1 /*
2  *  linux/drivers/clocksource/arm_arch_timer.c
3  *
4  *  Copyright (C) 2011 ARM Ltd.
5  *  All Rights Reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #define pr_fmt(fmt)	"arm_arch_timer: " fmt
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/device.h>
17 #include <linux/smp.h>
18 #include <linux/cpu.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/clockchips.h>
21 #include <linux/clocksource.h>
22 #include <linux/interrupt.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_address.h>
25 #include <linux/io.h>
26 #include <linux/slab.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched_clock.h>
29 #include <linux/acpi.h>
30 
31 #include <asm/arch_timer.h>
32 #include <asm/virt.h>
33 
34 #include <clocksource/arm_arch_timer.h>
35 
36 #undef pr_fmt
37 #define pr_fmt(fmt) "arch_timer: " fmt
38 
39 #define CNTTIDR		0x08
40 #define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
41 
42 #define CNTACR(n)	(0x40 + ((n) * 4))
43 #define CNTACR_RPCT	BIT(0)
44 #define CNTACR_RVCT	BIT(1)
45 #define CNTACR_RFRQ	BIT(2)
46 #define CNTACR_RVOFF	BIT(3)
47 #define CNTACR_RWVT	BIT(4)
48 #define CNTACR_RWPT	BIT(5)
49 
50 #define CNTVCT_LO	0x08
51 #define CNTVCT_HI	0x0c
52 #define CNTFRQ		0x10
53 #define CNTP_TVAL	0x28
54 #define CNTP_CTL	0x2c
55 #define CNTV_TVAL	0x38
56 #define CNTV_CTL	0x3c
57 
58 static unsigned arch_timers_present __initdata;
59 
60 static void __iomem *arch_counter_base;
61 
62 struct arch_timer {
63 	void __iomem *base;
64 	struct clock_event_device evt;
65 };
66 
67 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
68 
69 static u32 arch_timer_rate;
70 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
71 
72 static struct clock_event_device __percpu *arch_timer_evt;
73 
74 static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
75 static bool arch_timer_c3stop;
76 static bool arch_timer_mem_use_virtual;
77 static bool arch_counter_suspend_stop;
78 static bool vdso_default = true;
79 
80 static cpumask_t evtstrm_available = CPU_MASK_NONE;
81 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
82 
83 static int __init early_evtstrm_cfg(char *buf)
84 {
85 	return strtobool(buf, &evtstrm_enable);
86 }
87 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
88 
89 /*
90  * Architected system timer support.
91  */
92 
93 static __always_inline
94 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
95 			  struct clock_event_device *clk)
96 {
97 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
98 		struct arch_timer *timer = to_arch_timer(clk);
99 		switch (reg) {
100 		case ARCH_TIMER_REG_CTRL:
101 			writel_relaxed(val, timer->base + CNTP_CTL);
102 			break;
103 		case ARCH_TIMER_REG_TVAL:
104 			writel_relaxed(val, timer->base + CNTP_TVAL);
105 			break;
106 		}
107 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
108 		struct arch_timer *timer = to_arch_timer(clk);
109 		switch (reg) {
110 		case ARCH_TIMER_REG_CTRL:
111 			writel_relaxed(val, timer->base + CNTV_CTL);
112 			break;
113 		case ARCH_TIMER_REG_TVAL:
114 			writel_relaxed(val, timer->base + CNTV_TVAL);
115 			break;
116 		}
117 	} else {
118 		arch_timer_reg_write_cp15(access, reg, val);
119 	}
120 }
121 
122 static __always_inline
123 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
124 			struct clock_event_device *clk)
125 {
126 	u32 val;
127 
128 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
129 		struct arch_timer *timer = to_arch_timer(clk);
130 		switch (reg) {
131 		case ARCH_TIMER_REG_CTRL:
132 			val = readl_relaxed(timer->base + CNTP_CTL);
133 			break;
134 		case ARCH_TIMER_REG_TVAL:
135 			val = readl_relaxed(timer->base + CNTP_TVAL);
136 			break;
137 		}
138 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
139 		struct arch_timer *timer = to_arch_timer(clk);
140 		switch (reg) {
141 		case ARCH_TIMER_REG_CTRL:
142 			val = readl_relaxed(timer->base + CNTV_CTL);
143 			break;
144 		case ARCH_TIMER_REG_TVAL:
145 			val = readl_relaxed(timer->base + CNTV_TVAL);
146 			break;
147 		}
148 	} else {
149 		val = arch_timer_reg_read_cp15(access, reg);
150 	}
151 
152 	return val;
153 }
154 
155 /*
156  * Default to cp15 based access because arm64 uses this function for
157  * sched_clock() before DT is probed and the cp15 method is guaranteed
158  * to exist on arm64. arm doesn't use this before DT is probed so even
159  * if we don't have the cp15 accessors we won't have a problem.
160  */
161 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
162 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
163 
164 static u64 arch_counter_read(struct clocksource *cs)
165 {
166 	return arch_timer_read_counter();
167 }
168 
169 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
170 {
171 	return arch_timer_read_counter();
172 }
173 
174 static struct clocksource clocksource_counter = {
175 	.name	= "arch_sys_counter",
176 	.rating	= 400,
177 	.read	= arch_counter_read,
178 	.mask	= CLOCKSOURCE_MASK(56),
179 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
180 };
181 
182 static struct cyclecounter cyclecounter __ro_after_init = {
183 	.read	= arch_counter_read_cc,
184 	.mask	= CLOCKSOURCE_MASK(56),
185 };
186 
187 struct ate_acpi_oem_info {
188 	char oem_id[ACPI_OEM_ID_SIZE + 1];
189 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
190 	u32 oem_revision;
191 };
192 
193 #ifdef CONFIG_FSL_ERRATUM_A008585
194 /*
195  * The number of retries is an arbitrary value well beyond the highest number
196  * of iterations the loop has been observed to take.
