1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/clocksource/arm_arch_timer.c 4 * 5 * Copyright (C) 2011 ARM Ltd. 6 * All Rights Reserved 7 */ 8 9 #define pr_fmt(fmt) "arch_timer: " fmt 10 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/device.h> 14 #include <linux/smp.h> 15 #include <linux/cpu.h> 16 #include <linux/cpu_pm.h> 17 #include <linux/clockchips.h> 18 #include <linux/clocksource.h> 19 #include <linux/interrupt.h> 20 #include <linux/of_irq.h> 21 #include <linux/of_address.h> 22 #include <linux/io.h> 23 #include <linux/slab.h> 24 #include <linux/sched/clock.h> 25 #include <linux/sched_clock.h> 26 #include <linux/acpi.h> 27 28 #include <asm/arch_timer.h> 29 #include <asm/virt.h> 30 31 #include <clocksource/arm_arch_timer.h> 32 33 #define CNTTIDR 0x08 34 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4)) 35 36 #define CNTACR(n) (0x40 + ((n) * 4)) 37 #define CNTACR_RPCT BIT(0) 38 #define CNTACR_RVCT BIT(1) 39 #define CNTACR_RFRQ BIT(2) 40 #define CNTACR_RVOFF BIT(3) 41 #define CNTACR_RWVT BIT(4) 42 #define CNTACR_RWPT BIT(5) 43 44 #define CNTVCT_LO 0x08 45 #define CNTVCT_HI 0x0c 46 #define CNTFRQ 0x10 47 #define CNTP_TVAL 0x28 48 #define CNTP_CTL 0x2c 49 #define CNTV_TVAL 0x38 50 #define CNTV_CTL 0x3c 51 52 static unsigned arch_timers_present __initdata; 53 54 static void __iomem *arch_counter_base; 55 56 struct arch_timer { 57 void __iomem *base; 58 struct clock_event_device evt; 59 }; 60 61 #define to_arch_timer(e) container_of(e, struct arch_timer, evt) 62 63 static u32 arch_timer_rate; 64 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI]; 65 66 static struct clock_event_device __percpu *arch_timer_evt; 67 68 static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI; 69 static bool arch_timer_c3stop; 70 static bool arch_timer_mem_use_virtual; 71 static bool arch_counter_suspend_stop; 72 #ifdef CONFIG_GENERIC_GETTIMEOFDAY 73 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER; 74 #else 75 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE; 76 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */ 77 78 static cpumask_t evtstrm_available = CPU_MASK_NONE; 79 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM); 80 81 static int __init early_evtstrm_cfg(char *buf) 82 { 83 return strtobool(buf, &evtstrm_enable); 84 } 85 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg); 86 87 /* 88 * Architected system timer support. 89 */ 90 91 static __always_inline 92 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val, 93 struct clock_event_device *clk) 94 { 95 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 96 struct arch_timer *timer = to_arch_timer(clk); 97 switch (reg) { 98 case ARCH_TIMER_REG_CTRL: 99 writel_relaxed(val, timer->base + CNTP_CTL); 100 break; 101 case ARCH_TIMER_REG_TVAL: 102 writel_relaxed(val, timer->base + CNTP_TVAL); 103 break; 104 } 105 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 106 struct arch_timer *timer = to_arch_timer(clk); 107 switch (reg) { 108 case ARCH_TIMER_REG_CTRL: 109 writel_relaxed(val, timer->base + CNTV_CTL); 110 break; 111 case ARCH_TIMER_REG_TVAL: 112 writel_relaxed(val, timer->base + CNTV_TVAL); 113 break; 114 } 115 } else { 116 arch_timer_reg_write_cp15(access, reg, val); 117 } 118 } 119 120 static __always_inline 121 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg, 122 struct clock_event_device *clk) 123 { 124 u32 val; 125 126 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 127 struct arch_timer *timer = to_arch_timer(clk); 128 switch (reg) { 129 case ARCH_TIMER_REG_CTRL: 130 val = readl_relaxed(timer->base + CNTP_CTL); 131 break; 132 case ARCH_TIMER_REG_TVAL: 133 val = readl_relaxed(timer->base + CNTP_TVAL); 134 break; 135 } 136 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 137 struct arch_timer *timer = to_arch_timer(clk); 138 switch (reg) { 139 case ARCH_TIMER_REG_CTRL: 140 val = readl_relaxed(timer->base + CNTV_CTL); 141 break; 142 case ARCH_TIMER_REG_TVAL: 143 val = readl_relaxed(timer->base + CNTV_TVAL); 144 break; 145 } 146 } else { 147 val = arch_timer_reg_read_cp15(access, reg); 148 } 149 150 return val; 151 } 152 153 static notrace u64 arch_counter_get_cntpct_stable(void) 154 { 155 return __arch_counter_get_cntpct_stable(); 156 } 157 158 static notrace u64 arch_counter_get_cntpct(void) 159 { 160 return __arch_counter_get_cntpct(); 161 } 162 163 static notrace u64 arch_counter_get_cntvct_stable(void) 164 { 165 return __arch_counter_get_cntvct_stable(); 166 } 167 168 static notrace u64 arch_counter_get_cntvct(void) 169 { 170 return __arch_counter_get_cntvct(); 171 } 172 173 /* 174 * Default to cp15 based access because arm64 uses this function for 175 * sched_clock() before DT is probed and the cp15 method is guaranteed 176 * to exist on arm64. arm doesn't use this before DT is probed so even 177 * if we don't have the cp15 accessors we won't have a problem. 178 */ 179 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct; 180 EXPORT_SYMBOL_GPL(arch_timer_read_counter); 181 182 static u64 arch_counter_read(struct clocksource *cs) 183 { 184 return arch_timer_read_counter(); 185 } 186 187 static u64 arch_counter_read_cc(const struct cyclecounter *cc) 188 { 189 return arch_timer_read_counter(); 190 } 191 192 static struct clocksource clocksource_counter = { 193 .name = "arch_sys_counter", 194 .rating = 400, 195 .read = arch_counter_read, 196 .mask = CLOCKSOURCE_MASK(56), 197 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 198 }; 199 200 static struct cyclecounter cyclecounter __ro_after_init = { 201 .read = arch_counter_read_cc, 202 .mask = CLOCKSOURCE_MASK(56), 203 }; 204 205 struct ate_acpi_oem_info { 206 char oem_id[ACPI_OEM_ID_SIZE + 1]; 207 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1]; 208 u32 oem_revision; 209 }; 210 211 #ifdef CONFIG_FSL_ERRATUM_A008585 212 /* 213 * The number of retries is an arbitrary value well beyond the highest number 214 * of iterations the loop has been observed to take. 215 */ 216 #define __fsl_a008585_read_reg(reg) ({ \ 217 u64 _old, _new; \ 218 int _retries = 200; \ 219 \ 220 do { \ 221 _old = read_sysreg(reg); \ 222 _new = read_sysreg(reg); \ 223 _retries--; \ 224 } while (unlikely(_old != _new) && _retries); \ 225 \ 226 WARN_ON_ONCE(!