1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/clocksource/arm_arch_timer.c
4  *
5  *  Copyright (C) 2011 ARM Ltd.
6  *  All Rights Reserved
7  */
8 
9 #define pr_fmt(fmt) 	"arch_timer: " fmt
10 
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/clocksource_ids.h>
20 #include <linux/interrupt.h>
21 #include <linux/kstrtox.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_address.h>
24 #include <linux/io.h>
25 #include <linux/slab.h>
26 #include <linux/sched/clock.h>
27 #include <linux/sched_clock.h>
28 #include <linux/acpi.h>
29 #include <linux/arm-smccc.h>
30 #include <linux/ptp_kvm.h>
31 
32 #include <asm/arch_timer.h>
33 #include <asm/virt.h>
34 
35 #include <clocksource/arm_arch_timer.h>
36 
37 #define CNTTIDR		0x08
38 #define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
39 
40 #define CNTACR(n)	(0x40 + ((n) * 4))
41 #define CNTACR_RPCT	BIT(0)
42 #define CNTACR_RVCT	BIT(1)
43 #define CNTACR_RFRQ	BIT(2)
44 #define CNTACR_RVOFF	BIT(3)
45 #define CNTACR_RWVT	BIT(4)
46 #define CNTACR_RWPT	BIT(5)
47 
48 #define CNTPCT_LO	0x00
49 #define CNTVCT_LO	0x08
50 #define CNTFRQ		0x10
51 #define CNTP_CVAL_LO	0x20
52 #define CNTP_CTL	0x2c
53 #define CNTV_CVAL_LO	0x30
54 #define CNTV_CTL	0x3c
55 
56 /*
57  * The minimum amount of time a generic counter is guaranteed to not roll over
58  * (40 years)
59  */
60 #define MIN_ROLLOVER_SECS	(40ULL * 365 * 24 * 3600)
61 
62 static unsigned arch_timers_present __initdata;
63 
64 struct arch_timer {
65 	void __iomem *base;
66 	struct clock_event_device evt;
67 };
68 
69 static struct arch_timer *arch_timer_mem __ro_after_init;
70 
71 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
72 
73 static u32 arch_timer_rate __ro_after_init;
74 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
75 
76 static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
77 	[ARCH_TIMER_PHYS_SECURE_PPI]	= "sec-phys",
78 	[ARCH_TIMER_PHYS_NONSECURE_PPI]	= "phys",
79 	[ARCH_TIMER_VIRT_PPI]		= "virt",
80 	[ARCH_TIMER_HYP_PPI]		= "hyp-phys",
81 	[ARCH_TIMER_HYP_VIRT_PPI]	= "hyp-virt",
82 };
83 
84 static struct clock_event_device __percpu *arch_timer_evt;
85 
86 static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
87 static bool arch_timer_c3stop __ro_after_init;
88 static bool arch_timer_mem_use_virtual __ro_after_init;
89 static bool arch_counter_suspend_stop __ro_after_init;
90 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
91 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
92 #else
93 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
94 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
95 
96 static cpumask_t evtstrm_available = CPU_MASK_NONE;
97 static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
98 
99 static int __init early_evtstrm_cfg(char *buf)
100 {
101 	return kstrtobool(buf, &evtstrm_enable);
102 }
103 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
104 
105 /*
106  * Makes an educated guess at a valid counter width based on the Generic Timer
107  * specification. Of note:
108  *   1) the system counter is at least 56 bits wide
109  *   2) a roll-over time of not less than 40 years
110  *
111  * See 'ARM DDI 0487G.a D11.1.2 ("The system counter")' for more details.
112  */
113 static int arch_counter_get_width(void)
114 {
115 	u64 min_cycles = MIN_ROLLOVER_SECS * arch_timer_rate;
116 
117 	/* guarantee the returned width is within the valid range */
118 	return clamp_val(ilog2(min_cycles - 1) + 1, 56, 64);
119 }
120 
121 /*
122  * Architected system timer support.
123  */
124 
125 static __always_inline
126 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u64 val,
127 			  struct clock_event_device *clk)
128 {
129 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
130 		struct arch_timer *timer = to_arch_timer(clk);
131 		switch (reg) {
132 		case ARCH_TIMER_REG_CTRL:
133 			writel_relaxed((u32)val, timer->base + CNTP_CTL);
134 			break;
135 		case ARCH_TIMER_REG_CVAL:
136 			/*
137 			 * Not guaranteed to be atomic, so the timer
138 			 * must be disabled at this point.
139 			 */
140 			writeq_relaxed(val, timer->base + CNTP_CVAL_LO);
141 			break;
142 		default:
143 			BUILD_BUG();
144 		}
145 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
146 		struct arch_timer *timer = to_arch_timer(clk);
147 		switch (reg) {
148 		case ARCH_TIMER_REG_CTRL:
149 			writel_relaxed((u32)val, timer->base + CNTV_CTL);
150 			break;
151 		case ARCH_TIMER_REG_CVAL:
152 			/* Same restriction as above */
153 			writeq_relaxed(val, timer->base + CNTV_CVAL_LO);
154 			break;
155 		default:
156 			BUILD_BUG();
157 		}
158 	} else {
159 		arch_timer_reg_write_cp15(access, reg, val);
160 	}
161 }
162 
163 static __always_inline
164 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
165 			struct clock_event_device *clk)
166 {
167 	u32 val;
168 
169 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
170 		struct arch_timer *timer = to_arch_timer(clk);
171 		switch (reg) {
172 		case ARCH_TIMER_REG_CTRL:
173 			val = readl_relaxed(timer->base + CNTP_CTL);
174 			break;
175 		default:
176 			BUILD_BUG();
177 		}
178 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
179 		struct arch_timer *timer = to_arch_timer(clk);
180 		switch (reg) {
181 		case ARCH_TIMER_REG_CTRL:
182 			val = readl_relaxed(timer->base + CNTV_CTL);
183 			break;
184 		default:
185 			BUILD_BUG();
186 		}
187 	} else {
188 		val = arch_timer_reg_read_cp15(access, reg);
189 	}
190 
191 	return val;
192 }
193 
194 static notrace u64 arch_counter_get_cntpct_stable(void)
195 {
196 	return __arch_counter_get_cntpct_stable();
197 }
198 
199 static notrace u64 arch_counter_get_cntpct(void)
200 {
201 	return __arch_counter_get_cntpct();
202 }
203 
204 static notrace u64 arch_counter_get_cntvct_stable(void)
205 {
206 	return __arch_counter_get_cntvct_stable();
207 }
208 
209 static notrace u64 arch_counter_get_cntvct(void)
210 {
211 	return __arch_counter_get_cntvct();
212 }
213 
214 /*
215  * Default to cp15 based access because arm64 uses this function for
216  * sched_clock() before DT is probed and the cp15 method is guaranteed
217  * to exist on arm64. arm doesn't use this before DT is probed so even
218  * if we don't have the cp15 accessors we won't have a problem.
