1 /*
2  *  linux/drivers/clocksource/arm_arch_timer.c
3  *
4  *  Copyright (C) 2011 ARM Ltd.
5  *  All Rights Reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #define pr_fmt(fmt)	"arm_arch_timer: " fmt
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/device.h>
17 #include <linux/smp.h>
18 #include <linux/cpu.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/clockchips.h>
21 #include <linux/clocksource.h>
22 #include <linux/interrupt.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_address.h>
25 #include <linux/io.h>
26 #include <linux/slab.h>
27 #include <linux/sched_clock.h>
28 #include <linux/acpi.h>
29 
30 #include <asm/arch_timer.h>
31 #include <asm/virt.h>
32 
33 #include <clocksource/arm_arch_timer.h>
34 
35 #define CNTTIDR		0x08
36 #define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
37 
38 #define CNTACR(n)	(0x40 + ((n) * 4))
39 #define CNTACR_RPCT	BIT(0)
40 #define CNTACR_RVCT	BIT(1)
41 #define CNTACR_RFRQ	BIT(2)
42 #define CNTACR_RVOFF	BIT(3)
43 #define CNTACR_RWVT	BIT(4)
44 #define CNTACR_RWPT	BIT(5)
45 
46 #define CNTVCT_LO	0x08
47 #define CNTVCT_HI	0x0c
48 #define CNTFRQ		0x10
49 #define CNTP_TVAL	0x28
50 #define CNTP_CTL	0x2c
51 #define CNTV_TVAL	0x38
52 #define CNTV_CTL	0x3c
53 
54 #define ARCH_CP15_TIMER	BIT(0)
55 #define ARCH_MEM_TIMER	BIT(1)
56 static unsigned arch_timers_present __initdata;
57 
58 static void __iomem *arch_counter_base;
59 
60 struct arch_timer {
61 	void __iomem *base;
62 	struct clock_event_device evt;
63 };
64 
65 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
66 
67 static u32 arch_timer_rate;
68 
69 enum ppi_nr {
70 	PHYS_SECURE_PPI,
71 	PHYS_NONSECURE_PPI,
72 	VIRT_PPI,
73 	HYP_PPI,
74 	MAX_TIMER_PPI
75 };
76 
77 static int arch_timer_ppi[MAX_TIMER_PPI];
78 
79 static struct clock_event_device __percpu *arch_timer_evt;
80 
81 static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI;
82 static bool arch_timer_c3stop;
83 static bool arch_timer_mem_use_virtual;
84 
85 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
86 
87 static int __init early_evtstrm_cfg(char *buf)
88 {
89 	return strtobool(buf, &evtstrm_enable);
90 }
91 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
92 
93 /*
94  * Architected system timer support.
95  */
96 
97 static __always_inline
98 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
99 			  struct clock_event_device *clk)
100 {
101 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
102 		struct arch_timer *timer = to_arch_timer(clk);
103 		switch (reg) {
104 		case ARCH_TIMER_REG_CTRL:
105 			writel_relaxed(val, timer->base + CNTP_CTL);
106 			break;
107 		case ARCH_TIMER_REG_TVAL:
108 			writel_relaxed(val, timer->base + CNTP_TVAL);
109 			break;
110 		}
111 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
112 		struct arch_timer *timer = to_arch_timer(clk);
113 		switch (reg) {
114 		case ARCH_TIMER_REG_CTRL:
115 			writel_relaxed(val, timer->base + CNTV_CTL);
116 			break;
117 		case ARCH_TIMER_REG_TVAL:
118 			writel_relaxed(val, timer->base + CNTV_TVAL);
119 			break;
120 		}
121 	} else {
122 		arch_timer_reg_write_cp15(access, reg, val);
123 	}
124 }
125 
126 static __always_inline
127 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
128 			struct clock_event_device *clk)
129 {
130 	u32 val;
131 
132 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
133 		struct arch_timer *timer = to_arch_timer(clk);
134 		switch (reg) {
135 		case ARCH_TIMER_REG_CTRL:
136 			val = readl_relaxed(timer->base + CNTP_CTL);
137 			break;
138 		case ARCH_TIMER_REG_TVAL:
139 			val = readl_relaxed(timer->base + CNTP_TVAL);
140 			break;
141 		}
142 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
143 		struct arch_timer *timer = to_arch_timer(clk);
144 		switch (reg) {
145 		case ARCH_TIMER_REG_CTRL:
146 			val = readl_relaxed(timer->base + CNTV_CTL);
147 			break;
148 		case ARCH_TIMER_REG_TVAL:
149 			val = readl_relaxed(timer->base + CNTV_TVAL);
150 			break;
151 		}
152 	} else {
153 		val = arch_timer_reg_read_cp15(access, reg);
154 	}
155 
156 	return val;
157 }
158 
159 static __always_inline irqreturn_t timer_handler(const int access,
160 					struct clock_event_device *evt)
161 {
162 	unsigned long ctrl;
163 
164 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
165 	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
