1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/clocksource/arm_arch_timer.c 4 * 5 * Copyright (C) 2011 ARM Ltd. 6 * All Rights Reserved 7 */ 8 9 #define pr_fmt(fmt) "arch_timer: " fmt 10 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/device.h> 14 #include <linux/smp.h> 15 #include <linux/cpu.h> 16 #include <linux/cpu_pm.h> 17 #include <linux/clockchips.h> 18 #include <linux/clocksource.h> 19 #include <linux/clocksource_ids.h> 20 #include <linux/interrupt.h> 21 #include <linux/of_irq.h> 22 #include <linux/of_address.h> 23 #include <linux/io.h> 24 #include <linux/slab.h> 25 #include <linux/sched/clock.h> 26 #include <linux/sched_clock.h> 27 #include <linux/acpi.h> 28 #include <linux/arm-smccc.h> 29 #include <linux/ptp_kvm.h> 30 31 #include <asm/arch_timer.h> 32 #include <asm/virt.h> 33 34 #include <clocksource/arm_arch_timer.h> 35 36 #define CNTTIDR 0x08 37 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4)) 38 39 #define CNTACR(n) (0x40 + ((n) * 4)) 40 #define CNTACR_RPCT BIT(0) 41 #define CNTACR_RVCT BIT(1) 42 #define CNTACR_RFRQ BIT(2) 43 #define CNTACR_RVOFF BIT(3) 44 #define CNTACR_RWVT BIT(4) 45 #define CNTACR_RWPT BIT(5) 46 47 #define CNTVCT_LO 0x00 48 #define CNTPCT_LO 0x08 49 #define CNTFRQ 0x10 50 #define CNTP_CVAL_LO 0x20 51 #define CNTP_CTL 0x2c 52 #define CNTV_CVAL_LO 0x30 53 #define CNTV_CTL 0x3c 54 55 /* 56 * The minimum amount of time a generic counter is guaranteed to not roll over 57 * (40 years) 58 */ 59 #define MIN_ROLLOVER_SECS (40ULL * 365 * 24 * 3600) 60 61 static unsigned arch_timers_present __initdata; 62 63 struct arch_timer { 64 void __iomem *base; 65 struct clock_event_device evt; 66 }; 67 68 static struct arch_timer *arch_timer_mem __ro_after_init; 69 70 #define to_arch_timer(e) container_of(e, struct arch_timer, evt) 71 72 static u32 arch_timer_rate __ro_after_init; 73 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init; 74 75 static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = { 76 [ARCH_TIMER_PHYS_SECURE_PPI] = "sec-phys", 77 [ARCH_TIMER_PHYS_NONSECURE_PPI] = "phys", 78 [ARCH_TIMER_VIRT_PPI] = "virt", 79 [ARCH_TIMER_HYP_PPI] = "hyp-phys", 80 [ARCH_TIMER_HYP_VIRT_PPI] = "hyp-virt", 81 }; 82 83 static struct clock_event_device __percpu *arch_timer_evt; 84 85 static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI; 86 static bool arch_timer_c3stop __ro_after_init; 87 static bool arch_timer_mem_use_virtual __ro_after_init; 88 static bool arch_counter_suspend_stop __ro_after_init; 89 #ifdef CONFIG_GENERIC_GETTIMEOFDAY 90 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER; 91 #else 92 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE; 93 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */ 94 95 static cpumask_t evtstrm_available = CPU_MASK_NONE; 96 static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM); 97 98 static int __init early_evtstrm_cfg(char *buf) 99 { 100 return strtobool(buf, &evtstrm_enable); 101 } 102 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg); 103 104 /* 105 * Makes an educated guess at a valid counter width based on the Generic Timer 106 * specification. Of note: 107 * 1) the system counter is at least 56 bits wide 108 * 2) a roll-over time of not less than 40 years 109 * 110 * See 'ARM DDI 0487G.a D11.1.2 ("The system counter")' for more details. 111 */ 112 static int arch_counter_get_width(void) 113 { 114 u64 min_cycles = MIN_ROLLOVER_SECS * arch_timer_rate; 115 116 /* guarantee the returned width is within the valid range */ 117 return clamp_val(ilog2(min_cycles - 1) + 1, 56, 64); 118 } 119 120 /* 121 * Architected system timer support. 122 */ 123 124 static __always_inline 125 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u64 val, 126 struct clock_event_device *clk) 127 { 128 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 129 struct arch_timer *timer = to_arch_timer(clk); 130 switch (reg) { 131 case ARCH_TIMER_REG_CTRL: 132 writel_relaxed((u32)val, timer->base + CNTP_CTL); 133 break; 134 case ARCH_TIMER_REG_CVAL: 135 /* 136 * Not guaranteed to be atomic, so the timer 137 * must be disabled at this point. 138 */ 139 writeq_relaxed(val, timer->base + CNTP_CVAL_LO); 140 break; 141 default: 142 BUILD_BUG(); 143 } 144 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 145 struct arch_timer *timer = to_arch_timer(clk); 146 switch (reg) { 147 case ARCH_TIMER_REG_CTRL: 148 writel_relaxed((u32)val, timer->base + CNTV_CTL); 149 break; 150 case ARCH_TIMER_REG_CVAL: 151 /* Same restriction as above */ 152 writeq_relaxed(val, timer->base + CNTV_CVAL_LO); 153 break; 154 default: 155 BUILD_BUG(); 156 } 157 } else { 158 arch_timer_reg_write_cp15(access, reg, val); 159 } 160 } 161 162 static __always_inline 163 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg, 164 struct clock_event_device *clk) 165 { 166 u32 val; 167 168 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 169 struct arch_timer *timer = to_arch_timer(clk); 170 switch (reg) { 171 case ARCH_TIMER_REG_CTRL: 172 val = readl_relaxed(timer->base + CNTP_CTL); 173 break; 174 default: 175 BUILD_BUG(); 176 } 177 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 178 struct arch_timer *timer = to_arch_timer(clk); 179 switch (reg) { 180 case ARCH_TIMER_REG_CTRL: 181 val = readl_relaxed(timer->base + CNTV_CTL); 182 break; 183 default: 184 BUILD_BUG(); 185 } 186 } else { 187 val = arch_timer_reg_read_cp15(access, reg); 188 } 189 190 return val; 191 } 192 193 static notrace u64 arch_counter_get_cntpct_stable(void) 194 { 195 return __arch_counter_get_cntpct_stable(); 196 } 197 198 static notrace u64 arch_counter_get_cntpct(void) 199 { 200 return __arch_counter_get_cntpct(); 201 } 202 203 static notrace u64 arch_counter_get_cntvct_stable(void) 204 { 205 return __arch_counter_get_cntvct_stable(); 206 } 207 208 static notrace u64 arch_counter_get_cntvct(void) 209 { 210 return __arch_counter_get_cntvct(); 211 } 212 213 /* 214 * Default to cp15 based access because arm64 uses this function for 215 * sched_clock() before DT is probed and the cp15 method is guaranteed 216 * to exist on arm64. arm doesn't use this before DT is probed so even 217 * if we don't have the cp15 accessors we won't have a problem. 