xref: /openbmc/linux/drivers/clocksource/arm_arch_timer.c (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/clocksource/arm_arch_timer.c
4  *
5  *  Copyright (C) 2011 ARM Ltd.
6  *  All Rights Reserved
7  */
8 
9 #define pr_fmt(fmt) 	"arch_timer: " fmt
10 
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
22 #include <linux/io.h>
23 #include <linux/slab.h>
24 #include <linux/sched/clock.h>
25 #include <linux/sched_clock.h>
26 #include <linux/acpi.h>
27 
28 #include <asm/arch_timer.h>
29 #include <asm/virt.h>
30 
31 #include <clocksource/arm_arch_timer.h>
32 
33 #define CNTTIDR		0x08
34 #define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
35 
36 #define CNTACR(n)	(0x40 + ((n) * 4))
37 #define CNTACR_RPCT	BIT(0)
38 #define CNTACR_RVCT	BIT(1)
39 #define CNTACR_RFRQ	BIT(2)
40 #define CNTACR_RVOFF	BIT(3)
41 #define CNTACR_RWVT	BIT(4)
42 #define CNTACR_RWPT	BIT(5)
43 
44 #define CNTVCT_LO	0x08
45 #define CNTVCT_HI	0x0c
46 #define CNTFRQ		0x10
47 #define CNTP_TVAL	0x28
48 #define CNTP_CTL	0x2c
49 #define CNTV_TVAL	0x38
50 #define CNTV_CTL	0x3c
51 
52 static unsigned arch_timers_present __initdata;
53 
54 static void __iomem *arch_counter_base;
55 
56 struct arch_timer {
57 	void __iomem *base;
58 	struct clock_event_device evt;
59 };
60 
61 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
62 
63 static u32 arch_timer_rate;
64 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
65 
66 static struct clock_event_device __percpu *arch_timer_evt;
67 
68 static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
69 static bool arch_timer_c3stop;
70 static bool arch_timer_mem_use_virtual;
71 static bool arch_counter_suspend_stop;
72 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
73 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
74 #else
75 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
76 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
77 
78 static cpumask_t evtstrm_available = CPU_MASK_NONE;
79 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
80 
81 static int __init early_evtstrm_cfg(char *buf)
82 {
83 	return strtobool(buf, &evtstrm_enable);
84 }
85 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
86 
87 /*
88  * Architected system timer support.
89  */
90 
91 static __always_inline
92 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
93 			  struct clock_event_device *clk)
94 {
95 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
96 		struct arch_timer *timer = to_arch_timer(clk);
97 		switch (reg) {
98 		case ARCH_TIMER_REG_CTRL:
99 			writel_relaxed(val, timer->base + CNTP_CTL);
100 			break;
101 		case ARCH_TIMER_REG_TVAL:
102 			writel_relaxed(val, timer->base + CNTP_TVAL);
103 			break;
104 		}
105 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
106 		struct arch_timer *timer = to_arch_timer(clk);
107 		switch (reg) {
108 		case ARCH_TIMER_REG_CTRL:
109 			writel_relaxed(val, timer->base + CNTV_CTL);
110 			break;
111 		case ARCH_TIMER_REG_TVAL:
112 			writel_relaxed(val, timer->base + CNTV_TVAL);
113 			break;
114 		}
115 	} else {
116 		arch_timer_reg_write_cp15(access, reg, val);
117 	}
118 }
119 
120 static __always_inline
121 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
122 			struct clock_event_device *clk)
123 {
124 	u32 val;
125 
126 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
127 		struct arch_timer *timer = to_arch_timer(clk);
128 		switch (reg) {
129 		case ARCH_TIMER_REG_CTRL:
130 			val = readl_relaxed(timer->base + CNTP_CTL);
131 			break;
132 		case ARCH_TIMER_REG_TVAL:
133 			val = readl_relaxed(timer->base + CNTP_TVAL);
134 			break;
135 		}
136 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
137 		struct arch_timer *timer = to_arch_timer(clk);