219  */
220 u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
221 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
222 
223 static u64 arch_counter_read(struct clocksource *cs)
224 {
225 	return arch_timer_read_counter();
226 }
227 
228 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
229 {
230 	return arch_timer_read_counter();
231 }
232 
233 static struct clocksource clocksource_counter = {
234 	.name	= "arch_sys_counter",
235 	.id	= CSID_ARM_ARCH_COUNTER,
236 	.rating	= 400,
237 	.read	= arch_counter_read,
238 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
239 };
240 
241 static struct cyclecounter cyclecounter __ro_after_init = {
242 	.read	= arch_counter_read_cc,
243 };
244 
245 struct ate_acpi_oem_info {
246 	char oem_id[ACPI_OEM_ID_SIZE + 1];
247 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
248 	u32 oem_revision;
249 };
250 
251 #ifdef CONFIG_FSL_ERRATUM_A008585
252 /*
253  * The number of retries is an arbitrary value well beyond the highest number
254  * of iterations the loop has been observed to take.
255  */
256 #define __fsl_a008585_read_reg(reg) ({			\
257 	u64 _old, _new;					\
258 	int _retries = 200;				\
259 							\
260 	do {						\
261 		_old = read_sysreg(reg);		\
262 		_new = read_sysreg(reg);		\
263 		_retries--;				\
264 	} while (unlikely(_old != _new) && _retries);	\
265 							\
266 	WARN_ON_ONCE(!_retries);			\
267 	_new;						\
268 })
269 
270 static u64 notrace fsl_a008585_read_cntpct_el0(void)
271 {
272 	return __fsl_a008585_read_reg(cntpct_el0);
273 }
274 
275 static u64 notrace fsl_a008585_read_cntvct_el0(void)
276 {
277 	return __fsl_a008585_read_reg(cntvct_el0);
278 }
279 #endif
280 
281 #ifdef CONFIG_HISILICON_ERRATUM_161010101
282 /*
283  * Verify whether the value of the second read is larger than the first by
284  * less than 32 is the only way to confirm the value is correct, so clear the
285  * lower 5 bits to check whether the difference is greater than 32 or not.
286  * Theoretically the erratum should not occur more than twice in succession
287  * when reading the system counter, but it is possible that some interrupts
288  * may lead to more than twice read errors, triggering the warning, so setting
289  * the number of retries far beyond the number of iterations the loop has been
290  * observed to take.
291  */
292 #define __hisi_161010101_read_reg(reg) ({				\
293 	u64 _old, _new;						\
294 	int _retries = 50;					\
295 								\
296 	do {							\
297 		_old = read_sysreg(reg);			\
298 		_new = read_sysreg(reg);			\
299 		_retries--;					\
300 	} while (unlikely((_new - _old) >> 5) && _retries);	\
301 								\
302 	WARN_ON_ONCE(!_retries);				\
303 	_new;							\
304 })
305 
306 static u64 notrace hisi_161010101_read_cntpct_el0(void)
307 {
308 	return __hisi_161010101_read_reg(cntpct_el0);
309 }
310 
311 static u64 notrace hisi_161010101_read_cntvct_el0(void)
312 {
313 	return __hisi_161010101_read_reg(cntvct_el0);
314 }
315 
316 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
317 	/*
318 	 * Note that trailing spaces are required to properly match
319 	 * the OEM table information.
320 	 */
321 	{
322 		.oem_id		= "HISI  ",
323 		.oem_table_id	= "HIP05   ",
324 		.oem_revision	= 0,
325 	},
326 	{
327 		.oem_id		= "HISI  ",
328 		.oem_table_id	= "HIP06   ",
329 		.oem_revision	= 0,
330 	},
331 	{
332 		.oem_id		= "HISI  ",
333 		.oem_table_id	= "HIP07   ",
334 		.oem_revision	= 0,
335 	},
336 	{ /* Sentinel indicating the end of the OEM array */ },
337 };
338 #endif
339 
340 #ifdef CONFIG_ARM64_ERRATUM_858921
341 static u64 notrace arm64_858921_read_cntpct_el0(void)
342 {
343 	u64 old, new;
344 
345 	old = read_sysreg(cntpct_el0);
346 	new = read_sysreg(cntpct_el0);
347 	return (((old ^ new) >> 32) & 1) ? old : new;
348 }
349 
350 static u64 notrace arm64_858921_read_cntvct_el0(void)
351 {
352 	u64 old, new;
353 
354 	old = read_sysreg(cntvct_el0);
355 	new = read_sysreg(cntvct_el0);
356 	return (((old ^ new) >> 32) & 1) ? old : new;
357 }
358 #endif
359 
360 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
361 /*
362  * The low bits of the counter registers are indeterminate while bit 10 or
363  * greater is rolling over. Since the counter value can jump both backward
364  * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
365  * with all ones or all zeros in the low bits. Bound the loop by the maximum
366  * number of CPU cycles in 3 consecutive 24 MHz counter periods.
367  */
368 #define __sun50i_a64_read_reg(reg) ({					\
369 	u64 _val;							\
370 	int _retries = 150;						\
371 									\
372 	do {								\
373 		_val = read_sysreg(reg);				\
374 		_retries--;						\
375 	} while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries);	\
376 									\
377 	WARN_ON_ONCE(!_retries);					\
378 	_val;								\
379 })
380 
381 static u64 notrace sun50i_a64_read_cntpct_el0(void)
382 {
383 	return __sun50i_a64_read_reg(cntpct_el0);
384 }
385 
386 static u64 notrace sun50i_a64_read_cntvct_el0(void)
387 {
388 	return __sun50i_a64_read_reg(cntvct_el0);
389 }
390 #endif
391 
392 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
393 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
394 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
395 
396 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
397 
398 /*
399  * Force the inlining of this function so that the register accesses
400  * can be themselves correctly inlined.