166 		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
167 		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
168 		evt->event_handler(evt);
169 		return IRQ_HANDLED;
170 	}
171 
172 	return IRQ_NONE;
173 }
174 
175 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
176 {
177 	struct clock_event_device *evt = dev_id;
178 
179 	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
180 }
181 
182 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
183 {
184 	struct clock_event_device *evt = dev_id;
185 
186 	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
187 }
188 
189 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
190 {
191 	struct clock_event_device *evt = dev_id;
192 
193 	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
194 }
195 
196 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
197 {
198 	struct clock_event_device *evt = dev_id;
199 
200 	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
201 }
202 
203 static __always_inline int timer_shutdown(const int access,
204 					  struct clock_event_device *clk)
205 {
206 	unsigned long ctrl;
207 
208 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
209 	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
210 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
211 
212 	return 0;
213 }
214 
215 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
216 {
217 	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
218 }
219 
220 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
221 {
222 	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
223 }
224 
225 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
226 {
227 	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
228 }
229 
230 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
231 {
232 	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
233 }
234 
235 static __always_inline void set_next_event(const int access, unsigned long evt,
236 					   struct clock_event_device *clk)
237 {
238 	unsigned long ctrl;
239 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
240 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
241 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
242 	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
243 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
244 }
245 
246 static int arch_timer_set_next_event_virt(unsigned long evt,
247 					  struct clock_event_device *clk)
248 {
249 	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
250 	return 0;
251 }
252 
253 static int arch_timer_set_next_event_phys(unsigned long evt,
254 					  struct clock_event_device *clk)
255 {
256 	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
257 	return 0;
258 }
259 
260 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
261 					      struct clock_event_device *clk)
262 {
263 	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
264 	return 0;
265 }
266 
267 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
268 					      struct clock_event_device *clk)
269 {
270 	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
271 	return 0;
272 }
273 
274 static void __arch_timer_setup(unsigned type,
275 			       struct clock_event_device *clk)
276 {
277 	clk->features = CLOCK_EVT_FEAT_ONESHOT;
278 
279 	if (type == ARCH_CP15_TIMER) {
280 		if (arch_timer_c3stop)
281 			clk->features |= CLOCK_EVT_FEAT_C3STOP;
282 		clk->name = "arch_sys_timer";
283 		clk->rating = 450;
284 		clk->cpumask = cpumask_of(smp_processor_id());
285 		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
286 		switch (arch_timer_uses_ppi) {
287 		case VIRT_PPI:
288 			clk->set_state_shutdown = arch_timer_shutdown_virt;
289 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
290 			clk->set_next_event = arch_timer_set_next_event_virt;
291 			break;
292 		case PHYS_SECURE_PPI:
293 		case PHYS_NONSECURE_PPI:
294 		case HYP_PPI:
295 			clk->set_state_shutdown = arch_timer_shutdown_phys;
296 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
297 			clk->set_next_event = arch_timer_set_next_event_phys;
298 			break;
299 		default:
300 			BUG();
301 		}
302 	} else {
303 		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
304 		clk->name = "arch_mem_timer";
305 		clk->rating = 400;
306 		clk->cpumask = cpu_all_mask;
307 		if (arch_timer_mem_use_virtual) {