138 		switch (reg) {
139 		case ARCH_TIMER_REG_CTRL:
140 			val = readl_relaxed(timer->base + CNTV_CTL);
141 			break;
142 		case ARCH_TIMER_REG_TVAL:
143 			val = readl_relaxed(timer->base + CNTV_TVAL);
144 			break;
145 		}
146 	} else {
147 		val = arch_timer_reg_read_cp15(access, reg);
148 	}
149 
150 	return val;
151 }
152 
153 static notrace u64 arch_counter_get_cntpct_stable(void)
154 {
155 	return __arch_counter_get_cntpct_stable();
156 }
157 
158 static notrace u64 arch_counter_get_cntpct(void)
159 {
160 	return __arch_counter_get_cntpct();
161 }
162 
163 static notrace u64 arch_counter_get_cntvct_stable(void)
164 {
165 	return __arch_counter_get_cntvct_stable();
166 }
167 
168 static notrace u64 arch_counter_get_cntvct(void)
169 {
170 	return __arch_counter_get_cntvct();
171 }
172 
173 /*
174  * Default to cp15 based access because arm64 uses this function for
175  * sched_clock() before DT is probed and the cp15 method is guaranteed
176  * to exist on arm64. arm doesn't use this before DT is probed so even
177  * if we don't have the cp15 accessors we won't have a problem.
178  */
179 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
180 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
181 
182 static u64 arch_counter_read(struct clocksource *cs)
183 {
184 	return arch_timer_read_counter();
185 }
186 
187 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
188 {
189 	return arch_timer_read_counter();
190 }
191 
192 static struct clocksource clocksource_counter = {
193 	.name	= "arch_sys_counter",
194 	.rating	= 400,
195 	.read	= arch_counter_read,
196 	.mask	= CLOCKSOURCE_MASK(56),
197 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
198 };
199 
200 static struct cyclecounter cyclecounter __ro_after_init = {
201 	.read	= arch_counter_read_cc,
202 	.mask	= CLOCKSOURCE_MASK(56),
203 };
204 
205 struct ate_acpi_oem_info {
206 	char oem_id[ACPI_OEM_ID_SIZE + 1];
207 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
208 	u32 oem_revision;
209 };
210 
211 #ifdef CONFIG_FSL_ERRATUM_A008585
212 /*
213  * The number of retries is an arbitrary value well beyond the highest number
214  * of iterations the loop has been observed to take.
215  */
216 #define __fsl_a008585_read_reg(reg) ({			\
217 	u64 _old, _new;					\
218 	int _retries = 200;				\
219 							\
220 	do {						\
221 		_old = read_sysreg(reg);		\
222 		_new = read_sysreg(reg);		\
223 		_retries--;				\
224 	} while (unlikely(_old != _new) && _retries);	\
225 							\
226 	WARN_ON_ONCE(!_retries);			\
227 	_new;						\
228 })
229 
230 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
231 {
232 	return __fsl_a008585_read_reg(cntp_tval_el0);
233 }
234 
235 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
236 {
237 	return __fsl_a008585_read_reg(cntv_tval_el0);
238 }
239 
240 static u64 notrace fsl_a008585_read_cntpct_el0(void)
241 {
242 	return __fsl_a008585_read_reg(cntpct_el0);
243 }
244 
245 static u64 notrace fsl_a008585_read_cntvct_el0(void)
246 {
247 	return __fsl_a008585_read_reg(cntvct_el0);
248 }
249 #endif
250 
251 #ifdef CONFIG_HISILICON_ERRATUM_161010101
252 /*
253  * Verify whether the value of the second read is larger than the first by
254  * less than 32 is the only way to confirm the value is correct, so clear the
255  * lower 5 bits to check whether the difference is greater than 32 or not.
256  * Theoretically the erratum should not occur more than twice in succession
257  * when reading the system counter, but it is possible that some interrupts
258  * may lead to more than twice read errors, triggering the warning, so setting
259  * the number of retries far beyond the number of iterations the loop has been
260  * observed to take.
