1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/clocksource/arm_arch_timer.c
4  *
5  *  Copyright (C) 2011 ARM Ltd.
6  *  All Rights Reserved
7  */
8 
9 #define pr_fmt(fmt) 	"arch_timer: " fmt
10 
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
22 #include <linux/io.h>
23 #include <linux/slab.h>
24 #include <linux/sched/clock.h>
25 #include <linux/sched_clock.h>
26 #include <linux/acpi.h>
27 
28 #include <asm/arch_timer.h>
29 #include <asm/virt.h>
30 
31 #include <clocksource/arm_arch_timer.h>
32 
33 #define CNTTIDR		0x08
34 #define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
35 
36 #define CNTACR(n)	(0x40 + ((n) * 4))
37 #define CNTACR_RPCT	BIT(0)
38 #define CNTACR_RVCT	BIT(1)
39 #define CNTACR_RFRQ	BIT(2)
40 #define CNTACR_RVOFF	BIT(3)
41 #define CNTACR_RWVT	BIT(4)
42 #define CNTACR_RWPT	BIT(5)
43 
44 #define CNTVCT_LO	0x08
45 #define CNTVCT_HI	0x0c
46 #define CNTFRQ		0x10
47 #define CNTP_TVAL	0x28
48 #define CNTP_CTL	0x2c
49 #define CNTV_TVAL	0x38
50 #define CNTV_CTL	0x3c
51 
52 static unsigned arch_timers_present __initdata;
53 
54 static void __iomem *arch_counter_base;
55 
56 struct arch_timer {
57 	void __iomem *base;
58 	struct clock_event_device evt;
59 };
60 
61 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
62 
63 static u32 arch_timer_rate;
64 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
65 
66 static struct clock_event_device __percpu *arch_timer_evt;
67 
68 static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
69 static bool arch_timer_c3stop;
70 static bool arch_timer_mem_use_virtual;
71 static bool arch_counter_suspend_stop;
72 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
73 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
74 #else
75 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
76 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
77 
78 static cpumask_t evtstrm_available = CPU_MASK_NONE;
79 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
80 
81 static int __init early_evtstrm_cfg(char *buf)
82 {
83 	return strtobool(buf, &evtstrm_enable);
84 }
85 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
86 
87 /*
88  * Architected system timer support.
89  */
90 
91 static __always_inline
92 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
93 			  struct clock_event_device *clk)
94 {
95 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
96 		struct arch_timer *timer = to_arch_timer(clk);
97 		switch (reg) {
98 		case ARCH_TIMER_REG_CTRL:
99 			writel_relaxed(val, timer->base + CNTP_CTL);
100 			break;
101 		case ARCH_TIMER_REG_TVAL:
102 			writel_relaxed(val, timer->base + CNTP_TVAL);
103 			break;
104 		}
105 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
106 		struct arch_timer *timer = to_arch_timer(clk);
107 		switch (reg) {
108 		case ARCH_TIMER_REG_CTRL:
109 			writel_relaxed(val, timer->base + CNTV_CTL);
110 			break;
111 		case ARCH_TIMER_REG_TVAL:
112 			writel_relaxed(val, timer->base + CNTV_TVAL);
113 			break;
114 		}
115 	} else {
116 		arch_timer_reg_write_cp15(access, reg, val);
117 	}
118 }
119 
120 static __always_inline
121 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
122 			struct clock_event_device *clk)
123 {
124 	u32 val;
125 
126 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
127 		struct arch_timer *timer = to_arch_timer(clk);
128 		switch (reg) {
129 		case ARCH_TIMER_REG_CTRL:
130 			val = readl_relaxed(timer->base + CNTP_CTL);
131 			break;
132 		case ARCH_TIMER_REG_TVAL:
133 			val = readl_relaxed(timer->base + CNTP_TVAL);
134 			break;
135 		}
136 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
137 		struct arch_timer *timer = to_arch_timer(clk);
138 		switch (reg) {
139 		case ARCH_TIMER_REG_CTRL:
140 			val = readl_relaxed(timer->base + CNTV_CTL);
141 			break;
142 		case ARCH_TIMER_REG_TVAL:
143 			val = readl_relaxed(timer->base + CNTV_TVAL);
144 			break;
145 		}
146 	} else {
147 		val = arch_timer_reg_read_cp15(access, reg);
148 	}
149 
150 	return val;
151 }
152 
153 static notrace u64 arch_counter_get_cntpct_stable(void)
154 {
155 	return __arch_counter_get_cntpct_stable();
156 }
157 
158 static notrace u64 arch_counter_get_cntpct(void)
159 {
160 	return __arch_counter_get_cntpct();
161 }
162 
163 static notrace u64 arch_counter_get_cntvct_stable(void)
164 {
165 	return __arch_counter_get_cntvct_stable();
166 }
167 
168 static notrace u64 arch_counter_get_cntvct(void)
169 {
170 	return __arch_counter_get_cntvct();
171 }
172 
173 /*
174  * Default to cp15 based access because arm64 uses this function for
175  * sched_clock() before DT is probed and the cp15 method is guaranteed
176  * to exist on arm64. arm doesn't use this before DT is probed so even
177  * if we don't have the cp15 accessors we won't have a problem.
178  */
179 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
180 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
181 
182 static u64 arch_counter_read(struct clocksource *cs)
183 {
184 	return arch_timer_read_counter();
185 }
186 
187 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
188 {
189 	return arch_timer_read_counter();
190 }
191 
192 static struct clocksource clocksource_counter = {
193 	.name	= "arch_sys_counter",
194 	.rating	= 400,
195 	.read	= arch_counter_read,
196 	.mask	= CLOCKSOURCE_MASK(56),
197 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
198 };
199 
200 static struct cyclecounter cyclecounter __ro_after_init = {
201 	.read	= arch_counter_read_cc,
202 	.mask	= CLOCKSOURCE_MASK(56),
203 };
204 
205 struct ate_acpi_oem_info {
206 	char oem_id[ACPI_OEM_ID_SIZE + 1];
207 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
208 	u32 oem_revision;
209 };
210 
211 #ifdef CONFIG_FSL_ERRATUM_A008585
212 /*
213  * The number of retries is an arbitrary value well beyond the highest number
214  * of iterations the loop has been observed to take.