401  */
402 static __always_inline
403 void erratum_set_next_event_generic(const int access, unsigned long evt,
404 				    struct clock_event_device *clk)
405 {
406 	unsigned long ctrl;
407 	u64 cval;
408 
409 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
410 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
411 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
412 
413 	if (access == ARCH_TIMER_PHYS_ACCESS) {
414 		cval = evt + arch_counter_get_cntpct_stable();
415 		write_sysreg(cval, cntp_cval_el0);
416 	} else {
417 		cval = evt + arch_counter_get_cntvct_stable();
418 		write_sysreg(cval, cntv_cval_el0);
419 	}
420 
421 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
422 }
423 
424 static __maybe_unused int erratum_set_next_event_virt(unsigned long evt,
425 					    struct clock_event_device *clk)
426 {
427 	erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
428 	return 0;
429 }
430 
431 static __maybe_unused int erratum_set_next_event_phys(unsigned long evt,
432 					    struct clock_event_device *clk)
433 {
434 	erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
435 	return 0;
436 }
437 
438 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
439 #ifdef CONFIG_FSL_ERRATUM_A008585
440 	{
441 		.match_type = ate_match_dt,
442 		.id = "fsl,erratum-a008585",
443 		.desc = "Freescale erratum a005858",
444 		.read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
445 		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
446 		.set_next_event_phys = erratum_set_next_event_phys,
447 		.set_next_event_virt = erratum_set_next_event_virt,
448 	},
449 #endif
450 #ifdef CONFIG_HISILICON_ERRATUM_161010101
451 	{
452 		.match_type = ate_match_dt,
453 		.id = "hisilicon,erratum-161010101",
454 		.desc = "HiSilicon erratum 161010101",
455 		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
456 		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
457 		.set_next_event_phys = erratum_set_next_event_phys,
458 		.set_next_event_virt = erratum_set_next_event_virt,
459 	},
460 	{
461 		.match_type = ate_match_acpi_oem_info,
462 		.id = hisi_161010101_oem_info,
463 		.desc = "HiSilicon erratum 161010101",
464 		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
465 		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
466 		.set_next_event_phys = erratum_set_next_event_phys,
467 		.set_next_event_virt = erratum_set_next_event_virt,
468 	},
469 #endif
470 #ifdef CONFIG_ARM64_ERRATUM_858921
471 	{
472 		.match_type = ate_match_local_cap_id,
473 		.id = (void *)ARM64_WORKAROUND_858921,
474 		.desc = "ARM erratum 858921",
475 		.read_cntpct_el0 = arm64_858921_read_cntpct_el0,
476 		.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
477 		.set_next_event_phys = erratum_set_next_event_phys,
478 		.set_next_event_virt = erratum_set_next_event_virt,
479 	},
480 #endif
481 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
482 	{
483 		.match_type = ate_match_dt,
484 		.id = "allwinner,erratum-unknown1",
485 		.desc = "Allwinner erratum UNKNOWN1",
486 		.read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
487 		.read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
488 		.set_next_event_phys = erratum_set_next_event_phys,
489 		.set_next_event_virt = erratum_set_next_event_virt,
490 	},
491 #endif
492 #ifdef CONFIG_ARM64_ERRATUM_1418040
493 	{
494 		.match_type = ate_match_local_cap_id,
495 		.id = (void *)ARM64_WORKAROUND_1418040,
496 		.desc = "ARM erratum 1418040",
497 		.disable_compat_vdso = true,
498 	},
499 #endif
500 };
501 
502 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
503 			       const void *);
504 
505 static
506 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
507 				 const void *arg)
508 {
509 	const struct device_node *np = arg;
510 
511 	return of_property_read_bool(np, wa->id);
512 }
513 
514 static
515 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
516 					const void *arg)
517 {
518 	return this_cpu_has_cap((uintptr_t)wa->id);
519 }
520 
521 
522 static
523 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
524 				       const void *arg)
525 {
526 	static const struct ate_acpi_oem_info empty_oem_info = {};
527 	const struct ate_acpi_oem_info *info = wa->id;
528 	const struct acpi_table_header *table = arg;
529 
530 	/* Iterate over the ACPI OEM info array, looking for a match */
531 	while (memcmp(info, &empty_oem_info, sizeof(*info))) {
532 		if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
533 		    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
534 		    info->oem_revision == table->oem_revision)
535 			return true;
536 
537 		info++;
538 	}
539 
540 	return false;
541 }
542 
543 static const struct arch_timer_erratum_workaround *
544 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
545 			  ate_match_fn_t match_fn,
546 			  void *arg)
547 {
548 	int i;
549 
550 	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
551 		if (ool_workarounds[i].match_type != type)
552 			continue;
553 
554 		if (match_fn(&ool_workarounds[i], arg))
555 			return &ool_workarounds[i];
556 	}
557 
558 	return NULL;
559 }
560 
561 static
562 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
563 				  bool local)
564 {
565 	int i;
566 
567 	if (local) {
568 		__this_cpu_write(timer_unstable_counter_workaround, wa);
569 	} else {
570 		for_each_possible_cpu(i)
571 			per_cpu(timer_unstable_counter_workaround, i) = wa;
572 	}
573 
574 	if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
575 		atomic_set(&timer_unstable_counter_workaround_in_use, 1);
576 
577 	/*
578 	 * Don't use the vdso fastpath if errata require using the
579 	 * out-of-line counter accessor. We may change our mind pretty
580 	 * late in the game (with a per-CPU erratum, for example), so
581 	 * change both the default value and the vdso itself.
582 	 */
583 	if (wa->read_cntvct_el0) {
584 		clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
585 		vdso_default = VDSO_CLOCKMODE_NONE;
586 	} else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
587 		vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
588 		clocksource_counter.vdso_clock_mode = vdso_default;
589 	}
590 }
591 
592 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
593 					    void *arg)
594 {
595 	const struct arch_timer_erratum_workaround *wa, *__wa;
596 	ate_match_fn_t match_fn = NULL;
597 	bool local = false;
598 
599 	switch (type) {
600 	case ate_match_dt:
601 		match_fn = arch_timer_check_dt_erratum;
602 		break;
603 	case ate_match_local_cap_id:
604 		match_fn = arch_timer_check_local_cap_erratum;
605 		local = true;
606 		break;
607 	case ate_match_acpi_oem_info:
608 		match_fn = arch_timer_check_acpi_oem_erratum;
609 		break;
610 	default:
611 		WARN_ON(1);
612 		return;
613 	}
614 
615 	wa = arch_timer_iterate_errata(type, match_fn, arg);
616 	if (!wa)
617 		return;
618 
619 	__wa = __this_cpu_read(timer_unstable_counter_workaround);
620 	if (__wa && wa != __wa)
621 		pr_warn("Can't enable workaround for %s (clashes with %s\n)",
622 			wa->desc, __wa->desc);
623 
624 	if (__wa)
625 		return;
626 
627 	arch_timer_enable_workaround(wa, local);
628 	pr_info("Enabling %s workaround for %s\n",
629 		local ? "local" : "global", wa->desc);
630 }
631 
632 static bool arch_timer_this_cpu_has_cntvct_wa(void)
633 {
634 	return has_erratum_handler(read_cntvct_el0);
635 }
636 
637 static bool arch_timer_counter_has_wa(void)
638 {
639 	return atomic_read(&timer_unstable_counter_workaround_in_use);
640 }
641 #else
642 #define arch_timer_check_ool_workaround(t,a)		do { } while(0)
643 #define arch_timer_this_cpu_has_cntvct_wa()		({false;})
644 #define arch_timer_counter_has_wa()			({false;})
645 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
646 
647 static __always_inline irqreturn_t timer_handler(const int access,
648 					struct clock_event_device *evt)
649 {
650 	unsigned long ctrl;
651 
652 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
653 	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
654 		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
655 		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
656 		evt->event_handler(evt);
