xref: /openbmc/linux/drivers/clocksource/arm_arch_timer.c (revision c0ecca6604b80e438b032578634c6e133c7028f6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/clocksource/arm_arch_timer.c
4  *
5  *  Copyright (C) 2011 ARM Ltd.
6  *  All Rights Reserved
7  */
8 
9 #define pr_fmt(fmt) 	"arch_timer: " fmt
10 
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/clocksource_ids.h>
20 #include <linux/interrupt.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_address.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/sched/clock.h>
26 #include <linux/sched_clock.h>
27 #include <linux/acpi.h>
28 #include <linux/arm-smccc.h>
29 #include <linux/ptp_kvm.h>
30 
31 #include <asm/arch_timer.h>
32 #include <asm/virt.h>
33 
34 #include <clocksource/arm_arch_timer.h>
35 
36 #define CNTTIDR		0x08
37 #define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
38 
39 #define CNTACR(n)	(0x40 + ((n) * 4))
40 #define CNTACR_RPCT	BIT(0)
41 #define CNTACR_RVCT	BIT(1)
42 #define CNTACR_RFRQ	BIT(2)
43 #define CNTACR_RVOFF	BIT(3)
44 #define CNTACR_RWVT	BIT(4)
45 #define CNTACR_RWPT	BIT(5)
46 
47 #define CNTVCT_LO	0x08
48 #define CNTVCT_HI	0x0c
49 #define CNTFRQ		0x10
50 #define CNTP_TVAL	0x28
51 #define CNTP_CTL	0x2c
52 #define CNTV_TVAL	0x38
53 #define CNTV_CTL	0x3c
54 
55 static unsigned arch_timers_present __initdata;
56 
57 static void __iomem *arch_counter_base __ro_after_init;
58 
59 struct arch_timer {
60 	void __iomem *base;
61 	struct clock_event_device evt;
62 };
63 
64 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
65 
66 static u32 arch_timer_rate __ro_after_init;
67 u32 arch_timer_rate1 __ro_after_init;
68 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
69 
70 static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
71 	[ARCH_TIMER_PHYS_SECURE_PPI]	= "sec-phys",
72 	[ARCH_TIMER_PHYS_NONSECURE_PPI]	= "phys",
73 	[ARCH_TIMER_VIRT_PPI]		= "virt",
74 	[ARCH_TIMER_HYP_PPI]		= "hyp-phys",
75 	[ARCH_TIMER_HYP_VIRT_PPI]	= "hyp-virt",
76 };
77 
78 static struct clock_event_device __percpu *arch_timer_evt;
79 
80 static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
81 static bool arch_timer_c3stop __ro_after_init;
82 static bool arch_timer_mem_use_virtual __ro_after_init;
83 static bool arch_counter_suspend_stop __ro_after_init;
84 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
85 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
86 #else
87 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
88 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
89 
90 static cpumask_t evtstrm_available = CPU_MASK_NONE;
91 static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
92 
93 static int __init early_evtstrm_cfg(char *buf)
94 {
95 	return strtobool(buf, &evtstrm_enable);
96 }
97 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
98 
99 /*
100  * Architected system timer support.
101  */
102 
103 static __always_inline
104 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
105 			  struct clock_event_device *clk)
106 {
107 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
108 		struct arch_timer *timer = to_arch_timer(clk);
109 		switch (reg) {
110 		case ARCH_TIMER_REG_CTRL:
111 			writel_relaxed(val, timer->base + CNTP_CTL);
112 			break;
113 		case ARCH_TIMER_REG_TVAL:
114 			writel_relaxed(val, timer->base + CNTP_TVAL);
115 			break;
116 		}
117 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
118 		struct arch_timer *timer = to_arch_timer(clk);
119 		switch (reg) {
120 		case ARCH_TIMER_REG_CTRL:
121 			writel_relaxed(val, timer->base + CNTV_CTL);
122 			break;
123 		case ARCH_TIMER_REG_TVAL:
124 			writel_relaxed(val, timer->base + CNTV_TVAL);
125 			break;
126 		}
127 	} else {
128 		arch_timer_reg_write_cp15(access, reg, val);
129 	}
130 }
131 
132 static __always_inline
133 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
134 			struct clock_event_device *clk)
135 {
136 	u32 val;
137 
138 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
139 		struct arch_timer *timer = to_arch_timer(clk);
140 		switch (reg) {
141 		case ARCH_TIMER_REG_CTRL:
142 			val = readl_relaxed(timer->base + CNTP_CTL);
143 			break;
144 		case ARCH_TIMER_REG_TVAL:
145 			val = readl_relaxed(timer->base + CNTP_TVAL);
146 			break;
147 		}
148 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
149 		struct arch_timer *timer = to_arch_timer(clk);
150 		switch (reg) {
151 		case ARCH_TIMER_REG_CTRL:
152 			val = readl_relaxed(timer->base + CNTV_CTL);
153 			break;
154 		case ARCH_TIMER_REG_TVAL:
155 			val = readl_relaxed(timer->base + CNTV_TVAL);
156 			break;
157 		}
158 	} else {
159 		val = arch_timer_reg_read_cp15(access, reg);
160 	}
161 
162 	return val;
163 }
164 
165 static notrace u64 arch_counter_get_cntpct_stable(void)
166 {
167 	return __arch_counter_get_cntpct_stable();
168 }
169 
170 static notrace u64 arch_counter_get_cntpct(void)
171 {
172 	return __arch_counter_get_cntpct();
173 }
174 
175 static notrace u64 arch_counter_get_cntvct_stable(void)
176 {
177 	return __arch_counter_get_cntvct_stable();
178 }
179 
180 static notrace u64 arch_counter_get_cntvct(void)
181 {
182 	return __arch_counter_get_cntvct();
183 }
184 
185 /*
186  * Default to cp15 based access because arm64 uses this function for
187  * sched_clock() before DT is probed and the cp15 method is guaranteed
188  * to exist on arm64. arm doesn't use this before DT is probed so even
189  * if we don't have the cp15 accessors we won't have a problem.