215  */
216 #define __fsl_a008585_read_reg(reg) ({			\
217 	u64 _old, _new;					\
218 	int _retries = 200;				\
219 							\
220 	do {						\
221 		_old = read_sysreg(reg);		\
222 		_new = read_sysreg(reg);		\
223 		_retries--;				\
224 	} while (unlikely(_old != _new) && _retries);	\
225 							\
226 	WARN_ON_ONCE(!_retries);			\
227 	_new;						\
228 })
229 
230 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
231 {
232 	return __fsl_a008585_read_reg(cntp_tval_el0);
233 }
234 
235 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
236 {
237 	return __fsl_a008585_read_reg(cntv_tval_el0);
238 }
239 
240 static u64 notrace fsl_a008585_read_cntpct_el0(void)
241 {
242 	return __fsl_a008585_read_reg(cntpct_el0);
243 }
244 
245 static u64 notrace fsl_a008585_read_cntvct_el0(void)
246 {
247 	return __fsl_a008585_read_reg(cntvct_el0);
248 }
249 #endif
250 
251 #ifdef CONFIG_HISILICON_ERRATUM_161010101
252 /*
253  * Verify whether the value of the second read is larger than the first by
254  * less than 32 is the only way to confirm the value is correct, so clear the
255  * lower 5 bits to check whether the difference is greater than 32 or not.
256  * Theoretically the erratum should not occur more than twice in succession
257  * when reading the system counter, but it is possible that some interrupts
258  * may lead to more than twice read errors, triggering the warning, so setting
259  * the number of retries far beyond the number of iterations the loop has been
260  * observed to take.
261  */
262 #define __hisi_161010101_read_reg(reg) ({				\
263 	u64 _old, _new;						\
264 	int _retries = 50;					\
265 								\
266 	do {							\
267 		_old = read_sysreg(reg);			\
268 		_new = read_sysreg(reg);			\
269 		_retries--;					\
270 	} while (unlikely((_new - _old) >> 5) && _retries);	\
271 								\
272 	WARN_ON_ONCE(!_retries);				\
273 	_new;							\
274 })
275 
276 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
277 {
278 	return __hisi_161010101_read_reg(cntp_tval_el0);
279 }
280 
281 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
282 {
283 	return __hisi_161010101_read_reg(cntv_tval_el0);
284 }
285 
286 static u64 notrace hisi_161010101_read_cntpct_el0(void)
287 {
288 	return __hisi_161010101_read_reg(cntpct_el0);
289 }
290 
291 static u64 notrace hisi_161010101_read_cntvct_el0(void)
292 {
293 	return __hisi_161010101_read_reg(cntvct_el0);
294 }
295 
296 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
297 	/*
298 	 * Note that trailing spaces are required to properly match
299 	 * the OEM table information.
300 	 */
301 	{
302 		.oem_id		= "HISI  ",
303 		.oem_table_id	= "HIP05   ",
304 		.oem_revision	= 0,
305 	},
306 	{
307 		.oem_id		= "HISI  ",
308 		.oem_table_id	= "HIP06   ",
309 		.oem_revision	= 0,
310 	},
311 	{
312 		.oem_id		= "HISI  ",
313 		.oem_table_id	= "HIP07   ",
314 		.oem_revision	= 0,
315 	},
316 	{ /* Sentinel indicating the end of the OEM array */ },
317 };
318 #endif
319 
320 #ifdef CONFIG_ARM64_ERRATUM_858921
321 static u64 notrace arm64_858921_read_cntpct_el0(void)
322 {
323 	u64 old, new;
324 
325 	old = read_sysreg(cntpct_el0);
326 	new = read_sysreg(cntpct_el0);
327 	return (((old ^ new) >> 32) & 1) ? old : new;
328 }
329 
330 static u64 notrace arm64_858921_read_cntvct_el0(void)
331 {
332 	u64 old, new;
333 
334 	old = read_sysreg(cntvct_el0);
335 	new = read_sysreg(cntvct_el0);
336 	return (((old ^ new) >> 32) & 1) ? old : new;
337 }
338 #endif
339 
340 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
341 /*
342  * The low bits of the counter registers are indeterminate while bit 10 or
343  * greater is rolling over. Since the counter value can jump both backward
344  * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
345  * with all ones or all zeros in the low bits. Bound the loop by the maximum
346  * number of CPU cycles in 3 consecutive 24 MHz counter periods.