657 		return IRQ_HANDLED;
658 	}
659 
660 	return IRQ_NONE;
661 }
662 
663 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
664 {
665 	struct clock_event_device *evt = dev_id;
666 
667 	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
668 }
669 
670 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
671 {
672 	struct clock_event_device *evt = dev_id;
673 
674 	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
675 }
676 
677 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
678 {
679 	struct clock_event_device *evt = dev_id;
680 
681 	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
682 }
683 
684 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
685 {
686 	struct clock_event_device *evt = dev_id;
687 
688 	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
689 }
690 
691 static __always_inline int arch_timer_shutdown(const int access,
692 					       struct clock_event_device *clk)
693 {
694 	unsigned long ctrl;
695 
696 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
697 	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
698 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
699 
700 	return 0;
701 }
702 
703 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
704 {
705 	return arch_timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
706 }
707 
708 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
709 {
710 	return arch_timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
711 }
712 
713 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
714 {
715 	return arch_timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
716 }
717 
718 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
719 {
720 	return arch_timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
721 }
722 
723 static __always_inline void set_next_event(const int access, unsigned long evt,
724 					   struct clock_event_device *clk)
725 {
726 	unsigned long ctrl;
727 	u64 cnt;
728 
729 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
730 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
731 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
732 
733 	if (access == ARCH_TIMER_PHYS_ACCESS)
734 		cnt = __arch_counter_get_cntpct();
735 	else
736 		cnt = __arch_counter_get_cntvct();
737 
738 	arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
739 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
740 }
741 
742 static int arch_timer_set_next_event_virt(unsigned long evt,
743 					  struct clock_event_device *clk)
744 {
745 	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
746 	return 0;
747 }
748 
749 static int arch_timer_set_next_event_phys(unsigned long evt,
750 					  struct clock_event_device *clk)
751 {
752 	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
753 	return 0;
754 }
755 
756 static u64 arch_counter_get_cnt_mem(struct arch_timer *t, int offset_lo)
757 {
758 	u32 cnt_lo, cnt_hi, tmp_hi;
759 
760 	do {
761 		cnt_hi = readl_relaxed(t->base + offset_lo + 4);
762 		cnt_lo = readl_relaxed(t->base + offset_lo);
763 		tmp_hi = readl_relaxed(t->base + offset_lo + 4);
764 	} while (cnt_hi != tmp_hi);
765 
766 	return ((u64) cnt_hi << 32) | cnt_lo;
767 }
768 
769 static __always_inline void set_next_event_mem(const int access, unsigned long evt,
770 					   struct clock_event_device *clk)
771 {
772 	struct arch_timer *timer = to_arch_timer(clk);
773 	unsigned long ctrl;
774 	u64 cnt;
775 
776 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
777 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
778 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
779 
780 	if (access ==  ARCH_TIMER_MEM_VIRT_ACCESS)
781 		cnt = arch_counter_get_cnt_mem(timer, CNTVCT_LO);
782 	else
783 		cnt = arch_counter_get_cnt_mem(timer, CNTPCT_LO);
784 
785 	arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
786 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
787 }
788 
789 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
790 					      struct clock_event_device *clk)
791 {
792 	set_next_event_mem(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
793 	return 0;
794 }
795 
796 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
797 					      struct clock_event_device *clk)
798 {
799 	set_next_event_mem(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
800 	return 0;
801 }
802 
803 static u64 __arch_timer_check_delta(void)
804 {
805 #ifdef CONFIG_ARM64
806 	const struct midr_range broken_cval_midrs[] = {
807 		/*
808 		 * XGene-1 implements CVAL in terms of TVAL, meaning
809 		 * that the maximum timer range is 32bit. Shame on them.
810 		 *
811 		 * Note that TVAL is signed, thus has only 31 of its
812 		 * 32 bits to express magnitude.
813 		 */
814 		MIDR_ALL_VERSIONS(MIDR_CPU_MODEL(ARM_CPU_IMP_APM,
815 						 APM_CPU_PART_POTENZA)),
816 		{},
817 	};
818 
819 	if (is_midr_in_range_list(read_cpuid_id(), broken_cval_midrs)) {
820 		pr_warn_once("Broken CNTx_CVAL_EL1, using 31 bit TVAL instead.\n");
821 		return CLOCKSOURCE_MASK(31);
822 	}
823 #endif
824 	return CLOCKSOURCE_MASK(arch_counter_get_width());
825 }
826 
827 static void __arch_timer_setup(unsigned type,
828 			       struct clock_event_device *clk)
829 {
830 	u64 max_delta;
831 
832 	clk->features = CLOCK_EVT_FEAT_ONESHOT;
833 
834 	if (type == ARCH_TIMER_TYPE_CP15) {
835 		typeof(clk->set_next_event) sne;
836 
837 		arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
838 
839 		if (arch_timer_c3stop)
840 			clk->features |= CLOCK_EVT_FEAT_C3STOP;
841 		clk->name = "arch_sys_timer";
842 		clk->rating = 450;
843 		clk->cpumask = cpumask_of(smp_processor_id());
844 		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
845 		switch (arch_timer_uses_ppi) {
846 		case ARCH_TIMER_VIRT_PPI:
847 			clk->set_state_shutdown = arch_timer_shutdown_virt;
848 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
849 			sne = erratum_handler(set_next_event_virt);
850 			break;
851 		case ARCH_TIMER_PHYS_SECURE_PPI:
852 		case ARCH_TIMER_PHYS_NONSECURE_PPI:
853 		case ARCH_TIMER_HYP_PPI:
854 			clk->set_state_shutdown = arch_timer_shutdown_phys;
855 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
856 			sne = erratum_handler(set_next_event_phys);
857 			break;
858 		default:
859 			BUG();
860 		}
861 
862 		clk->set_next_event = sne;
863 		max_delta = __arch_timer_check_delta();
864 	} else {
865 		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
866 		clk->name = "arch_mem_timer";
867 		clk->rating = 400;
868 		clk->cpumask = cpu_possible_mask;
869 		if (arch_timer_mem_use_virtual) {
870 			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
871 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
872 			clk->set_next_event =
873 				arch_timer_set_next_event_virt_mem;
874 		} else {
875 			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
876 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
877 			clk->set_next_event =
878 				arch_timer_set_next_event_phys_mem;
879 		}
880 
881 		max_delta = CLOCKSOURCE_MASK(56);
882 	}
883 
884 	clk->set_state_shutdown(clk);
885 
886 	clockevents_config_and_register(clk, arch_timer_rate, 0xf, max_delta);
887 }
888 
889 static void arch_timer_evtstrm_enable(unsigned int divider)
890 {
891 	u32 cntkctl = arch_timer_get_cntkctl();
892 
893 #ifdef CONFIG_ARM64
894 	/* ECV is likely to require a large divider. Use the EVNTIS flag. */
895 	if (cpus_have_const_cap(ARM64_HAS_ECV) && divider > 15) {
896 		cntkctl |= ARCH_TIMER_EVT_INTERVAL_SCALE;
897 		divider -= 8;
898 	}
899 #endif
900 
901 	divider = min(divider, 15U);
902 	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
903 	/* Set the divider and enable virtual event stream */
904 	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
905 			| ARCH_TIMER_VIRT_EVT_EN;
906 	arch_timer_set_cntkctl(cntkctl);
907 	arch_timer_set_evtstrm_feature();
908 	cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
909 }
910 
911 static void arch_timer_configure_evtstream(void)
912 {
913 	int evt_stream_div, lsb;
914 
915 	/*
916 	 * As the event stream can at most be generated at half the frequency
917 	 * of the counter, use half the frequency when computing the divider.