190  */
191 u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
192 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
193 
194 static u64 arch_counter_read(struct clocksource *cs)
195 {
196 	return arch_timer_read_counter();
197 }
198 
199 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
200 {
201 	return arch_timer_read_counter();
202 }
203 
204 static struct clocksource clocksource_counter = {
205 	.name	= "arch_sys_counter",
206 	.id	= CSID_ARM_ARCH_COUNTER,
207 	.rating	= 400,
208 	.read	= arch_counter_read,
209 	.mask	= CLOCKSOURCE_MASK(56),
210 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
211 };
212 
213 static struct cyclecounter cyclecounter __ro_after_init = {
214 	.read	= arch_counter_read_cc,
215 	.mask	= CLOCKSOURCE_MASK(56),
216 };
217 
218 struct ate_acpi_oem_info {
219 	char oem_id[ACPI_OEM_ID_SIZE + 1];
220 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
221 	u32 oem_revision;
222 };
223 
224 #ifdef CONFIG_FSL_ERRATUM_A008585
225 /*
226  * The number of retries is an arbitrary value well beyond the highest number
227  * of iterations the loop has been observed to take.
228  */
229 #define __fsl_a008585_read_reg(reg) ({			\
230 	u64 _old, _new;					\
231 	int _retries = 200;				\
232 							\
233 	do {						\
234 		_old = read_sysreg(reg);		\
235 		_new = read_sysreg(reg);		\
236 		_retries--;				\
237 	} while (unlikely(_old != _new) && _retries);	\
238 							\
239 	WARN_ON_ONCE(!_retries);			\
240 	_new;						\
241 })
242 
243 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
244 {
245 	return __fsl_a008585_read_reg(cntp_tval_el0);
246 }
247 
248 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
249 {
250 	return __fsl_a008585_read_reg(cntv_tval_el0);
251 }
252 
253 static u64 notrace fsl_a008585_read_cntpct_el0(void)
254 {
255 	return __fsl_a008585_read_reg(cntpct_el0);
256 }
257 
258 static u64 notrace fsl_a008585_read_cntvct_el0(void)
259 {
260 	return __fsl_a008585_read_reg(cntvct_el0);
261 }
262 #endif
263 
264 #ifdef CONFIG_HISILICON_ERRATUM_161010101
265 /*
266  * Verify whether the value of the second read is larger than the first by
267  * less than 32 is the only way to confirm the value is correct, so clear the
268  * lower 5 bits to check whether the difference is greater than 32 or not.
269  * Theoretically the erratum should not occur more than twice in succession
270  * when reading the system counter, but it is possible that some interrupts
271  * may lead to more than twice read errors, triggering the warning, so setting
272  * the number of retries far beyond the number of iterations the loop has been
273  * observed to take.
274  */
275 #define __hisi_161010101_read_reg(reg) ({				\
276 	u64 _old, _new;						\
277 	int _retries = 50;					\
278 								\
279 	do {							\
280 		_old = read_sysreg(reg);			\
281 		_new = read_sysreg(reg);			\
282 		_retries--;					\
283 	} while (unlikely((_new - _old) >> 5) && _retries);	\
284 								\
285 	WARN_ON_ONCE(!_retries);				\
286 	_new;							\
287 })
288 
289 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
290 {
291 	return __hisi_161010101_read_reg(cntp_tval_el0);
292 }
293 
294 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
295 {
296 	return __hisi_161010101_read_reg(cntv_tval_el0);
297 }
298 
299 static u64 notrace hisi_161010101_read_cntpct_el0(void)
300 {
301 	return __hisi_161010101_read_reg(cntpct_el0);
302 }
303 
304 static u64 notrace hisi_161010101_read_cntvct_el0(void)
305 {
306 	return __hisi_161010101_read_reg(cntvct_el0);
307 }
308 
309 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
310 	/*
311 	 * Note that trailing spaces are required to properly match
312 	 * the OEM table information.
313 	 */
314 	{
315 		.oem_id		= "HISI  ",
316 		.oem_table_id	= "HIP05   ",
317 		.oem_revision	= 0,
318 	},
319 	{
320 		.oem_id		= "HISI  ",
321 		.oem_table_id	= "HIP06   ",
322 		.oem_revision	= 0,
323 	},
324 	{
325 		.oem_id		= "HISI  ",
326 		.oem_table_id	= "HIP07   ",
327 		.oem_revision	= 0,
328 	},
329 	{ /* Sentinel indicating the end of the OEM array */ },
330 };
331 #endif
332 
333 #ifdef CONFIG_ARM64_ERRATUM_858921
334 static u64 notrace arm64_858921_read_cntpct_el0(void)
335 {
336 	u64 old, new;
337 
338 	old = read_sysreg(cntpct_el0);
339 	new = read_sysreg(cntpct_el0);
340 	return (((old ^ new) >> 32) & 1) ? old : new;
341 }
342 
343 static u64 notrace arm64_858921_read_cntvct_el0(void)
344 {
345 	u64 old, new;
346 
347 	old = read_sysreg(cntvct_el0);
348 	new = read_sysreg(cntvct_el0);
349 	return (((old ^ new) >> 32) & 1) ? old : new;
350 }
351 #endif
352 
353 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
354 /*
355  * The low bits of the counter registers are indeterminate while bit 10 or
356  * greater is rolling over. Since the counter value can jump both backward
357  * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
358  * with all ones or all zeros in the low bits. Bound the loop by the maximum
359  * number of CPU cycles in 3 consecutive 24 MHz counter periods.