_retries); \ 227 _new; \ 228 }) 229 230 static u32 notrace fsl_a008585_read_cntp_tval_el0(void) 231 { 232 return __fsl_a008585_read_reg(cntp_tval_el0); 233 } 234 235 static u32 notrace fsl_a008585_read_cntv_tval_el0(void) 236 { 237 return __fsl_a008585_read_reg(cntv_tval_el0); 238 } 239 240 static u64 notrace fsl_a008585_read_cntpct_el0(void) 241 { 242 return __fsl_a008585_read_reg(cntpct_el0); 243 } 244 245 static u64 notrace fsl_a008585_read_cntvct_el0(void) 246 { 247 return __fsl_a008585_read_reg(cntvct_el0); 248 } 249 #endif 250 251 #ifdef CONFIG_HISILICON_ERRATUM_161010101 252 /* 253 * Verify whether the value of the second read is larger than the first by 254 * less than 32 is the only way to confirm the value is correct, so clear the 255 * lower 5 bits to check whether the difference is greater than 32 or not. 256 * Theoretically the erratum should not occur more than twice in succession 257 * when reading the system counter, but it is possible that some interrupts 258 * may lead to more than twice read errors, triggering the warning, so setting 259 * the number of retries far beyond the number of iterations the loop has been 260 * observed to take. 261 */ 262 #define __hisi_161010101_read_reg(reg) ({ \ 263 u64 _old, _new; \ 264 int _retries = 50; \ 265 \ 266 do { \ 267 _old = read_sysreg(reg); \ 268 _new = read_sysreg(reg); \ 269 _retries--; \ 270 } while (unlikely((_new - _old) >> 5) && _retries); \ 271 \ 272 WARN_ON_ONCE(!_retries); \ 273 _new; \ 274 }) 275 276 static u32 notrace hisi_161010101_read_cntp_tval_el0(void) 277 { 278 return __hisi_161010101_read_reg(cntp_tval_el0); 279 } 280 281 static u32 notrace hisi_161010101_read_cntv_tval_el0(void) 282 { 283 return __hisi_161010101_read_reg(cntv_tval_el0); 284 } 285 286 static u64 notrace hisi_161010101_read_cntpct_el0(void) 287 { 288 return __hisi_161010101_read_reg(cntpct_el0); 289 } 290 291 static u64 notrace hisi_161010101_read_cntvct_el0(void) 292 { 293 return __hisi_161010101_read_reg(cntvct_el0); 294 } 295 296 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = { 297 /* 298 * Note that trailing spaces are required to properly match 299 * the OEM table information. 300 */ 301 { 302 .oem_id = "HISI ", 303 .oem_table_id = "HIP05 ", 304 .oem_revision = 0, 305 }, 306 { 307 .oem_id = "HISI ", 308 .oem_table_id = "HIP06 ", 309 .oem_revision = 0, 310 }, 311 { 312 .oem_id = "HISI ", 313 .oem_table_id = "HIP07 ", 314 .oem_revision = 0, 315 }, 316 { /* Sentinel indicating the end of the OEM array */ }, 317 }; 318 #endif 319 320 #ifdef CONFIG_ARM64_ERRATUM_858921 321 static u64 notrace arm64_858921_read_cntpct_el0(void) 322 { 323 u64 old, new; 324 325 old = read_sysreg(cntpct_el0); 326 new = read_sysreg(cntpct_el0); 327 return (((old ^ new) >> 32) & 1) ? old : new; 328 } 329 330 static u64 notrace arm64_858921_read_cntvct_el0(void) 331 { 332 u64 old, new; 333 334 old = read_sysreg(cntvct_el0); 335 new = read_sysreg(cntvct_el0); 336 return (((old ^ new) >> 32) & 1) ? old : new; 337 } 338 #endif 339 340 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1 341 /* 342 * The low bits of the counter registers are indeterminate while bit 10 or 343 * greater is rolling over. Since the counter value can jump both backward 344 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values 345 * with all ones or all zeros in the low bits. Bound the loop by the maximum 346 * number of CPU cycles in 3 consecutive 24 MHz counter periods. 347 */ 348 #define __sun50i_a64_read_reg(reg) ({ \ 349 u64 _val; \ 350 int _retries = 150; \ 351 \ 352 do { \ 353 _val = read_sysreg(reg); \ 354 _retries--; \ 355 } while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries); \ 356 \ 357 WARN_ON_ONCE(!_retries); \ 358 _val; \ 359 }) 360 361 static u64 notrace sun50i_a64_read_cntpct_el0(void) 362 { 363 return __sun50i_a64_read_reg(cntpct_el0); 364 } 365 366 static u64 notrace sun50i_a64_read_cntvct_el0(void) 367 { 368 return __sun50i_a64_read_reg(cntvct_el0); 369 } 370 371 static u32 notrace sun50i_a64_read_cntp_tval_el0(void) 372 { 373 return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0(); 374 } 375 376 static u32 notrace sun50i_a64_read_cntv_tval_el0(void) 377 { 378 return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0(); 379 } 380 #endif 381 382 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND 383 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround); 384 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround); 385 386 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0); 387 388 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt, 389 struct clock_event_device *clk) 390 { 391 unsigned long ctrl; 392 u64 cval; 393 394 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 395 ctrl |= ARCH_TIMER_CTRL_ENABLE; 396 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 397 398 if (access == ARCH_TIMER_PHYS_ACCESS) { 399 cval = evt + arch_counter_get_cntpct(); 400 write_sysreg(cval, cntp_cval_el0); 401 } else { 402 cval = evt + arch_counter_get_cntvct(); 403 write_sysreg(cval, cntv_cval_el0); 404 } 405 406 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 407 } 408 409 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt, 410 struct clock_event_device *clk) 411 { 412 erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk); 413 return 0; 414 } 415 416 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt, 417 struct clock_event_device *clk) 418 { 419 erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk); 420 return 0; 421 } 422 423 static const struct arch_timer_erratum_workaround ool_workarounds[] = { 424 #ifdef CONFIG_FSL_ERRATUM_A008585 