197  */
198 #define __fsl_a008585_read_reg(reg) ({			\
199 	u64 _old, _new;					\
200 	int _retries = 200;				\
201 							\
202 	do {						\
203 		_old = read_sysreg(reg);		\
204 		_new = read_sysreg(reg);		\
205 		_retries--;				\
206 	} while (unlikely(_old != _new) && _retries);	\
207 							\
208 	WARN_ON_ONCE(!_retries);			\
209 	_new;						\
210 })
211 
212 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
213 {
214 	return __fsl_a008585_read_reg(cntp_tval_el0);
215 }
216 
217 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
218 {
219 	return __fsl_a008585_read_reg(cntv_tval_el0);
220 }
221 
222 static u64 notrace fsl_a008585_read_cntpct_el0(void)
223 {
224 	return __fsl_a008585_read_reg(cntpct_el0);
225 }
226 
227 static u64 notrace fsl_a008585_read_cntvct_el0(void)
228 {
229 	return __fsl_a008585_read_reg(cntvct_el0);
230 }
231 #endif
232 
233 #ifdef CONFIG_HISILICON_ERRATUM_161010101
234 /*
235  * Verify whether the value of the second read is larger than the first by
236  * less than 32 is the only way to confirm the value is correct, so clear the
237  * lower 5 bits to check whether the difference is greater than 32 or not.
238  * Theoretically the erratum should not occur more than twice in succession
239  * when reading the system counter, but it is possible that some interrupts
240  * may lead to more than twice read errors, triggering the warning, so setting
241  * the number of retries far beyond the number of iterations the loop has been
242  * observed to take.
243  */
244 #define __hisi_161010101_read_reg(reg) ({				\
245 	u64 _old, _new;						\
246 	int _retries = 50;					\
247 								\
248 	do {							\
249 		_old = read_sysreg(reg);			\
250 		_new = read_sysreg(reg);			\
251 		_retries--;					\
252 	} while (unlikely((_new - _old) >> 5) && _retries);	\
253 								\
254 	WARN_ON_ONCE(!_retries);				\
255 	_new;							\
256 })
257 
258 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
259 {
260 	return __hisi_161010101_read_reg(cntp_tval_el0);
261 }
262 
263 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
264 {
265 	return __hisi_161010101_read_reg(cntv_tval_el0);
266 }
267 
268 static u64 notrace hisi_161010101_read_cntpct_el0(void)
269 {
270 	return __hisi_161010101_read_reg(cntpct_el0);
271 }
272 
273 static u64 notrace hisi_161010101_read_cntvct_el0(void)
274 {
275 	return __hisi_161010101_read_reg(cntvct_el0);
276 }
277 
278 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
279 	/*
280 	 * Note that trailing spaces are required to properly match
281 	 * the OEM table information.
282 	 */
283 	{
284 		.oem_id		= "HISI  ",
285 		.oem_table_id	= "HIP05   ",
286 		.oem_revision	= 0,
287 	},
288 	{
289 		.oem_id		= "HISI  ",
290 		.oem_table_id	= "HIP06   ",
291 		.oem_revision	= 0,
292 	},
293 	{
294 		.oem_id		= "HISI  ",
295 		.oem_table_id	= "HIP07   ",
296 		.oem_revision	= 0,
297 	},
298 	{ /* Sentinel indicating the end of the OEM array */ },
299 };
300 #endif
301 
302 #ifdef CONFIG_ARM64_ERRATUM_858921
303 static u64 notrace arm64_858921_read_cntpct_el0(void)
304 {
305 	u64 old, new;
306 
307 	old = read_sysreg(cntpct_el0);
308 	new = read_sysreg(cntpct_el0);
309 	return (((old ^ new) >> 32) & 1) ? old : new;
310 }
311 
312 static u64 notrace arm64_858921_read_cntvct_el0(void)
313 {
314 	u64 old, new;
315 
316 	old = read_sysreg(cntvct_el0);
317 	new = read_sysreg(cntvct_el0);
318 	return (((old ^ new) >> 32) & 1) ? old : new;
319 }
320 #endif
321 
322 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
323 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
324 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
325 
326 DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
327 EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);
328 
329 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
330 						struct clock_event_device *clk)
331 {
332 	unsigned long ctrl;
333 	u64 cval;
334 
335 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
336 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
337 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
338 
339 	if (access == ARCH_TIMER_PHYS_ACCESS) {
340 		cval = evt + arch_counter_get_cntpct();
341 		write_sysreg(cval, cntp_cval_el0);
342 	} else {
343 		cval = evt + arch_counter_get_cntvct();
344 		write_sysreg(cval, cntv_cval_el0);
345 	}
346 
347 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
348 }
349 
350 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
351 					    struct clock_event_device *clk)
352 {
353 	erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
354 	return 0;
355 }
356 
357 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
358 					    struct clock_event_device *clk)
359 {
360 	erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
361 	return 0;
362 }
363 
364 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
365 #ifdef CONFIG_FSL_ERRATUM_A008585
366 	{
367 		.match_type = ate_match_dt,
368 		.id = "fsl,erratum-a008585",
369 		.desc = "Freescale erratum a005858",
370 		.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
371 		.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
372 		.read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
373 		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
374 		.set_next_event_phys = erratum_set_next_event_tval_phys,
375 		.set_next_event_virt = erratum_set_next_event_tval_virt,
376 	},
377 #endif
378 #ifdef CONFIG_HISILICON_ERRATUM_161010101
379 	{
380 		.match_type = ate_match_dt,
381 		.id = "hisilicon,erratum-161010101",
382 		.desc = "HiSilicon erratum 161010101",
383 		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
384 		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
385 		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
386 		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
387 		.set_next_event_phys = erratum_set_next_event_tval_phys,
388 		.set_next_event_virt = erratum_set_next_event_tval_virt,
389 	},
390 	{
391 		.match_type = ate_match_acpi_oem_info,
392 		.id = hisi_161010101_oem_info,
393 		.desc = "HiSilicon erratum 161010101",
394 		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
395 		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