261  */
262 #define __hisi_161010101_read_reg(reg) ({				\
263 	u64 _old, _new;						\
264 	int _retries = 50;					\
265 								\
266 	do {							\
267 		_old = read_sysreg(reg);			\
268 		_new = read_sysreg(reg);			\
269 		_retries--;					\
270 	} while (unlikely((_new - _old) >> 5) && _retries);	\
271 								\
272 	WARN_ON_ONCE(!_retries);				\
273 	_new;							\
274 })
275 
276 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
277 {
278 	return __hisi_161010101_read_reg(cntp_tval_el0);
279 }
280 
281 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
282 {
283 	return __hisi_161010101_read_reg(cntv_tval_el0);
284 }
285 
286 static u64 notrace hisi_161010101_read_cntpct_el0(void)
287 {
288 	return __hisi_161010101_read_reg(cntpct_el0);
289 }
290 
291 static u64 notrace hisi_161010101_read_cntvct_el0(void)
292 {
293 	return __hisi_161010101_read_reg(cntvct_el0);
294 }
295 
296 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
297 	/*
298 	 * Note that trailing spaces are required to properly match
299 	 * the OEM table information.
300 	 */
301 	{
302 		.oem_id		= "HISI  ",
303 		.oem_table_id	= "HIP05   ",
304 		.oem_revision	= 0,
305 	},
306 	{
307 		.oem_id		= "HISI  ",
308 		.oem_table_id	= "HIP06   ",
309 		.oem_revision	= 0,
310 	},
311 	{
312 		.oem_id		= "HISI  ",
313 		.oem_table_id	= "HIP07   ",
314 		.oem_revision	= 0,
315 	},
316 	{ /* Sentinel indicating the end of the OEM array */ },
317 };
318 #endif
319 
320 #ifdef CONFIG_ARM64_ERRATUM_858921
321 static u64 notrace arm64_858921_read_cntpct_el0(void)
322 {
323 	u64 old, new;
324 
325 	old = read_sysreg(cntpct_el0);
326 	new = read_sysreg(cntpct_el0);
327 	return (((old ^ new) >> 32) & 1) ? old : new;
328 }
329 
330 static u64 notrace arm64_858921_read_cntvct_el0(void)
331 {
332 	u64 old, new;
333 
334 	old = read_sysreg(cntvct_el0);
335 	new = read_sysreg(cntvct_el0);
336 	return (((old ^ new) >> 32) & 1) ? old : new;
337 }
338 #endif
339 
340 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
341 /*
342  * The low bits of the counter registers are indeterminate while bit 10 or
343  * greater is rolling over. Since the counter value can jump both backward
344  * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
345  * with all ones or all zeros in the low bits. Bound the loop by the maximum
346  * number of CPU cycles in 3 consecutive 24 MHz counter periods.
347  */
348 #define __sun50i_a64_read_reg(reg) ({					\
349 	u64 _val;							\
350 	int _retries = 150;						\
351 									\
352 	do {								\
353 		_val = read_sysreg(reg);				\
354 		_retries--;						\
355 	} while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries);	\
356 									\
357 	WARN_ON_ONCE(!_retries);					\
358 	_val;								\
359 })
360 
361 static u64 notrace sun50i_a64_read_cntpct_el0(void)
362 {
363 	return __sun50i_a64_read_reg(cntpct_el0);
364 }
365 
366 static u64 notrace sun50i_a64_read_cntvct_el0(void)
367 {
368 	return __sun50i_a64_read_reg(cntvct_el0);
369 }
370 
371 static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
372 {
373 	return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
374 }
375 
376 static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
377 {
378 	return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
379 }
380 #endif
381 
382 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
383 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
384 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
385 
386 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
387 
388 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
389 						struct clock_event_device *clk)
390 {
391 	unsigned long ctrl;
392 	u64 cval;
393 
394 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
395 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
396 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
397 
398 	if (access == ARCH_TIMER_PHYS_ACCESS) {
399 		cval = evt + arch_counter_get_cntpct_stable();
400 		write_sysreg(cval, cntp_cval_el0);
401 	} else {
402 		cval = evt + arch_counter_get_cntvct_stable();
403 		write_sysreg(cval, cntv_cval_el0);
404 	}
405 
406 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
407 }
408 
409 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
410 					    struct clock_event_device *clk)
411 {
412 	erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
413 	return 0;
414 }
415 
416 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
417 					    struct clock_event_device *clk)
418 {
419 	erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
420 	return 0;
421 }
422 
423 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
424 #ifdef CONFIG_FSL_ERRATUM_A008585
425 	{
426 		.match_type = ate_match_dt,
427 		.id = "fsl,erratum-a008585",
428 		.desc = "Freescale erratum a005858",
429 		.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