218 */ 219 u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct; 220 EXPORT_SYMBOL_GPL(arch_timer_read_counter); 221 222 static u64 arch_counter_read(struct clocksource *cs) 223 { 224 return arch_timer_read_counter(); 225 } 226 227 static u64 arch_counter_read_cc(const struct cyclecounter *cc) 228 { 229 return arch_timer_read_counter(); 230 } 231 232 static struct clocksource clocksource_counter = { 233 .name = "arch_sys_counter", 234 .id = CSID_ARM_ARCH_COUNTER, 235 .rating = 400, 236 .read = arch_counter_read, 237 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 238 }; 239 240 static struct cyclecounter cyclecounter __ro_after_init = { 241 .read = arch_counter_read_cc, 242 }; 243 244 struct ate_acpi_oem_info { 245 char oem_id[ACPI_OEM_ID_SIZE + 1]; 246 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1]; 247 u32 oem_revision; 248 }; 249 250 #ifdef CONFIG_FSL_ERRATUM_A008585 251 /* 252 * The number of retries is an arbitrary value well beyond the highest number 253 * of iterations the loop has been observed to take. 254 */ 255 #define __fsl_a008585_read_reg(reg) ({ \ 256 u64 _old, _new; \ 257 int _retries = 200; \ 258 \ 259 do { \ 260 _old = read_sysreg(reg); \ 261 _new = read_sysreg(reg); \ 262 _retries--; \ 263 } while (unlikely(_old != _new) && _retries); \ 264 \ 265 WARN_ON_ONCE(!_retries); \ 266 _new; \ 267 }) 268 269 static u64 notrace fsl_a008585_read_cntpct_el0(void) 270 { 271 return __fsl_a008585_read_reg(cntpct_el0); 272 } 273 274 static u64 notrace fsl_a008585_read_cntvct_el0(void) 275 { 276 return __fsl_a008585_read_reg(cntvct_el0); 277 } 278 #endif 279 280 #ifdef CONFIG_HISILICON_ERRATUM_161010101 281 /* 282 * Verify whether the value of the second read is larger than the first by 283 * less than 32 is the only way to confirm the value is correct, so clear the 284 * lower 5 bits to check whether the difference is greater than 32 or not. 285 * Theoretically the erratum should not occur more than twice in succession 286 * when reading the system counter, but it is possible that some interrupts 287 * may lead to more than twice read errors, triggering the warning, so setting 288 * the number of retries far beyond the number of iterations the loop has been 289 * observed to take. 290 */ 291 #define __hisi_161010101_read_reg(reg) ({ \ 292 u64 _old, _new; \ 293 int _retries = 50; \ 294 \ 295 do { \ 296 _old = read_sysreg(reg); \ 297 _new = read_sysreg(reg); \ 298 _retries--; \ 299 } while (unlikely((_new - _old) >> 5) && _retries); \ 300 \ 301 WARN_ON_ONCE(!_retries); \ 302 _new; \ 303 }) 304 305 static u64 notrace hisi_161010101_read_cntpct_el0(void) 306 { 307 return __hisi_161010101_read_reg(cntpct_el0); 308 } 309 310 static u64 notrace hisi_161010101_read_cntvct_el0(void) 311 { 312 return __hisi_161010101_read_reg(cntvct_el0); 313 } 314 315 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = { 316 /* 317 * Note that trailing spaces are required to properly match 318 * the OEM table information. 319 */ 320 { 321 .oem_id = "HISI ", 322 .oem_table_id = "HIP05 ", 323 .oem_revision = 0, 324 }, 325 { 326 .oem_id = "HISI ", 327 .oem_table_id = "HIP06 ", 328 .oem_revision = 0, 329 }, 330 { 331 .oem_id = "HISI ", 332 .oem_table_id = "HIP07 ", 333 .oem_revision = 0, 334 }, 335 { /* Sentinel indicating the end of the OEM array */ }, 336 }; 337 #endif 338 339 #ifdef CONFIG_ARM64_ERRATUM_858921 340 static u64 notrace arm64_858921_read_cntpct_el0(void) 341 { 342 u64 old, new; 343 344 old = read_sysreg(cntpct_el0); 345 new = read_sysreg(cntpct_el0); 346 return (((old ^ new) >> 32) & 1) ? old : new; 347 } 348 349 static u64 notrace arm64_858921_read_cntvct_el0(void) 350 { 351 u64 old, new; 352 353 old = read_sysreg(cntvct_el0); 354 new = read_sysreg(cntvct_el0); 355 return (((old ^ new) >> 32) & 1) ? old : new; 356 } 357 #endif 358 359 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1 360 /* 361 * The low bits of the counter registers are indeterminate while bit 10 or 362 * greater is rolling over. Since the counter value can jump both backward 363 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values 364 * with all ones or all zeros in the low bits. Bound the loop by the maximum 365 * number of CPU cycles in 3 consecutive 24 MHz counter periods. 366 */ 367 #define __sun50i_a64_read_reg(reg) ({ \ 368 u64 _val; \ 369 int _retries = 150; \ 370 \ 371 do { \ 372 _val = read_sysreg(reg); \ 373 _retries--; \ 374 } while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries); \ 375 \ 376 WARN_ON_ONCE(!_retries); \ 377 _val; \ 378 }) 379 380 static u64 notrace sun50i_a64_read_cntpct_el0(void) 381 { 382 return __sun50i_a64_read_reg(cntpct_el0); 383 } 384 385 static u64 notrace sun50i_a64_read_cntvct_el0(void) 386 { 387 return __sun50i_a64_read_reg(cntvct_el0); 388 } 389 #endif 390 391 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND 392 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround); 393 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround); 394 395 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0); 396 397 /* 398 * Force the inlining of this function so that the register accesses 399 * can be themselves correctly inlined. 400 */ 401 static __always_inline 402 void erratum_set_next_event_generic(const int access, unsigned long evt, 403 struct clock_event_device *clk) 404 { 405 unsigned long ctrl; 406 u64 cval; 407 408 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 409 ctrl |= ARCH_TIMER_CTRL_ENABLE; 410 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 411 412 if (access == ARCH_TIMER_PHYS_ACCESS) { 413 cval = evt + arch_counter_get_cntpct_stable(); 414 write_sysreg(cval, cntp_cval_el0); 415 } else { 416 cval = evt + arch_counter_get_cntvct_stable(); 417 write_sysreg(cval, cntv_cval_el0); 418 } 419 420 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 421 } 422 423 static __maybe_unused int erratum_set_next_event_virt(unsigned long evt, 424 struct clock_event_device *clk) 425 { 426 erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk); 427 return 0; 428 } 429 430 static __maybe_unused int erratum_set_next_event_phys(unsigned long evt, 431 struct clock_event_device *clk) 432 { 433 erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk); 434 return 0; 435 } 436 437 static const struct arch_timer_erratum_workaround ool_workarounds[] = { 438 #ifdef CONFIG_FSL_ERRATUM_A008585 439 { 440 .match_type = ate_match_dt, 441 .id = "fsl,erratum-a008585", 442 .desc = "Freescale erratum a005858", 443 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0, 444 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0, 445 .set_next_event_phys = erratum_set_next_event_phys, 446 .set_next_event_virt = erratum_set_next_event_virt, 447 }, 448 #endif 449 #ifdef CONFIG_HISILICON_ERRATUM_161010101 450 { 