360  */
361 #define __sun50i_a64_read_reg(reg) ({					\
362 	u64 _val;							\
363 	int _retries = 150;						\
364 									\
365 	do {								\
366 		_val = read_sysreg(reg);				\
367 		_retries--;						\
368 	} while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries);	\
369 									\
370 	WARN_ON_ONCE(!_retries);					\
371 	_val;								\
372 })
373 
374 static u64 notrace sun50i_a64_read_cntpct_el0(void)
375 {
376 	return __sun50i_a64_read_reg(cntpct_el0);
377 }
378 
379 static u64 notrace sun50i_a64_read_cntvct_el0(void)
380 {
381 	return __sun50i_a64_read_reg(cntvct_el0);
382 }
383 
384 static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
385 {
386 	return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
387 }
388 
389 static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
390 {
391 	return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
392 }
393 #endif
394 
395 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
396 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
397 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
398 
399 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
400 
401 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
402 						struct clock_event_device *clk)
403 {
404 	unsigned long ctrl;
405 	u64 cval;
406 
407 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
408 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
409 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
410 
411 	if (access == ARCH_TIMER_PHYS_ACCESS) {
412 		cval = evt + arch_counter_get_cntpct_stable();
413 		write_sysreg(cval, cntp_cval_el0);
414 	} else {
415 		cval = evt + arch_counter_get_cntvct_stable();
416 		write_sysreg(cval, cntv_cval_el0);
417 	}
418 
419 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
420 }
421 
422 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
423 					    struct clock_event_device *clk)
424 {
425 	erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
426 	return 0;
427 }
428 
429 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
430 					    struct clock_event_device *clk)
431 {
432 	erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
433 	return 0;
434 }
435 
436 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
437 #ifdef CONFIG_FSL_ERRATUM_A008585
438 	{
439 		.match_type = ate_match_dt,
440 		.id = "fsl,erratum-a008585",
441 		.desc = "Freescale erratum a005858",
442 		.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
443 		.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
444 		.read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
445 		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
446 		.set_next_event_phys = erratum_set_next_event_tval_phys,
447 		.set_next_event_virt = erratum_set_next_event_tval_virt,
448 	},
449 #endif
450 #ifdef CONFIG_HISILICON_ERRATUM_161010101
451 	{
452 		.match_type = ate_match_dt,
453 		.id = "hisilicon,erratum-161010101",
454 		.desc = "HiSilicon erratum 161010101",
455 		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
456 		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
457 		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
458 		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
459 		.set_next_event_phys = erratum_set_next_event_tval_phys,
460 		.set_next_event_virt = erratum_set_next_event_tval_virt,
461 	},
462 	{
463 		.match_type = ate_match_acpi_oem_info,
464 		.id = hisi_161010101_oem_info,
465 		.desc = "HiSilicon erratum 161010101",
466 		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
467 		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
468 		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
469 		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
470 		.set_next_event_phys = erratum_set_next_event_tval_phys,
471 		.set_next_event_virt = erratum_set_next_event_tval_virt,
472 	},
473 #endif
474 #ifdef CONFIG_ARM64_ERRATUM_858921
475 	{
476 		.match_type = ate_match_local_cap_id,
477 		.id = (void *)ARM64_WORKAROUND_858921,
478 		.desc = "ARM erratum 858921",
479 		.read_cntpct_el0 = arm64_858921_read_cntpct_el0,
480 		.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
481 	},
482 #endif
483 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
484 	{
485 		.match_type = ate_match_dt,
486 		.id = "allwinner,erratum-unknown1",
487 		.desc = "Allwinner erratum UNKNOWN1",
488 		.read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
489 		.read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
490 		.read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
491 		.read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
492 		.set_next_event_phys = erratum_set_next_event_tval_phys,
493 		.set_next_event_virt = erratum_set_next_event_tval_virt,
494 	},
495 #endif
496 #ifdef CONFIG_ARM64_ERRATUM_1418040
497 	{
498 		.match_type = ate_match_local_cap_id,
499 		.id = (void *)ARM64_WORKAROUND_1418040,
500 		.desc = "ARM erratum 1418040",
501 		.disable_compat_vdso = true,
502 	},
503 #endif
504 };
505 
506 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
507 			       const void *);
508 
509 static
510 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
511 				 const void *arg)
512 {
513 	const struct device_node *np = arg;
514 
515 	return of_property_read_bool(np, wa->id);
516 }
517 
518 static
519 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
520 					const void *arg)
521 {
522 	return this_cpu_has_cap((uintptr_t)wa->id);
523 }
524 
525 
526 static
527 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
528 				       const void *arg)
529 {
530 	static const struct ate_acpi_oem_info empty_oem_info = {};
531 	const struct ate_acpi_oem_info *info = wa->id;
532 	const struct acpi_table_header *table = arg;
533 
534 	/* Iterate over the ACPI OEM info array, looking for a match */
535 	while (memcmp(info, &empty_oem_info, sizeof(*info))) {
536 		if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
537 		    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
538 		    info->oem_revision == table->oem_revision)
539 			return true;
540 
541 		info++;
542 	}
543 
544 	return false;
545 }
546 
547 static const struct arch_timer_erratum_workaround *
548 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
549 			  ate_match_fn_t match_fn,
550 			  void *arg)
551 {
552 	int i;
553 
554 	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
555 		if (ool_workarounds[i].match_type != type)
556 			continue;
557 
558 		if (match_fn(&ool_workarounds[i], arg))
559 			return &ool_workarounds[i];
560 	}
561 
562 	return NULL;
563 }
564 
565 static
566 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
567 				  bool local)
568 {
569 	int i;
570 
571 	if (local) {
572 		__this_cpu_write(timer_unstable_counter_workaround, wa);
573 	} else {
574 		for_each_possible_cpu(i)
575 			per_cpu(timer_unstable_counter_workaround, i) = wa;
576 	}
577 
578 	if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
579 		atomic_set(&timer_unstable_counter_workaround_in_use, 1);
580 
581 	/*
582 	 * Don't use the vdso fastpath if errata require using the
583 	 * out-of-line counter accessor. We may change our mind pretty
584 	 * late in the game (with a per-CPU erratum, for example), so
585 	 * change both the default value and the vdso itself.