308 			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
309 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
310 			clk->set_next_event =
311 				arch_timer_set_next_event_virt_mem;
312 		} else {
313 			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
314 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
315 			clk->set_next_event =
316 				arch_timer_set_next_event_phys_mem;
317 		}
318 	}
319 
320 	clk->set_state_shutdown(clk);
321 
322 	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
323 }
324 
325 static void arch_timer_evtstrm_enable(int divider)
326 {
327 	u32 cntkctl = arch_timer_get_cntkctl();
328 
329 	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
330 	/* Set the divider and enable virtual event stream */
331 	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
332 			| ARCH_TIMER_VIRT_EVT_EN;
333 	arch_timer_set_cntkctl(cntkctl);
334 	elf_hwcap |= HWCAP_EVTSTRM;
335 #ifdef CONFIG_COMPAT
336 	compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
337 #endif
338 }
339 
340 static void arch_timer_configure_evtstream(void)
341 {
342 	int evt_stream_div, pos;
343 
344 	/* Find the closest power of two to the divisor */
345 	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
346 	pos = fls(evt_stream_div);
347 	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
348 		pos--;
349 	/* enable event stream */
350 	arch_timer_evtstrm_enable(min(pos, 15));
351 }
352 
353 static void arch_counter_set_user_access(void)
354 {
355 	u32 cntkctl = arch_timer_get_cntkctl();
356 
357 	/* Disable user access to the timers and the physical counter */
358 	/* Also disable virtual event stream */
359 	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
360 			| ARCH_TIMER_USR_VT_ACCESS_EN
361 			| ARCH_TIMER_VIRT_EVT_EN
362 			| ARCH_TIMER_USR_PCT_ACCESS_EN);
363 
364 	/* Enable user access to the virtual counter */
365 	cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
366 
367 	arch_timer_set_cntkctl(cntkctl);
368 }
369 
370 static bool arch_timer_has_nonsecure_ppi(void)
371 {
372 	return (arch_timer_uses_ppi == PHYS_SECURE_PPI &&
373 		arch_timer_ppi[PHYS_NONSECURE_PPI]);
374 }
375 
376 static u32 check_ppi_trigger(int irq)
377 {
378 	u32 flags = irq_get_trigger_type(irq);
379 
380 	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
381 		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
382 		pr_warn("WARNING: Please fix your firmware\n");
383 		flags = IRQF_TRIGGER_LOW;
384 	}
385 
386 	return flags;
387 }
388 
389 static int arch_timer_starting_cpu(unsigned int cpu)
390 {
391 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
392 	u32 flags;
393 
394 	__arch_timer_setup(ARCH_CP15_TIMER, clk);
395 
396 	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
397 	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
398 
399 	if (arch_timer_has_nonsecure_ppi()) {
400 		flags = check_ppi_trigger(arch_timer_ppi[PHYS_NONSECURE_PPI]);
401 		enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], flags);
402 	}
403 
404 	arch_counter_set_user_access();
405 	if (evtstrm_enable)
406 		arch_timer_configure_evtstream();
407 
408 	return 0;
409 }
410 
411 static void
412 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
413 {
414 	/* Who has more than one independent system counter? */
415 	if (arch_timer_rate)
416 		return;
417 
418 	/*
419 	 * Try to determine the frequency from the device tree or CNTFRQ,
420 	 * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
421 	 */
422 	if (!acpi_disabled ||
423 	    of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
424 		if (cntbase)
425 			arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
426 		else
427 			arch_timer_rate = arch_timer_get_cntfrq();
428 	}
429 
430 	/* Check the timer frequency. */
431 	if (arch_timer_rate == 0)
432 		pr_warn("Architected timer frequency not available\n");
433 }
434 
435 static void arch_timer_banner(unsigned type)
436 {
437 	pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
438 		     type & ARCH_CP15_TIMER ? "cp15" : "",
439 		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
440 		     type & ARCH_MEM_TIMER ? "mmio" : "",
441 		     (unsigned long)arch_timer_rate / 1000000,
442 		     (unsigned long)(arch_timer_rate / 10000) % 100,
443 		     type & ARCH_CP15_TIMER ?