451 .match_type = ate_match_dt, 452 .id = "hisilicon,erratum-161010101", 453 .desc = "HiSilicon erratum 161010101", 454 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0, 455 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, 456 .set_next_event_phys = erratum_set_next_event_phys, 457 .set_next_event_virt = erratum_set_next_event_virt, 458 }, 459 { 460 .match_type = ate_match_acpi_oem_info, 461 .id = hisi_161010101_oem_info, 462 .desc = "HiSilicon erratum 161010101", 463 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0, 464 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, 465 .set_next_event_phys = erratum_set_next_event_phys, 466 .set_next_event_virt = erratum_set_next_event_virt, 467 }, 468 #endif 469 #ifdef CONFIG_ARM64_ERRATUM_858921 470 { 471 .match_type = ate_match_local_cap_id, 472 .id = (void *)ARM64_WORKAROUND_858921, 473 .desc = "ARM erratum 858921", 474 .read_cntpct_el0 = arm64_858921_read_cntpct_el0, 475 .read_cntvct_el0 = arm64_858921_read_cntvct_el0, 476 }, 477 #endif 478 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1 479 { 480 .match_type = ate_match_dt, 481 .id = "allwinner,erratum-unknown1", 482 .desc = "Allwinner erratum UNKNOWN1", 483 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0, 484 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0, 485 .set_next_event_phys = erratum_set_next_event_phys, 486 .set_next_event_virt = erratum_set_next_event_virt, 487 }, 488 #endif 489 #ifdef CONFIG_ARM64_ERRATUM_1418040 490 { 491 .match_type = ate_match_local_cap_id, 492 .id = (void *)ARM64_WORKAROUND_1418040, 493 .desc = "ARM erratum 1418040", 494 .disable_compat_vdso = true, 495 }, 496 #endif 497 }; 498 499 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *, 500 const void *); 501 502 static 503 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa, 504 const void *arg) 505 { 506 const struct device_node *np = arg; 507 508 return of_property_read_bool(np, wa->id); 509 } 510 511 static 512 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa, 513 const void *arg) 514 { 515 return this_cpu_has_cap((uintptr_t)wa->id); 516 } 517 518 519 static 520 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa, 521 const void *arg) 522 { 523 static const struct ate_acpi_oem_info empty_oem_info = {}; 524 const struct ate_acpi_oem_info *info = wa->id; 525 const struct acpi_table_header *table = arg; 526 527 /* Iterate over the ACPI OEM info array, looking for a match */ 528 while (memcmp(info, &empty_oem_info, sizeof(*info))) { 529 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) && 530 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) && 531 info->oem_revision == table->oem_revision) 532 return true; 533 534 info++; 535 } 536 537 return false; 538 } 539 540 static const struct arch_timer_erratum_workaround * 541 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type, 542 ate_match_fn_t match_fn, 543 void *arg) 544 { 545 int i; 546 547 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) { 548 if (ool_workarounds[i].match_type != type) 549 continue; 550 551 if (match_fn(&ool_workarounds[i], arg)) 552 return &ool_workarounds[i]; 553 } 554 555 return NULL; 556 } 557 558 static 559 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa, 560 bool local) 561 { 562 int i; 563 564 if (local) { 565 __this_cpu_write(timer_unstable_counter_workaround, wa); 566 } else { 567 for_each_possible_cpu(i) 568 per_cpu(timer_unstable_counter_workaround, i) = wa; 569 } 570 571 if (wa->read_cntvct_el0 || wa->read_cntpct_el0) 572 atomic_set(&timer_unstable_counter_workaround_in_use, 1); 573 574 /* 575 * Don't use the vdso fastpath if errata require using the 576 * out-of-line counter accessor. We may change our mind pretty 577 * late in the game (with a per-CPU erratum, for example), so 578 * change both the default value and the vdso itself. 579 */ 580 if (wa->read_cntvct_el0) { 581 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE; 582 vdso_default = VDSO_CLOCKMODE_NONE; 583 } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) { 584 vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT; 585 clocksource_counter.vdso_clock_mode = vdso_default; 586 } 587 } 588 589 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type, 590 void *arg) 591 { 592 const struct arch_timer_erratum_workaround *wa, *__wa; 593 ate_match_fn_t match_fn = NULL; 594 bool local = false; 595 596 switch (type) { 597 case ate_match_dt: 598 match_fn = arch_timer_check_dt_erratum; 599 break; 600 case ate_match_local_cap_id: 601 match_fn = arch_timer_check_local_cap_erratum; 602 local = true; 603 break; 604 case ate_match_acpi_oem_info: 605 match_fn = arch_timer_check_acpi_oem_erratum; 606 break; 607 default: 608 WARN_ON(1); 609 return; 610 } 611 612 wa = arch_timer_iterate_errata(type, match_fn, arg); 613 if (!wa) 614 return; 615 616 __wa = __this_cpu_read(timer_unstable_counter_workaround); 617 if (__wa && wa != __wa) 618 pr_warn("Can't enable workaround for %s (clashes with %s\n)", 619 wa->desc, __wa->desc); 620 621 if (__wa) 622 return; 623 624 arch_timer_enable_workaround(wa, local); 625 pr_info("Enabling %s workaround for %s\n", 626 local ? "local" : "global", wa->desc); 627 } 628 629 static bool arch_timer_this_cpu_has_cntvct_wa(void) 630 { 631 return has_erratum_handler(read_cntvct_el0); 632 } 633 634 static bool arch_timer_counter_has_wa(void) 635 { 636 return atomic_read(&timer_unstable_counter_workaround_in_use); 637 } 638 #else 639 #define arch_timer_check_ool_workaround(t,a) do { } while(0) 640 #define arch_timer_this_cpu_has_cntvct_wa() ({false;}) 641 #define arch_timer_counter_has_wa() ({false;}) 642 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */ 643 644 static __always_inline irqreturn_t timer_handler(const int access, 645 struct clock_event_device *evt) 646 { 647 unsigned long ctrl; 648 649 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt); 650 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { 651 ctrl |= ARCH_TIMER_CTRL_IT_MASK; 652 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt); 653 evt->event_handler(evt); 654 return IRQ_HANDLED; 655 } 656 657 return IRQ_NONE; 658 } 659 660 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id) 661 { 662 struct clock_event_device *evt = dev_id; 663 664 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt); 665 } 666 667 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id) 668 { 669 struct clock_event_device *evt = dev_id; 670 671 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt); 