396 		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
397 		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
398 		.set_next_event_phys = erratum_set_next_event_tval_phys,
399 		.set_next_event_virt = erratum_set_next_event_tval_virt,
400 	},
401 #endif
402 #ifdef CONFIG_ARM64_ERRATUM_858921
403 	{
404 		.match_type = ate_match_local_cap_id,
405 		.id = (void *)ARM64_WORKAROUND_858921,
406 		.desc = "ARM erratum 858921",
407 		.read_cntpct_el0 = arm64_858921_read_cntpct_el0,
408 		.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
409 	},
410 #endif
411 };
412 
413 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
414 			       const void *);
415 
416 static
417 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
418 				 const void *arg)
419 {
420 	const struct device_node *np = arg;
421 
422 	return of_property_read_bool(np, wa->id);
423 }
424 
425 static
426 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
427 					const void *arg)
428 {
429 	return this_cpu_has_cap((uintptr_t)wa->id);
430 }
431 
432 
433 static
434 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
435 				       const void *arg)
436 {
437 	static const struct ate_acpi_oem_info empty_oem_info = {};
438 	const struct ate_acpi_oem_info *info = wa->id;
439 	const struct acpi_table_header *table = arg;
440 
441 	/* Iterate over the ACPI OEM info array, looking for a match */
442 	while (memcmp(info, &empty_oem_info, sizeof(*info))) {
443 		if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
444 		    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
445 		    info->oem_revision == table->oem_revision)
446 			return true;
447 
448 		info++;
449 	}
450 
451 	return false;
452 }
453 
454 static const struct arch_timer_erratum_workaround *
455 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
456 			  ate_match_fn_t match_fn,
457 			  void *arg)
458 {
459 	int i;
460 
461 	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
462 		if (ool_workarounds[i].match_type != type)
463 			continue;
464 
465 		if (match_fn(&ool_workarounds[i], arg))
466 			return &ool_workarounds[i];
467 	}
468 
469 	return NULL;
470 }
471 
472 static
473 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
474 				  bool local)
475 {
476 	int i;
477 
478 	if (local) {
479 		__this_cpu_write(timer_unstable_counter_workaround, wa);
480 	} else {
481 		for_each_possible_cpu(i)
482 			per_cpu(timer_unstable_counter_workaround, i) = wa;
483 	}
484 
485 	/*
486 	 * Use the locked version, as we're called from the CPU
487 	 * hotplug framework. Otherwise, we end-up in deadlock-land.
488 	 */
489 	static_branch_enable_cpuslocked(&arch_timer_read_ool_enabled);
490 
491 	/*
492 	 * Don't use the vdso fastpath if errata require using the
493 	 * out-of-line counter accessor. We may change our mind pretty
494 	 * late in the game (with a per-CPU erratum, for example), so
495 	 * change both the default value and the vdso itself.
496 	 */
497 	if (wa->read_cntvct_el0) {
498 		clocksource_counter.archdata.vdso_direct = false;
499 		vdso_default = false;
500 	}
501 }
502 
503 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
504 					    void *arg)
505 {
506 	const struct arch_timer_erratum_workaround *wa;
507 	ate_match_fn_t match_fn = NULL;
508 	bool local = false;
509 
510 	switch (type) {
511 	case ate_match_dt:
512 		match_fn = arch_timer_check_dt_erratum;
513 		break;
514 	case ate_match_local_cap_id:
515 		match_fn = arch_timer_check_local_cap_erratum;
516 		local = true;
517 		break;
518 	case ate_match_acpi_oem_info:
519 		match_fn = arch_timer_check_acpi_oem_erratum;
520 		break;
521 	default:
522 		WARN_ON(1);
523 		return;
524 	}
525 
526 	wa = arch_timer_iterate_errata(type, match_fn, arg);
527 	if (!wa)
528 		return;
529 
530 	if (needs_unstable_timer_counter_workaround()) {
531 		const struct arch_timer_erratum_workaround *__wa;
532 		__wa = __this_cpu_read(timer_unstable_counter_workaround);
533 		if (__wa && wa != __wa)
534 			pr_warn("Can't enable workaround for %s (clashes with %s\n)",
535 				wa->desc, __wa->desc);
536 
537 		if (__wa)
538 			return;
539 	}
540 
541 	arch_timer_enable_workaround(wa, local);
542 	pr_info("Enabling %s workaround for %s\n",
543 		local ? "local" : "global", wa->desc);
544 }
545 
546 #define erratum_handler(fn, r, ...)					\
547 ({									\
548 	bool __val;							\
549 	if (needs_unstable_timer_counter_workaround()) {		\
550 		const struct arch_timer_erratum_workaround *__wa;	\
551 		__wa = __this_cpu_read(timer_unstable_counter_workaround); \
552 		if (__wa && __wa->fn) {					\
553 			r = __wa->fn(__VA_ARGS__);			\
554 			__val = true;					\
555 		} else {						\
556 			__val = false;					\
557 		}							\
558 	} else {							\
559 		__val = false;						\
560 	}								\
561 	__val;								\
562 })
563 
564 static bool arch_timer_this_cpu_has_cntvct_wa(void)
565 {
566 	const struct arch_timer_erratum_workaround *wa;
567 
568 	wa = __this_cpu_read(timer_unstable_counter_workaround);
569 	return wa && wa->read_cntvct_el0;
570 }
571 #else
572 #define arch_timer_check_ool_workaround(t,a)		do { } while(0)
573 #define erratum_set_next_event_tval_virt(...)		({BUG(); 0;})
574 #define erratum_set_next_event_tval_phys(...)		({BUG(); 0;})
575 #define erratum_handler(fn, r, ...)			({false;})
576 #define arch_timer_this_cpu_has_cntvct_wa()		({false;})
577 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
578 
579 static __always_inline irqreturn_t timer_handler(const int access,
580 					struct clock_event_device *evt)
581 {
582 	unsigned long ctrl;
583 
584 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
585 	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
586 		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
587 		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
588 		evt->event_handler(evt);
589 		return IRQ_HANDLED;
590 	}
591 
592 	return IRQ_NONE;
593 }
594 
595 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
596 {
597 	struct clock_event_device *evt = dev_id;
598 
599 	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
600 }
601 
602 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
603 {
604 	struct clock_event_device *evt = dev_id;