918 	 */
919 	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
920 
921 	/*
922 	 * Find the closest power of two to the divisor. If the adjacent bit
923 	 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
924 	 */
925 	lsb = fls(evt_stream_div) - 1;
926 	if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
927 		lsb++;
928 
929 	/* enable event stream */
930 	arch_timer_evtstrm_enable(max(0, lsb));
931 }
932 
933 static void arch_counter_set_user_access(void)
934 {
935 	u32 cntkctl = arch_timer_get_cntkctl();
936 
937 	/* Disable user access to the timers and both counters */
938 	/* Also disable virtual event stream */
939 	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
940 			| ARCH_TIMER_USR_VT_ACCESS_EN
941 		        | ARCH_TIMER_USR_VCT_ACCESS_EN
942 			| ARCH_TIMER_VIRT_EVT_EN
943 			| ARCH_TIMER_USR_PCT_ACCESS_EN);
944 
945 	/*
946 	 * Enable user access to the virtual counter if it doesn't
947 	 * need to be workaround. The vdso may have been already
948 	 * disabled though.
949 	 */
950 	if (arch_timer_this_cpu_has_cntvct_wa())
951 		pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
952 	else
953 		cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
954 
955 	arch_timer_set_cntkctl(cntkctl);
956 }
957 
958 static bool arch_timer_has_nonsecure_ppi(void)
959 {
960 	return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
961 		arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
962 }
963 
964 static u32 check_ppi_trigger(int irq)
965 {
966 	u32 flags = irq_get_trigger_type(irq);
967 
968 	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
969 		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
970 		pr_warn("WARNING: Please fix your firmware\n");
971 		flags = IRQF_TRIGGER_LOW;
972 	}
973 
974 	return flags;
975 }
976 
977 static int arch_timer_starting_cpu(unsigned int cpu)
978 {
979 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
980 	u32 flags;
981 
982 	__arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
983 
984 	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
985 	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
986 
987 	if (arch_timer_has_nonsecure_ppi()) {
988 		flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
989 		enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
990 				  flags);
991 	}
992 
993 	arch_counter_set_user_access();
994 	if (evtstrm_enable)
995 		arch_timer_configure_evtstream();
996 
997 	return 0;
998 }
999 
1000 static int validate_timer_rate(void)
1001 {
1002 	if (!arch_timer_rate)
1003 		return -EINVAL;
1004 
1005 	/* Arch timer frequency < 1MHz can cause trouble */
1006 	WARN_ON(arch_timer_rate < 1000000);
1007 
1008 	return 0;
1009 }
1010 
1011 /*
1012  * For historical reasons, when probing with DT we use whichever (non-zero)
1013  * rate was probed first, and don't verify that others match. If the first node
1014  * probed has a clock-frequency property, this overrides the HW register.
1015  */
1016 static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
1017 {
1018 	/* Who has more than one independent system counter? */
1019 	if (arch_timer_rate)
1020 		return;
1021 
1022 	if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
1023 		arch_timer_rate = rate;
1024 
1025 	/* Check the timer frequency. */
1026 	if (validate_timer_rate())
1027 		pr_warn("frequency not available\n");
1028 }
1029 
1030 static void __init arch_timer_banner(unsigned type)
1031 {
1032 	pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
1033 		type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
1034 		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
1035 			" and " : "",
1036 		type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
1037 		(unsigned long)arch_timer_rate / 1000000,
1038 		(unsigned long)(arch_timer_rate / 10000) % 100,
1039 		type & ARCH_TIMER_TYPE_CP15 ?
1040 			(arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
1041 			"",
1042 		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
1043 		type & ARCH_TIMER_TYPE_MEM ?
1044 			arch_timer_mem_use_virtual ? "virt" : "phys" :
1045 			"");
1046 }
1047 
1048 u32 arch_timer_get_rate(void)
1049 {
1050 	return arch_timer_rate;
1051 }
1052 
1053 bool arch_timer_evtstrm_available(void)
1054 {
1055 	/*
1056 	 * We might get called from a preemptible context. This is fine
1057 	 * because availability of the event stream should be always the same
1058 	 * for a preemptible context and context where we might resume a task.