672 } 673 674 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id) 675 { 676 struct clock_event_device *evt = dev_id; 677 678 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt); 679 } 680 681 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id) 682 { 683 struct clock_event_device *evt = dev_id; 684 685 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt); 686 } 687 688 static __always_inline int timer_shutdown(const int access, 689 struct clock_event_device *clk) 690 { 691 unsigned long ctrl; 692 693 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 694 ctrl &= ~ARCH_TIMER_CTRL_ENABLE; 695 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 696 697 return 0; 698 } 699 700 static int arch_timer_shutdown_virt(struct clock_event_device *clk) 701 { 702 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk); 703 } 704 705 static int arch_timer_shutdown_phys(struct clock_event_device *clk) 706 { 707 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk); 708 } 709 710 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk) 711 { 712 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk); 713 } 714 715 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk) 716 { 717 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk); 718 } 719 720 static __always_inline void set_next_event(const int access, unsigned long evt, 721 struct clock_event_device *clk) 722 { 723 unsigned long ctrl; 724 u64 cnt; 725 726 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 727 ctrl |= ARCH_TIMER_CTRL_ENABLE; 728 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 729 730 if (access == ARCH_TIMER_PHYS_ACCESS) 731 cnt = __arch_counter_get_cntpct(); 732 else 733 cnt = __arch_counter_get_cntvct(); 734 735 arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk); 736 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 737 } 738 739 static int arch_timer_set_next_event_virt(unsigned long evt, 740 struct clock_event_device *clk) 741 { 742 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk); 743 return 0; 744 } 745 746 static int arch_timer_set_next_event_phys(unsigned long evt, 747 struct clock_event_device *clk) 748 { 749 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk); 750 return 0; 751 } 752 753 static u64 arch_counter_get_cnt_mem(struct arch_timer *t, int offset_lo) 754 { 755 u32 cnt_lo, cnt_hi, tmp_hi; 756 757 do { 758 cnt_hi = readl_relaxed(t->base + offset_lo + 4); 759 cnt_lo = readl_relaxed(t->base + offset_lo); 760 tmp_hi = readl_relaxed(t->base + offset_lo + 4); 761 } while (cnt_hi != tmp_hi); 762 763 return ((u64) cnt_hi << 32) | cnt_lo; 764 } 765 766 static __always_inline void set_next_event_mem(const int access, unsigned long evt, 767 struct clock_event_device *clk) 768 { 769 struct arch_timer *timer = to_arch_timer(clk); 770 unsigned long ctrl; 771 u64 cnt; 772 773 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 774 ctrl |= ARCH_TIMER_CTRL_ENABLE; 775 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 776 777 if (access == ARCH_TIMER_MEM_VIRT_ACCESS) 778 cnt = arch_counter_get_cnt_mem(timer, CNTVCT_LO); 779 else 780 cnt = arch_counter_get_cnt_mem(timer, CNTPCT_LO); 781 782 arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk); 783 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 784 } 785 786 static int arch_timer_set_next_event_virt_mem(unsigned long evt, 787 struct clock_event_device *clk) 788 { 789 set_next_event_mem(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk); 790 return 0; 791 } 792 793 static int arch_timer_set_next_event_phys_mem(unsigned long evt, 794 struct clock_event_device *clk) 795 { 796 set_next_event_mem(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk); 797 return 0; 798 } 799 800 static u64 __arch_timer_check_delta(void) 801 { 802 #ifdef CONFIG_ARM64 803 const struct midr_range broken_cval_midrs[] = { 804 /* 805 * XGene-1 implements CVAL in terms of TVAL, meaning 806 * that the maximum timer range is 32bit. Shame on them. 807 */ 808 MIDR_ALL_VERSIONS(MIDR_CPU_MODEL(ARM_CPU_IMP_APM, 809 APM_CPU_PART_POTENZA)), 810 {}, 811 }; 812 813 if (is_midr_in_range_list(read_cpuid_id(), broken_cval_midrs)) { 814 pr_warn_once("Broken CNTx_CVAL_EL1, limiting width to 32bits"); 815 return CLOCKSOURCE_MASK(32); 816 } 817 #endif 818 return CLOCKSOURCE_MASK(arch_counter_get_width()); 819 } 820 821 static void __arch_timer_setup(unsigned type, 822 struct clock_event_device *clk) 823 { 824 u64 max_delta; 825 826 clk->features = CLOCK_EVT_FEAT_ONESHOT; 827 828 if (type == ARCH_TIMER_TYPE_CP15) { 829 typeof(clk->set_next_event) sne; 830 831 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL); 832 833 if (arch_timer_c3stop) 834 clk->features |= CLOCK_EVT_FEAT_C3STOP; 835 clk->name = "arch_sys_timer"; 836 clk->rating = 450; 837 clk->cpumask = cpumask_of(smp_processor_id()); 838 clk->irq = arch_timer_ppi[arch_timer_uses_ppi]; 839 switch (arch_timer_uses_ppi) { 840 case ARCH_TIMER_VIRT_PPI: 841 clk->set_state_shutdown = arch_timer_shutdown_virt; 842 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt; 843 sne = erratum_handler(set_next_event_virt); 844 break; 845 case ARCH_TIMER_PHYS_SECURE_PPI: 846 case ARCH_TIMER_PHYS_NONSECURE_PPI: 847 case ARCH_TIMER_HYP_PPI: 848 clk->set_state_shutdown = arch_timer_shutdown_phys; 849 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys; 850 sne = erratum_handler(set_next_event_phys); 851 break; 852 default: 853 BUG(); 854 } 855 856 clk->set_next_event = sne; 857 max_delta = __arch_timer_check_delta(); 858 } else { 859 clk->features |= CLOCK_EVT_FEAT_DYNIRQ; 860 clk->name = "arch_mem_timer"; 861 clk->rating = 400; 862 clk->cpumask = cpu_possible_mask; 863 if (arch_timer_mem_use_virtual) { 864 clk->set_state_shutdown = arch_timer_shutdown_virt_mem; 865 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem; 866 clk->set_next_event = 867 arch_timer_set_next_event_virt_mem; 868 } else { 869 clk->set_state_shutdown = arch_timer_shutdown_phys_mem; 870 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem; 871 clk->set_next_event = 872 arch_timer_set_next_event_phys_mem; 873 } 874 875 max_delta = CLOCKSOURCE_MASK(56); 876 } 877 878 clk->set_state_shutdown(clk); 879 880 clockevents_config_and_register(clk, arch_timer_rate, 0xf, max_delta); 881 } 882 883 static void arch_timer_evtstrm_enable(unsigned int divider) 884 { 885 u32 cntkctl = arch_timer_get_cntkctl(); 886 887 #ifdef CONFIG_ARM64 888 /* ECV is likely to require a large divider. Use the EVNTIS flag. */ 889 if (cpus_have_const_cap(ARM64_HAS_ECV) && divider > 15) { 890 cntkctl |= ARCH_TIMER_EVT_INTERVAL_SCALE; 891 divider -= 8; 892 } 893 #endif 894 895 divider = min(divider, 15U); 896 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK; 897 /* Set the divider and enable virtual event stream */ 898 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT) 899 | ARCH_TIMER_VIRT_EVT_EN; 900 arch_timer_set_cntkctl(cntkctl); 901 arch_timer_set_evtstrm_feature(); 902 cpumask_set_cpu(smp_processor_id(), &evtstrm_available); 903 } 904 905 static void arch_timer_configure_evtstream(void) 906 { 907 int evt_stream_div, lsb; 908 909 /* 910 * As the event stream can at most be generated at half the frequency 911 * of the counter, use half the frequency when computing the divider. 