430 		.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
431 		.read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
432 		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
433 		.set_next_event_phys = erratum_set_next_event_tval_phys,
434 		.set_next_event_virt = erratum_set_next_event_tval_virt,
435 	},
436 #endif
437 #ifdef CONFIG_HISILICON_ERRATUM_161010101
438 	{
439 		.match_type = ate_match_dt,
440 		.id = "hisilicon,erratum-161010101",
441 		.desc = "HiSilicon erratum 161010101",
442 		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
443 		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
444 		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
445 		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
446 		.set_next_event_phys = erratum_set_next_event_tval_phys,
447 		.set_next_event_virt = erratum_set_next_event_tval_virt,
448 	},
449 	{
450 		.match_type = ate_match_acpi_oem_info,
451 		.id = hisi_161010101_oem_info,
452 		.desc = "HiSilicon erratum 161010101",
453 		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
454 		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
455 		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
456 		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
457 		.set_next_event_phys = erratum_set_next_event_tval_phys,
458 		.set_next_event_virt = erratum_set_next_event_tval_virt,
459 	},
460 #endif
461 #ifdef CONFIG_ARM64_ERRATUM_858921
462 	{
463 		.match_type = ate_match_local_cap_id,
464 		.id = (void *)ARM64_WORKAROUND_858921,
465 		.desc = "ARM erratum 858921",
466 		.read_cntpct_el0 = arm64_858921_read_cntpct_el0,
467 		.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
468 	},
469 #endif
470 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
471 	{
472 		.match_type = ate_match_dt,
473 		.id = "allwinner,erratum-unknown1",
474 		.desc = "Allwinner erratum UNKNOWN1",
475 		.read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
476 		.read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
477 		.read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
478 		.read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
479 		.set_next_event_phys = erratum_set_next_event_tval_phys,
480 		.set_next_event_virt = erratum_set_next_event_tval_virt,
481 	},
482 #endif
483 #ifdef CONFIG_ARM64_ERRATUM_1418040
484 	{
485 		.match_type = ate_match_local_cap_id,
486 		.id = (void *)ARM64_WORKAROUND_1418040,
487 		.desc = "ARM erratum 1418040",
488 		.disable_compat_vdso = true,
489 	},
490 #endif
491 };
492 
493 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
494 			       const void *);
495 
496 static
497 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
498 				 const void *arg)
499 {
500 	const struct device_node *np = arg;
501 
502 	return of_property_read_bool(np, wa->id);
503 }
504 
505 static
506 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
507 					const void *arg)
508 {
509 	return this_cpu_has_cap((uintptr_t)wa->id);
510 }
511 
512 
513 static
514 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
515 				       const void *arg)
516 {
517 	static const struct ate_acpi_oem_info empty_oem_info = {};
518 	const struct ate_acpi_oem_info *info = wa->id;
519 	const struct acpi_table_header *table = arg;
520 
521 	/* Iterate over the ACPI OEM info array, looking for a match */
522 	while (memcmp(info, &empty_oem_info, sizeof(*info))) {
523 		if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
524 		    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
525 		    info->oem_revision == table->oem_revision)
526 			return true;
527 
528 		info++;
529 	}
530 
531 	return false;
532 }
533 
534 static const struct arch_timer_erratum_workaround *
535 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
536 			  ate_match_fn_t match_fn,
537 			  void *arg)
538 {
539 	int i;
540 
541 	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
542 		if (ool_workarounds[i].match_type != type)
543 			continue;
544 
545 		if (match_fn(&ool_workarounds[i], arg))
546 			return &ool_workarounds[i];
547 	}
548 
549 	return NULL;
550 }
551 
552 static
553 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
554 				  bool local)
555 {
556 	int i;
557 
558 	if (local) {
559 		__this_cpu_write(timer_unstable_counter_workaround, wa);
560 	} else {
561 		for_each_possible_cpu(i)
562 			per_cpu(timer_unstable_counter_workaround, i) = wa;
563 	}
564 
565 	if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
566 		atomic_set(&timer_unstable_counter_workaround_in_use, 1);
567 
568 	/*
569 	 * Don't use the vdso fastpath if errata require using the
570 	 * out-of-line counter accessor. We may change our mind pretty
571 	 * late in the game (with a per-CPU erratum, for example), so
572 	 * change both the default value and the vdso itself.