347  */
348 #define __sun50i_a64_read_reg(reg) ({					\
349 	u64 _val;							\
350 	int _retries = 150;						\
351 									\
352 	do {								\
353 		_val = read_sysreg(reg);				\
354 		_retries--;						\
355 	} while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries);	\
356 									\
357 	WARN_ON_ONCE(!_retries);					\
358 	_val;								\
359 })
360 
361 static u64 notrace sun50i_a64_read_cntpct_el0(void)
362 {
363 	return __sun50i_a64_read_reg(cntpct_el0);
364 }
365 
366 static u64 notrace sun50i_a64_read_cntvct_el0(void)
367 {
368 	return __sun50i_a64_read_reg(cntvct_el0);
369 }
370 
371 static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
372 {
373 	return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
374 }
375 
376 static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
377 {
378 	return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
379 }
380 #endif
381 
382 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
383 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
384 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
385 
386 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
387 
388 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
389 						struct clock_event_device *clk)
390 {
391 	unsigned long ctrl;
392 	u64 cval;
393 
394 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
395 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
396 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
397 
398 	if (access == ARCH_TIMER_PHYS_ACCESS) {
399 		cval = evt + arch_counter_get_cntpct();
400 		write_sysreg(cval, cntp_cval_el0);
401 	} else {
402 		cval = evt + arch_counter_get_cntvct();
403 		write_sysreg(cval, cntv_cval_el0);
404 	}
405 
406 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
407 }
408 
409 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
410 					    struct clock_event_device *clk)
411 {
412 	erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
413 	return 0;
414 }
415 
416 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
417 					    struct clock_event_device *clk)
418 {
419 	erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
420 	return 0;
421 }
422 
423 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
424 #ifdef CONFIG_FSL_ERRATUM_A008585
425 	{
426 		.match_type = ate_match_dt,
427 		.id = "fsl,erratum-a008585",
428 		.desc = "Freescale erratum a005858",
429 		.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
430 		.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
431 		.read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
432 		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
433 		.set_next_event_phys = erratum_set_next_event_tval_phys,
434 		.set_next_event_virt = erratum_set_next_event_tval_virt,
435 	},
436 #endif
437 #ifdef CONFIG_HISILICON_ERRATUM_161010101
438 	{
439 		.match_type = ate_match_dt,
440 		.id = "hisilicon,erratum-161010101",
441 		.desc = "HiSilicon erratum 161010101",
442 		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
443 		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
444 		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
445 		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
446 		.set_next_event_phys = erratum_set_next_event_tval_phys,
447 		.set_next_event_virt = erratum_set_next_event_tval_virt,
448 	},
449 	{
450 		.match_type = ate_match_acpi_oem_info,
451 		.id = hisi_161010101_oem_info,
452 		.desc = "HiSilicon erratum 161010101",
453 		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
454 		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
455 		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
456 		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
457 		.set_next_event_phys = erratum_set_next_event_tval_phys,
458 		.set_next_event_virt = erratum_set_next_event_tval_virt,
459 	},
460 #endif
461 #ifdef CONFIG_ARM64_ERRATUM_858921
462 	{
463 		.match_type = ate_match_local_cap_id,
464 		.id = (void *)ARM64_WORKAROUND_858921,
465 		.desc = "ARM erratum 858921",
466 		.read_cntpct_el0 = arm64_858921_read_cntpct_el0,
467 		.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
468 	},
469 #endif
470 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
471 	{
472 		.match_type = ate_match_dt,
473 		.id = "allwinner,erratum-unknown1",
474 		.desc = "Allwinner erratum UNKNOWN1",
475 		.read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
476 		.read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
477 		.read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
478 		.read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
479 		.set_next_event_phys = erratum_set_next_event_tval_phys,
480 		.set_next_event_virt = erratum_set_next_event_tval_virt,
481 	},
482 #endif
483 };
484 
485 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
486 			       const void *);
487 
488 static
489 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
490 				 const void *arg)
491 {
492 	const struct device_node *np = arg;
493 
494 	return of_property_read_bool(np, wa->id);
495 }
496 
497 static
498 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
499 					const void *arg)
500 {
501 	return this_cpu_has_cap((uintptr_t)wa->id);
502 }
503 
504 
505 static
506 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
507 				       const void *arg)
508 {
509 	static const struct ate_acpi_oem_info empty_oem_info = {};
510 	const struct ate_acpi_oem_info *info = wa->id;
511 	const struct acpi_table_header *table = arg;
512 
513 	/* Iterate over the ACPI OEM info array, looking for a match */
514 	while (memcmp(info, &empty_oem_info, sizeof(*info))) {
515 		if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
516 		    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
517 		    info->oem_revision == table->oem_revision)
518 			return true;
519 
520 		info++;
521 	}
522 
523 	return false;
524 }
525 
526 static const struct arch_timer_erratum_workaround *
527 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
528 			  ate_match_fn_t match_fn,
529 			  void *arg)
530 {
531 	int i;
532 
533 	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
534 		if (ool_workarounds[i].match_type != type)
535 			continue;
536 
537 		if (match_fn(&ool_workarounds[i], arg))
538 			return &ool_workarounds[i];
539 	}
540 
541 	return NULL;
542 }
543 
544 static
545 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
546 				  bool local)
547 {
548 	int i;
549 
550 	if (local) {
551 		__this_cpu_write(timer_unstable_counter_workaround, wa);
552 	} else {
553 		for_each_possible_cpu(i)
554 			per_cpu(timer_unstable_counter_workaround, i) = wa;
555 	}
556 
557 	if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
558 		atomic_set(&timer_unstable_counter_workaround_in_use, 1);
559 
560 	/*
561 	 * Don't use the vdso fastpath if errata require using the
562 	 * out-of-line counter accessor. We may change our mind pretty
563 	 * late in the game (with a per-CPU erratum, for example), so
564 	 * change both the default value and the vdso itself.