912 */ 913 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2; 914 915 /* 916 * Find the closest power of two to the divisor. If the adjacent bit 917 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1). 918 */ 919 lsb = fls(evt_stream_div) - 1; 920 if (lsb > 0 && (evt_stream_div & BIT(lsb - 1))) 921 lsb++; 922 923 /* enable event stream */ 924 arch_timer_evtstrm_enable(max(0, lsb)); 925 } 926 927 static void arch_counter_set_user_access(void) 928 { 929 u32 cntkctl = arch_timer_get_cntkctl(); 930 931 /* Disable user access to the timers and both counters */ 932 /* Also disable virtual event stream */ 933 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN 934 | ARCH_TIMER_USR_VT_ACCESS_EN 935 | ARCH_TIMER_USR_VCT_ACCESS_EN 936 | ARCH_TIMER_VIRT_EVT_EN 937 | ARCH_TIMER_USR_PCT_ACCESS_EN); 938 939 /* 940 * Enable user access to the virtual counter if it doesn't 941 * need to be workaround. The vdso may have been already 942 * disabled though. 943 */ 944 if (arch_timer_this_cpu_has_cntvct_wa()) 945 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id()); 946 else 947 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN; 948 949 arch_timer_set_cntkctl(cntkctl); 950 } 951 952 static bool arch_timer_has_nonsecure_ppi(void) 953 { 954 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI && 955 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 956 } 957 958 static u32 check_ppi_trigger(int irq) 959 { 960 u32 flags = irq_get_trigger_type(irq); 961 962 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) { 963 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq); 964 pr_warn("WARNING: Please fix your firmware\n"); 965 flags = IRQF_TRIGGER_LOW; 966 } 967 968 return flags; 969 } 970 971 static int arch_timer_starting_cpu(unsigned int cpu) 972 { 973 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 974 u32 flags; 975 976 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk); 977 978 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]); 979 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags); 980 981 if (arch_timer_has_nonsecure_ppi()) { 982 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 983 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], 984 flags); 985 } 986 987 arch_counter_set_user_access(); 988 if (evtstrm_enable) 989 arch_timer_configure_evtstream(); 990 991 return 0; 992 } 993 994 static int validate_timer_rate(void) 995 { 996 if (!arch_timer_rate) 997 return -EINVAL; 998 999 /* Arch timer frequency < 1MHz can cause trouble */ 1000 WARN_ON(arch_timer_rate < 1000000); 1001 1002 return 0; 1003 } 1004 1005 /* 1006 * For historical reasons, when probing with DT we use whichever (non-zero) 1007 * rate was probed first, and don't verify that others match. If the first node 1008 * probed has a clock-frequency property, this overrides the HW register. 1009 */ 1010 static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np) 1011 { 1012 /* Who has more than one independent system counter? */ 1013 if (arch_timer_rate) 1014 return; 1015 1016 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) 1017 arch_timer_rate = rate; 1018 1019 /* Check the timer frequency. */ 1020 if (validate_timer_rate()) 1021 pr_warn("frequency not available\n"); 1022 } 1023 1024 static void __init arch_timer_banner(unsigned type) 1025 { 1026 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n", 1027 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "", 1028 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? 1029 " and " : "", 1030 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "", 1031 (unsigned long)arch_timer_rate / 1000000, 1032 (unsigned long)(arch_timer_rate / 10000) % 100, 1033 type & ARCH_TIMER_TYPE_CP15 ? 1034 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" : 1035 "", 1036 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "", 1037 type & ARCH_TIMER_TYPE_MEM ? 1038 arch_timer_mem_use_virtual ? "virt" : "phys" : 1039 ""); 1040 } 1041 1042 u32 arch_timer_get_rate(void) 1043 { 1044 return arch_timer_rate; 1045 } 1046 1047 bool arch_timer_evtstrm_available(void) 1048 { 1049 /* 1050 * We might get called from a preemptible context. This is fine 1051 * because availability of the event stream should be always the same 1052 * for a preemptible context and context where we might resume a task. 1053 */ 1054 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available); 1055 } 1056 1057 static u64 arch_counter_get_cntvct_mem(void) 1058 { 1059 return arch_counter_get_cnt_mem(arch_timer_mem, CNTVCT_LO); 1060 } 1061 1062 static struct arch_timer_kvm_info arch_timer_kvm_info; 1063 1064 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void) 1065 { 1066 return &arch_timer_kvm_info; 1067 } 1068 1069 static void __init arch_counter_register(unsigned type) 1070 { 1071 u64 start_count; 1072 int width; 1073 1074 /* Register the CP15 based counter if we have one */ 1075 if (type & ARCH_TIMER_TYPE_CP15) { 1076 u64 (*rd)(void); 1077 1078 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) || 1079 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) { 1080 if (arch_timer_counter_has_wa()) 1081 rd = arch_counter_get_cntvct_stable; 1082 else 1083 rd = arch_counter_get_cntvct; 1084 } else { 1085 if (arch_timer_counter_has_wa()) 1086 rd = arch_counter_get_cntpct_stable; 1087 else 1088 rd = arch_counter_get_cntpct; 1089 } 1090 1091 arch_timer_read_counter = rd; 1092 clocksource_counter.vdso_clock_mode = vdso_default; 1093 } else { 1094 arch_timer_read_counter = arch_counter_get_cntvct_mem; 1095 } 1096 1097 width = arch_counter_get_width(); 1098 clocksource_counter.mask = CLOCKSOURCE_MASK(width); 1099 cyclecounter.mask = CLOCKSOURCE_MASK(width); 1100 1101 if (!arch_counter_suspend_stop) 1102 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; 1103 start_count = arch_timer_read_counter(); 1104 clocksource_register_hz(&clocksource_counter, arch_timer_rate); 1105 cyclecounter.mult = clocksource_counter.mult; 1106 cyclecounter.shift = clocksource_counter.shift; 1107 timecounter_init(&arch_timer_kvm_info.timecounter, 1108 &cyclecounter, start_count); 1109 1110 sched_clock_register(arch_timer_read_counter, width, arch_timer_rate); 1111 } 1112 1113 static void arch_timer_stop(struct clock_event_device *clk) 1114 { 1115 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id()); 1116 1117 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]); 1118 if (arch_timer_has_nonsecure_ppi()) 1119 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 1120 1121 clk->set_state_shutdown(clk); 1122 } 1123 1124 static int arch_timer_dying_cpu(unsigned int cpu) 1125 { 1126 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 1127 1128 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available); 1129 1130 arch_timer_stop(clk); 1131 return 0; 1132 } 1133 1134 #ifdef CONFIG_CPU_PM 1135 static DEFINE_PER_CPU(unsigned long, saved_cntkctl); 1136 static int arch_timer_cpu_pm_notify(struct notifier_block *self, 1137 unsigned long action, void *hcpu) 1138 { 1139 if (action == CPU_PM_ENTER) { 1140 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl()); 1141 1142 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available); 1143 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) { 1144 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl)); 1145 1146 if (arch_timer_have_evtstrm_feature()) 1147 cpumask_set_cpu(smp_processor_id(), &evtstrm_available); 1148 } 1149 return NOTIFY_OK; 1150 } 1151 1152 static struct notifier_block arch_timer_cpu_pm_notifier = { 1153 .notifier_call = arch_timer_cpu_pm_notify, 1154 }; 1155 1156 static int __init arch_timer_cpu_pm_init(void) 1157 { 1158 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier); 1159 } 1160 1161 static void __init arch_timer_cpu_pm_deinit(void) 1162 { 1163 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier)); 1164 } 1165 1166 #else 1167 static int __init arch_timer_cpu_pm_init(void) 1168 { 1169 return 0; 1170 } 1171 1172 static void __init arch_timer_cpu_pm_deinit(void) 1173 { 1174 } 1175 #endif 1176 1177 static int __init arch_timer_register(void) 1178 { 1179 int err; 1180 int ppi; 1181 1182 arch_timer_evt = alloc_percpu(struct clock_event_device); 1183 if (!arch_timer_evt) { 1184 err = -ENOMEM; 1185 goto out; 1186 } 1187 1188 ppi = arch_timer_ppi[arch_timer_uses_ppi]; 1189 switch (arch_timer_uses_ppi) { 1190 case ARCH_TIMER_VIRT_PPI: 1191 err = request_percpu_irq(ppi, arch_timer_handler_virt, 1192 "arch_timer", arch_timer_evt); 1193 break; 1194 case ARCH_TIMER_PHYS_SECURE_PPI: 1195 case ARCH_TIMER_PHYS_NONSECURE_PPI: 1196 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1197 "arch_timer", arch_timer_evt); 1198 if (!err && arch_timer_has_nonsecure_ppi()) { 1199 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]; 1200 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1201 "arch_timer", arch_timer_evt); 1202 if (err) 1203 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI], 1204 arch_timer_evt); 1205 } 1206 break; 1207 case ARCH_TIMER_HYP_PPI: 1208 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1209 "arch_timer", arch_timer_evt); 1210 break; 1211 default: 1212 BUG(); 1213 } 1214 1215 if (err) { 1216 pr_err("can't register interrupt %d (%d)\n", ppi, err); 1217 goto out_free; 1218 } 1219 1220 err = arch_timer_cpu_pm_init(); 1221 if (err) 1222 goto out_unreg_notify; 1223 1224 /* Register and immediately configure the timer on the boot CPU */ 1225 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING, 1226 "clockevents/arm/arch_timer:starting", 1227 arch_timer_starting_cpu, arch_timer_dying_cpu); 1228 if (err) 1229 goto out_unreg_cpupm; 1230 return 0; 1231 1232 out_unreg_cpupm: 1233 arch_timer_cpu_pm_deinit(); 1234 1235 out_unreg_notify: 1236 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt); 1237 if (arch_timer_has_nonsecure_ppi()) 1238 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], 1239 arch_timer_evt); 1240 1241 out_free: 1242 free_percpu(arch_timer_evt); 1243 out: 1244 return err; 1245 } 1246 1247 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq) 1248 { 1249 int ret; 1250 irq_handler_t func; 1251 1252 arch_timer_mem = kzalloc(sizeof(*arch_timer_mem), GFP_KERNEL); 1253 if (!arch_timer_mem) 1254 return -ENOMEM; 1255 1256 arch_timer_mem->base = base; 1257 arch_timer_mem->evt.irq = irq; 1258 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &arch_timer_mem->evt); 1259 1260 if (arch_timer_mem_use_virtual) 1261 func = arch_timer_handler_virt_mem; 1262 else 1263 func = arch_timer_handler_phys_mem; 1264 1265 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &arch_timer_mem->evt); 1266 if (ret) { 1267 pr_err("Failed to request mem timer irq\n"); 1268 kfree(arch_timer_mem); 1269 arch_timer_mem = NULL; 1270 } 1271 1272 return ret; 1273 } 1274 1275 static const struct of_device_id arch_timer_of_match[] __initconst = { 1276 { .compatible = "arm,armv7-timer", }, 1277 { .compatible = "arm,armv8-timer", }, 1278 {}, 1279 }; 1280 1281 static const struct of_device_id arch_timer_mem_of_match[] __initconst = { 1282 { .compatible = "arm,armv7-timer-mem", }, 1283 {}, 1284 }; 1285 1286 static bool __init arch_timer_needs_of_probing(void) 1287 { 1288 struct device_node *dn; 1289 bool needs_probing = false; 1290 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM; 1291 1292 /* We have two timers, and both device-tree nodes are probed. */ 1293 if ((arch_timers_present & mask) == mask) 1294 return false; 1295 1296 /* 1297 * Only one type of timer is probed, 1298 * check if we have another type of timer node in device-tree. 1299 */ 1300 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) 1301 dn = of_find_matching_node(NULL, arch_timer_mem_of_match); 1302 else 1303 dn = of_find_matching_node(NULL, arch_timer_of_match); 1304 1305 if (dn && of_device_is_available(dn)) 1306 needs_probing = true; 1307 1308 of_node_put(dn); 1309 1310 return needs_probing; 1311 } 1312 1313 static int __init arch_timer_common_init(void) 1314 { 1315 arch_timer_banner(arch_timers_present); 1316 arch_counter_register(arch_timers_present); 1317 return arch_timer_arch_init(); 1318 } 1319 1320 /** 1321 * arch_timer_select_ppi() - Select suitable PPI for the current system. 