573 	 */
574 	if (wa->read_cntvct_el0) {
575 		clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
576 		vdso_default = VDSO_CLOCKMODE_NONE;
577 	} else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
578 		vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
579 		clocksource_counter.vdso_clock_mode = vdso_default;
580 	}
581 }
582 
583 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
584 					    void *arg)
585 {
586 	const struct arch_timer_erratum_workaround *wa, *__wa;
587 	ate_match_fn_t match_fn = NULL;
588 	bool local = false;
589 
590 	switch (type) {
591 	case ate_match_dt:
592 		match_fn = arch_timer_check_dt_erratum;
593 		break;
594 	case ate_match_local_cap_id:
595 		match_fn = arch_timer_check_local_cap_erratum;
596 		local = true;
597 		break;
598 	case ate_match_acpi_oem_info:
599 		match_fn = arch_timer_check_acpi_oem_erratum;
600 		break;
601 	default:
602 		WARN_ON(1);
603 		return;
604 	}
605 
606 	wa = arch_timer_iterate_errata(type, match_fn, arg);
607 	if (!wa)
608 		return;
609 
610 	__wa = __this_cpu_read(timer_unstable_counter_workaround);
611 	if (__wa && wa != __wa)
612 		pr_warn("Can't enable workaround for %s (clashes with %s\n)",
613 			wa->desc, __wa->desc);
614 
615 	if (__wa)
616 		return;
617 
618 	arch_timer_enable_workaround(wa, local);
619 	pr_info("Enabling %s workaround for %s\n",
620 		local ? "local" : "global", wa->desc);
621 }
622 
623 static bool arch_timer_this_cpu_has_cntvct_wa(void)
624 {
625 	return has_erratum_handler(read_cntvct_el0);
626 }
627 
628 static bool arch_timer_counter_has_wa(void)
629 {
630 	return atomic_read(&timer_unstable_counter_workaround_in_use);
631 }
632 #else
633 #define arch_timer_check_ool_workaround(t,a)		do { } while(0)
634 #define arch_timer_this_cpu_has_cntvct_wa()		({false;})
635 #define arch_timer_counter_has_wa()			({false;})
636 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
637 
638 static __always_inline irqreturn_t timer_handler(const int access,
639 					struct clock_event_device *evt)
640 {
641 	unsigned long ctrl;
642 
643 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
644 	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
645 		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
646 		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
647 		evt->event_handler(evt);
648 		return IRQ_HANDLED;
649 	}
650 
651 	return IRQ_NONE;
652 }
653 
654 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
655 {
656 	struct clock_event_device *evt = dev_id;
657 
658 	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
659 }
660 
661 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
662 {
663 	struct clock_event_device *evt = dev_id;
664 
665 	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
666 }
667 
668 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
669 {
670 	struct clock_event_device *evt = dev_id;
671 
672 	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
673 }
674 
675 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
676 {
677 	struct clock_event_device *evt = dev_id;
678 
679 	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
680 }
681 
682 static __always_inline int timer_shutdown(const int access,
683 					  struct clock_event_device *clk)
684 {
685 	unsigned long ctrl;
686 
687 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
688 	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
689 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
690 
691 	return 0;
692 }
693 
694 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
695 {
696 	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
697 }
698 
699 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
700 {
701 	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
702 }
703 
704 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
705 {
706 	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
707 }
708 
709 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
710 {
711 	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
712 }
713 
714 static __always_inline void set_next_event(const int access, unsigned long evt,