605 
606 	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
607 }
608 
609 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
610 {
611 	struct clock_event_device *evt = dev_id;
612 
613 	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
614 }
615 
616 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
617 {
618 	struct clock_event_device *evt = dev_id;
619 
620 	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
621 }
622 
623 static __always_inline int timer_shutdown(const int access,
624 					  struct clock_event_device *clk)
625 {
626 	unsigned long ctrl;
627 
628 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
629 	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
630 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
631 
632 	return 0;
633 }
634 
635 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
636 {
637 	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
638 }
639 
640 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
641 {
642 	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
643 }
644 
645 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
646 {
647 	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
648 }
649 
650 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
651 {
652 	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
653 }
654 
655 static __always_inline void set_next_event(const int access, unsigned long evt,
656 					   struct clock_event_device *clk)
657 {
658 	unsigned long ctrl;
659 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
660 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
661 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
662 	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
663 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
664 }
665 
666 static int arch_timer_set_next_event_virt(unsigned long evt,
667 					  struct clock_event_device *clk)
668 {
669 	int ret;
670 
671 	if (erratum_handler(set_next_event_virt, ret, evt, clk))
672 		return ret;
673 
674 	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
675 	return 0;
676 }
677 
678 static int arch_timer_set_next_event_phys(unsigned long evt,
679 					  struct clock_event_device *clk)
680 {
681 	int ret;
682 
683 	if (erratum_handler(set_next_event_phys, ret, evt, clk))
684 		return ret;
685 
686 	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
687 	return 0;
688 }
689 
690 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
691 					      struct clock_event_device *clk)
692 {
693 	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
694 	return 0;
695 }
696 
697 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
698 					      struct clock_event_device *clk)
699 {
700 	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
701 	return 0;
702 }
703 
704 static void __arch_timer_setup(unsigned type,
705 			       struct clock_event_device *clk)
706 {
707 	clk->features = CLOCK_EVT_FEAT_ONESHOT;
708 
709 	if (type == ARCH_TIMER_TYPE_CP15) {
710 		if (arch_timer_c3stop)
711 			clk->features |= CLOCK_EVT_FEAT_C3STOP;
712 		clk->name = "arch_sys_timer";
713 		clk->rating = 450;
714 		clk->cpumask = cpumask_of(smp_processor_id());
715 		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
716 		switch (arch_timer_uses_ppi) {
717 		case ARCH_TIMER_VIRT_PPI:
718 			clk->set_state_shutdown = arch_timer_shutdown_virt;
719 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
720 			clk->set_next_event = arch_timer_set_next_event_virt;
721 			break;
722 		case ARCH_TIMER_PHYS_SECURE_PPI:
723 		case ARCH_TIMER_PHYS_NONSECURE_PPI:
724 		case ARCH_TIMER_HYP_PPI:
725 			clk->set_state_shutdown = arch_timer_shutdown_phys;
726 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
727 			clk->set_next_event = arch_timer_set_next_event_phys;
728 			break;
729 		default:
730 			BUG();
731 		}
732 
733 		arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
734 	} else {
735 		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
736 		clk->name = "arch_mem_timer";
737 		clk->rating = 400;
738 		clk->cpumask = cpu_all_mask;
739 		if (arch_timer_mem_use_virtual) {
740 			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
741 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
742 			clk->set_next_event =
743 				arch_timer_set_next_event_virt_mem;
744 		} else {
745 			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
746 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
747 			clk->set_next_event =
748 				arch_timer_set_next_event_phys_mem;
749 		}
750 	}
751 
752 	clk->set_state_shutdown(clk);
753 
754 	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
755 }
756 
757 static void arch_timer_evtstrm_enable(int divider)
758 {
759 	u32 cntkctl = arch_timer_get_cntkctl();
760 
761 	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
762 	/* Set the divider and enable virtual event stream */
763 	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
764 			| ARCH_TIMER_VIRT_EVT_EN;
765 	arch_timer_set_cntkctl(cntkctl);
766 	elf_hwcap |= HWCAP_EVTSTRM;
767 #ifdef CONFIG_COMPAT
768 	compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
769 #endif
770 	cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
771 }
772 
773 static void arch_timer_configure_evtstream(void)
774 {
775 	int evt_stream_div, pos;
776 
777 	/* Find the closest power of two to the divisor */
778 	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
779 	pos = fls(evt_stream_div);
780 	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
781 		pos--;
782 	/* enable event stream */
783 	arch_timer_evtstrm_enable(min(pos, 15));
784 }
785 
786 static void arch_counter_set_user_access(void)
787 {
788 	u32 cntkctl = arch_timer_get_cntkctl();
789 
790 	/* Disable user access to the timers and both counters */
791 	/* Also disable virtual event stream */
792 	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
793 			| ARCH_TIMER_USR_VT_ACCESS_EN
794 		        | ARCH_TIMER_USR_VCT_ACCESS_EN
795 			| ARCH_TIMER_VIRT_EVT_EN
796 			| ARCH_TIMER_USR_PCT_ACCESS_EN);
797 
798 	/*
799 	 * Enable user access to the virtual counter if it doesn't
800 	 * need to be workaround. The vdso may have been already
801 	 * disabled though.