1322 * 1323 * If HYP mode is available, we know that the physical timer 1324 * has been configured to be accessible from PL1. Use it, so 1325 * that a guest can use the virtual timer instead. 1326 * 1327 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE 1328 * accesses to CNTP_*_EL1 registers are silently redirected to 1329 * their CNTHP_*_EL2 counterparts, and use a different PPI 1330 * number. 1331 * 1332 * If no interrupt provided for virtual timer, we'll have to 1333 * stick to the physical timer. It'd better be accessible... 1334 * For arm64 we never use the secure interrupt. 1335 * 1336 * Return: a suitable PPI type for the current system. 1337 */ 1338 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void) 1339 { 1340 if (is_kernel_in_hyp_mode()) 1341 return ARCH_TIMER_HYP_PPI; 1342 1343 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI]) 1344 return ARCH_TIMER_VIRT_PPI; 1345 1346 if (IS_ENABLED(CONFIG_ARM64)) 1347 return ARCH_TIMER_PHYS_NONSECURE_PPI; 1348 1349 return ARCH_TIMER_PHYS_SECURE_PPI; 1350 } 1351 1352 static void __init arch_timer_populate_kvm_info(void) 1353 { 1354 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI]; 1355 if (is_kernel_in_hyp_mode()) 1356 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]; 1357 } 1358 1359 static int __init arch_timer_of_init(struct device_node *np) 1360 { 1361 int i, irq, ret; 1362 u32 rate; 1363 bool has_names; 1364 1365 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { 1366 pr_warn("multiple nodes in dt, skipping\n"); 1367 return 0; 1368 } 1369 1370 arch_timers_present |= ARCH_TIMER_TYPE_CP15; 1371 1372 has_names = of_property_read_bool(np, "interrupt-names"); 1373 1374 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) { 1375 if (has_names) 1376 irq = of_irq_get_byname(np, arch_timer_ppi_names[i]); 1377 else 1378 irq = of_irq_get(np, i); 1379 if (irq > 0) 1380 arch_timer_ppi[i] = irq; 1381 } 1382 1383 arch_timer_populate_kvm_info(); 1384 1385 rate = arch_timer_get_cntfrq(); 1386 arch_timer_of_configure_rate(rate, np); 1387 1388 arch_timer_c3stop = !of_property_read_bool(np, "always-on"); 1389 1390 /* Check for globally applicable workarounds */ 1391 arch_timer_check_ool_workaround(ate_match_dt, np); 1392 1393 /* 1394 * If we cannot rely on firmware initializing the timer registers then 1395 * we should use the physical timers instead. 1396 */ 1397 if (IS_ENABLED(CONFIG_ARM) && 1398 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured")) 1399 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI; 1400 else 1401 arch_timer_uses_ppi = arch_timer_select_ppi(); 1402 1403 if (!arch_timer_ppi[arch_timer_uses_ppi]) { 1404 pr_err("No interrupt available, giving up\n"); 1405 return -EINVAL; 1406 } 1407 1408 /* On some systems, the counter stops ticking when in suspend. */ 1409 arch_counter_suspend_stop = of_property_read_bool(np, 1410 "arm,no-tick-in-suspend"); 1411 1412 ret = arch_timer_register(); 1413 if (ret) 1414 return ret; 1415 1416 if (arch_timer_needs_of_probing()) 1417 return 0; 1418 1419 return arch_timer_common_init(); 1420 } 1421 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init); 1422 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init); 1423 1424 static u32 __init 1425 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame) 1426 { 1427 void __iomem *base; 1428 u32 rate; 1429 1430 base = ioremap(frame->cntbase, frame->size); 1431 if (!base) { 1432 pr_err("Unable to map frame @ %pa\n", &frame->cntbase); 1433 return 0; 1434 } 1435 1436 rate = readl_relaxed(base + CNTFRQ); 1437 1438 iounmap(base); 1439 1440 return rate; 1441 } 1442 1443 static struct arch_timer_mem_frame * __init 1444 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem) 1445 { 1446 struct arch_timer_mem_frame *frame, *best_frame = NULL; 1447 void __iomem *cntctlbase; 1448 u32 cnttidr; 1449 int i; 1450 1451 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size); 1452 if (!cntctlbase) { 1453 pr_err("Can't map CNTCTLBase @ %pa\n", 1454 &timer_mem->cntctlbase); 1455 return NULL; 1456 } 1457 1458 cnttidr = readl_relaxed(cntctlbase + CNTTIDR); 1459 1460 /* 1461 * Try to find a virtual capable frame. Otherwise fall back to a 1462 * physical capable frame. 1463 */ 1464 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) { 1465 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT | 1466 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT; 1467 1468 frame = &timer_mem->frame[i]; 1469 if (!frame->valid) 1470 continue; 1471 1472 /* Try enabling everything, and see what sticks */ 1473 writel_relaxed(cntacr, cntctlbase + CNTACR(i)); 1474 cntacr = readl_relaxed(cntctlbase + CNTACR(i)); 1475 1476 if ((cnttidr & CNTTIDR_VIRT(i)) && 1477 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) { 1478 best_frame = frame; 1479 arch_timer_mem_use_virtual = true; 1480 break; 1481 } 1482 1483 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT)) 1484 continue; 1485 1486 best_frame = frame; 1487 } 1488 1489 iounmap(cntctlbase); 1490 1491 return best_frame; 1492 } 1493 1494 static int __init 1495 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame) 1496 { 1497 void __iomem *base; 1498 int ret, irq = 0; 1499 1500 if (arch_timer_mem_use_virtual) 1501 irq = frame->virt_irq; 1502 else 1503 irq = frame->phys_irq; 1504 1505 if (!irq) { 1506 pr_err("Frame missing %s irq.\n", 1507 arch_timer_mem_use_virtual ? "virt" : "phys"); 1508 return -EINVAL; 1509 } 1510 1511 if (!request_mem_region(frame->cntbase, frame->size, 1512 "arch_mem_timer")) 1513 return -EBUSY; 1514 1515 base = ioremap(frame->cntbase, frame->size); 1516 if (!base) { 1517 pr_err("Can't map frame's registers\n"); 1518 return -ENXIO; 1519 } 1520 1521 ret = arch_timer_mem_register(base, irq); 1522 if (ret) { 1523 iounmap(base); 1524 return ret; 1525 } 1526 1527 arch_timers_present |= ARCH_TIMER_TYPE_MEM; 1528 1529 return 0; 1530 } 1531 1532 static int __init arch_timer_mem_of_init(struct device_node *np) 1533 { 1534 struct arch_timer_mem *timer_mem; 1535 struct arch_timer_mem_frame *frame; 1536 struct device_node *frame_node; 1537 struct resource res; 1538 int ret = -EINVAL; 1539 u32 rate; 1540 1541 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL); 1542 if (!timer_mem) 1543 return -ENOMEM; 1544 1545 if (of_address_to_resource(np, 0, &res)) 1546 goto out; 1547 timer_mem->cntctlbase = res.start; 1548 timer_mem->size = resource_size(&res); 1549 1550 for_each_available_child_of_node(np, frame_node) { 1551 u32 n; 1552 struct arch_timer_mem_frame *frame; 1553 1554 if (of_property_read_u32(frame_node, "frame-number", &n)) { 1555 pr_err(FW_BUG "Missing frame-number.