count; 462 463 /* Register the CP15 based counter if we have one */ 464 if (type & ARCH_CP15_TIMER) { 465 if (IS_ENABLED(CONFIG_ARM64) || arch_timer_use_virtual) 466 arch_timer_read_counter = arch_counter_get_cntvct; 467 else 468 arch_timer_read_counter = arch_counter_get_cntpct; 469 } else { 470 arch_timer_read_counter = arch_counter_get_cntvct_mem; 471 472 /* If the clocksource name is "arch_sys_counter" the 473 * VDSO will attempt to read the CP15-based counter. 474 * Ensure this does not happen when CP15-based 475 * counter is not available. 476 */ 477 clocksource_counter.name = "arch_mem_counter"; 478 } 479 480 start_count = arch_timer_read_counter(); 481 clocksource_register_hz(&clocksource_counter, arch_timer_rate); 482 cyclecounter.mult = clocksource_counter.mult; 483 cyclecounter.shift = clocksource_counter.shift; 484 timecounter_init(&timecounter, &cyclecounter, start_count); 485 486 /* 56 bits minimum, so we assume worst case rollover */ 487 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate); 488 } 489 490 static void arch_timer_stop(struct clock_event_device *clk) 491 { 492 pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n", 493 clk->irq, smp_processor_id()); 494 495 if (arch_timer_use_virtual) 496 disable_percpu_irq(arch_timer_ppi[VIRT_PPI]); 497 else { 498 disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]); 499 if (arch_timer_ppi[PHYS_NONSECURE_PPI]) 500 disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]); 501 } 502 503 clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk); 504 } 505 506 static int arch_timer_cpu_notify(struct notifier_block *self, 507 unsigned long action, void *hcpu) 508 { 509 /* 510 * Grab cpu pointer in each case to avoid spurious 511 * preemptible warnings 512 */ 513 switch (action & ~CPU_TASKS_FROZEN) { 514 case CPU_STARTING: 515 arch_timer_setup(this_cpu_ptr(arch_timer_evt)); 516 break; 517 case CPU_DYING: 518 arch_timer_stop(this_cpu_ptr(arch_timer_evt)); 519 break; 520 } 521 522 return NOTIFY_OK; 523 } 524 525 static struct notifier_block arch_timer_cpu_nb = { 526 .notifier_call = arch_timer_cpu_notify, 527 }; 528 529 #ifdef CONFIG_CPU_PM 530 static unsigned int saved_cntkctl; 531 static int arch_timer_cpu_pm_notify(struct notifier_block *self, 532 unsigned long action, void *hcpu) 533 { 534 if (action == CPU_PM_ENTER) 535 saved_cntkctl = arch_timer_get_cntkctl(); 536 else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) 537 arch_timer_set_cntkctl(saved_cntkctl); 538 return NOTIFY_OK; 539 } 540 541 static struct notifier_block arch_timer_cpu_pm_notifier = { 542 .notifier_call = arch_timer_cpu_pm_notify, 543 }; 544 545 static int __init arch_timer_cpu_pm_init(void) 546 { 547 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier); 548 } 549 #else 550 static int __init arch_timer_cpu_pm_init(void) 551 { 552 return 0; 553 } 554 #endif 555 556 static int __init arch_timer_register(void) 557 { 558 int err; 559 int ppi; 560 561 arch_timer_evt = alloc_percpu(struct clock_event_device); 562 if (!arch_timer_evt) { 563 err = -ENOMEM; 564 goto out; 565 } 566 567 if (arch_timer_use_virtual) { 568 ppi = arch_timer_ppi[VIRT_PPI]; 569 err = request_percpu_irq(ppi, arch_timer_handler_virt, 570 "arch_timer", arch_timer_evt); 571 } else { 572 ppi = arch_timer_ppi[PHYS_SECURE_PPI]; 573 err = request_percpu_irq(ppi, arch_timer_handler_phys, 574 "arch_timer", arch_timer_evt); 575 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) { 576 ppi = arch_timer_ppi[PHYS_NONSECURE_PPI]; 577 err = request_percpu_irq(ppi, arch_timer_handler_phys, 578 "arch_timer", arch_timer_evt); 579 if (err) 580 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 581 arch_timer_evt); 582 } 583 } 584 585 if (err) { 586 pr_err("arch_timer: can't register interrupt %d (%d)\n", 587 ppi, err); 588 goto out_free; 589 } 590 591 err = register_cpu_notifier(&arch_timer_cpu_nb); 592 if (err) 593 goto out_free_irq; 594 595 err = arch_timer_cpu_pm_init(); 596 if (err) 597 goto out_unreg_notify; 598 599 /* Immediately configure the timer on the boot CPU */ 600 arch_timer_setup(this_cpu_ptr(arch_timer_evt)); 601 602 return 0; 603 604 out_unreg_notify: 605 unregister_cpu_notifier(&arch_timer_cpu_nb); 606 out_free_irq: 607 if (arch_timer_use_virtual) 608 free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt); 609 else { 610 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 611 arch_timer_evt); 612 if (arch_timer_ppi[PHYS_NONSECURE_PPI]) 613 free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 614 arch_timer_evt); 615 } 616 617 out_free: 618 free_percpu(arch_timer_evt); 619 out: 620 return err; 621 } 622 623 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq) 624 { 625 int ret; 626 irq_handler_t func; 627 struct arch_timer *t; 628 629 t = kzalloc(sizeof(*t), GFP_KERNEL); 630 if (!t) 631 return -ENOMEM; 632 633 t->base = base; 634 t->evt.irq = irq; 