425 { 426 .match_type = ate_match_dt, 427 .id = "fsl,erratum-a008585", 428 .desc = "Freescale erratum a005858", 429 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0, 430 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0, 431 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0, 432 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0, 433 .set_next_event_phys = erratum_set_next_event_tval_phys, 434 .set_next_event_virt = erratum_set_next_event_tval_virt, 435 }, 436 #endif 437 #ifdef CONFIG_HISILICON_ERRATUM_161010101 438 { 439 .match_type = ate_match_dt, 440 .id = "hisilicon,erratum-161010101", 441 .desc = "HiSilicon erratum 161010101", 442 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0, 443 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0, 444 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0, 445 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, 446 .set_next_event_phys = erratum_set_next_event_tval_phys, 447 .set_next_event_virt = erratum_set_next_event_tval_virt, 448 }, 449 { 450 .match_type = ate_match_acpi_oem_info, 451 .id = hisi_161010101_oem_info, 452 .desc = "HiSilicon erratum 161010101", 453 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0, 454 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0, 455 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0, 456 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, 457 .set_next_event_phys = erratum_set_next_event_tval_phys, 458 .set_next_event_virt = erratum_set_next_event_tval_virt, 459 }, 460 #endif 461 #ifdef CONFIG_ARM64_ERRATUM_858921 462 { 463 .match_type = ate_match_local_cap_id, 464 .id = (void *)ARM64_WORKAROUND_858921, 465 .desc = "ARM erratum 858921", 466 .read_cntpct_el0 = arm64_858921_read_cntpct_el0, 467 .read_cntvct_el0 = arm64_858921_read_cntvct_el0, 468 }, 469 #endif 470 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1 471 { 472 .match_type = ate_match_dt, 473 .id = "allwinner,erratum-unknown1", 474 .desc = "Allwinner erratum UNKNOWN1", 475 .read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0, 476 .read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0, 477 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0, 478 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0, 479 .set_next_event_phys = erratum_set_next_event_tval_phys, 480 .set_next_event_virt = erratum_set_next_event_tval_virt, 481 }, 482 #endif 483 }; 484 485 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *, 486 const void *); 487 488 static 489 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa, 490 const void *arg) 491 { 492 const struct device_node *np = arg; 493 494 return of_property_read_bool(np, wa->id); 495 } 496 497 static 498 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa, 499 const void *arg) 500 { 501 return this_cpu_has_cap((uintptr_t)wa->id); 502 } 503 504 505 static 506 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa, 507 const void *arg) 508 { 509 static const struct ate_acpi_oem_info empty_oem_info = {}; 510 const struct ate_acpi_oem_info *info = wa->id; 511 const struct acpi_table_header *table = arg; 512 513 /* Iterate over the ACPI OEM info array, looking for a match */ 514 while (memcmp(info, &empty_oem_info, sizeof(*info))) { 515 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) && 516 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) && 517 info->oem_revision == table->oem_revision) 518 return true; 519 520 info++; 521 } 522 523 return false; 524 } 525 526 static const struct arch_timer_erratum_workaround * 527 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type, 528 ate_match_fn_t match_fn, 529 void *arg) 530 { 531 int i; 532 533 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) { 534 if (ool_workarounds[i].match_type != type) 535 continue; 536 537 if (match_fn(&ool_workarounds[i], arg)) 538 return &ool_workarounds[i]; 539 } 540 541 return NULL; 542 } 543 544 static 545 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa, 546 bool local) 547 { 548 int i; 549 550 if (local) { 551 __this_cpu_write(timer_unstable_counter_workaround, wa); 552 } else { 553 for_each_possible_cpu(i) 554 per_cpu(timer_unstable_counter_workaround, i) = wa; 555 } 556 557 if (wa->read_cntvct_el0 || wa->read_cntpct_el0) 558 atomic_set(&timer_unstable_counter_workaround_in_use, 1); 559 560 /* 561 * Don't use the vdso fastpath if errata require using the 562 * out-of-line counter accessor. We may change our mind pretty 563 * late in the game (with a per-CPU erratum, for example), so 564 * change both the default value and the vdso itself. 565 */ 566 if (wa->read_cntvct_el0) { 567 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE; 568 vdso_default = VDSO_CLOCKMODE_NONE; 569 } 570 } 571 572 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type, 573 void *arg) 574 { 575 const struct arch_timer_erratum_workaround *wa, *__wa; 576 ate_match_fn_t match_fn = NULL; 577 bool local = false; 578 579 switch (type) { 580 case ate_match_dt: 581 match_fn = arch_timer_check_dt_erratum; 582 break; 583 case ate_match_local_cap_id: 584 match_fn = arch_timer_check_local_cap_erratum; 585 local = true; 586 break; 587 case ate_match_acpi_oem_info: 588 match_fn = arch_timer_check_acpi_oem_erratum; 589 break; 590 default: 591 WARN_ON(1); 592 return; 593 } 594 595 wa = arch_timer_iterate_errata(type, match_fn, arg); 596 if (!wa) 597 return; 598 599 __wa = __this_cpu_read(timer_unstable_counter_workaround); 600 if (__wa && wa != __wa) 601 pr_warn("Can't enable workaround for %s (clashes with %s\n)", 602 wa->desc, __wa->desc); 603 604 if (__wa) 605 return; 606 607 arch_timer_enable_workaround(wa, local); 608 pr_info("Enabling %s workaround for %s\n", 609 local ? "local" : "global", wa->desc); 610 } 611 612 static bool arch_timer_this_cpu_has_cntvct_wa(void) 613 { 614 return has_erratum_handler(read_cntvct_el0); 615 } 616 617 static bool arch_timer_counter_has_wa(void) 618 { 619 return