444 		     (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" :
445 			"",
446 		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
447 		     type & ARCH_MEM_TIMER ?
448 			arch_timer_mem_use_virtual ? "virt" : "phys" :
449 			"");
450 }
451 
452 u32 arch_timer_get_rate(void)
453 {
454 	return arch_timer_rate;
455 }
456 
457 static u64 arch_counter_get_cntvct_mem(void)
458 {
459 	u32 vct_lo, vct_hi, tmp_hi;
460 
461 	do {
462 		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
463 		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
464 		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
465 	} while (vct_hi != tmp_hi);
466 
467 	return ((u64) vct_hi << 32) | vct_lo;
468 }
469 
470 /*
471  * Default to cp15 based access because arm64 uses this function for
472  * sched_clock() before DT is probed and the cp15 method is guaranteed
473  * to exist on arm64. arm doesn't use this before DT is probed so even
474  * if we don't have the cp15 accessors we won't have a problem.
475  */
476 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
477 
478 static cycle_t arch_counter_read(struct clocksource *cs)
479 {
480 	return arch_timer_read_counter();
481 }
482 
483 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
484 {
485 	return arch_timer_read_counter();
486 }
487 
488 static struct clocksource clocksource_counter = {
489 	.name	= "arch_sys_counter",
490 	.rating	= 400,
491 	.read	= arch_counter_read,
492 	.mask	= CLOCKSOURCE_MASK(56),
493 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
494 };
495 
496 static struct cyclecounter cyclecounter = {
497 	.read	= arch_counter_read_cc,
498 	.mask	= CLOCKSOURCE_MASK(56),
499 };
500 
501 static struct arch_timer_kvm_info arch_timer_kvm_info;
502 
503 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
504 {
505 	return &arch_timer_kvm_info;
506 }
507 
508 static void __init arch_counter_register(unsigned type)
509 {
510 	u64 start_count;
511 
512 	/* Register the CP15 based counter if we have one */
513 	if (type & ARCH_CP15_TIMER) {
514 		if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI)
515 			arch_timer_read_counter = arch_counter_get_cntvct;
516 		else
517 			arch_timer_read_counter = arch_counter_get_cntpct;
518 	} else {
519 		arch_timer_read_counter = arch_counter_get_cntvct_mem;
520 
521 		/* If the clocksource name is "arch_sys_counter" the
522 		 * VDSO will attempt to read the CP15-based counter.
523 		 * Ensure this does not happen when CP15-based
524 		 * counter is not available.