586 	 */
587 	if (wa->read_cntvct_el0) {
588 		clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
589 		vdso_default = VDSO_CLOCKMODE_NONE;
590 	} else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
591 		vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
592 		clocksource_counter.vdso_clock_mode = vdso_default;
593 	}
594 }
595 
596 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
597 					    void *arg)
598 {
599 	const struct arch_timer_erratum_workaround *wa, *__wa;
600 	ate_match_fn_t match_fn = NULL;
601 	bool local = false;
602 
603 	switch (type) {
604 	case ate_match_dt:
605 		match_fn = arch_timer_check_dt_erratum;
606 		break;
607 	case ate_match_local_cap_id:
608 		match_fn = arch_timer_check_local_cap_erratum;
609 		local = true;
610 		break;
611 	case ate_match_acpi_oem_info:
612 		match_fn = arch_timer_check_acpi_oem_erratum;
613 		break;
614 	default:
615 		WARN_ON(1);
616 		return;
617 	}
618 
619 	wa = arch_timer_iterate_errata(type, match_fn, arg);
620 	if (!wa)
621 		return;
622 
623 	__wa = __this_cpu_read(timer_unstable_counter_workaround);
624 	if (__wa && wa != __wa)
625 		pr_warn("Can't enable workaround for %s (clashes with %s\n)",
626 			wa->desc, __wa->desc);
627 
628 	if (__wa)
629 		return;
630 
631 	arch_timer_enable_workaround(wa, local);
632 	pr_info("Enabling %s workaround for %s\n",
633 		local ? "local" : "global", wa->desc);
634 }
635 
636 static bool arch_timer_this_cpu_has_cntvct_wa(void)
637 {
638 	return has_erratum_handler(read_cntvct_el0);
639 }
640 
641 static bool arch_timer_counter_has_wa(void)
642 {
643 	return atomic_read(&timer_unstable_counter_workaround_in_use);
644 }
645 #else
646 #define arch_timer_check_ool_workaround(t,a)		do { } while(0)
647 #define arch_timer_this_cpu_has_cntvct_wa()		({false;})
648 #define arch_timer_counter_has_wa()			({false;})
649 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
650 
651 static __always_inline irqreturn_t timer_handler(const int access,
652 					struct clock_event_device *evt)
653 {
654 	unsigned long ctrl;
655 
656 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
657 	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
658 		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
659 		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
660 		evt->event_handler(evt);
661 		return IRQ_HANDLED;
662 	}
663 
664 	return IRQ_NONE;
665 }
666 
667 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
668 {
669 	struct clock_event_device *evt = dev_id;
670 
671 	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
672 }
673 
674 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
675 {
676 	struct clock_event_device *evt = dev_id;
677 
678 	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
679 }
680 
681 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
682 {
683 	struct clock_event_device *evt = dev_id;
684 
685 	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
686 }
687 
688 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
689 {
690 	struct clock_event_device *evt = dev_id;
691 
692 	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
693 }
694 
695 static __always_inline int timer_shutdown(const int access,
696 					  struct clock_event_device *clk)
697 {
698 	unsigned long ctrl;
699 
700 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
701 	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
702 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
703 
704 	return 0;
705 }
706 
707 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
708 {
709 	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
710 }
711 
712 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
713 {
714 	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
715 }
716 
717 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
718 {
719 	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
720 }
721 
722 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
723 {
724 	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
725 }
726 
727 static __always_inline void set_next_event(const int access, unsigned long evt,
728 					   struct clock_event_device *clk)
729 {
730 	unsigned long ctrl;
731 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
732 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
733 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
734 	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
735 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
736 }
737 
738 static int arch_timer_set_next_event_virt(unsigned long evt,
739 					  struct clock_event_device *clk)
740 {
741 	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
742 	return 0;
743 }
744 
745 static int arch_timer_set_next_event_phys(unsigned long evt,
746 					  struct clock_event_device *clk)
747 {
748 	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
749 	return 0;
750 }
751 
752 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
753 					      struct clock_event_device *clk)
754 {
755 	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
756 	return 0;
757 }
758 
759 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
760 					      struct clock_event_device *clk)
761 {
762 	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
763 	return 0;
764 }
765 
766 static void __arch_timer_setup(unsigned type,
767 			       struct clock_event_device *clk)
768 {
769 	clk->features = CLOCK_EVT_FEAT_ONESHOT;
770 
771 	if (type == ARCH_TIMER_TYPE_CP15) {
772 		typeof(clk->set_next_event) sne;
773 
774 		arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
775 
776 		if (arch_timer_c3stop)
777 			clk->features |= CLOCK_EVT_FEAT_C3STOP;
778 		clk->name = "arch_sys_timer";
779 		clk->rating = 450;
780 		clk->cpumask = cpumask_of(smp_processor_id());
781 		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
782 		switch (arch_timer_uses_ppi) {
783 		case ARCH_TIMER_VIRT_PPI:
784 			clk->set_state_shutdown = arch_timer_shutdown_virt;
785 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
786 			sne = erratum_handler(set_next_event_virt);
787 			break;
788 		case ARCH_TIMER_PHYS_SECURE_PPI:
789 		case ARCH_TIMER_PHYS_NONSECURE_PPI:
790 		case ARCH_TIMER_HYP_PPI:
791 			clk->set_state_shutdown = arch_timer_shutdown_phys;
792 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
793 			sne = erratum_handler(set_next_event_phys);
794 			break;
795 		default:
796 			BUG();
797 		}
798 
799 		clk->set_next_event = sne;
800 	} else {
801 		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
802 		clk->name = "arch_mem_timer";
803 		clk->rating = 400;
804 		clk->cpumask = cpu_possible_mask;
805 		if (arch_timer_mem_use_virtual) {
806 			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
807 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
808 			clk->set_next_event =
809 				arch_timer_set_next_event_virt_mem;
810 		} else {
811 			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
812 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
813 			clk->set_next_event =
814 				arch_timer_set_next_event_phys_mem;
815 		}
816 	}
817 
818 	clk->set_state_shutdown(clk);
819 
820 	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
821 }
822 
823 static void arch_timer_evtstrm_enable(int divider)
824 {
825 	u32 cntkctl = arch_timer_get_cntkctl();
826 
827 	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
828 	/* Set the divider and enable virtual event stream */
829 	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
830 			| ARCH_TIMER_VIRT_EVT_EN;
831 	arch_timer_set_cntkctl(cntkctl);
832 	arch_timer_set_evtstrm_feature();
833 	cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
834 }
835 
836 static void arch_timer_configure_evtstream(void)
837 {
838 	int evt_stream_div, lsb;
839 
840 	/*
841 	 * As the event stream can at most be generated at half the frequency
842 	 * of the counter, use half the frequency when computing the divider.
843 	 */
844 	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
845 
846 	/*
847 	 * Find the closest power of two to the divisor. If the adjacent bit
848 	 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
849 	 */
850 	lsb = fls(evt_stream_div) - 1;
851 	if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
852 		lsb++;
853 
854 	/* enable event stream */
855 	arch_timer_evtstrm_enable(max(0, min(lsb, 15)));
856 }
857 
858 static void arch_counter_set_user_access(void)
859 {
860 	u32 cntkctl = arch_timer_get_cntkctl();
861 
862 	/* Disable user access to the timers and both counters */
863 	/* Also disable virtual event stream */
864 	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
865 			| ARCH_TIMER_USR_VT_ACCESS_EN
866 		        | ARCH_TIMER_USR_VCT_ACCESS_EN
867 			| ARCH_TIMER_VIRT_EVT_EN
868 			| ARCH_TIMER_USR_PCT_ACCESS_EN);
869 
870 	/*
871 	 * Enable user access to the virtual counter if it doesn't
872 	 * need to be workaround. The vdso may have been already
873 	 * disabled though.