802 	 */
803 	if (arch_timer_this_cpu_has_cntvct_wa())
804 		pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
805 	else
806 		cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
807 
808 	arch_timer_set_cntkctl(cntkctl);
809 }
810 
811 static bool arch_timer_has_nonsecure_ppi(void)
812 {
813 	return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
814 		arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
815 }
816 
817 static u32 check_ppi_trigger(int irq)
818 {
819 	u32 flags = irq_get_trigger_type(irq);
820 
821 	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
822 		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
823 		pr_warn("WARNING: Please fix your firmware\n");
824 		flags = IRQF_TRIGGER_LOW;
825 	}
826 
827 	return flags;
828 }
829 
830 static int arch_timer_starting_cpu(unsigned int cpu)
831 {
832 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
833 	u32 flags;
834 
835 	__arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
836 
837 	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
838 	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
839 
840 	if (arch_timer_has_nonsecure_ppi()) {
841 		flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
842 		enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
843 				  flags);
844 	}
845 
846 	arch_counter_set_user_access();
847 	if (evtstrm_enable)
848 		arch_timer_configure_evtstream();
849 
850 	return 0;
851 }
852 
853 /*
854  * For historical reasons, when probing with DT we use whichever (non-zero)
855  * rate was probed first, and don't verify that others match. If the first node
856  * probed has a clock-frequency property, this overrides the HW register.
857  */
858 static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
859 {
860 	/* Who has more than one independent system counter? */
861 	if (arch_timer_rate)
862 		return;
863 
864 	if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
865 		arch_timer_rate = rate;
866 
867 	/* Check the timer frequency. */
868 	if (arch_timer_rate == 0)
869 		pr_warn("frequency not available\n");
870 }
871 
872 static void arch_timer_banner(unsigned type)
873 {
874 	pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
875 		type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
876 		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
877 			" and " : "",
878 		type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
879 		(unsigned long)arch_timer_rate / 1000000,
880 		(unsigned long)(arch_timer_rate / 10000) % 100,
881 		type & ARCH_TIMER_TYPE_CP15 ?
882 			(arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
883 			"",
884 		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
885 		type & ARCH_TIMER_TYPE_MEM ?
886 			arch_timer_mem_use_virtual ? "virt" : "phys" :
887 			"");
888 }
889 
890 u32 arch_timer_get_rate(void)
891 {
892 	return arch_timer_rate;
893 }
894 
895 bool arch_timer_evtstrm_available(void)
896 {
897 	/*
898 	 * We might get called from a preemptible context. This is fine
899 	 * because availability of the event stream should be always the same
900 	 * for a preemptible context and context where we might resume a task.
901 	 */
902 	return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
903 }
904 
905 static u64 arch_counter_get_cntvct_mem(void)
906 {
907 	u32 vct_lo, vct_hi, tmp_hi;
908 
909 	do {
910 		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
911 		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
912 		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
913 	} while (vct_hi != tmp_hi);
914 
915 	return ((u64) vct_hi << 32) | vct_lo;
916 }
917 
918 static struct arch_timer_kvm_info arch_timer_kvm_info;
919 
920 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
921 {
922 	return &arch_timer_kvm_info;
923 }
924 
925 static void __init arch_counter_register(unsigned type)
926 {
927 	u64 start_count;
928 
929 	/* Register the CP15 based counter if we have one */
930 	if (type & ARCH_TIMER_TYPE_CP15) {
931 		if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
932 		    arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
933 			arch_timer_read_counter = arch_counter_get_cntvct;
934 		else
935 			arch_timer_read_counter = arch_counter_get_cntpct;
936 
937 		clocksource_counter.archdata.vdso_direct = vdso_default;
938 	} else {
939 		arch_timer_read_counter = arch_counter_get_cntvct_mem;
940 	}
941 
942 	if (!arch_counter_suspend_stop)
943 		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
944 	start_count = arch_timer_read_counter();
945 	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
946 	cyclecounter.mult = clocksource_counter.mult;
947 	cyclecounter.shift = clocksource_counter.shift;
948 	timecounter_init(&arch_timer_kvm_info.timecounter,
949 			 &cyclecounter, start_count);
950 
951 	/* 56 bits minimum, so we assume worst case rollover */
952 	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
953 }
954 
955 static void arch_timer_stop(struct clock_event_device *clk)
956 {
957 	pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
958 
959 	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
960 	if (arch_timer_has_nonsecure_ppi())
961 		disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
962 
963 	clk->set_state_shutdown(clk);
964 }
965 
966 static int arch_timer_dying_cpu(unsigned int cpu)
967 {
968 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
969 
970 	cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
971 
972 	arch_timer_stop(clk);
973 	return 0;
974 }
975 
976 #ifdef CONFIG_CPU_PM
977 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
978 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
979 				    unsigned long action, void *hcpu)
980 {
981 	if (action == CPU_PM_ENTER) {
982 		__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