atomic_read(&timer_unstable_counter_workaround_in_use); 620 } 621 #else 622 #define arch_timer_check_ool_workaround(t,a) do { } while(0) 623 #define arch_timer_this_cpu_has_cntvct_wa() ({false;}) 624 #define arch_timer_counter_has_wa() ({false;}) 625 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */ 626 627 static __always_inline irqreturn_t timer_handler(const int access, 628 struct clock_event_device *evt) 629 { 630 unsigned long ctrl; 631 632 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt); 633 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { 634 ctrl |= ARCH_TIMER_CTRL_IT_MASK; 635 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt); 636 evt->event_handler(evt); 637 return IRQ_HANDLED; 638 } 639 640 return IRQ_NONE; 641 } 642 643 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id) 644 { 645 struct clock_event_device *evt = dev_id; 646 647 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt); 648 } 649 650 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id) 651 { 652 struct clock_event_device *evt = dev_id; 653 654 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt); 655 } 656 657 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id) 658 { 659 struct clock_event_device *evt = dev_id; 660 661 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt); 662 } 663 664 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id) 665 { 666 struct clock_event_device *evt = dev_id; 667 668 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt); 669 } 670 671 static __always_inline int timer_shutdown(const int access, 672 struct clock_event_device *clk) 673 { 674 unsigned long ctrl; 675 676 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 677 ctrl &= ~ARCH_TIMER_CTRL_ENABLE; 678 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 679 680 return 0; 681 } 682 683 static int arch_timer_shutdown_virt(struct clock_event_device *clk) 684 { 685 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk); 686 } 687 688 static int arch_timer_shutdown_phys(struct clock_event_device *clk) 689 { 690 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk); 691 } 692 693 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk) 694 { 695 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk); 696 } 697 698 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk) 699 { 700 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk); 701 } 702 703 static __always_inline void set_next_event(const int access, unsigned long evt, 704 struct clock_event_device *clk) 705 { 706 unsigned long ctrl; 707 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 708 ctrl |= ARCH_TIMER_CTRL_ENABLE; 709 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 710 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk); 711 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 712 } 713 714 static int arch_timer_set_next_event_virt(unsigned long evt, 715 struct clock_event_device *clk) 716 { 717 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk); 718 return 0; 719 } 720 721 static int arch_timer_set_next_event_phys(unsigned long evt, 722 struct clock_event_device *clk) 723 { 724 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk); 725 return 0; 726 } 727 728 static int arch_timer_set_next_event_virt_mem(unsigned long evt, 729 struct clock_event_device *clk) 730 { 731 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk); 732 return 0; 733 } 734 735 static int arch_timer_set_next_event_phys_mem(unsigned long evt, 736 struct clock_event_device *clk) 737 { 738 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk); 739 return 0; 740 } 741 742 static void __arch_timer_setup(unsigned type, 743 struct clock_event_device *clk) 744 { 745 clk->features = CLOCK_EVT_FEAT_ONESHOT; 746 747 if (type == ARCH_TIMER_TYPE_CP15) { 748 typeof(clk->set_next_event) sne; 749 750 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL); 751 752 if (arch_timer_c3stop) 753 clk->features |= CLOCK_EVT_FEAT_C3STOP; 754 clk->name = "arch_sys_timer"; 755 clk->rating = 450; 756 clk->cpumask = cpumask_of(smp_processor_id()); 757 clk->irq = arch_timer_ppi[arch_timer_uses_ppi]; 758 switch (arch_timer_uses_ppi) { 759 case ARCH_TIMER_VIRT_PPI: 760 clk->set_state_shutdown = arch_timer_shutdown_virt; 761 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt; 762 sne = erratum_handler(set_next_event_virt); 763 break; 764 case ARCH_TIMER_PHYS_SECURE_PPI: 765 case ARCH_TIMER_PHYS_NONSECURE_PPI: 766 case ARCH_TIMER_HYP_PPI: 767 clk->set_state_shutdown = arch_timer_shutdown_phys; 768 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys; 769 sne = erratum_handler(set_next_event_phys); 770 break; 771 default: 772 BUG(); 773 } 774 775 clk->set_next_event = sne; 776 } else { 777 clk->features |= CLOCK_EVT_FEAT_DYNIRQ; 778 clk->name = "arch_mem_timer"; 779 clk->rating = 400; 780 clk->cpumask = cpu_possible_mask; 781 if (arch_timer_mem_use_virtual) { 782 clk->set_state_shutdown = arch_timer_shutdown_virt_mem; 783 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem; 784 clk->set_next_event = 785 arch_timer_set_next_event_virt_mem; 786 } else { 787 clk->set_state_shutdown = arch_timer_shutdown_phys_mem; 788 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem; 789 clk->set_next_event = 790 arch_timer_set_next_event_phys_mem; 791 } 792 } 793 794 clk->set_state_shutdown(clk); 795 796 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff); 797 } 798 799 static void arch_timer_evtstrm_enable(int divider) 800 { 801 u32 cntkctl = arch_timer_get_cntkctl(); 802 803 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK; 804 /* Set the divider and enable virtual event stream */ 805 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT) 806 | ARCH_TIMER_VIRT_EVT_EN; 807 arch_timer_set_cntkctl(cntkctl); 808 arch_timer_set_evtstrm_feature(); 809 cpumask_set_cpu(smp_processor_id(), &evtstrm_available); 810 } 811 812 static void arch_timer_configure_evtstream(void) 