874 	 */
875 	if (arch_timer_this_cpu_has_cntvct_wa())
876 		pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
877 	else
878 		cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
879 
880 	arch_timer_set_cntkctl(cntkctl);
881 }
882 
883 static bool arch_timer_has_nonsecure_ppi(void)
884 {
885 	return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
886 		arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
887 }
888 
889 static u32 check_ppi_trigger(int irq)
890 {
891 	u32 flags = irq_get_trigger_type(irq);
892 
893 	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
894 		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
895 		pr_warn("WARNING: Please fix your firmware\n");
896 		flags = IRQF_TRIGGER_LOW;
897 	}
898 
899 	return flags;
900 }
901 
902 static int arch_timer_starting_cpu(unsigned int cpu)
903 {
904 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
905 	u32 flags;
906 
907 	__arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
908 
909 	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
910 	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
911 
912 	if (arch_timer_has_nonsecure_ppi()) {
913 		flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
914 		enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
915 				  flags);
916 	}
917 
918 	arch_counter_set_user_access();
919 	if (evtstrm_enable)
920 		arch_timer_configure_evtstream();
921 
922 	return 0;
923 }
924 
925 static int validate_timer_rate(void)
926 {
927 	if (!arch_timer_rate)
928 		return -EINVAL;
929 
930 	/* Arch timer frequency < 1MHz can cause trouble */
931 	WARN_ON(arch_timer_rate < 1000000);
932 
933 	return 0;
934 }
935 
936 /*
937  * For historical reasons, when probing with DT we use whichever (non-zero)
938  * rate was probed first, and don't verify that others match. If the first node
939  * probed has a clock-frequency property, this overrides the HW register.
940  */
941 static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
942 {
943 	/* Who has more than one independent system counter? */
944 	if (arch_timer_rate)
945 		return;
946 
947 	if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
948 		arch_timer_rate = rate;
949 
950 	/* Check the timer frequency. */
951 	if (validate_timer_rate())
952 		pr_warn("frequency not available\n");
953 }
954 
955 static void __init arch_timer_banner(unsigned type)
956 {
957 	pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
958 		type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
959 		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
960 			" and " : "",
961 		type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
962 		(unsigned long)arch_timer_rate / 1000000,
963 		(unsigned long)(arch_timer_rate / 10000) % 100,
964 		type & ARCH_TIMER_TYPE_CP15 ?
965 			(arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
966 			"",
967 		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
968 		type & ARCH_TIMER_TYPE_MEM ?
969 			arch_timer_mem_use_virtual ? "virt" : "phys" :
970 			"");
971 }
972 
973 u32 arch_timer_get_rate(void)
974 {
975 	return arch_timer_rate;
976 }
977 
978 bool arch_timer_evtstrm_available(void)
979 {
980 	/*
981 	 * We might get called from a preemptible context. This is fine
982 	 * because availability of the event stream should be always the same
983 	 * for a preemptible context and context where we might resume a task.
984 	 */
985 	return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
986 }
987 
988 static u64 arch_counter_get_cntvct_mem(void)
989 {
990 	u32 vct_lo, vct_hi, tmp_hi;
991 
992 	do {
993 		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
994 		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
995 		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
996 	} while (vct_hi != tmp_hi);
997 
998 	return ((u64) vct_hi << 32) | vct_lo;
999 }
1000 
1001 static struct arch_timer_kvm_info arch_timer_kvm_info;
1002 
1003 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
1004 {
1005 	return &arch_timer_kvm_info;
1006 }
1007 
1008 static void __init arch_counter_register(unsigned type)
1009 {
1010 	u64 start_count;
1011 
1012 	/* Register the CP15 based counter if we have one */
1013 	if (type & ARCH_TIMER_TYPE_CP15) {
1014 		u64 (*rd)(void);
1015 
1016 		if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1017 		    arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1018 			if (arch_timer_counter_has_wa())
1019 				rd = arch_counter_get_cntvct_stable;
1020 			else
1021 				rd = arch_counter_get_cntvct;
1022 		} else {
1023 			if (arch_timer_counter_has_wa())
1024 				rd = arch_counter_get_cntpct_stable;
1025 			else
1026 				rd = arch_counter_get_cntpct;
1027 		}
1028 
1029 		arch_timer_read_counter = rd;
1030 		clocksource_counter.vdso_clock_mode = vdso_default;
1031 	} else {
1032 		arch_timer_read_counter = arch_counter_get_cntvct_mem;
1033 	}
1034 
1035 	if (!arch_counter_suspend_stop)
1036 		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1037 	start_count = arch_timer_read_counter();
1038 	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1039 	cyclecounter.mult = clocksource_counter.mult;
1040 	cyclecounter.shift = clocksource_counter.shift;
1041 	timecounter_init(&arch_timer_kvm_info.timecounter,
1042 			 &cyclecounter, start_count);
1043 
1044 	/* 56 bits minimum, so we assume worst case rollover */
1045 	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
1046 }
1047 
1048 static void arch_timer_stop(struct clock_event_device *clk)
1049 {
1050 	pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1051 
1052 	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1053 	if (arch_timer_has_nonsecure_ppi())
1054 		disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1055 
1056 	clk->set_state_shutdown(clk);
1057 }
1058 
1059 static int arch_timer_dying_cpu(unsigned int cpu)
1060 {
1061 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1062 
1063 	cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1064 
1065 	arch_timer_stop(clk);
1066 	return 0;
1067 }
1068 
1069 #ifdef CONFIG_CPU_PM