525 		 */
526 		clocksource_counter.name = "arch_mem_counter";
527 	}
528 
529 	start_count = arch_timer_read_counter();
530 	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
531 	cyclecounter.mult = clocksource_counter.mult;
532 	cyclecounter.shift = clocksource_counter.shift;
533 	timecounter_init(&arch_timer_kvm_info.timecounter,
534 			 &cyclecounter, start_count);
535 
536 	/* 56 bits minimum, so we assume worst case rollover */
537 	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
538 }
539 
540 static void arch_timer_stop(struct clock_event_device *clk)
541 {
542 	pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
543 		 clk->irq, smp_processor_id());
544 
545 	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
546 	if (arch_timer_has_nonsecure_ppi())
547 		disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
548 
549 	clk->set_state_shutdown(clk);
550 }
551 
552 static int arch_timer_dying_cpu(unsigned int cpu)
553 {
554 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
555 
556 	arch_timer_stop(clk);
557 	return 0;
558 }
559 
560 #ifdef CONFIG_CPU_PM
561 static unsigned int saved_cntkctl;
562 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
563 				    unsigned long action, void *hcpu)
564 {
565 	if (action == CPU_PM_ENTER)
566 		saved_cntkctl = arch_timer_get_cntkctl();
567 	else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
568 		arch_timer_set_cntkctl(saved_cntkctl);
569 	return NOTIFY_OK;
570 }
571 
572 static struct notifier_block arch_timer_cpu_pm_notifier = {
573 	.notifier_call = arch_timer_cpu_pm_notify,
574 };
575 
576 static int __init arch_timer_cpu_pm_init(void)
577 {
578 	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
579 }
580 
581 static void __init arch_timer_cpu_pm_deinit(void)
582 {
583 	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
584 }
585 
586 #else
587 static int __init arch_timer_cpu_pm_init(void)
588 {
589 	return 0;
590 }
591 
592 static void __init arch_timer_cpu_pm_deinit(void)
593 {
594 }
595 #endif
596 
597 static int __init arch_timer_register(void)
598 {
599 	int err;
600 	int ppi;
601 
602 	arch_timer_evt = alloc_percpu(struct clock_event_device);
603 	if (!arch_timer_evt) {
604 		err = -ENOMEM;
605 		goto out;
606 	}
607 
608 	ppi = arch_timer_ppi[arch_timer_uses_ppi];
609 	switch (arch_timer_uses_ppi) {
610 	case VIRT_PPI:
611 		err = request_percpu_irq(ppi, arch_timer_handler_virt,
612 					 "arch_timer", arch_timer_evt);
613 		break;
614 	case PHYS_SECURE_PPI:
615 	case PHYS_NONSECURE_PPI:
616 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
617 					 "arch_timer", arch_timer_evt);
618 		if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
619 			ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
620 			err = request_percpu_irq(ppi, arch_timer_handler_phys,
621 						 "arch_timer", arch_timer_evt);
622 			if (err)
623 				free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
624 						arch_timer_evt);
625 		}
626 		break;
627 	case HYP_PPI:
628 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
629 					 "arch_timer", arch_timer_evt);
630 		break;
631 	default:
632 		BUG();
633 	}
634 
635 	if (err) {
636 		pr_err("arch_timer: can't register interrupt %d (%d)\n",
637 		       ppi, err);
638 		goto out_free;
639 	}
640 
641 	err = arch_timer_cpu_pm_init();
642 	if (err)
643 		goto out_unreg_notify;
644 
645 
646 	/* Register and immediately configure the timer on the boot CPU */
647 	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
648 				"AP_ARM_ARCH_TIMER_STARTING",
649 				arch_timer_starting_cpu, arch_timer_dying_cpu);
650 	if (err)
651 		goto out_unreg_cpupm;
652 	return 0;
653 
654 out_unreg_cpupm:
655 	arch_timer_cpu_pm_deinit();
656 
657 out_unreg_notify:
658 	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
659 	if (arch_timer_has_nonsecure_ppi())
660 		free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
661 				arch_timer_evt);
662 
663 out_free:
664 	free_percpu(arch_timer_evt);
665 out:
666 	return err;
667 }
668 
669 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
670 {
671 	int ret;
672 	irq_handler_t func;
673 	struct arch_timer *t;
674 
675 	t = kzalloc(sizeof(*t), GFP_KERNEL);
676 	if (!t)
677 		return -ENOMEM;
678 
679 	t->base = base;
680 	t->evt.irq = irq;
681 	__arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
682 
683 	if (arch_timer_mem_use_virtual)
684 		func = arch_timer_handler_virt_mem;