565 	 */
566 	if (wa->read_cntvct_el0) {
567 		clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
568 		vdso_default = VDSO_CLOCKMODE_NONE;
569 	}
570 }
571 
572 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
573 					    void *arg)
574 {
575 	const struct arch_timer_erratum_workaround *wa, *__wa;
576 	ate_match_fn_t match_fn = NULL;
577 	bool local = false;
578 
579 	switch (type) {
580 	case ate_match_dt:
581 		match_fn = arch_timer_check_dt_erratum;
582 		break;
583 	case ate_match_local_cap_id:
584 		match_fn = arch_timer_check_local_cap_erratum;
585 		local = true;
586 		break;
587 	case ate_match_acpi_oem_info:
588 		match_fn = arch_timer_check_acpi_oem_erratum;
589 		break;
590 	default:
591 		WARN_ON(1);
592 		return;
593 	}
594 
595 	wa = arch_timer_iterate_errata(type, match_fn, arg);
596 	if (!wa)
597 		return;
598 
599 	__wa = __this_cpu_read(timer_unstable_counter_workaround);
600 	if (__wa && wa != __wa)
601 		pr_warn("Can't enable workaround for %s (clashes with %s\n)",
602 			wa->desc, __wa->desc);
603 
604 	if (__wa)
605 		return;
606 
607 	arch_timer_enable_workaround(wa, local);
608 	pr_info("Enabling %s workaround for %s\n",
609 		local ? "local" : "global", wa->desc);
610 }
611 
612 static bool arch_timer_this_cpu_has_cntvct_wa(void)
613 {
614 	return has_erratum_handler(read_cntvct_el0);
615 }
616 
617 static bool arch_timer_counter_has_wa(void)
618 {
619 	return atomic_read(&timer_unstable_counter_workaround_in_use);
620 }
621 #else
622 #define arch_timer_check_ool_workaround(t,a)		do { } while(0)
623 #define arch_timer_this_cpu_has_cntvct_wa()		({false;})
624 #define arch_timer_counter_has_wa()			({false;})
625 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
626 
627 static __always_inline irqreturn_t timer_handler(const int access,
628 					struct clock_event_device *evt)
629 {
630 	unsigned long ctrl;
631 
632 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
633 	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
634 		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
635 		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
636 		evt->event_handler(evt);
637 		return IRQ_HANDLED;
638 	}
639 
640 	return IRQ_NONE;
641 }
642 
643 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
644 {
645 	struct clock_event_device *evt = dev_id;
646 
647 	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
648 }
649 
650 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
651 {
652 	struct clock_event_device *evt = dev_id;
653 
654 	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
655 }
656 
657 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
658 {
659 	struct clock_event_device *evt = dev_id;
660 
661 	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
662 }
663 
664 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
665 {
666 	struct clock_event_device *evt = dev_id;
667 
668 	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
669 }
670 
671 static __always_inline int timer_shutdown(const int access,
672 					  struct clock_event_device *clk)
673 {
674 	unsigned long ctrl;
675 
676 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
677 	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
678 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
679 
680 	return 0;
681 }
682 
683 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
684 {
685 	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
686 }
687 
688 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
689 {
690 	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
691 }
692 
693 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
694 {
695 	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
696 }
697 
698 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
699 {
700 	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
701 }
702 
703 static __always_inline void set_next_event(const int access, unsigned long evt,
704 					   struct clock_event_device *clk)
705 {
706 	unsigned long ctrl;
707 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
708 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
709 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
710 	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
711 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
712 }
713 
714 static int arch_timer_set_next_event_virt(unsigned long evt,
715 					  struct clock_event_device *clk)
716 {
717 	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
718 	return 0;
719 }
720 
721 static int arch_timer_set_next_event_phys(unsigned long evt,
722 					  struct clock_event_device *clk)
723 {
724 	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
725 	return 0;
726 }
727 
728 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
729 					      struct clock_event_device *clk)
730 {
731 	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
732 	return 0;
733 }
734 
735 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
736 					      struct clock_event_device *clk)
737 {
738 	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
739 	return 0;
740 }
741 
742 static void __arch_timer_setup(unsigned type,
743 			       struct clock_event_device *clk)
744 {
745 	clk->features = CLOCK_EVT_FEAT_ONESHOT;
746 
747 	if (type == ARCH_TIMER_TYPE_CP15) {
748 		typeof(clk->set_next_event) sne;
749 
750 		arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
751 
752 		if (arch_timer_c3stop)
753 			clk->features |= CLOCK_EVT_FEAT_C3STOP;
754 		clk->name = "arch_sys_timer";
755 		clk->rating = 450;
756 		clk->cpumask = cpumask_of(smp_processor_id());
757 		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
758 		switch (arch_timer_uses_ppi) {
759 		case ARCH_TIMER_VIRT_PPI:
760 			clk->set_state_shutdown = arch_timer_shutdown_virt;
761 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
762 			sne = erratum_handler(set_next_event_virt);
763 			break;
764 		case ARCH_TIMER_PHYS_SECURE_PPI:
765 		case ARCH_TIMER_PHYS_NONSECURE_PPI:
766 		case ARCH_TIMER_HYP_PPI:
767 			clk->set_state_shutdown = arch_timer_shutdown_phys;
768 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
769 			sne = erratum_handler(set_next_event_phys);
770 			break;
771 		default:
772 			BUG();
773 		}
774 
775 		clk->set_next_event = sne;
776 	} else {
777 		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
778 		clk->name = "arch_mem_timer";
779 		clk->rating = 400;
780 		clk->cpumask = cpu_possible_mask;
781 		if (arch_timer_mem_use_virtual) {
782 			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
783 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
784 			clk->set_next_event =
785 				arch_timer_set_next_event_virt_mem;
786 		} else {
787 			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
788 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
789 			clk->set_next_event =
790 				arch_timer_set_next_event_phys_mem;
791 		}
792 	}
793 
794 	clk->set_state_shutdown(clk);
795 
796 	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
797 }
798 
799 static void arch_timer_evtstrm_enable(int divider)
800 {
801 	u32 cntkctl = arch_timer_get_cntkctl();
802 
803 	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
804 	/* Set the divider and enable virtual event stream */
805 	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
806 			| ARCH_TIMER_VIRT_EVT_EN;
807 	arch_timer_set_cntkctl(cntkctl);
808 	arch_timer_set_evtstrm_feature();
809 	cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
810 }
811 
812 static void arch_timer_configure_evtstream(void)
813 {
814 	int evt_stream_div, pos;
815 
816 	/* Find the closest power of two to the divisor */
817 	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
818 	pos = fls(evt_stream_div);
819 	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
820 		pos--;
821 	/* enable event stream */
822 	arch_timer_evtstrm_enable(min(pos, 15));
823 }
824 
825 static void arch_counter_set_user_access(void)
826 {
827 	u32 cntkctl = arch_timer_get_cntkctl();
828 
829 	/* Disable user access to the timers and both counters */
830 	/* Also disable virtual event stream */
831 	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
832 			| ARCH_TIMER_USR_VT_ACCESS_EN
833 		        | ARCH_TIMER_USR_VCT_ACCESS_EN
834 			| ARCH_TIMER_VIRT_EVT_EN
835 			| ARCH_TIMER_USR_PCT_ACCESS_EN);
836 
837 	/*
838 	 * Enable user access to the virtual counter if it doesn't
839 	 * need to be workaround. The vdso may have been already
840 	 * disabled though.