1070 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1071 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1072 				    unsigned long action, void *hcpu)
1073 {
1074 	if (action == CPU_PM_ENTER) {
1075 		__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1076 
1077 		cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1078 	} else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1079 		arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1080 
1081 		if (arch_timer_have_evtstrm_feature())
1082 			cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1083 	}
1084 	return NOTIFY_OK;
1085 }
1086 
1087 static struct notifier_block arch_timer_cpu_pm_notifier = {
1088 	.notifier_call = arch_timer_cpu_pm_notify,
1089 };
1090 
1091 static int __init arch_timer_cpu_pm_init(void)
1092 {
1093 	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1094 }
1095 
1096 static void __init arch_timer_cpu_pm_deinit(void)
1097 {
1098 	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1099 }
1100 
1101 #else
1102 static int __init arch_timer_cpu_pm_init(void)
1103 {
1104 	return 0;
1105 }
1106 
1107 static void __init arch_timer_cpu_pm_deinit(void)
1108 {
1109 }
1110 #endif
1111 
1112 static int __init arch_timer_register(void)
1113 {
1114 	int err;
1115 	int ppi;
1116 
1117 	arch_timer_evt = alloc_percpu(struct clock_event_device);
1118 	if (!arch_timer_evt) {
1119 		err = -ENOMEM;
1120 		goto out;
1121 	}
1122 
1123 	ppi = arch_timer_ppi[arch_timer_uses_ppi];
1124 	switch (arch_timer_uses_ppi) {
1125 	case ARCH_TIMER_VIRT_PPI:
1126 		err = request_percpu_irq(ppi, arch_timer_handler_virt,
1127 					 "arch_timer", arch_timer_evt);
1128 		break;
1129 	case ARCH_TIMER_PHYS_SECURE_PPI:
1130 	case ARCH_TIMER_PHYS_NONSECURE_PPI:
1131 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1132 					 "arch_timer", arch_timer_evt);
1133 		if (!err && arch_timer_has_nonsecure_ppi()) {
1134 			ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1135 			err = request_percpu_irq(ppi, arch_timer_handler_phys,
1136 						 "arch_timer", arch_timer_evt);
1137 			if (err)
1138 				free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1139 						arch_timer_evt);
1140 		}
1141 		break;
1142 	case ARCH_TIMER_HYP_PPI:
1143 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1144 					 "arch_timer", arch_timer_evt);
1145 		break;
1146 	default:
1147 		BUG();
1148 	}
1149 
1150 	if (err) {
1151 		pr_err("can't register interrupt %d (%d)\n", ppi, err);
1152 		goto out_free;
1153 	}
1154 
1155 	err = arch_timer_cpu_pm_init();
1156 	if (err)
1157 		goto out_unreg_notify;
1158 
1159 	/* Register and immediately configure the timer on the boot CPU */
1160 	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1161 				"clockevents/arm/arch_timer:starting",
1162 				arch_timer_starting_cpu, arch_timer_dying_cpu);
1163 	if (err)
1164 		goto out_unreg_cpupm;
1165 	return 0;
1166 
1167 out_unreg_cpupm:
1168 	arch_timer_cpu_pm_deinit();
1169 
1170 out_unreg_notify:
1171 	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1172 	if (arch_timer_has_nonsecure_ppi())
1173 		free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1174 				arch_timer_evt);
1175 
1176 out_free:
1177 	free_percpu(arch_timer_evt);
1178 out:
1179 	return err;
1180 }
1181 
1182 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1183 {
1184 	int ret;
1185 	irq_handler_t func;
1186 	struct arch_timer *t;
1187 
1188 	t = kzalloc(sizeof(*t), GFP_KERNEL);
1189 	if (!t)
1190 		return -ENOMEM;
1191 
1192 	t->base = base;
1193 	t->evt.irq = irq;
1194 	__arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1195 
1196 	if (arch_timer_mem_use_virtual)
1197 		func = arch_timer_handler_virt_mem;
1198 	else
1199 		func = arch_timer_handler_phys_mem;
1200 
1201 	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1202 	if (ret) {
1203 		pr_err("Failed to request mem timer irq\n");
1204 		kfree(t);
1205 	}
1206 
1207 	return ret;
1208 }
1209 
1210 static const struct of_device_id arch_timer_of_match[] __initconst = {
1211 	{ .compatible   = "arm,armv7-timer",    },
1212 	{ .compatible   = "arm,armv8-timer",    },
1213 	{},
1214 };
1215 
1216 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1217 	{ .compatible   = "arm,armv7-timer-mem", },
1218 	{},
1219 };
1220 
1221 static bool __init arch_timer_needs_of_probing(void)
1222 {
1223 	struct device_node *dn;
1224 	bool needs_probing = false;
1225 	unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1226 
1227 	/* We have two timers, and both device-tree nodes are probed. */
1228 	if ((arch_timers_present & mask) == mask)
1229 		return false;
1230 
1231 	/*
1232 	 * Only one type of timer is probed,
1233 	 * check if we have another type of timer node in device-tree.
1234 	 */
1235 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1236 		dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1237 	else
1238 		dn = of_find_matching_node(NULL, arch_timer_of_match);
1239 
1240 	if (dn && of_device_is_available(dn))
1241 		needs_probing = true;
1242 
1243 	of_node_put(dn);
1244 
1245 	return needs_probing;
1246 }
1247 
1248 static int __init arch_timer_common_init(void)
1249 {
1250 	arch_timer_banner(arch_timers_present);
1251 	arch_counter_register(arch_timers_present);
1252 	return arch_timer_arch_init();
1253 }
1254 
1255 /**
1256  * arch_timer_select_ppi() - Select suitable PPI for the current system.
1257  *
1258  * If HYP mode is available, we know that the physical timer
1259  * has been configured to be accessible from PL1. Use it, so
1260  * that a guest can use the virtual timer instead.
1261  *
1262  * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1263  * accesses to CNTP_*_EL1 registers are silently redirected to
1264  * their CNTHP_*_EL2 counterparts, and use a different PPI
1265  * number.
1266  *
1267  * If no interrupt provided for virtual timer, we'll have to
1268  * stick to the physical timer. It'd better be accessible...
1269  * For arm64 we never use the secure interrupt.
1270  *
1271  * Return: a suitable PPI type for the current system.