983 
984 		cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
985 	} else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
986 		arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
987 
988 		if (elf_hwcap & HWCAP_EVTSTRM)
989 			cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
990 	}
991 	return NOTIFY_OK;
992 }
993 
994 static struct notifier_block arch_timer_cpu_pm_notifier = {
995 	.notifier_call = arch_timer_cpu_pm_notify,
996 };
997 
998 static int __init arch_timer_cpu_pm_init(void)
999 {
1000 	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1001 }
1002 
1003 static void __init arch_timer_cpu_pm_deinit(void)
1004 {
1005 	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1006 }
1007 
1008 #else
1009 static int __init arch_timer_cpu_pm_init(void)
1010 {
1011 	return 0;
1012 }
1013 
1014 static void __init arch_timer_cpu_pm_deinit(void)
1015 {
1016 }
1017 #endif
1018 
1019 static int __init arch_timer_register(void)
1020 {
1021 	int err;
1022 	int ppi;
1023 
1024 	arch_timer_evt = alloc_percpu(struct clock_event_device);
1025 	if (!arch_timer_evt) {
1026 		err = -ENOMEM;
1027 		goto out;
1028 	}
1029 
1030 	ppi = arch_timer_ppi[arch_timer_uses_ppi];
1031 	switch (arch_timer_uses_ppi) {
1032 	case ARCH_TIMER_VIRT_PPI:
1033 		err = request_percpu_irq(ppi, arch_timer_handler_virt,
1034 					 "arch_timer", arch_timer_evt);
1035 		break;
1036 	case ARCH_TIMER_PHYS_SECURE_PPI:
1037 	case ARCH_TIMER_PHYS_NONSECURE_PPI:
1038 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1039 					 "arch_timer", arch_timer_evt);
1040 		if (!err && arch_timer_has_nonsecure_ppi()) {
1041 			ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1042 			err = request_percpu_irq(ppi, arch_timer_handler_phys,
1043 						 "arch_timer", arch_timer_evt);
1044 			if (err)
1045 				free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1046 						arch_timer_evt);
1047 		}
1048 		break;
1049 	case ARCH_TIMER_HYP_PPI:
1050 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1051 					 "arch_timer", arch_timer_evt);
1052 		break;
1053 	default:
1054 		BUG();
1055 	}
1056 
1057 	if (err) {
1058 		pr_err("can't register interrupt %d (%d)\n", ppi, err);
1059 		goto out_free;
1060 	}
1061 
1062 	err = arch_timer_cpu_pm_init();
1063 	if (err)
1064 		goto out_unreg_notify;
1065 
1066 	/* Register and immediately configure the timer on the boot CPU */
1067 	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1068 				"clockevents/arm/arch_timer:starting",
1069 				arch_timer_starting_cpu, arch_timer_dying_cpu);
1070 	if (err)
1071 		goto out_unreg_cpupm;
1072 	return 0;
1073 
1074 out_unreg_cpupm:
1075 	arch_timer_cpu_pm_deinit();
1076 
1077 out_unreg_notify:
1078 	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1079 	if (arch_timer_has_nonsecure_ppi())
1080 		free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1081 				arch_timer_evt);
1082 
1083 out_free:
1084 	free_percpu(arch_timer_evt);
1085 out:
1086 	return err;
1087 }
1088 
1089 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1090 {
1091 	int ret;
1092 	irq_handler_t func;
1093 	struct arch_timer *t;
1094 
1095 	t = kzalloc(sizeof(*t), GFP_KERNEL);
1096 	if (!t)
1097 		return -ENOMEM;
1098 
1099 	t->base = base;
1100 	t->evt.irq = irq;
1101 	__arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1102 
1103 	if (arch_timer_mem_use_virtual)
1104 		func = arch_timer_handler_virt_mem;
1105 	else
1106 		func = arch_timer_handler_phys_mem;
1107 
1108 	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1109 	if (ret) {
1110 		pr_err("Failed to request mem timer irq\n");
1111 		kfree(t);
1112 	}
1113 
1114 	return ret;
1115 }
1116 
1117 static const struct of_device_id arch_timer_of_match[] __initconst = {
1118 	{ .compatible   = "arm,armv7-timer",    },
1119 	{ .compatible   = "arm,armv8-timer",    },
1120 	{},
1121 };
1122 
1123 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1124 	{ .compatible   = "arm,armv7-timer-mem", },
1125 	{},
1126 };
1127 
1128 static bool __init arch_timer_needs_of_probing(void)
1129 {
1130 	struct device_node *dn;
1131 	bool needs_probing = false;
1132 	unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1133 
1134 	/* We have two timers, and both device-tree nodes are probed. */
1135 	if ((arch_timers_present & mask) == mask)
1136 		return false;
1137 
1138 	/*
1139 	 * Only one type of timer is probed,
1140 	 * check if we have another type of timer node in device-tree.
1141 	 */
1142 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1143 		dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1144 	else
1145 		dn = of_find_matching_node(NULL, arch_timer_of_match);
1146 
1147 	if (dn && of_device_is_available(dn))
1148 		needs_probing = true;
1149 
1150 	of_node_put(dn);
1151 
1152 	return needs_probing;
1153 }
1154 
1155 static int __init arch_timer_common_init(void)
1156 {
1157 	arch_timer_banner(arch_timers_present);
1158 	arch_counter_register(arch_timers_present);
1159 	return arch_timer_arch_init();
1160 }
1161 
1162 /**
1163  * arch_timer_select_ppi() - Select suitable PPI for the current system.
1164  *
1165  * If HYP mode is available, we know that the physical timer
1166  * has been configured to be accessible from PL1. Use it, so
1167  * that a guest can use the virtual timer instead.
1168  *
1169  * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1170  * accesses to CNTP_*_EL1 registers are silently redirected to
1171  * their CNTHP_*_EL2 counterparts, and use a different PPI
1172  * number.
1173  *
1174  * If no interrupt provided for virtual timer, we'll have to
1175  * stick to the physical timer. It'd better be accessible...
1176  * For arm64 we never use the secure interrupt.
1177  *
1178  * Return: a suitable PPI type for the current system.