813 { 814 int evt_stream_div, pos; 815 816 /* Find the closest power of two to the divisor */ 817 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ; 818 pos = fls(evt_stream_div); 819 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2)))) 820 pos--; 821 /* enable event stream */ 822 arch_timer_evtstrm_enable(min(pos, 15)); 823 } 824 825 static void arch_counter_set_user_access(void) 826 { 827 u32 cntkctl = arch_timer_get_cntkctl(); 828 829 /* Disable user access to the timers and both counters */ 830 /* Also disable virtual event stream */ 831 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN 832 | ARCH_TIMER_USR_VT_ACCESS_EN 833 | ARCH_TIMER_USR_VCT_ACCESS_EN 834 | ARCH_TIMER_VIRT_EVT_EN 835 | ARCH_TIMER_USR_PCT_ACCESS_EN); 836 837 /* 838 * Enable user access to the virtual counter if it doesn't 839 * need to be workaround. The vdso may have been already 840 * disabled though. 841 */ 842 if (arch_timer_this_cpu_has_cntvct_wa()) 843 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id()); 844 else 845 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN; 846 847 arch_timer_set_cntkctl(cntkctl); 848 } 849 850 static bool arch_timer_has_nonsecure_ppi(void) 851 { 852 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI && 853 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 854 } 855 856 static u32 check_ppi_trigger(int irq) 857 { 858 u32 flags = irq_get_trigger_type(irq); 859 860 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) { 861 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq); 862 pr_warn("WARNING: Please fix your firmware\n"); 863 flags = IRQF_TRIGGER_LOW; 864 } 865 866 return flags; 867 } 868 869 static int arch_timer_starting_cpu(unsigned int cpu) 870 { 871 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 872 u32 flags; 873 874 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk); 875 876 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]); 877 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags); 878 879 if (arch_timer_has_nonsecure_ppi()) { 880 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 881 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], 882 flags); 883 } 884 885 arch_counter_set_user_access(); 886 if (evtstrm_enable) 887 arch_timer_configure_evtstream(); 888 889 return 0; 890 } 891 892 /* 893 * For historical reasons, when probing with DT we use whichever (non-zero) 894 * rate was probed first, and don't verify that others match. If the first node 895 * probed has a clock-frequency property, this overrides the HW register. 896 */ 897 static void arch_timer_of_configure_rate(u32 rate, struct device_node *np) 898 { 899 /* Who has more than one independent system counter? */ 900 if (arch_timer_rate) 901 return; 902 903 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) 904 arch_timer_rate = rate; 905 906 /* Check the timer frequency. */ 907 if (arch_timer_rate == 0) 908 pr_warn("frequency not available\n"); 909 } 910 911 static void arch_timer_banner(unsigned type) 912 { 913 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n", 914 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "", 915 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? 916 " and " : "", 917 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "", 918 (unsigned long)arch_timer_rate / 1000000, 919 (unsigned long)(arch_timer_rate / 10000) % 100, 920 type & ARCH_TIMER_TYPE_CP15 ? 921 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" : 922 "", 923 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "", 924 type & ARCH_TIMER_TYPE_MEM ? 925 arch_timer_mem_use_virtual ? "virt" : "phys" : 926 ""); 927 } 928 929 u32 arch_timer_get_rate(void) 930 { 931 return arch_timer_rate; 932 } 933 934 bool arch_timer_evtstrm_available(void) 935 { 936 /* 937 * We might get called from a preemptible context. This is fine 938 * because availability of the event stream should be always the same 939 * for a preemptible context and context where we might resume a task. 940 */ 941 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available); 942 } 943 944 static u64 arch_counter_get_cntvct_mem(void) 945 { 946 u32 vct_lo, vct_hi, tmp_hi; 947 948 do { 949 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); 950 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO); 951 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); 952 } while (vct_hi != tmp_hi); 953 954 return ((u64) vct_hi << 32) | vct_lo; 955 } 956 957 static struct arch_timer_kvm_info arch_timer_kvm_info; 958 959 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void) 960 { 961 return &arch_timer_kvm_info; 962 } 963 964 static void __init arch_counter_register(unsigned type) 965 { 966 u64 start_count; 967 968 /* Register the CP15 based counter if we have one */ 969 if (type & ARCH_TIMER_TYPE_CP15) { 970 u64 (*rd)(void); 971 972 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) || 973 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) { 974 if (arch_timer_counter_has_wa()) 975 rd = arch_counter_get_cntvct_stable; 976 else 977 rd = arch_counter_get_cntvct; 978 } else { 979 if (arch_timer_counter_has_wa()) 980 rd = arch_counter_get_cntpct_stable; 981 else 982 rd = arch_counter_get_cntpct; 983 } 984 985 arch_timer_read_counter = rd; 986 clocksource_counter.vdso_clock_mode = vdso_default; 987 } else { 988 arch_timer_read_counter = arch_counter_get_cntvct_mem; 989 } 990 991 if (!arch_counter_suspend_stop) 992 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; 993 start_count = arch_timer_read_counter(); 994 clocksource_register_hz(&clocksource_counter, arch_timer_rate); 995 cyclecounter.mult = clocksource_counter.mult; 996 cyclecounter.shift = clocksource_counter.shift; 997 timecounter_init(&arch_timer_kvm_info.timecounter, 998 &cyclecounter, start_count); 999 1000 /* 56 bits minimum, so we assume worst case rollover */ 1001 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate); 1002 } 