841 	 */
842 	if (arch_timer_this_cpu_has_cntvct_wa())
843 		pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
844 	else
845 		cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
846 
847 	arch_timer_set_cntkctl(cntkctl);
848 }
849 
850 static bool arch_timer_has_nonsecure_ppi(void)
851 {
852 	return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
853 		arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
854 }
855 
856 static u32 check_ppi_trigger(int irq)
857 {
858 	u32 flags = irq_get_trigger_type(irq);
859 
860 	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
861 		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
862 		pr_warn("WARNING: Please fix your firmware\n");
863 		flags = IRQF_TRIGGER_LOW;
864 	}
865 
866 	return flags;
867 }
868 
869 static int arch_timer_starting_cpu(unsigned int cpu)
870 {
871 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
872 	u32 flags;
873 
874 	__arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
875 
876 	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
877 	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
878 
879 	if (arch_timer_has_nonsecure_ppi()) {
880 		flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
881 		enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
882 				  flags);
883 	}
884 
885 	arch_counter_set_user_access();
886 	if (evtstrm_enable)
887 		arch_timer_configure_evtstream();
888 
889 	return 0;
890 }
891 
892 /*
893  * For historical reasons, when probing with DT we use whichever (non-zero)
894  * rate was probed first, and don't verify that others match. If the first node
895  * probed has a clock-frequency property, this overrides the HW register.
896  */
897 static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
898 {
899 	/* Who has more than one independent system counter? */
900 	if (arch_timer_rate)
901 		return;
902 
903 	if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
904 		arch_timer_rate = rate;
905 
906 	/* Check the timer frequency. */
907 	if (arch_timer_rate == 0)
908 		pr_warn("frequency not available\n");
909 }
910 
911 static void arch_timer_banner(unsigned type)
912 {
913 	pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
914 		type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
915 		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
916 			" and " : "",
917 		type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
918 		(unsigned long)arch_timer_rate / 1000000,
919 		(unsigned long)(arch_timer_rate / 10000) % 100,
920 		type & ARCH_TIMER_TYPE_CP15 ?
921 			(arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
922 			"",
923 		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
924 		type & ARCH_TIMER_TYPE_MEM ?
925 			arch_timer_mem_use_virtual ? "virt" : "phys" :
926 			"");
927 }
928 
929 u32 arch_timer_get_rate(void)
930 {
931 	return arch_timer_rate;
932 }
933 
934 bool arch_timer_evtstrm_available(void)
935 {
936 	/*
937 	 * We might get called from a preemptible context. This is fine
938 	 * because availability of the event stream should be always the same
939 	 * for a preemptible context and context where we might resume a task.
940 	 */
941 	return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
942 }
943 
944 static u64 arch_counter_get_cntvct_mem(void)
945 {
946 	u32 vct_lo, vct_hi, tmp_hi;
947 
948 	do {
949 		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
950 		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
951 		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
952 	} while (vct_hi != tmp_hi);
953 
954 	return ((u64) vct_hi << 32) | vct_lo;
955 }
956 
957 static struct arch_timer_kvm_info arch_timer_kvm_info;
958 
959 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
960 {
961 	return &arch_timer_kvm_info;
962 }
963 
964 static void __init arch_counter_register(unsigned type)
965 {
966 	u64 start_count;
967 
968 	/* Register the CP15 based counter if we have one */
969 	if (type & ARCH_TIMER_TYPE_CP15) {
970 		u64 (*rd)(void);
971 
972 		if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
973 		    arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
974 			if (arch_timer_counter_has_wa())
975 				rd = arch_counter_get_cntvct_stable;
976 			else
977 				rd = arch_counter_get_cntvct;
978 		} else {
979 			if (arch_timer_counter_has_wa())
980 				rd = arch_counter_get_cntpct_stable;
981 			else
982 				rd = arch_counter_get_cntpct;
983 		}
984 
985 		arch_timer_read_counter = rd;
986 		clocksource_counter.vdso_clock_mode = vdso_default;
987 	} else {
988 		arch_timer_read_counter = arch_counter_get_cntvct_mem;
989 	}
990 
991 	if (!arch_counter_suspend_stop)
992 		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
993 	start_count = arch_timer_read_counter();
994 	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
995 	cyclecounter.mult = clocksource_counter.mult;
996 	cyclecounter.shift = clocksource_counter.shift;
997 	timecounter_init(&arch_timer_kvm_info.timecounter,
998 			 &cyclecounter, start_count);
999 
1000 	/* 56 bits minimum, so we assume worst case rollover */
1001 	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
1002 }
1003 
1004 static void arch_timer_stop(struct clock_event_device *clk)
1005 {
1006 	pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1007 
1008 	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1009 	if (arch_timer_has_nonsecure_ppi())
1010 		disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1011 
1012 	clk->set_state_shutdown(clk);
1013 }
1014 
1015 static int arch_timer_dying_cpu(unsigned int cpu)
1016 {
1017 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1018 
1019 	cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1020 
1021 	arch_timer_stop(clk);
1022 	return 0;
1023 }
1024 
1025 #ifdef CONFIG_CPU_PM
1026 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1027 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1028 				    unsigned long action, void *hcpu)