1179  */
1180 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1181 {
1182 	if (is_kernel_in_hyp_mode())
1183 		return ARCH_TIMER_HYP_PPI;
1184 
1185 	if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1186 		return ARCH_TIMER_VIRT_PPI;
1187 
1188 	if (IS_ENABLED(CONFIG_ARM64))
1189 		return ARCH_TIMER_PHYS_NONSECURE_PPI;
1190 
1191 	return ARCH_TIMER_PHYS_SECURE_PPI;
1192 }
1193 
1194 static int __init arch_timer_of_init(struct device_node *np)
1195 {
1196 	int i, ret;
1197 	u32 rate;
1198 
1199 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1200 		pr_warn("multiple nodes in dt, skipping\n");
1201 		return 0;
1202 	}
1203 
1204 	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1205 	for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1206 		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
1207 
1208 	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1209 
1210 	rate = arch_timer_get_cntfrq();
1211 	arch_timer_of_configure_rate(rate, np);
1212 
1213 	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1214 
1215 	/* Check for globally applicable workarounds */
1216 	arch_timer_check_ool_workaround(ate_match_dt, np);
1217 
1218 	/*
1219 	 * If we cannot rely on firmware initializing the timer registers then
1220 	 * we should use the physical timers instead.
1221 	 */
1222 	if (IS_ENABLED(CONFIG_ARM) &&
1223 	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1224 		arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1225 	else
1226 		arch_timer_uses_ppi = arch_timer_select_ppi();
1227 
1228 	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1229 		pr_err("No interrupt available, giving up\n");
1230 		return -EINVAL;
1231 	}
1232 
1233 	/* On some systems, the counter stops ticking when in suspend. */
1234 	arch_counter_suspend_stop = of_property_read_bool(np,
1235 							 "arm,no-tick-in-suspend");
1236 
1237 	ret = arch_timer_register();
1238 	if (ret)
1239 		return ret;
1240 
1241 	if (arch_timer_needs_of_probing())
1242 		return 0;
1243 
1244 	return arch_timer_common_init();
1245 }
1246 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1247 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1248 
1249 static u32 __init
1250 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1251 {
1252 	void __iomem *base;
1253 	u32 rate;
1254 
1255 	base = ioremap(frame->cntbase, frame->size);
1256 	if (!base) {
1257 		pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1258 		return 0;
1259 	}
1260 
1261 	rate = readl_relaxed(base + CNTFRQ);
1262 
1263 	iounmap(base);
1264 
1265 	return rate;
1266 }
1267 
1268 static struct arch_timer_mem_frame * __init
1269 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1270 {
1271 	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1272 	void __iomem *cntctlbase;
1273 	u32 cnttidr;
1274 	int i;
1275 
1276 	cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1277 	if (!cntctlbase) {
1278 		pr_err("Can't map CNTCTLBase @ %pa\n",
1279 			&timer_mem->cntctlbase);
1280 		return NULL;
1281 	}
1282 
1283 	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1284 
1285 	/*
1286 	 * Try to find a virtual capable frame. Otherwise fall back to a
1287 	 * physical capable frame.
1288 	 */
1289 	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1290 		u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1291 			     CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1292 
1293 		frame = &timer_mem->frame[i];
1294 		if (!frame->valid)
1295 			continue;
1296 
1297 		/* Try enabling everything, and see what sticks */
1298 		writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1299 		cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1300 
1301 		if ((cnttidr & CNTTIDR_VIRT(i)) &&
1302 		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1303 			best_frame = frame;
1304 			arch_timer_mem_use_virtual = true;
1305 			break;
1306 		}
1307 
1308 		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1309 			continue;
1310 
1311 		best_frame = frame;
1312 	}
1313 
1314 	iounmap(cntctlbase);
1315 
1316 	return best_frame;
1317 }
1318 
1319 static int __init
1320 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1321 {
1322 	void __iomem *base;
1323 	int ret, irq = 0;
1324 
1325 	if (arch_timer_mem_use_virtual)
1326 		irq = frame->virt_irq;
1327 	else
1328 		irq = frame->phys_irq;
1329 
1330 	if (!irq) {
1331 		pr_err("Frame missing %s irq.\n",
1332 		       arch_timer_mem_use_virtual ? "virt" : "phys");
1333 		return -EINVAL;
1334 	}
1335 
1336 	if (!request_mem_region(frame->cntbase, frame->size,
1337 				"arch_mem_timer"))
1338 		return -EBUSY;
1339 
1340 	base = ioremap(frame->cntbase, frame->size);
1341 	if (!base) {
1342 		pr_err("Can't map frame's registers\n");
1343 		return -ENXIO;
1344 	}
1345 
1346 	ret = arch_timer_mem_register(base, irq);
1347 	if (ret) {
1348 		iounmap(base);
1349 		return ret;
1350 	}
1351 
1352 	arch_counter_base = base;
1353 	arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1354 
1355 	return 0;
1356 }
1357 
1358 static int __init arch_timer_mem_of_init(struct device_node *np)
1359 {
1360 	struct arch_timer_mem *timer_mem;
1361 	struct arch_timer_mem_frame *frame;
1362 	struct device_node *frame_node;
1363 	struct resource res;
1364 	int ret = -EINVAL;
1365 	u32 rate;
1366 
1367 	timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1368 	if (!timer_mem)
1369 		return -ENOMEM;
1370 
1371 	if (of_address_to_resource(np, 0, &res))
1372 		goto out;
1373 	timer_mem->cntctlbase = res.start;
1374 	timer_mem->size = resource_size(&res);
1375 
1376 	for_each_available_child_of_node(np, frame_node) {
1377 		u32 n;
1378 		struct arch_timer_mem_frame *frame;
1379 
1380 		if (of_property_read_u32(frame_node, "frame-number", &n)) {