1003 1004 static void arch_timer_stop(struct clock_event_device *clk) 1005 { 1006 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id()); 1007 1008 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]); 1009 if (arch_timer_has_nonsecure_ppi()) 1010 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 1011 1012 clk->set_state_shutdown(clk); 1013 } 1014 1015 static int arch_timer_dying_cpu(unsigned int cpu) 1016 { 1017 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 1018 1019 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available); 1020 1021 arch_timer_stop(clk); 1022 return 0; 1023 } 1024 1025 #ifdef CONFIG_CPU_PM 1026 static DEFINE_PER_CPU(unsigned long, saved_cntkctl); 1027 static int arch_timer_cpu_pm_notify(struct notifier_block *self, 1028 unsigned long action, void *hcpu) 1029 { 1030 if (action == CPU_PM_ENTER) { 1031 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl()); 1032 1033 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available); 1034 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) { 1035 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl)); 1036 1037 if (arch_timer_have_evtstrm_feature()) 1038 cpumask_set_cpu(smp_processor_id(), &evtstrm_available); 1039 } 1040 return NOTIFY_OK; 1041 } 1042 1043 static struct notifier_block arch_timer_cpu_pm_notifier = { 1044 .notifier_call = arch_timer_cpu_pm_notify, 1045 }; 1046 1047 static int __init arch_timer_cpu_pm_init(void) 1048 { 1049 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier); 1050 } 1051 1052 static void __init arch_timer_cpu_pm_deinit(void) 1053 { 1054 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier)); 1055 } 1056 1057 #else 1058 static int __init arch_timer_cpu_pm_init(void) 1059 { 1060 return 0; 1061 } 1062 1063 static void __init arch_timer_cpu_pm_deinit(void) 1064 { 1065 } 1066 #endif 1067 1068 static int __init arch_timer_register(void) 1069 { 1070 int err; 1071 int ppi; 1072 1073 arch_timer_evt = alloc_percpu(struct clock_event_device); 1074 if (!arch_timer_evt) { 1075 err = -ENOMEM; 1076 goto out; 1077 } 1078 1079 ppi = arch_timer_ppi[arch_timer_uses_ppi]; 1080 switch (arch_timer_uses_ppi) { 1081 case ARCH_TIMER_VIRT_PPI: 1082 err = request_percpu_irq(ppi, arch_timer_handler_virt, 1083 "arch_timer", arch_timer_evt); 1084 break; 1085 case ARCH_TIMER_PHYS_SECURE_PPI: 1086 case ARCH_TIMER_PHYS_NONSECURE_PPI: 1087 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1088 "arch_timer", arch_timer_evt); 1089 if (!err && arch_timer_has_nonsecure_ppi()) { 1090 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]; 1091 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1092 "arch_timer", arch_timer_evt); 1093 if (err) 1094 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI], 1095 arch_timer_evt); 1096 } 1097 break; 1098 case ARCH_TIMER_HYP_PPI: 1099 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1100 "arch_timer", arch_timer_evt); 1101 break; 1102 default: 1103 BUG(); 1104 } 1105 1106 if (err) { 1107 pr_err("can't register interrupt %d (%d)\n", ppi, err); 1108 goto out_free; 1109 } 1110 1111 err = arch_timer_cpu_pm_init(); 1112 if (err) 1113 goto out_unreg_notify; 1114 1115 /* Register and immediately configure the timer on the boot CPU */ 1116 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING, 1117 "clockevents/arm/arch_timer:starting", 1118 arch_timer_starting_cpu, arch_timer_dying_cpu); 1119 if (err) 1120 goto out_unreg_cpupm; 1121 return 0; 1122 1123 out_unreg_cpupm: 1124 arch_timer_cpu_pm_deinit(); 1125 1126 out_unreg_notify: 1127 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt); 1128 if (arch_timer_has_nonsecure_ppi()) 1129 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], 1130 arch_timer_evt); 1131 1132 out_free: 1133 free_percpu(arch_timer_evt); 1134 out: 1135 return err; 1136 } 1137 1138 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq) 1139 { 1140 int ret; 1141 irq_handler_t func; 1142 struct arch_timer *t; 1143 1144 t = kzalloc(sizeof(*t), GFP_KERNEL); 1145 if (!t) 1146 return -ENOMEM; 1147 1148 t->base = base; 1149 t->evt.irq = irq; 1150 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt); 1151 1152 if (arch_timer_mem_use_virtual) 1153 func = arch_timer_handler_virt_mem; 1154 else 1155 func = arch_timer_handler_phys_mem; 1156 1157 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt); 1158 if (ret) { 1159 pr_err("Failed to request mem timer irq\n"); 1160 kfree(t); 1161 } 1162 1163 return ret; 1164 } 1165 1166 static const struct of_device_id arch_timer_of_match[] __initconst = { 1167 { .compatible = "arm,armv7-timer", }, 1168 { .compatible = "arm,armv8-timer", }, 1169 {}, 1170 }; 1171 1172 static const struct of_device_id arch_timer_mem_of_match[] __initconst = { 1173 { .compatible = "arm,armv7-timer-mem", }, 1174 {}, 1175 }; 1176 1177 static bool __init arch_timer_needs_of_probing(void) 1178 { 1179 struct device_node *dn; 1180 bool needs_probing = false; 1181 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM; 1182 1183 /* We have two timers, and both device-tree nodes are probed. */ 1184 if ((arch_timers_present & mask) == mask) 1185 return false; 1186 1187 /* 1188 * Only one type of timer is probed, 1189 * check if we have another type of timer node in device-tree. 1190 */ 1191 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) 1192 dn = of_find_matching_node(NULL, arch_timer_mem_of_match); 1193 else 1194 dn = of_find_matching_node(NULL, arch_timer_of_match); 1195 1196 if (dn && of_device_is_available(dn)) 1197 needs_probing = true; 1198 1199 of_node_put(dn); 1200 1201 return needs_probing; 1202 } 1203 1204 static int __init arch_timer_common_init(void) 1205 { 1206 arch_timer_banner(arch_timers_present); 1207 arch_counter_register(arch_timers_present); 1208 return arch_timer_arch_init(); 1209 } 1210 1211 /** 1212 * arch_timer_select_ppi() - Select suitable PPI for the current system. 