685 	else
686 		func = arch_timer_handler_phys_mem;
687 
688 	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
689 	if (ret) {
690 		pr_err("arch_timer: Failed to request mem timer irq\n");
691 		kfree(t);
692 	}
693 
694 	return ret;
695 }
696 
697 static const struct of_device_id arch_timer_of_match[] __initconst = {
698 	{ .compatible   = "arm,armv7-timer",    },
699 	{ .compatible   = "arm,armv8-timer",    },
700 	{},
701 };
702 
703 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
704 	{ .compatible   = "arm,armv7-timer-mem", },
705 	{},
706 };
707 
708 static bool __init
709 arch_timer_needs_probing(int type, const struct of_device_id *matches)
710 {
711 	struct device_node *dn;
712 	bool needs_probing = false;
713 
714 	dn = of_find_matching_node(NULL, matches);
715 	if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
716 		needs_probing = true;
717 	of_node_put(dn);
718 
719 	return needs_probing;
720 }
721 
722 static int __init arch_timer_common_init(void)
723 {
724 	unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
725 
726 	/* Wait until both nodes are probed if we have two timers */
727 	if ((arch_timers_present & mask) != mask) {
728 		if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
729 			return 0;
730 		if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
731 			return 0;
732 	}
733 
734 	arch_timer_banner(arch_timers_present);
735 	arch_counter_register(arch_timers_present);
736 	return arch_timer_arch_init();
737 }
738 
739 static int __init arch_timer_init(void)
740 {
741 	int ret;
742 	/*
743 	 * If HYP mode is available, we know that the physical timer
744 	 * has been configured to be accessible from PL1. Use it, so
745 	 * that a guest can use the virtual timer instead.
746 	 *
747 	 * If no interrupt provided for virtual timer, we'll have to
748 	 * stick to the physical timer. It'd better be accessible...
749 	 *
750 	 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
751 	 * accesses to CNTP_*_EL1 registers are silently redirected to
752 	 * their CNTHP_*_EL2 counterparts, and use a different PPI
753 	 * number.
754 	 */
755 	if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
756 		bool has_ppi;
757 
758 		if (is_kernel_in_hyp_mode()) {
759 			arch_timer_uses_ppi = HYP_PPI;
760 			has_ppi = !!arch_timer_ppi[HYP_PPI];
761 		} else {
762 			arch_timer_uses_ppi = PHYS_SECURE_PPI;
763 			has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] ||
764 				   !!arch_timer_ppi[PHYS_NONSECURE_PPI]);
765 		}
766 
767 		if (!has_ppi) {
768 			pr_warn("arch_timer: No interrupt available, giving up\n");
769 			return -EINVAL;
770 		}
771 	}
772 
773 	ret = arch_timer_register();
774 	if (ret)
775 		return ret;
776 
777 	ret = arch_timer_common_init();
778 	if (ret)
779 		return ret;
780 
781 	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[VIRT_PPI];
782 
783 	return 0;
784 }
785 
786 static int __init arch_timer_of_init(struct device_node *np)
787 {
788 	int i;
789 
790 	if (arch_timers_present & ARCH_CP15_TIMER) {
791 		pr_warn("arch_timer: multiple nodes in dt, skipping\n");
792 		return 0;
793 	}
794 
795 	arch_timers_present |= ARCH_CP15_TIMER;
796 	for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
797 		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
798 
799 	arch_timer_detect_rate(NULL, np);
800 
801 	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
802 
803 	/*
804 	 * If we cannot rely on firmware initializing the timer registers then
805 	 * we should use the physical timers instead.
806 	 */
807 	if (IS_ENABLED(CONFIG_ARM) &&
808 	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
809 		arch_timer_uses_ppi = PHYS_SECURE_PPI;
810 
811 	return arch_timer_init();
812 }
813 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
814 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
815 
816 static int __init arch_timer_mem_init(struct device_node *np)
817 {
818 	struct device_node *frame, *best_frame = NULL;
819 	void __iomem *cntctlbase, *base;
820 	unsigned int irq, ret = -EINVAL;
821 	u32 cnttidr;
822 
823 	arch_timers_present |= ARCH_MEM_TIMER;
824 	cntctlbase = of_iomap(np, 0);
825 	if (!cntctlbase) {
826 		pr_err("arch_timer: Can't find CNTCTLBase\n");
827 		return -ENXIO;
828 	}
829 
830 	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
831 
832 	/*
833 	 * Try to find a virtual capable frame. Otherwise fall back to a
834 	 * physical capable frame.