635 __arch_timer_setup(ARCH_MEM_TIMER, &t->evt); 636 637 if (arch_timer_mem_use_virtual) 638 func = arch_timer_handler_virt_mem; 639 else 640 func = arch_timer_handler_phys_mem; 641 642 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt); 643 if (ret) { 644 pr_err("arch_timer: Failed to request mem timer irq\n"); 645 kfree(t); 646 } 647 648 return ret; 649 } 650 651 static const struct of_device_id arch_timer_of_match[] __initconst = { 652 { .compatible = "arm,armv7-timer", }, 653 { .compatible = "arm,armv8-timer", }, 654 {}, 655 }; 656 657 static const struct of_device_id arch_timer_mem_of_match[] __initconst = { 658 { .compatible = "arm,armv7-timer-mem", }, 659 {}, 660 }; 661 662 static bool __init 663 arch_timer_probed(int type, const struct of_device_id *matches) 664 { 665 struct device_node *dn; 666 bool probed = true; 667 668 dn = of_find_matching_node(NULL, matches); 669 if (dn && of_device_is_available(dn) && !(arch_timers_present & type)) 670 probed = false; 671 of_node_put(dn); 672 673 return probed; 674 } 675 676 static void __init arch_timer_common_init(void) 677 { 678 unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER; 679 680 /* Wait until both nodes are probed if we have two timers */ 681 if ((arch_timers_present & mask) != mask) { 682 if (!arch_timer_probed(ARCH_MEM_TIMER, arch_timer_mem_of_match)) 683 return; 684 if (!arch_timer_probed(ARCH_CP15_TIMER, arch_timer_of_match)) 685 return; 686 } 687 688 arch_timer_banner(arch_timers_present); 689 arch_counter_register(arch_timers_present); 690 arch_timer_arch_init(); 691 } 692 693 static void __init arch_timer_init(struct device_node *np) 694 { 695 int i; 696 697 if (arch_timers_present & ARCH_CP15_TIMER) { 698 pr_warn("arch_timer: multiple nodes in dt, skipping\n"); 699 return; 700 } 701 702 arch_timers_present |= ARCH_CP15_TIMER; 703 for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++) 704 arch_timer_ppi[i] = irq_of_parse_and_map(np, i); 705 arch_timer_detect_rate(NULL, np); 706 707 /* 708 * If we cannot rely on firmware initializing the timer registers then 709 * we should use the physical timers instead. 710 */ 711 if (IS_ENABLED(CONFIG_ARM) && 712 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured")) 713 arch_timer_use_virtual = false; 714 715 /* 716 * If HYP mode is available, we know that the physical timer 717 * has been configured to be accessible from PL1. Use it, so 718 * that a guest can use the virtual timer instead. 719 * 720 * If no interrupt provided for virtual timer, we'll have to 721 * stick to the physical timer. It'd better be accessible... 722 */ 723 if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) { 724 arch_timer_use_virtual = false; 725 726 if (!arch_timer_ppi[PHYS_SECURE_PPI] || 727 !arch_timer_ppi[PHYS_NONSECURE_PPI]) { 728 pr_warn("arch_timer: No interrupt available, giving up\n"); 729 return; 730 } 731 } 732 733 arch_timer_c3stop = !of_property_read_bool(np, "always-on"); 734 735 arch_timer_register(); 736 arch_timer_common_init(); 737 } 738 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_init); 739 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_init); 740 741 static void __init arch_timer_mem_init(struct device_node *np) 742 { 743 struct device_node *frame, *best_frame = NULL; 744 void __iomem *cntctlbase, *base; 745 unsigned int irq; 746 u32 cnttidr; 747 748 arch_timers_present |= ARCH_MEM_TIMER; 749 cntctlbase = of_iomap(np, 0); 750 if (!cntctlbase) { 751 pr_err("arch_timer: Can't find CNTCTLBase\n"); 752 return; 753 } 754 755 cnttidr = readl_relaxed(cntctlbase + CNTTIDR); 756 iounmap(cntctlbase); 757 758 /* 759 * Try to find a virtual capable frame. Otherwise fall back to a 760 * physical capable frame. 761 */ 762 for_each_available_child_of_node(np, frame) { 763 int n; 764 765 if (of_property_read_u32(frame, "frame-number", &n)) { 766 pr_err("arch_timer: Missing frame-number\n"); 767 of_node_put(best_frame); 768 of_node_put(frame); 769 return; 770 } 771 772 if (cnttidr & CNTTIDR_VIRT(n)) { 773 of_node_put(best_frame); 774 best_frame = frame; 775 arch_timer_mem_use_virtual = true; 776 break; 777 } 778 of_node_put(best_frame); 779 best_frame = of_node_get(frame); 780 } 781 782 base = arch_counter_base = of_iomap(best_frame, 0); 783 if (!base) { 784 pr_err("arch_timer: Can't map frame's registers\n"); 785 of_node_put(best_frame); 786 return; 787 } 788 789 if (arch_timer_mem_use_virtual) 790 irq = irq_of_parse_and_map(best_frame, 1); 791 else 792 irq = irq_of_parse_and_map(best_frame, 0); 793 of_node_put(best_frame); 794 if (!irq) { 795 pr_err("arch_timer: Frame missing %s irq", 796 arch_timer_mem_use_virtual ? "virt" : "phys"); 797 return; 798 } 799 800 arch_timer_detect_rate(base, np); 801 arch_timer_mem_register(base, irq); 802 arch_timer_common_init(); 803 } 804 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem", 805 arch_timer_mem_init); 806