1059 	 */
1060 	return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
1061 }
1062 
1063 static u64 arch_counter_get_cntvct_mem(void)
1064 {
1065 	return arch_counter_get_cnt_mem(arch_timer_mem, CNTVCT_LO);
1066 }
1067 
1068 static struct arch_timer_kvm_info arch_timer_kvm_info;
1069 
1070 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
1071 {
1072 	return &arch_timer_kvm_info;
1073 }
1074 
1075 static void __init arch_counter_register(unsigned type)
1076 {
1077 	u64 start_count;
1078 	int width;
1079 
1080 	/* Register the CP15 based counter if we have one */
1081 	if (type & ARCH_TIMER_TYPE_CP15) {
1082 		u64 (*rd)(void);
1083 
1084 		if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1085 		    arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1086 			if (arch_timer_counter_has_wa())
1087 				rd = arch_counter_get_cntvct_stable;
1088 			else
1089 				rd = arch_counter_get_cntvct;
1090 		} else {
1091 			if (arch_timer_counter_has_wa())
1092 				rd = arch_counter_get_cntpct_stable;
1093 			else
1094 				rd = arch_counter_get_cntpct;
1095 		}
1096 
1097 		arch_timer_read_counter = rd;
1098 		clocksource_counter.vdso_clock_mode = vdso_default;
1099 	} else {
1100 		arch_timer_read_counter = arch_counter_get_cntvct_mem;
1101 	}
1102 
1103 	width = arch_counter_get_width();
1104 	clocksource_counter.mask = CLOCKSOURCE_MASK(width);
1105 	cyclecounter.mask = CLOCKSOURCE_MASK(width);
1106 
1107 	if (!arch_counter_suspend_stop)
1108 		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1109 	start_count = arch_timer_read_counter();
1110 	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1111 	cyclecounter.mult = clocksource_counter.mult;
1112 	cyclecounter.shift = clocksource_counter.shift;
1113 	timecounter_init(&arch_timer_kvm_info.timecounter,
1114 			 &cyclecounter, start_count);
1115 
1116 	sched_clock_register(arch_timer_read_counter, width, arch_timer_rate);
1117 }
1118 
1119 static void arch_timer_stop(struct clock_event_device *clk)
1120 {
1121 	pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1122 
1123 	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1124 	if (arch_timer_has_nonsecure_ppi())
1125 		disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1126 
1127 	clk->set_state_shutdown(clk);
1128 }
1129 
1130 static int arch_timer_dying_cpu(unsigned int cpu)
1131 {
1132 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1133 
1134 	cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1135 
1136 	arch_timer_stop(clk);
1137 	return 0;
1138 }
1139 
1140 #ifdef CONFIG_CPU_PM
1141 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1142 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1143 				    unsigned long action, void *hcpu)
1144 {
1145 	if (action == CPU_PM_ENTER) {
1146 		__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1147 
1148 		cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1149 	} else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1150 		arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1151 
1152 		if (arch_timer_have_evtstrm_feature())
1153 			cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1154 	}
1155 	return NOTIFY_OK;
1156 }
1157 
1158 static struct notifier_block arch_timer_cpu_pm_notifier = {
1159 	.notifier_call = arch_timer_cpu_pm_notify,
1160 };
1161 
1162 static int __init arch_timer_cpu_pm_init(void)
1163 {
1164 	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1165 }
1166 
1167 static void __init arch_timer_cpu_pm_deinit(void)
1168 {
1169 	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1170 }
1171 
1172 #else
1173 static int __init arch_timer_cpu_pm_init(void)
1174 {
1175 	return 0;
1176 }
1177 
1178 static void __init arch_timer_cpu_pm_deinit(void)
1179 {
1180 }
1181 #endif
1182 
1183 static int __init arch_timer_register(void)
1184 {
1185 	int err;
1186 	int ppi;
1187 
1188 	arch_timer_evt = alloc_percpu(struct clock_event_device);
1189 	if (!arch_timer_evt) {
1190 		err = -ENOMEM;
1191 		goto out;
1192 	}
1193 
1194 	ppi = arch_timer_ppi[arch_timer_uses_ppi];
1195 	switch (arch_timer_uses_ppi) {
1196 	case ARCH_TIMER_VIRT_PPI:
1197 		err = request_percpu_irq(ppi, arch_timer_handler_virt,
1198 					 "arch_timer", arch_timer_evt);
1199 		break;
1200 	case ARCH_TIMER_PHYS_SECURE_PPI:
1201 	case ARCH_TIMER_PHYS_NONSECURE_PPI:
1202 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1203 					 "arch_timer", arch_timer_evt);
1204 		if (!err && arch_timer_has_nonsecure_ppi()) {
1205 			ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1206 			err = request_percpu_irq(ppi, arch_timer_handler_phys,
1207 						 "arch_timer", arch_timer_evt);
1208 			if (err)
1209 				free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1210 						arch_timer_evt);
1211 		}
1212 		break;
1213 	case ARCH_TIMER_HYP_PPI:
1214 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1215 					 "arch_timer", arch_timer_evt);
1216 		break;
1217 	default:
1218 		BUG();
1219 	}
1220 
1221 	if (err) {
1222 		pr_err("can't register interrupt %d (%d)\n", ppi, err);
1223 		goto out_free;
1224 	}
1225 
1226 	err = arch_timer_cpu_pm_init();
1227 	if (err)
1228 		goto out_unreg_notify;
1229 
1230 	/* Register and immediately configure the timer on the boot CPU */
1231 	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1232 				"clockevents/arm/arch_timer:starting",
1233 				arch_timer_starting_cpu, arch_timer_dying_cpu);
1234 	if (err)
1235 		goto out_unreg_cpupm;
1236 	return 0;
1237 
1238 out_unreg_cpupm:
1239 	arch_timer_cpu_pm_deinit();
1240 
1241 out_unreg_notify:
1242 	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1243 	if (arch_timer_has_nonsecure_ppi())
1244 		free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1245 				arch_timer_evt);
1246 
1247 out_free:
1248 	free_percpu(arch_timer_evt);
1249 out:
1250 	return err;
1251 }
1252 
1253 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1254 {
1255 	int ret;
1256 	irq_handler_t func;
1257 
1258 	arch_timer_mem = kzalloc(sizeof(*arch_timer_mem), GFP_KERNEL);
1259 	if (!arch_timer_mem)
1260 		return -ENOMEM;
1261 
1262 	arch_timer_mem->base = base;
1263 	arch_timer_mem->evt.irq = irq;
1264 	__arch_timer_setup(ARCH_TIMER_TYPE_MEM, &arch_timer_mem->evt);
1265 
1266 	if (arch_timer_mem_use_virtual)
1267 		func = arch_timer_handler_virt_mem;
1268 	else
1269 		func = arch_timer_handler_phys_mem;
1270 
1271 	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &arch_timer_mem->evt);
1272 	if (ret) {
1273 		pr_err("Failed to request mem timer irq\n");
1274 		kfree(arch_timer_mem);
1275 		arch_timer_mem = NULL;
1276 	}
1277 
1278 	return ret;
1279 }
1280 
1281 static const struct of_device_id arch_timer_of_match[] __initconst = {
1282 	{ .compatible   = "arm,armv7-timer",    },
1283 	{ .compatible   = "arm,armv8-timer",    },
1284 	{},
1285 };
1286 
1287 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1288 	{ .compatible   = "arm,armv7-timer-mem", },
1289 	{},
1290 };
1291 
1292 static bool __init arch_timer_needs_of_probing(void)
1293 {
1294 	struct device_node *dn;
1295 	bool needs_probing = false;
1296 	unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1297 
1298 	/* We have two timers, and both device-tree nodes are probed. */
1299 	if ((arch_timers_present & mask) == mask)
1300 		return false;
1301 
1302 	/*
1303 	 * Only one type of timer is probed,
1304 	 * check if we have another type of timer node in device-tree.
1305 	 */
1306 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1307 		dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1308 	else
1309 		dn = of_find_matching_node(NULL, arch_timer_of_match);
1310 
1311 	if (dn && of_device_is_available(dn))
1312 		needs_probing = true;
1313 
1314 	of_node_put(dn);
1315 
1316 	return needs_probing;
1317 }
1318 
1319 static int __init arch_timer_common_init(void)
1320 {
1321 	arch_timer_banner(arch_timers_present);
1322 	arch_counter_register(arch_timers_present);
1323 	return arch_timer_arch_init();
1324 }
1325 
1326 /**
1327  * arch_timer_select_ppi() - Select suitable PPI for the current system.
1328  *
1329  * If HYP mode is available, we know that the physical timer
1330  * has been configured to be accessible from PL1. Use it, so
1331  * that a guest can use the virtual timer instead.