1272  */
1273 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1274 {
1275 	if (is_kernel_in_hyp_mode())
1276 		return ARCH_TIMER_HYP_PPI;
1277 
1278 	if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1279 		return ARCH_TIMER_VIRT_PPI;
1280 
1281 	if (IS_ENABLED(CONFIG_ARM64))
1282 		return ARCH_TIMER_PHYS_NONSECURE_PPI;
1283 
1284 	return ARCH_TIMER_PHYS_SECURE_PPI;
1285 }
1286 
1287 static void __init arch_timer_populate_kvm_info(void)
1288 {
1289 	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1290 	if (is_kernel_in_hyp_mode())
1291 		arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1292 }
1293 
1294 static int __init arch_timer_of_init(struct device_node *np)
1295 {
1296 	int i, irq, ret;
1297 	u32 rate;
1298 	bool has_names;
1299 
1300 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1301 		pr_warn("multiple nodes in dt, skipping\n");
1302 		return 0;
1303 	}
1304 
1305 	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1306 
1307 	has_names = of_property_read_bool(np, "interrupt-names");
1308 
1309 	for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1310 		if (has_names)
1311 			irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1312 		else
1313 			irq = of_irq_get(np, i);
1314 		if (irq > 0)
1315 			arch_timer_ppi[i] = irq;
1316 	}
1317 
1318 	arch_timer_populate_kvm_info();
1319 
1320 	rate = arch_timer_get_cntfrq();
1321 	arch_timer_of_configure_rate(rate, np);
1322 
1323 	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1324 
1325 	/* Check for globally applicable workarounds */
1326 	arch_timer_check_ool_workaround(ate_match_dt, np);
1327 
1328 	/*
1329 	 * If we cannot rely on firmware initializing the timer registers then
1330 	 * we should use the physical timers instead.
1331 	 */
1332 	if (IS_ENABLED(CONFIG_ARM) &&
1333 	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1334 		arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1335 	else
1336 		arch_timer_uses_ppi = arch_timer_select_ppi();
1337 
1338 	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1339 		pr_err("No interrupt available, giving up\n");
1340 		return -EINVAL;
1341 	}
1342 
1343 	/* On some systems, the counter stops ticking when in suspend. */
1344 	arch_counter_suspend_stop = of_property_read_bool(np,
1345 							 "arm,no-tick-in-suspend");
1346 
1347 	ret = arch_timer_register();
1348 	if (ret)
1349 		return ret;
1350 
1351 	if (arch_timer_needs_of_probing())
1352 		return 0;
1353 
1354 	return arch_timer_common_init();
1355 }
1356 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1357 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1358 
1359 static u32 __init
1360 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1361 {
1362 	void __iomem *base;
1363 	u32 rate;
1364 
1365 	base = ioremap(frame->cntbase, frame->size);
1366 	if (!base) {
1367 		pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1368 		return 0;
1369 	}
1370 
1371 	rate = readl_relaxed(base + CNTFRQ);
1372 
1373 	iounmap(base);
1374 
1375 	return rate;
1376 }
1377 
1378 static struct arch_timer_mem_frame * __init
1379 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1380 {
1381 	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1382 	void __iomem *cntctlbase;
1383 	u32 cnttidr;
1384 	int i;
1385 
1386 	cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1387 	if (!cntctlbase) {
1388 		pr_err("Can't map CNTCTLBase @ %pa\n",
1389 			&timer_mem->cntctlbase);
1390 		return NULL;
1391 	}
1392 
1393 	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1394 
1395 	/*
1396 	 * Try to find a virtual capable frame. Otherwise fall back to a
1397 	 * physical capable frame.
1398 	 */
1399 	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1400 		u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1401 			     CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1402 
1403 		frame = &timer_mem->frame[i];
1404 		if (!frame->valid)
1405 			continue;
1406 
1407 		/* Try enabling everything, and see what sticks */
1408 		writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1409 		cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1410 
1411 		if ((cnttidr & CNTTIDR_VIRT(i)) &&
1412 		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1413 			best_frame = frame;
1414 			arch_timer_mem_use_virtual = true;
1415 			break;
1416 		}
1417 
1418 		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1419 			continue;
1420 
1421 		best_frame = frame;
1422 	}
1423 
1424 	iounmap(cntctlbase);
1425 
1426 	return best_frame;
1427 }
1428 
1429 static int __init
1430 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1431 {
1432 	void __iomem *base;
1433 	int ret, irq = 0;
1434 
1435 	if (arch_timer_mem_use_virtual)
1436 		irq = frame->virt_irq;
1437 	else
1438 		irq = frame->phys_irq;
1439 
1440 	if (!irq) {
1441 		pr_err("Frame missing %s irq.\n",
1442 		       arch_timer_mem_use_virtual ? "virt" : "phys");
1443 		return -EINVAL;
1444 	}
1445 
1446 	if (!request_mem_region(frame->cntbase, frame->size,
1447 				"arch_mem_timer"))
1448 		return -EBUSY;
1449 
1450 	base = ioremap(frame->cntbase, frame->size);
1451 	if (!base) {
1452 		pr_err("Can't map frame's registers\n");
1453 		return -ENXIO;
1454 	}
1455 
1456 	ret = arch_timer_mem_register(base, irq);
1457 	if (ret) {
1458 		iounmap(base);
1459 		return ret;
1460 	}
1461 
1462 	arch_counter_base = base;
1463 	arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1464 
1465 	return 0;
1466 }
1467 
1468 static int __init arch_timer_mem_of_init(struct device_node *np)
1469 {
1470 	struct arch_timer_mem *timer_mem;
1471 	struct arch_timer_mem_frame *frame;
1472 	struct device_node *frame_node;
1473 	struct resource res;
1474 	int ret = -EINVAL;
1475 	u32 rate;
1476 
1477 	timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1478 	if (!timer_mem)
1479 		return -ENOMEM;
1480 
1481 	if (of_address_to_resource(np, 0, &res))
1482 		goto out;
1483 	timer_mem->cntctlbase = res.start;
1484 	timer_mem->size = resource_size(&res);
1485 
1486 	for_each_available_child_of_node(np, frame_node) {
1487 		u32 n;
1488 		struct arch_timer_mem_frame *frame;
1489 
1490 		if (of_property_read_u32(frame_node, "frame-number", &n)) {
1491 			pr_err(FW_BUG "Missing frame-number.\n");
1492 			of_node_put(frame_node);
1493 			goto out;
1494 		}
1495 		if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1496 			pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1497 			       ARCH_TIMER_MEM_MAX_FRAMES - 1);