\n"); 1556 of_node_put(frame_node); 1557 goto out; 1558 } 1559 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) { 1560 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n", 1561 ARCH_TIMER_MEM_MAX_FRAMES - 1); 1562 of_node_put(frame_node); 1563 goto out; 1564 } 1565 frame = &timer_mem->frame[n]; 1566 1567 if (frame->valid) { 1568 pr_err(FW_BUG "Duplicated frame-number.\n"); 1569 of_node_put(frame_node); 1570 goto out; 1571 } 1572 1573 if (of_address_to_resource(frame_node, 0, &res)) { 1574 of_node_put(frame_node); 1575 goto out; 1576 } 1577 frame->cntbase = res.start; 1578 frame->size = resource_size(&res); 1579 1580 frame->virt_irq = irq_of_parse_and_map(frame_node, 1581 ARCH_TIMER_VIRT_SPI); 1582 frame->phys_irq = irq_of_parse_and_map(frame_node, 1583 ARCH_TIMER_PHYS_SPI); 1584 1585 frame->valid = true; 1586 } 1587 1588 frame = arch_timer_mem_find_best_frame(timer_mem); 1589 if (!frame) { 1590 pr_err("Unable to find a suitable frame in timer @ %pa\n", 1591 &timer_mem->cntctlbase); 1592 ret = -EINVAL; 1593 goto out; 1594 } 1595 1596 rate = arch_timer_mem_frame_get_cntfrq(frame); 1597 arch_timer_of_configure_rate(rate, np); 1598 1599 ret = arch_timer_mem_frame_register(frame); 1600 if (!ret && !arch_timer_needs_of_probing()) 1601 ret = arch_timer_common_init(); 1602 out: 1603 kfree(timer_mem); 1604 return ret; 1605 } 1606 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem", 1607 arch_timer_mem_of_init); 1608 1609 #ifdef CONFIG_ACPI_GTDT 1610 static int __init 1611 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem) 1612 { 1613 struct arch_timer_mem_frame *frame; 1614 u32 rate; 1615 int i; 1616 1617 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) { 1618 frame = &timer_mem->frame[i]; 1619 1620 if (!frame->valid) 1621 continue; 1622 1623 rate = arch_timer_mem_frame_get_cntfrq(frame); 1624 if (rate == arch_timer_rate) 1625 continue; 1626 1627 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n", 1628 &frame->cntbase, 1629 (unsigned long)rate, (unsigned long)arch_timer_rate); 1630 1631 return -EINVAL; 1632 } 1633 1634 return 0; 1635 } 1636 1637 static int __init arch_timer_mem_acpi_init(int platform_timer_count) 1638 { 1639 struct arch_timer_mem *timers, *timer; 1640 struct arch_timer_mem_frame *frame, *best_frame = NULL; 1641 int timer_count, i, ret = 0; 1642 1643 timers = kcalloc(platform_timer_count, sizeof(*timers), 1644 GFP_KERNEL); 1645 if (!timers) 1646 return -ENOMEM; 1647 1648 ret = acpi_arch_timer_mem_init(timers, &timer_count); 1649 if (ret || !timer_count) 1650 goto out; 1651 1652 /* 1653 * While unlikely, it's theoretically possible that none of the frames 1654 * in a timer expose the combination of feature we want. 1655 */ 1656 for (i = 0; i < timer_count; i++) { 1657 timer = &timers[i]; 1658 1659 frame = arch_timer_mem_find_best_frame(timer); 1660 if (!best_frame) 1661 best_frame = frame; 1662 1663 ret = arch_timer_mem_verify_cntfrq(timer); 1664 if (ret) { 1665 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n"); 1666 goto out; 1667 } 1668 1669 if (!best_frame) /* implies !frame */ 1670 /* 1671 * Only complain about missing suitable frames if we 1672 * haven't already found one in a previous iteration. 1673 */ 1674 pr_err("Unable to find a suitable frame in timer @ %pa\n", 1675 &timer->cntctlbase); 1676 } 1677 1678 if (best_frame) 1679 ret = arch_timer_mem_frame_register(best_frame); 1680 out: 1681 kfree(timers); 1682 return ret; 1683 } 1684 1685 /* Initialize per-processor generic timer and memory-mapped timer(if present) */ 1686 static int __init arch_timer_acpi_init(struct acpi_table_header *table) 1687 { 1688 int ret, platform_timer_count; 1689 1690 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { 1691 pr_warn("already initialized, skipping\n"); 1692 return -EINVAL; 1693 } 1694 1695 arch_timers_present |= ARCH_TIMER_TYPE_CP15; 1696 1697 ret = acpi_gtdt_init(table, &platform_timer_count); 1698 if (ret) 1699 return ret; 1700 1701 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] = 1702 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI); 1703 1704 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] = 1705 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI); 1706 1707 arch_timer_ppi[ARCH_TIMER_HYP_PPI] = 1708 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI); 1709 1710 arch_timer_populate_kvm_info(); 1711 1712 /* 1713 * When probing via ACPI, we have no mechanism to override the sysreg 1714 * CNTFRQ value. This *must* be correct. 1715 */ 1716 arch_timer_rate = arch_timer_get_cntfrq(); 1717 ret = validate_timer_rate(); 1718 if (ret) { 1719 pr_err(FW_BUG "frequency not available.\n"); 1720 return ret; 1721 } 1722 1723 arch_timer_uses_ppi = arch_timer_select_ppi(); 1724 if (!arch_timer_ppi[arch_timer_uses_ppi]) { 1725 pr_err("No interrupt available, giving up\n"); 1726 return -EINVAL; 1727 } 1728 1729 /* Always-on capability */ 1730 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi); 1731 1732 /* Check for globally applicable workarounds */ 1733 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table); 1734 1735 ret = arch_timer_register(); 1736 if (ret) 1737 return ret; 1738 1739 if (platform_timer_count && 1740 arch_timer_mem_acpi_init(platform_timer_count)) 1741 pr_err("Failed to initialize memory-mapped timer.\n"); 1742 1743 return arch_timer_common_init(); 1744 } 1745 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init); 1746 #endif 1747 1748 int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts, 1749 struct clocksource **cs) 1750 { 1751 struct arm_smccc_res hvc_res; 1752 u32 ptp_counter; 1753 ktime_t ktime; 1754 1755 if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY)) 1756 return -EOPNOTSUPP; 1757 1758 if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) 1759 ptp_counter = KVM_PTP_VIRT_COUNTER; 1760 else 1761 ptp_counter = KVM_PTP_PHYS_COUNTER; 1762 1763 arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID, 1764 ptp_counter, &hvc_res); 1765 1766 if ((int)(hvc_res.a0) < 0) 1767 return -EOPNOTSUPP; 1768 1769 ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1; 1770 *ts = ktime_to_timespec64(ktime); 1771 if (cycle) 1772 *cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3; 1773 if (cs) 1774 *cs = &clocksource_counter; 1775 1776 return 0; 1777 } 1778 EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp); 1779