1332  *
1333  * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1334  * accesses to CNTP_*_EL1 registers are silently redirected to
1335  * their CNTHP_*_EL2 counterparts, and use a different PPI
1336  * number.
1337  *
1338  * If no interrupt provided for virtual timer, we'll have to
1339  * stick to the physical timer. It'd better be accessible...
1340  * For arm64 we never use the secure interrupt.
1341  *
1342  * Return: a suitable PPI type for the current system.
1343  */
1344 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1345 {
1346 	if (is_kernel_in_hyp_mode())
1347 		return ARCH_TIMER_HYP_PPI;
1348 
1349 	if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1350 		return ARCH_TIMER_VIRT_PPI;
1351 
1352 	if (IS_ENABLED(CONFIG_ARM64))
1353 		return ARCH_TIMER_PHYS_NONSECURE_PPI;
1354 
1355 	return ARCH_TIMER_PHYS_SECURE_PPI;
1356 }
1357 
1358 static void __init arch_timer_populate_kvm_info(void)
1359 {
1360 	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1361 	if (is_kernel_in_hyp_mode())
1362 		arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1363 }
1364 
1365 static int __init arch_timer_of_init(struct device_node *np)
1366 {
1367 	int i, irq, ret;
1368 	u32 rate;
1369 	bool has_names;
1370 
1371 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1372 		pr_warn("multiple nodes in dt, skipping\n");
1373 		return 0;
1374 	}
1375 
1376 	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1377 
1378 	has_names = of_property_read_bool(np, "interrupt-names");
1379 
1380 	for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1381 		if (has_names)
1382 			irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1383 		else
1384 			irq = of_irq_get(np, i);
1385 		if (irq > 0)
1386 			arch_timer_ppi[i] = irq;
1387 	}
1388 
1389 	arch_timer_populate_kvm_info();
1390 
1391 	rate = arch_timer_get_cntfrq();
1392 	arch_timer_of_configure_rate(rate, np);
1393 
1394 	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1395 
1396 	/* Check for globally applicable workarounds */
1397 	arch_timer_check_ool_workaround(ate_match_dt, np);
1398 
1399 	/*
1400 	 * If we cannot rely on firmware initializing the timer registers then
1401 	 * we should use the physical timers instead.
1402 	 */
1403 	if (IS_ENABLED(CONFIG_ARM) &&
1404 	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1405 		arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1406 	else
1407 		arch_timer_uses_ppi = arch_timer_select_ppi();
1408 
1409 	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1410 		pr_err("No interrupt available, giving up\n");
1411 		return -EINVAL;
1412 	}
1413 
1414 	/* On some systems, the counter stops ticking when in suspend. */
1415 	arch_counter_suspend_stop = of_property_read_bool(np,
1416 							 "arm,no-tick-in-suspend");
1417 
1418 	ret = arch_timer_register();
1419 	if (ret)
1420 		return ret;
1421 
1422 	if (arch_timer_needs_of_probing())
1423 		return 0;
1424 
1425 	return arch_timer_common_init();
1426 }
1427 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1428 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1429 
1430 static u32 __init
1431 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1432 {
1433 	void __iomem *base;
1434 	u32 rate;
1435 
1436 	base = ioremap(frame->cntbase, frame->size);
1437 	if (!base) {
1438 		pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1439 		return 0;
1440 	}
1441 
1442 	rate = readl_relaxed(base + CNTFRQ);
1443 
1444 	iounmap(base);
1445 
1446 	return rate;
1447 }
1448 
1449 static struct arch_timer_mem_frame * __init
1450 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1451 {
1452 	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1453 	void __iomem *cntctlbase;
1454 	u32 cnttidr;
1455 	int i;
1456 
1457 	cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1458 	if (!cntctlbase) {
1459 		pr_err("Can't map CNTCTLBase @ %pa\n",
1460 			&timer_mem->cntctlbase);
1461 		return NULL;
1462 	}
1463 
1464 	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1465 
1466 	/*
1467 	 * Try to find a virtual capable frame. Otherwise fall back to a
1468 	 * physical capable frame.
1469 	 */
1470 	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1471 		u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1472 			     CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1473 
1474 		frame = &timer_mem->frame[i];
1475 		if (!frame->valid)
1476 			continue;
1477 
1478 		/* Try enabling everything, and see what sticks */
1479 		writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1480 		cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1481 
1482 		if ((cnttidr & CNTTIDR_VIRT(i)) &&
1483 		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1484 			best_frame = frame;
1485 			arch_timer_mem_use_virtual = true;
1486 			break;
1487 		}
1488 
1489 		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1490 			continue;
1491 
1492 		best_frame = frame;
1493 	}
1494 
1495 	iounmap(cntctlbase);
1496 
1497 	return best_frame;
1498 }
1499 
1500 static int __init
1501 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1502 {
1503 	void __iomem *base;
1504 	int ret, irq = 0;
1505 
1506 	if (arch_timer_mem_use_virtual)
1507 		irq = frame->virt_irq;
1508 	else
1509 		irq = frame->phys_irq;
1510 
1511 	if (!irq) {
1512 		pr_err("Frame missing %s irq.\n",
1513 		       arch_timer_mem_use_virtual ? "virt" : "phys");
1514 		return -EINVAL;
1515 	}
1516 
1517 	if (!request_mem_region(frame->cntbase, frame->size,
1518 				"arch_mem_timer"))
1519 		return -EBUSY;
1520 
1521 	base = ioremap(frame->cntbase, frame->size);
1522 	if (!base) {
1523 		pr_err("Can't map frame's registers\n");
1524 		return -ENXIO;
1525 	}
1526 
1527 	ret = arch_timer_mem_register(base, irq);
1528 	if (ret) {
1529 		iounmap(base);
1530 		return ret;
1531 	}
1532 
1533 	arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1534 
1535 	return 0;
1536 }
1537 
1538 static int __init arch_timer_mem_of_init(struct device_node *np)
1539 {
1540 	struct arch_timer_mem *timer_mem;
1541 	struct arch_timer_mem_frame *frame;
1542 	struct device_node *frame_node;
1543 	struct resource res;
1544 	int ret = -EINVAL;
1545 	u32 rate;
1546 
1547 	timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1548 	if (!timer_mem)
1549 		return -ENOMEM;
1550 
1551 	if (of_address_to_resource(np, 0, &res))
1552 		goto out;
1553 	timer_mem->cntctlbase = res.start;
1554 	timer_mem->size = resource_size(&res);
1555 
1556 	for_each_available_child_of_node(np, frame_node) {
1557 		u32 n;
1558 		struct arch_timer_mem_frame *frame;
1559 
1560 		if (of_property_read_u32(frame_node, "frame-number", &n)) {