1498 			of_node_put(frame_node);
1499 			goto out;
1500 		}
1501 		frame = &timer_mem->frame[n];
1502 
1503 		if (frame->valid) {
1504 			pr_err(FW_BUG "Duplicated frame-number.\n");
1505 			of_node_put(frame_node);
1506 			goto out;
1507 		}
1508 
1509 		if (of_address_to_resource(frame_node, 0, &res)) {
1510 			of_node_put(frame_node);
1511 			goto out;
1512 		}
1513 		frame->cntbase = res.start;
1514 		frame->size = resource_size(&res);
1515 
1516 		frame->virt_irq = irq_of_parse_and_map(frame_node,
1517 						       ARCH_TIMER_VIRT_SPI);
1518 		frame->phys_irq = irq_of_parse_and_map(frame_node,
1519 						       ARCH_TIMER_PHYS_SPI);
1520 
1521 		frame->valid = true;
1522 	}
1523 
1524 	frame = arch_timer_mem_find_best_frame(timer_mem);
1525 	if (!frame) {
1526 		pr_err("Unable to find a suitable frame in timer @ %pa\n",
1527 			&timer_mem->cntctlbase);
1528 		ret = -EINVAL;
1529 		goto out;
1530 	}
1531 
1532 	rate = arch_timer_mem_frame_get_cntfrq(frame);
1533 	arch_timer_of_configure_rate(rate, np);
1534 
1535 	ret = arch_timer_mem_frame_register(frame);
1536 	if (!ret && !arch_timer_needs_of_probing())
1537 		ret = arch_timer_common_init();
1538 out:
1539 	kfree(timer_mem);
1540 	return ret;
1541 }
1542 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1543 		       arch_timer_mem_of_init);
1544 
1545 #ifdef CONFIG_ACPI_GTDT
1546 static int __init
1547 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1548 {
1549 	struct arch_timer_mem_frame *frame;
1550 	u32 rate;
1551 	int i;
1552 
1553 	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1554 		frame = &timer_mem->frame[i];
1555 
1556 		if (!frame->valid)
1557 			continue;
1558 
1559 		rate = arch_timer_mem_frame_get_cntfrq(frame);
1560 		if (rate == arch_timer_rate)
1561 			continue;
1562 
1563 		pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1564 			&frame->cntbase,
1565 			(unsigned long)rate, (unsigned long)arch_timer_rate);
1566 
1567 		return -EINVAL;
1568 	}
1569 
1570 	return 0;
1571 }
1572 
1573 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1574 {
1575 	struct arch_timer_mem *timers, *timer;
1576 	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1577 	int timer_count, i, ret = 0;
1578 
1579 	timers = kcalloc(platform_timer_count, sizeof(*timers),
1580 			    GFP_KERNEL);
1581 	if (!timers)
1582 		return -ENOMEM;
1583 
1584 	ret = acpi_arch_timer_mem_init(timers, &timer_count);
1585 	if (ret || !timer_count)
1586 		goto out;
1587 
1588 	/*
1589 	 * While unlikely, it's theoretically possible that none of the frames
1590 	 * in a timer expose the combination of feature we want.
1591 	 */
1592 	for (i = 0; i < timer_count; i++) {
1593 		timer = &timers[i];
1594 
1595 		frame = arch_timer_mem_find_best_frame(timer);
1596 		if (!best_frame)
1597 			best_frame = frame;
1598 
1599 		ret = arch_timer_mem_verify_cntfrq(timer);
1600 		if (ret) {
1601 			pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1602 			goto out;
1603 		}
1604 
1605 		if (!best_frame) /* implies !frame */
1606 			/*
1607 			 * Only complain about missing suitable frames if we
1608 			 * haven't already found one in a previous iteration.
1609 			 */
1610 			pr_err("Unable to find a suitable frame in timer @ %pa\n",
1611 				&timer->cntctlbase);
1612 	}
1613 
1614 	if (best_frame)
1615 		ret = arch_timer_mem_frame_register(best_frame);
1616 out:
1617 	kfree(timers);
1618 	return ret;
1619 }
1620 
1621 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1622 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1623 {
1624 	int ret, platform_timer_count;
1625 
1626 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1627 		pr_warn("already initialized, skipping\n");
1628 		return -EINVAL;
1629 	}
1630 
1631 	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1632 
1633 	ret = acpi_gtdt_init(table, &platform_timer_count);
1634 	if (ret)
1635 		return ret;
1636 
1637 	arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1638 		acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1639 
1640 	arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1641 		acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1642 
1643 	arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1644 		acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1645 
1646 	arch_timer_populate_kvm_info();
1647 
1648 	/*
1649 	 * When probing via ACPI, we have no mechanism to override the sysreg
1650 	 * CNTFRQ value. This *must* be correct.
1651 	 */
1652 	arch_timer_rate = arch_timer_get_cntfrq();
1653 	ret = validate_timer_rate();
1654 	if (ret) {
1655 		pr_err(FW_BUG "frequency not available.\n");
1656 		return ret;
1657 	}
1658 
1659 	arch_timer_uses_ppi = arch_timer_select_ppi();
1660 	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1661 		pr_err("No interrupt available, giving up\n");
1662 		return -EINVAL;
1663 	}
1664 
1665 	/* Always-on capability */
1666 	arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1667 
1668 	/* Check for globally applicable workarounds */
1669 	arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1670 
1671 	ret = arch_timer_register();
1672 	if (ret)
1673 		return ret;
1674 
1675 	if (platform_timer_count &&
1676 	    arch_timer_mem_acpi_init(platform_timer_count))
1677 		pr_err("Failed to initialize memory-mapped timer.\n");
1678 
1679 	return arch_timer_common_init();
1680 }
1681 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1682 #endif
1683 
1684 int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
1685 				 struct clocksource **cs)
1686 {
1687 	struct arm_smccc_res hvc_res;
1688 	u32 ptp_counter;
1689 	ktime_t ktime;
1690 
1691 	if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
1692 		return -EOPNOTSUPP;
1693 
1694 	if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1695 		ptp_counter = KVM_PTP_VIRT_COUNTER;
1696 	else
1697 		ptp_counter = KVM_PTP_PHYS_COUNTER;
1698 
1699 	arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
1700 			     ptp_counter, &hvc_res);
1701 
1702 	if ((int)(hvc_res.a0) < 0)
1703 		return -EOPNOTSUPP;
1704 
1705 	ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
1706 	*ts = ktime_to_timespec64(ktime);
1707 	if (cycle)
1708 		*cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
1709 	if (cs)
1710 		*cs = &clocksource_counter;
1711 
1712 	return 0;
1713 }
1714 EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);
1715