1381 			pr_err(FW_BUG "Missing frame-number.\n");
1382 			of_node_put(frame_node);
1383 			goto out;
1384 		}
1385 		if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1386 			pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1387 			       ARCH_TIMER_MEM_MAX_FRAMES - 1);
1388 			of_node_put(frame_node);
1389 			goto out;
1390 		}
1391 		frame = &timer_mem->frame[n];
1392 
1393 		if (frame->valid) {
1394 			pr_err(FW_BUG "Duplicated frame-number.\n");
1395 			of_node_put(frame_node);
1396 			goto out;
1397 		}
1398 
1399 		if (of_address_to_resource(frame_node, 0, &res)) {
1400 			of_node_put(frame_node);
1401 			goto out;
1402 		}
1403 		frame->cntbase = res.start;
1404 		frame->size = resource_size(&res);
1405 
1406 		frame->virt_irq = irq_of_parse_and_map(frame_node,
1407 						       ARCH_TIMER_VIRT_SPI);
1408 		frame->phys_irq = irq_of_parse_and_map(frame_node,
1409 						       ARCH_TIMER_PHYS_SPI);
1410 
1411 		frame->valid = true;
1412 	}
1413 
1414 	frame = arch_timer_mem_find_best_frame(timer_mem);
1415 	if (!frame) {
1416 		pr_err("Unable to find a suitable frame in timer @ %pa\n",
1417 			&timer_mem->cntctlbase);
1418 		ret = -EINVAL;
1419 		goto out;
1420 	}
1421 
1422 	rate = arch_timer_mem_frame_get_cntfrq(frame);
1423 	arch_timer_of_configure_rate(rate, np);
1424 
1425 	ret = arch_timer_mem_frame_register(frame);
1426 	if (!ret && !arch_timer_needs_of_probing())
1427 		ret = arch_timer_common_init();
1428 out:
1429 	kfree(timer_mem);
1430 	return ret;
1431 }
1432 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1433 		       arch_timer_mem_of_init);
1434 
1435 #ifdef CONFIG_ACPI_GTDT
1436 static int __init
1437 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1438 {
1439 	struct arch_timer_mem_frame *frame;
1440 	u32 rate;
1441 	int i;
1442 
1443 	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1444 		frame = &timer_mem->frame[i];
1445 
1446 		if (!frame->valid)
1447 			continue;
1448 
1449 		rate = arch_timer_mem_frame_get_cntfrq(frame);
1450 		if (rate == arch_timer_rate)
1451 			continue;
1452 
1453 		pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1454 			&frame->cntbase,
1455 			(unsigned long)rate, (unsigned long)arch_timer_rate);
1456 
1457 		return -EINVAL;
1458 	}
1459 
1460 	return 0;
1461 }
1462 
1463 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1464 {
1465 	struct arch_timer_mem *timers, *timer;
1466 	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1467 	int timer_count, i, ret = 0;
1468 
1469 	timers = kcalloc(platform_timer_count, sizeof(*timers),
1470 			    GFP_KERNEL);
1471 	if (!timers)
1472 		return -ENOMEM;
1473 
1474 	ret = acpi_arch_timer_mem_init(timers, &timer_count);
1475 	if (ret || !timer_count)
1476 		goto out;
1477 
1478 	/*
1479 	 * While unlikely, it's theoretically possible that none of the frames
1480 	 * in a timer expose the combination of feature we want.
1481 	 */
1482 	for (i = 0; i < timer_count; i++) {
1483 		timer = &timers[i];
1484 
1485 		frame = arch_timer_mem_find_best_frame(timer);
1486 		if (!best_frame)
1487 			best_frame = frame;
1488 
1489 		ret = arch_timer_mem_verify_cntfrq(timer);
1490 		if (ret) {
1491 			pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1492 			goto out;
1493 		}
1494 
1495 		if (!best_frame) /* implies !frame */
1496 			/*
1497 			 * Only complain about missing suitable frames if we
1498 			 * haven't already found one in a previous iteration.
1499 			 */
1500 			pr_err("Unable to find a suitable frame in timer @ %pa\n",
1501 				&timer->cntctlbase);
1502 	}
1503 
1504 	if (best_frame)
1505 		ret = arch_timer_mem_frame_register(best_frame);
1506 out:
1507 	kfree(timers);
1508 	return ret;
1509 }
1510 
1511 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1512 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1513 {
1514 	int ret, platform_timer_count;
1515 
1516 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1517 		pr_warn("already initialized, skipping\n");
1518 		return -EINVAL;
1519 	}
1520 
1521 	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1522 
1523 	ret = acpi_gtdt_init(table, &platform_timer_count);
1524 	if (ret) {
1525 		pr_err("Failed to init GTDT table.\n");
1526 		return ret;
1527 	}
1528 
1529 	arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1530 		acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1531 
1532 	arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1533 		acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1534 
1535 	arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1536 		acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1537 
1538 	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1539 
1540 	/*
1541 	 * When probing via ACPI, we have no mechanism to override the sysreg
1542 	 * CNTFRQ value. This *must* be correct.
1543 	 */
1544 	arch_timer_rate = arch_timer_get_cntfrq();
1545 	if (!arch_timer_rate) {
1546 		pr_err(FW_BUG "frequency not available.\n");
1547 		return -EINVAL;
1548 	}
1549 
1550 	arch_timer_uses_ppi = arch_timer_select_ppi();
1551 	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1552 		pr_err("No interrupt available, giving up\n");
1553 		return -EINVAL;
1554 	}
1555 
1556 	/* Always-on capability */
1557 	arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1558 
1559 	/* Check for globally applicable workarounds */
1560 	arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1561 
1562 	ret = arch_timer_register();
1563 	if (ret)
1564 		return ret;
1565 
1566 	if (platform_timer_count &&
1567 	    arch_timer_mem_acpi_init(platform_timer_count))
1568 		pr_err("Failed to initialize memory-mapped timer.\n");
1569 
1570 	return arch_timer_common_init();
1571 }
1572 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1573 #endif
1574