1561 			pr_err(FW_BUG "Missing frame-number.\n");
1562 			of_node_put(frame_node);
1563 			goto out;
1564 		}
1565 		if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1566 			pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1567 			       ARCH_TIMER_MEM_MAX_FRAMES - 1);
1568 			of_node_put(frame_node);
1569 			goto out;
1570 		}
1571 		frame = &timer_mem->frame[n];
1572 
1573 		if (frame->valid) {
1574 			pr_err(FW_BUG "Duplicated frame-number.\n");
1575 			of_node_put(frame_node);
1576 			goto out;
1577 		}
1578 
1579 		if (of_address_to_resource(frame_node, 0, &res)) {
1580 			of_node_put(frame_node);
1581 			goto out;
1582 		}
1583 		frame->cntbase = res.start;
1584 		frame->size = resource_size(&res);
1585 
1586 		frame->virt_irq = irq_of_parse_and_map(frame_node,
1587 						       ARCH_TIMER_VIRT_SPI);
1588 		frame->phys_irq = irq_of_parse_and_map(frame_node,
1589 						       ARCH_TIMER_PHYS_SPI);
1590 
1591 		frame->valid = true;
1592 	}
1593 
1594 	frame = arch_timer_mem_find_best_frame(timer_mem);
1595 	if (!frame) {
1596 		pr_err("Unable to find a suitable frame in timer @ %pa\n",
1597 			&timer_mem->cntctlbase);
1598 		ret = -EINVAL;
1599 		goto out;
1600 	}
1601 
1602 	rate = arch_timer_mem_frame_get_cntfrq(frame);
1603 	arch_timer_of_configure_rate(rate, np);
1604 
1605 	ret = arch_timer_mem_frame_register(frame);
1606 	if (!ret && !arch_timer_needs_of_probing())
1607 		ret = arch_timer_common_init();
1608 out:
1609 	kfree(timer_mem);
1610 	return ret;
1611 }
1612 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1613 		       arch_timer_mem_of_init);
1614 
1615 #ifdef CONFIG_ACPI_GTDT
1616 static int __init
1617 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1618 {
1619 	struct arch_timer_mem_frame *frame;
1620 	u32 rate;
1621 	int i;
1622 
1623 	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1624 		frame = &timer_mem->frame[i];
1625 
1626 		if (!frame->valid)
1627 			continue;
1628 
1629 		rate = arch_timer_mem_frame_get_cntfrq(frame);
1630 		if (rate == arch_timer_rate)
1631 			continue;
1632 
1633 		pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1634 			&frame->cntbase,
1635 			(unsigned long)rate, (unsigned long)arch_timer_rate);
1636 
1637 		return -EINVAL;
1638 	}
1639 
1640 	return 0;
1641 }
1642 
1643 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1644 {
1645 	struct arch_timer_mem *timers, *timer;
1646 	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1647 	int timer_count, i, ret = 0;
1648 
1649 	timers = kcalloc(platform_timer_count, sizeof(*timers),
1650 			    GFP_KERNEL);
1651 	if (!timers)
1652 		return -ENOMEM;
1653 
1654 	ret = acpi_arch_timer_mem_init(timers, &timer_count);
1655 	if (ret || !timer_count)
1656 		goto out;
1657 
1658 	/*
1659 	 * While unlikely, it's theoretically possible that none of the frames
1660 	 * in a timer expose the combination of feature we want.
1661 	 */
1662 	for (i = 0; i < timer_count; i++) {
1663 		timer = &timers[i];
1664 
1665 		frame = arch_timer_mem_find_best_frame(timer);
1666 		if (!best_frame)
1667 			best_frame = frame;
1668 
1669 		ret = arch_timer_mem_verify_cntfrq(timer);
1670 		if (ret) {
1671 			pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1672 			goto out;
1673 		}
1674 
1675 		if (!best_frame) /* implies !frame */
1676 			/*
1677 			 * Only complain about missing suitable frames if we
1678 			 * haven't already found one in a previous iteration.
1679 			 */
1680 			pr_err("Unable to find a suitable frame in timer @ %pa\n",
1681 				&timer->cntctlbase);
1682 	}
1683 
1684 	if (best_frame)
1685 		ret = arch_timer_mem_frame_register(best_frame);
1686 out:
1687 	kfree(timers);
1688 	return ret;
1689 }
1690 
1691 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1692 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1693 {
1694 	int ret, platform_timer_count;
1695 
1696 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1697 		pr_warn("already initialized, skipping\n");
1698 		return -EINVAL;
1699 	}
1700 
1701 	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1702 
1703 	ret = acpi_gtdt_init(table, &platform_timer_count);
1704 	if (ret)
1705 		return ret;
1706 
1707 	arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1708 		acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1709 
1710 	arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1711 		acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1712 
1713 	arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1714 		acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1715 
1716 	arch_timer_populate_kvm_info();
1717 
1718 	/*
1719 	 * When probing via ACPI, we have no mechanism to override the sysreg
1720 	 * CNTFRQ value. This *must* be correct.
1721 	 */
1722 	arch_timer_rate = arch_timer_get_cntfrq();
1723 	ret = validate_timer_rate();
1724 	if (ret) {
1725 		pr_err(FW_BUG "frequency not available.\n");
1726 		return ret;
1727 	}
1728 
1729 	arch_timer_uses_ppi = arch_timer_select_ppi();
1730 	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1731 		pr_err("No interrupt available, giving up\n");
1732 		return -EINVAL;
1733 	}
1734 
1735 	/* Always-on capability */
1736 	arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1737 
1738 	/* Check for globally applicable workarounds */
1739 	arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1740 
1741 	ret = arch_timer_register();
1742 	if (ret)
1743 		return ret;
1744 
1745 	if (platform_timer_count &&
1746 	    arch_timer_mem_acpi_init(platform_timer_count))
1747 		pr_err("Failed to initialize memory-mapped timer.\n");
1748 
1749 	return arch_timer_common_init();
1750 }
1751 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1752 #endif
1753 
1754 int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
1755 				 struct clocksource **cs)
1756 {
1757 	struct arm_smccc_res hvc_res;
1758 	u32 ptp_counter;
1759 	ktime_t ktime;
1760 
1761 	if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
1762 		return -EOPNOTSUPP;
1763 
1764 	if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1765 		ptp_counter = KVM_PTP_VIRT_COUNTER;
1766 	else
1767 		ptp_counter = KVM_PTP_PHYS_COUNTER;
1768 
1769 	arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
1770 			     ptp_counter, &hvc_res);
1771 
1772 	if ((int)(hvc_res.a0) < 0)
1773 		return -EOPNOTSUPP;
1774 
1775 	ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
1776 	*ts = ktime_to_timespec64(ktime);
1777 	if (cycle)
1778 		*cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
1779 	if (cs)
1780 		*cs = &clocksource_counter;
1781 
1782 	return 0;
1783 }
1784 EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);
1785