1213 * 1214 * If HYP mode is available, we know that the physical timer 1215 * has been configured to be accessible from PL1. Use it, so 1216 * that a guest can use the virtual timer instead. 1217 * 1218 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE 1219 * accesses to CNTP_*_EL1 registers are silently redirected to 1220 * their CNTHP_*_EL2 counterparts, and use a different PPI 1221 * number. 1222 * 1223 * If no interrupt provided for virtual timer, we'll have to 1224 * stick to the physical timer. It'd better be accessible... 1225 * For arm64 we never use the secure interrupt. 1226 * 1227 * Return: a suitable PPI type for the current system. 1228 */ 1229 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void) 1230 { 1231 if (is_kernel_in_hyp_mode()) 1232 return ARCH_TIMER_HYP_PPI; 1233 1234 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI]) 1235 return ARCH_TIMER_VIRT_PPI; 1236 1237 if (IS_ENABLED(CONFIG_ARM64)) 1238 return ARCH_TIMER_PHYS_NONSECURE_PPI; 1239 1240 return ARCH_TIMER_PHYS_SECURE_PPI; 1241 } 1242 1243 static void __init arch_timer_populate_kvm_info(void) 1244 { 1245 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI]; 1246 if (is_kernel_in_hyp_mode()) 1247 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]; 1248 } 1249 1250 static int __init arch_timer_of_init(struct device_node *np) 1251 { 1252 int i, ret; 1253 u32 rate; 1254 1255 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { 1256 pr_warn("multiple nodes in dt, skipping\n"); 1257 return 0; 1258 } 1259 1260 arch_timers_present |= ARCH_TIMER_TYPE_CP15; 1261 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) 1262 arch_timer_ppi[i] = irq_of_parse_and_map(np, i); 1263 1264 arch_timer_populate_kvm_info(); 1265 1266 rate = arch_timer_get_cntfrq(); 1267 arch_timer_of_configure_rate(rate, np); 1268 1269 arch_timer_c3stop = !of_property_read_bool(np, "always-on"); 1270 1271 /* Check for globally applicable workarounds */ 1272 arch_timer_check_ool_workaround(ate_match_dt, np); 1273 1274 /* 1275 * If we cannot rely on firmware initializing the timer registers then 1276 * we should use the physical timers instead. 1277 */ 1278 if (IS_ENABLED(CONFIG_ARM) && 1279 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured")) 1280 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI; 1281 else 1282 arch_timer_uses_ppi = arch_timer_select_ppi(); 1283 1284 if (!arch_timer_ppi[arch_timer_uses_ppi]) { 1285 pr_err("No interrupt available, giving up\n"); 1286 return -EINVAL; 1287 } 1288 1289 /* On some systems, the counter stops ticking when in suspend. */ 1290 arch_counter_suspend_stop = of_property_read_bool(np, 1291 "arm,no-tick-in-suspend"); 1292 1293 ret = arch_timer_register(); 1294 if (ret) 1295 return ret; 1296 1297 if (arch_timer_needs_of_probing()) 1298 return 0; 1299 1300 return arch_timer_common_init(); 1301 } 1302 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init); 1303 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init); 1304 1305 static u32 __init 1306 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame) 1307 { 1308 void __iomem *base; 1309 u32 rate; 1310 1311 base = ioremap(frame->cntbase, frame->size); 1312 if (!base) { 1313 pr_err("Unable to map frame @ %pa\n", &frame->cntbase); 1314 return 0; 1315 } 1316 1317 rate = readl_relaxed(base + CNTFRQ); 1318 1319 iounmap(base); 1320 1321 return rate; 1322 } 1323 1324 static struct arch_timer_mem_frame * __init 1325 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem) 1326 { 1327 struct arch_timer_mem_frame *frame, *best_frame = NULL; 1328 void __iomem *cntctlbase; 1329 u32 cnttidr; 1330 int i; 1331 1332 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size); 1333 if (!cntctlbase) { 1334 pr_err("Can't map CNTCTLBase @ %pa\n", 1335 &timer_mem->cntctlbase); 1336 return NULL; 1337 } 1338 1339 cnttidr = readl_relaxed(cntctlbase + CNTTIDR); 1340 1341 /* 1342 * Try to find a virtual capable frame. Otherwise fall back to a 1343 * physical capable frame. 1344 */ 1345 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) { 1346 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT | 1347 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT; 1348 1349 frame = &timer_mem->frame[i]; 1350 if (!frame->valid) 1351 continue; 1352 1353 /* Try enabling everything, and see what sticks */ 1354 writel_relaxed(cntacr, cntctlbase + CNTACR(i)); 1355 cntacr = readl_relaxed(cntctlbase + CNTACR(i)); 1356 1357 if ((cnttidr & CNTTIDR_VIRT(i)) && 1358 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) { 1359 best_frame = frame; 1360 arch_timer_mem_use_virtual = true; 1361 break; 1362 } 1363 1364 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT)) 1365 continue; 1366 1367 best_frame = frame; 1368 } 1369 1370 iounmap(cntctlbase); 1371 1372 return best_frame; 1373 } 1374 1375 static int __init 1376 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame) 1377 { 1378 void __iomem *base; 1379 int ret, irq = 0; 1380 1381 if (arch_timer_mem_use_virtual) 1382 irq = frame->virt_irq; 1383 else 1384 irq = frame->phys_irq; 1385 1386 if (!irq) { 1387 pr_err("Frame missing %s irq.\n", 1388 arch_timer_mem_use_virtual ? "virt" : "phys"); 1389 return -EINVAL; 1390 } 1391 1392 if (!request_mem_region(frame->cntbase, frame->size, 1393 "arch_mem_timer")) 1394 return -EBUSY; 1395 1396 base = ioremap(frame->cntbase, frame->size); 1397 if (!base) { 1398 pr_err("Can't map frame's registers\n"); 1399 return -ENXIO; 1400 } 1401 1402 ret = arch_timer_mem_register(base, irq); 1403 if (ret) { 1404 iounmap(base); 1405 return ret; 1406 } 1407 1408 arch_counter_base = base; 1409 arch_timers_present |= ARCH_TIMER_TYPE_MEM; 1410 1411 return 0; 1412 } 1413 1414 static int __init arch_timer_mem_of_init(struct device_node *np) 1415 { 1416 struct arch_timer_mem *timer_mem; 1417 struct arch_timer_mem_frame *frame; 1418 struct device_node *frame_node; 1419 struct resource res; 1420 int ret = -EINVAL; 1421 u32 rate; 1422 1423 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL); 1424 if (!timer_mem) 1425 return -ENOMEM; 1426 1427 if (of_address_to_resource(np, 0, &res)) 1428 goto out; 1429 timer_mem->cntctlbase = res.start; 1430 timer_mem->size = resource_size(&res); 1431 1432 for_each_available_child_of_node(np, frame_node) { 1433 u32 n; 1434 struct arch_timer_mem_frame *frame; 1435 1436 if (of_property_read_u32(frame_node, "frame-number", &n)) { 1437 pr_err(FW_BUG "Missing frame-number.