1029 {
1030 	if (action == CPU_PM_ENTER) {
1031 		__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1032 
1033 		cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1034 	} else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1035 		arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1036 
1037 		if (arch_timer_have_evtstrm_feature())
1038 			cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1039 	}
1040 	return NOTIFY_OK;
1041 }
1042 
1043 static struct notifier_block arch_timer_cpu_pm_notifier = {
1044 	.notifier_call = arch_timer_cpu_pm_notify,
1045 };
1046 
1047 static int __init arch_timer_cpu_pm_init(void)
1048 {
1049 	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1050 }
1051 
1052 static void __init arch_timer_cpu_pm_deinit(void)
1053 {
1054 	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1055 }
1056 
1057 #else
1058 static int __init arch_timer_cpu_pm_init(void)
1059 {
1060 	return 0;
1061 }
1062 
1063 static void __init arch_timer_cpu_pm_deinit(void)
1064 {
1065 }
1066 #endif
1067 
1068 static int __init arch_timer_register(void)
1069 {
1070 	int err;
1071 	int ppi;
1072 
1073 	arch_timer_evt = alloc_percpu(struct clock_event_device);
1074 	if (!arch_timer_evt) {
1075 		err = -ENOMEM;
1076 		goto out;
1077 	}
1078 
1079 	ppi = arch_timer_ppi[arch_timer_uses_ppi];
1080 	switch (arch_timer_uses_ppi) {
1081 	case ARCH_TIMER_VIRT_PPI:
1082 		err = request_percpu_irq(ppi, arch_timer_handler_virt,
1083 					 "arch_timer", arch_timer_evt);
1084 		break;
1085 	case ARCH_TIMER_PHYS_SECURE_PPI:
1086 	case ARCH_TIMER_PHYS_NONSECURE_PPI:
1087 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1088 					 "arch_timer", arch_timer_evt);
1089 		if (!err && arch_timer_has_nonsecure_ppi()) {
1090 			ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1091 			err = request_percpu_irq(ppi, arch_timer_handler_phys,
1092 						 "arch_timer", arch_timer_evt);
1093 			if (err)
1094 				free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1095 						arch_timer_evt);
1096 		}
1097 		break;
1098 	case ARCH_TIMER_HYP_PPI:
1099 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1100 					 "arch_timer", arch_timer_evt);
1101 		break;
1102 	default:
1103 		BUG();
1104 	}
1105 
1106 	if (err) {
1107 		pr_err("can't register interrupt %d (%d)\n", ppi, err);
1108 		goto out_free;
1109 	}
1110 
1111 	err = arch_timer_cpu_pm_init();
1112 	if (err)
1113 		goto out_unreg_notify;
1114 
1115 	/* Register and immediately configure the timer on the boot CPU */
1116 	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1117 				"clockevents/arm/arch_timer:starting",
1118 				arch_timer_starting_cpu, arch_timer_dying_cpu);
1119 	if (err)
1120 		goto out_unreg_cpupm;
1121 	return 0;
1122 
1123 out_unreg_cpupm:
1124 	arch_timer_cpu_pm_deinit();
1125 
1126 out_unreg_notify:
1127 	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1128 	if (arch_timer_has_nonsecure_ppi())
1129 		free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1130 				arch_timer_evt);
1131 
1132 out_free:
1133 	free_percpu(arch_timer_evt);
1134 out:
1135 	return err;
1136 }
1137 
1138 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1139 {
1140 	int ret;
1141 	irq_handler_t func;
1142 	struct arch_timer *t;
1143 
1144 	t = kzalloc(sizeof(*t), GFP_KERNEL);
1145 	if (!t)
1146 		return -ENOMEM;
1147 
1148 	t->base = base;
1149 	t->evt.irq = irq;
1150 	__arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1151 
1152 	if (arch_timer_mem_use_virtual)
1153 		func = arch_timer_handler_virt_mem;
1154 	else
1155 		func = arch_timer_handler_phys_mem;
1156 
1157 	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1158 	if (ret) {
1159 		pr_err("Failed to request mem timer irq\n");
1160 		kfree(t);
1161 	}
1162 
1163 	return ret;
1164 }
1165 
1166 static const struct of_device_id arch_timer_of_match[] __initconst = {
1167 	{ .compatible   = "arm,armv7-timer",    },
1168 	{ .compatible   = "arm,armv8-timer",    },
1169 	{},
1170 };
1171 
1172 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1173 	{ .compatible   = "arm,armv7-timer-mem", },
1174 	{},
1175 };
1176 
1177 static bool __init arch_timer_needs_of_probing(void)
1178 {
1179 	struct device_node *dn;
1180 	bool needs_probing = false;
1181 	unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1182 
1183 	/* We have two timers, and both device-tree nodes are probed. */
1184 	if ((arch_timers_present & mask) == mask)
1185 		return false;
1186 
1187 	/*
1188 	 * Only one type of timer is probed,
1189 	 * check if we have another type of timer node in device-tree.
1190 	 */
1191 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1192 		dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1193 	else
1194 		dn = of_find_matching_node(NULL, arch_timer_of_match);
1195 
1196 	if (dn && of_device_is_available(dn))
1197 		needs_probing = true;
1198 
1199 	of_node_put(dn);
1200 
1201 	return needs_probing;
1202 }
1203 
1204 static int __init arch_timer_common_init(void)
1205 {
1206 	arch_timer_banner(arch_timers_present);
1207 	arch_counter_register(arch_timers_present);
1208 	return arch_timer_arch_init();
1209 }
1210 
1211 /**
1212  * arch_timer_select_ppi() - Select suitable PPI for the current system.
1213  *
1214  * If HYP mode is available, we know that the physical timer
1215  * has been configured to be accessible from PL1. Use it, so
1216  * that a guest can use the virtual timer instead.
1217  *
1218  * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1219  * accesses to CNTP_*_EL1 registers are silently redirected to
1220  * their CNTHP_*_EL2 counterparts, and use a different PPI
1221  * number.
1222  *
1223  * If no interrupt provided for virtual timer, we'll have to
1224  * stick to the physical timer. It'd better be accessible...
1225  * For arm64 we never use the secure interrupt.
1226  *
1227  * Return: a suitable PPI type for the current system.