835 	 */
836 	for_each_available_child_of_node(np, frame) {
837 		int n;
838 		u32 cntacr;
839 
840 		if (of_property_read_u32(frame, "frame-number", &n)) {
841 			pr_err("arch_timer: Missing frame-number\n");
842 			of_node_put(frame);
843 			goto out;
844 		}
845 
846 		/* Try enabling everything, and see what sticks */
847 		cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
848 			 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
849 		writel_relaxed(cntacr, cntctlbase + CNTACR(n));
850 		cntacr = readl_relaxed(cntctlbase + CNTACR(n));
851 
852 		if ((cnttidr & CNTTIDR_VIRT(n)) &&
853 		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
854 			of_node_put(best_frame);
855 			best_frame = frame;
856 			arch_timer_mem_use_virtual = true;
857 			break;
858 		}
859 
860 		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
861 			continue;
862 
863 		of_node_put(best_frame);
864 		best_frame = of_node_get(frame);
865 	}
866 
867 	ret= -ENXIO;
868 	base = arch_counter_base = of_iomap(best_frame, 0);
869 	if (!base) {
870 		pr_err("arch_timer: Can't map frame's registers\n");
871 		goto out;
872 	}
873 
874 	if (arch_timer_mem_use_virtual)
875 		irq = irq_of_parse_and_map(best_frame, 1);
876 	else
877 		irq = irq_of_parse_and_map(best_frame, 0);
878 
879 	ret = -EINVAL;
880 	if (!irq) {
881 		pr_err("arch_timer: Frame missing %s irq",
882 		       arch_timer_mem_use_virtual ? "virt" : "phys");
883 		goto out;
884 	}
885 
886 	arch_timer_detect_rate(base, np);
887 	ret = arch_timer_mem_register(base, irq);
888 	if (ret)
889 		goto out;
890 
891 	return arch_timer_common_init();
892 out:
893 	iounmap(cntctlbase);
894 	of_node_put(best_frame);
895 	return ret;
896 }
897 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
898 		       arch_timer_mem_init);
899 
900 #ifdef CONFIG_ACPI
901 static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
902 {
903 	int trigger, polarity;
904 
905 	if (!interrupt)
906 		return 0;
907 
908 	trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
909 			: ACPI_LEVEL_SENSITIVE;
910 
911 	polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
912 			: ACPI_ACTIVE_HIGH;
913 
914 	return acpi_register_gsi(NULL, interrupt, trigger, polarity);
915 }
916 
917 /* Initialize per-processor generic timer */
918 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
919 {
920 	struct acpi_table_gtdt *gtdt;
921 
922 	if (arch_timers_present & ARCH_CP15_TIMER) {
923 		pr_warn("arch_timer: already initialized, skipping\n");
924 		return -EINVAL;
925 	}
926 
927 	gtdt = container_of(table, struct acpi_table_gtdt, header);
928 
929 	arch_timers_present |= ARCH_CP15_TIMER;
930 
931 	arch_timer_ppi[PHYS_SECURE_PPI] =
932 		map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
933 		gtdt->secure_el1_flags);
934 
935 	arch_timer_ppi[PHYS_NONSECURE_PPI] =
936 		map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
937 		gtdt->non_secure_el1_flags);
938 
939 	arch_timer_ppi[VIRT_PPI] =
940 		map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
941 		gtdt->virtual_timer_flags);
942 
943 	arch_timer_ppi[HYP_PPI] =
944 		map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
945 		gtdt->non_secure_el2_flags);
946 
947 	/* Get the frequency from CNTFRQ */
948 	arch_timer_detect_rate(NULL, NULL);
949 
950 	/* Always-on capability */
951 	arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
952 
953 	arch_timer_init();
954 	return 0;
955 }
956 CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
957 #endif
958