\n"); 1438 of_node_put(frame_node); 1439 goto out; 1440 } 1441 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) { 1442 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n", 1443 ARCH_TIMER_MEM_MAX_FRAMES - 1); 1444 of_node_put(frame_node); 1445 goto out; 1446 } 1447 frame = &timer_mem->frame[n]; 1448 1449 if (frame->valid) { 1450 pr_err(FW_BUG "Duplicated frame-number.\n"); 1451 of_node_put(frame_node); 1452 goto out; 1453 } 1454 1455 if (of_address_to_resource(frame_node, 0, &res)) { 1456 of_node_put(frame_node); 1457 goto out; 1458 } 1459 frame->cntbase = res.start; 1460 frame->size = resource_size(&res); 1461 1462 frame->virt_irq = irq_of_parse_and_map(frame_node, 1463 ARCH_TIMER_VIRT_SPI); 1464 frame->phys_irq = irq_of_parse_and_map(frame_node, 1465 ARCH_TIMER_PHYS_SPI); 1466 1467 frame->valid = true; 1468 } 1469 1470 frame = arch_timer_mem_find_best_frame(timer_mem); 1471 if (!frame) { 1472 pr_err("Unable to find a suitable frame in timer @ %pa\n", 1473 &timer_mem->cntctlbase); 1474 ret = -EINVAL; 1475 goto out; 1476 } 1477 1478 rate = arch_timer_mem_frame_get_cntfrq(frame); 1479 arch_timer_of_configure_rate(rate, np); 1480 1481 ret = arch_timer_mem_frame_register(frame); 1482 if (!ret && !arch_timer_needs_of_probing()) 1483 ret = arch_timer_common_init(); 1484 out: 1485 kfree(timer_mem); 1486 return ret; 1487 } 1488 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem", 1489 arch_timer_mem_of_init); 1490 1491 #ifdef CONFIG_ACPI_GTDT 1492 static int __init 1493 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem) 1494 { 1495 struct arch_timer_mem_frame *frame; 1496 u32 rate; 1497 int i; 1498 1499 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) { 1500 frame = &timer_mem->frame[i]; 1501 1502 if (!frame->valid) 1503 continue; 1504 1505 rate = arch_timer_mem_frame_get_cntfrq(frame); 1506 if (rate == arch_timer_rate) 1507 continue; 1508 1509 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n", 1510 &frame->cntbase, 1511 (unsigned long)rate, (unsigned long)arch_timer_rate); 1512 1513 return -EINVAL; 1514 } 1515 1516 return 0; 1517 } 1518 1519 static int __init arch_timer_mem_acpi_init(int platform_timer_count) 1520 { 1521 struct arch_timer_mem *timers, *timer; 1522 struct arch_timer_mem_frame *frame, *best_frame = NULL; 1523 int timer_count, i, ret = 0; 1524 1525 timers = kcalloc(platform_timer_count, sizeof(*timers), 1526 GFP_KERNEL); 1527 if (!timers) 1528 return -ENOMEM; 1529 1530 ret = acpi_arch_timer_mem_init(timers, &timer_count); 1531 if (ret || !timer_count) 1532 goto out; 1533 1534 /* 1535 * While unlikely, it's theoretically possible that none of the frames 1536 * in a timer expose the combination of feature we want. 1537 */ 1538 for (i = 0; i < timer_count; i++) { 1539 timer = &timers[i]; 1540 1541 frame = arch_timer_mem_find_best_frame(timer); 1542 if (!best_frame) 1543 best_frame = frame; 1544 1545 ret = arch_timer_mem_verify_cntfrq(timer); 1546 if (ret) { 1547 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n"); 1548 goto out; 1549 } 1550 1551 if (!best_frame) /* implies !frame */ 1552 /* 1553 * Only complain about missing suitable frames if we 1554 * haven't already found one in a previous iteration. 1555 */ 1556 pr_err("Unable to find a suitable frame in timer @ %pa\n", 1557 &timer->cntctlbase); 1558 } 1559 1560 if (best_frame) 1561 ret = arch_timer_mem_frame_register(best_frame); 1562 out: 1563 kfree(timers); 1564 return ret; 1565 } 1566 1567 /* Initialize per-processor generic timer and memory-mapped timer(if present) */ 1568 static int __init arch_timer_acpi_init(struct acpi_table_header *table) 1569 { 1570 int ret, platform_timer_count; 1571 1572 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { 1573 pr_warn("already initialized, skipping\n"); 1574 return -EINVAL; 1575 } 1576 1577 arch_timers_present |= ARCH_TIMER_TYPE_CP15; 1578 1579 ret = acpi_gtdt_init(table, &platform_timer_count); 1580 if (ret) { 1581 pr_err("Failed to init GTDT table.\n"); 1582 return ret; 1583 } 1584 1585 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] = 1586 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI); 1587 1588 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] = 1589 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI); 1590 1591 arch_timer_ppi[ARCH_TIMER_HYP_PPI] = 1592 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI); 1593 1594 arch_timer_populate_kvm_info(); 1595 1596 /* 1597 * When probing via ACPI, we have no mechanism to override the sysreg 1598 * CNTFRQ value. This *must* be correct. 1599 */ 1600 arch_timer_rate = arch_timer_get_cntfrq(); 1601 if (!arch_timer_rate) { 1602 pr_err(FW_BUG "frequency not available.\n"); 1603 return -EINVAL; 1604 } 1605 1606 arch_timer_uses_ppi = arch_timer_select_ppi(); 1607 if (!arch_timer_ppi[arch_timer_uses_ppi]) { 1608 pr_err("No interrupt available, giving up\n"); 1609 return -EINVAL; 1610 } 1611 1612 /* Always-on capability */ 1613 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi); 1614 1615 /* Check for globally applicable workarounds */ 1616 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table); 1617 1618 ret = arch_timer_register(); 1619 if (ret) 1620 return ret; 1621 1622 if (platform_timer_count && 1623 arch_timer_mem_acpi_init(platform_timer_count)) 1624 pr_err("Failed to initialize memory-mapped timer.\n"); 1625 1626 return arch_timer_common_init(); 1627 } 1628 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init); 1629 #endif 1630