1228  */
1229 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1230 {
1231 	if (is_kernel_in_hyp_mode())
1232 		return ARCH_TIMER_HYP_PPI;
1233 
1234 	if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1235 		return ARCH_TIMER_VIRT_PPI;
1236 
1237 	if (IS_ENABLED(CONFIG_ARM64))
1238 		return ARCH_TIMER_PHYS_NONSECURE_PPI;
1239 
1240 	return ARCH_TIMER_PHYS_SECURE_PPI;
1241 }
1242 
1243 static void __init arch_timer_populate_kvm_info(void)
1244 {
1245 	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1246 	if (is_kernel_in_hyp_mode())
1247 		arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1248 }
1249 
1250 static int __init arch_timer_of_init(struct device_node *np)
1251 {
1252 	int i, ret;
1253 	u32 rate;
1254 
1255 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1256 		pr_warn("multiple nodes in dt, skipping\n");
1257 		return 0;
1258 	}
1259 
1260 	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1261 	for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1262 		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
1263 
1264 	arch_timer_populate_kvm_info();
1265 
1266 	rate = arch_timer_get_cntfrq();
1267 	arch_timer_of_configure_rate(rate, np);
1268 
1269 	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1270 
1271 	/* Check for globally applicable workarounds */
1272 	arch_timer_check_ool_workaround(ate_match_dt, np);
1273 
1274 	/*
1275 	 * If we cannot rely on firmware initializing the timer registers then
1276 	 * we should use the physical timers instead.
1277 	 */
1278 	if (IS_ENABLED(CONFIG_ARM) &&
1279 	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1280 		arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1281 	else
1282 		arch_timer_uses_ppi = arch_timer_select_ppi();
1283 
1284 	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1285 		pr_err("No interrupt available, giving up\n");
1286 		return -EINVAL;
1287 	}
1288 
1289 	/* On some systems, the counter stops ticking when in suspend. */
1290 	arch_counter_suspend_stop = of_property_read_bool(np,
1291 							 "arm,no-tick-in-suspend");
1292 
1293 	ret = arch_timer_register();
1294 	if (ret)
1295 		return ret;
1296 
1297 	if (arch_timer_needs_of_probing())
1298 		return 0;
1299 
1300 	return arch_timer_common_init();
1301 }
1302 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1303 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1304 
1305 static u32 __init
1306 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1307 {
1308 	void __iomem *base;
1309 	u32 rate;
1310 
1311 	base = ioremap(frame->cntbase, frame->size);
1312 	if (!base) {
1313 		pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1314 		return 0;
1315 	}
1316 
1317 	rate = readl_relaxed(base + CNTFRQ);
1318 
1319 	iounmap(base);
1320 
1321 	return rate;
1322 }
1323 
1324 static struct arch_timer_mem_frame * __init
1325 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1326 {
1327 	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1328 	void __iomem *cntctlbase;
1329 	u32 cnttidr;
1330 	int i;
1331 
1332 	cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1333 	if (!cntctlbase) {
1334 		pr_err("Can't map CNTCTLBase @ %pa\n",
1335 			&timer_mem->cntctlbase);
1336 		return NULL;
1337 	}
1338 
1339 	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1340 
1341 	/*
1342 	 * Try to find a virtual capable frame. Otherwise fall back to a
1343 	 * physical capable frame.
1344 	 */
1345 	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1346 		u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1347 			     CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1348 
1349 		frame = &timer_mem->frame[i];
1350 		if (!frame->valid)
1351 			continue;
1352 
1353 		/* Try enabling everything, and see what sticks */
1354 		writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1355 		cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1356 
1357 		if ((cnttidr & CNTTIDR_VIRT(i)) &&
1358 		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1359 			best_frame = frame;
1360 			arch_timer_mem_use_virtual = true;
1361 			break;
1362 		}
1363 
1364 		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1365 			continue;
1366 
1367 		best_frame = frame;
1368 	}
1369 
1370 	iounmap(cntctlbase);
1371 
1372 	return best_frame;
1373 }
1374 
1375 static int __init
1376 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1377 {
1378 	void __iomem *base;
1379 	int ret, irq = 0;
1380 
1381 	if (arch_timer_mem_use_virtual)
1382 		irq = frame->virt_irq;
1383 	else
1384 		irq = frame->phys_irq;
1385 
1386 	if (!irq) {
1387 		pr_err("Frame missing %s irq.\n",
1388 		       arch_timer_mem_use_virtual ? "virt" : "phys");
1389 		return -EINVAL;
1390 	}
1391 
1392 	if (!request_mem_region(frame->cntbase, frame->size,
1393 				"arch_mem_timer"))
1394 		return -EBUSY;
1395 
1396 	base = ioremap(frame->cntbase, frame->size);
1397 	if (!base) {
1398 		pr_err("Can't map frame's registers\n");
1399 		return -ENXIO;
1400 	}
1401 
1402 	ret = arch_timer_mem_register(base, irq);
1403 	if (ret) {
1404 		iounmap(base);
1405 		return ret;
1406 	}
1407 
1408 	arch_counter_base = base;
1409 	arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1410 
1411 	return 0;
1412 }
1413 
1414 static int __init arch_timer_mem_of_init(struct device_node *np)
1415 {
1416 	struct arch_timer_mem *timer_mem;
1417 	struct arch_timer_mem_frame *frame;
1418 	struct device_node *frame_node;
1419 	struct resource res;
1420 	int ret = -EINVAL;
1421 	u32 rate;
1422 
1423 	timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1424 	if (!timer_mem)
1425 		return -ENOMEM;
1426 
1427 	if (of_address_to_resource(np, 0, &res))
1428 		goto out;
1429 	timer_mem->cntctlbase = res.start;
1430 	timer_mem->size = resource_size(&res);
1431 
1432 	for_each_available_child_of_node(np, frame_node) {
1433 		u32 n;
1434 		struct arch_timer_mem_frame *frame;
1435 
1436 		if (of_property_read_u32(frame_node, "frame-number", &n)) {
1437 			pr_err(FW_BUG "Missing frame-number.\n");
1438 			of_node_put(frame_node);
1439 			goto out;
1440 		}
1441 		if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1442 			pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1443 			       ARCH_TIMER_MEM_MAX_FRAMES - 1);
1444 			of_node_put(frame_node);
1445 			goto out;
1446 		}
1447 		frame = &timer_mem->frame[n];
1448 
1449 		if (frame->valid) {
1450 			pr_err(FW_BUG "Duplicated frame-number.\n");
1451 			of_node_put(frame_node);
1452 			goto out;
1453 		}
1454 
1455 		if (of_address_to_resource(frame_node, 0, &res)) {
1456 			of_node_put(frame_node);
1457 			goto out;
1458 		}
1459 		frame->cntbase = res.start;
1460 		frame->size = resource_size(&res);
1461 
1462 		frame->virt_irq = irq_of_parse_and_map(frame_node,
1463 						       ARCH_TIMER_VIRT_SPI);
1464 		frame->phys_irq = irq_of_parse_and_map(frame_node,
1465 						       ARCH_TIMER_PHYS_SPI);
1466 
1467 		frame->valid = true;
1468 	}
1469 
1470 	frame = arch_timer_mem_find_best_frame(timer_mem);
1471 	if (!frame) {
1472 		pr_err("Unable to find a suitable frame in timer @ %pa\n",
1473 			&timer_mem->cntctlbase);
1474 		ret = -EINVAL;
1475 		goto out;
1476 	}
1477 
1478 	rate = arch_timer_mem_frame_get_cntfrq(frame);
1479 	arch_timer_of_configure_rate(rate, np);
1480 
1481 	ret = arch_timer_mem_frame_register(frame);
1482 	if (!ret && !arch_timer_needs_of_probing())
1483 		ret = arch_timer_common_init();
1484 out:
1485 	kfree(timer_mem);
1486 	return ret;
1487 }
1488 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1489 		       arch_timer_mem_of_init);
1490 
1491 #ifdef CONFIG_ACPI_GTDT
1492 static int __init
1493 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1494 {
1495 	struct arch_timer_mem_frame *frame;
1496 	u32 rate;
1497 	int i;
1498 
1499 	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1500 		frame = &timer_mem->frame[i];
1501 
1502 		if (!frame->valid)
1503 			continue;
1504 
1505 		rate = arch_timer_mem_frame_get_cntfrq(frame);
1506 		if (rate == arch_timer_rate)
1507 			continue;
1508 
1509 		pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1510 			&frame->cntbase,
1511 			(unsigned long)rate, (unsigned long)arch_timer_rate);
1512 
1513 		return -EINVAL;
1514 	}
1515 
1516 	return 0;
1517 }
1518 
1519 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1520 {
1521 	struct arch_timer_mem *timers, *timer;
1522 	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1523 	int timer_count, i, ret = 0;
1524 
1525 	timers = kcalloc(platform_timer_count, sizeof(*timers),
1526 			    GFP_KERNEL);
1527 	if (!timers)
1528 		return -ENOMEM;
1529 
1530 	ret = acpi_arch_timer_mem_init(timers, &timer_count);
1531 	if (ret || !timer_count)
1532 		goto out;
1533 
1534 	/*
1535 	 * While unlikely, it's theoretically possible that none of the frames
1536 	 * in a timer expose the combination of feature we want.
1537 	 */
1538 	for (i = 0; i < timer_count; i++) {
1539 		timer = &timers[i];
1540 
1541 		frame = arch_timer_mem_find_best_frame(timer);
1542 		if (!best_frame)
1543 			best_frame = frame;
1544 
1545 		ret = arch_timer_mem_verify_cntfrq(timer);
1546 		if (ret) {
1547 			pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1548 			goto out;
1549 		}
1550 
1551 		if (!best_frame) /* implies !frame */
1552 			/*
1553 			 * Only complain about missing suitable frames if we
1554 			 * haven't already found one in a previous iteration.
1555 			 */
1556 			pr_err("Unable to find a suitable frame in timer @ %pa\n",
1557 				&timer->cntctlbase);
1558 	}
1559 
1560 	if (best_frame)
1561 		ret = arch_timer_mem_frame_register(best_frame);
1562 out:
1563 	kfree(timers);
1564 	return ret;
1565 }
1566 
1567 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1568 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1569 {
1570 	int ret, platform_timer_count;
1571 
1572 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1573 		pr_warn("already initialized, skipping\n");
1574 		return -EINVAL;
1575 	}
1576 
1577 	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1578 
1579 	ret = acpi_gtdt_init(table, &platform_timer_count);
1580 	if (ret) {
1581 		pr_err("Failed to init GTDT table.\n");
1582 		return ret;
1583 	}
1584 
1585 	arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1586 		acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1587 
1588 	arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1589 		acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1590 
1591 	arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1592 		acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1593 
1594 	arch_timer_populate_kvm_info();
1595 
1596 	/*
1597 	 * When probing via ACPI, we have no mechanism to override the sysreg
1598 	 * CNTFRQ value. This *must* be correct.
1599 	 */
1600 	arch_timer_rate = arch_timer_get_cntfrq();
1601 	if (!arch_timer_rate) {
1602 		pr_err(FW_BUG "frequency not available.\n");
1603 		return -EINVAL;
1604 	}
1605 
1606 	arch_timer_uses_ppi = arch_timer_select_ppi();
1607 	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1608 		pr_err("No interrupt available, giving up\n");
1609 		return -EINVAL;
1610 	}
1611 
1612 	/* Always-on capability */
1613 	arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1614 
1615 	/* Check for globally applicable workarounds */
1616 	arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1617 
1618 	ret = arch_timer_register();
1619 	if (ret)
1620 		return ret;
1621 
1622 	if (platform_timer_count &&
1623 	    arch_timer_mem_acpi_init(platform_timer_count))
1624 		pr_err("Failed to initialize memory-mapped timer.\n");
1625 
1626 	return arch_timer_common_init();
1627 }
1628 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1629 #endif
1630