715 					   struct clock_event_device *clk)
716 {
717 	unsigned long ctrl;
718 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
719 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
720 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
721 	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
722 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
723 }
724 
725 static int arch_timer_set_next_event_virt(unsigned long evt,
726 					  struct clock_event_device *clk)
727 {
728 	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
729 	return 0;
730 }
731 
732 static int arch_timer_set_next_event_phys(unsigned long evt,
733 					  struct clock_event_device *clk)
734 {
735 	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
736 	return 0;
737 }
738 
739 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
740 					      struct clock_event_device *clk)
741 {
742 	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
743 	return 0;
744 }
745 
746 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
747 					      struct clock_event_device *clk)
748 {
749 	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
750 	return 0;
751 }
752 
753 static void __arch_timer_setup(unsigned type,
754 			       struct clock_event_device *clk)
755 {
756 	clk->features = CLOCK_EVT_FEAT_ONESHOT;
757 
758 	if (type == ARCH_TIMER_TYPE_CP15) {
759 		typeof(clk->set_next_event) sne;
760 
761 		arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
762 
763 		if (arch_timer_c3stop)
764 			clk->features |= CLOCK_EVT_FEAT_C3STOP;
765 		clk->name = "arch_sys_timer";
766 		clk->rating = 450;
767 		clk->cpumask = cpumask_of(smp_processor_id());
768 		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
769 		switch (arch_timer_uses_ppi) {
770 		case ARCH_TIMER_VIRT_PPI:
771 			clk->set_state_shutdown = arch_timer_shutdown_virt;
772 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
773 			sne = erratum_handler(set_next_event_virt);
774 			break;
775 		case ARCH_TIMER_PHYS_SECURE_PPI:
776 		case ARCH_TIMER_PHYS_NONSECURE_PPI:
777 		case ARCH_TIMER_HYP_PPI:
778 			clk->set_state_shutdown = arch_timer_shutdown_phys;
779 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
780 			sne = erratum_handler(set_next_event_phys);
781 			break;
782 		default:
783 			BUG();
784 		}
785 
786 		clk->set_next_event = sne;
787 	} else {
788 		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
789 		clk->name = "arch_mem_timer";
790 		clk->rating = 400;
791 		clk->cpumask = cpu_possible_mask;
792 		if (arch_timer_mem_use_virtual) {
793 			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
794 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
795 			clk->set_next_event =
796 				arch_timer_set_next_event_virt_mem;
797 		} else {
798 			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
799 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
800 			clk->set_next_event =
801 				arch_timer_set_next_event_phys_mem;
802 		}
803 	}
804 
805 	clk->set_state_shutdown(clk);
806 
807 	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
808 }
809 
810 static void arch_timer_evtstrm_enable(int divider)
811 {
812 	u32 cntkctl = arch_timer_get_cntkctl();
813 
814 	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
815 	/* Set the divider and enable virtual event stream */
816 	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
817 			| ARCH_TIMER_VIRT_EVT_EN;
818 	arch_timer_set_cntkctl(cntkctl);
819 	arch_timer_set_evtstrm_feature();
820 	cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
821 }
822 
823 static void arch_timer_configure_evtstream(void)
824 {
825 	int evt_stream_div, lsb;
826 
827 	/*
828 	 * As the event stream can at most be generated at half the frequency
829 	 * of the counter, use half the frequency when computing the divider.
830 	 */
831 	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
832 
833 	/*
834 	 * Find the closest power of two to the divisor. If the adjacent bit
835 	 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
836 	 */
837 	lsb = fls(evt_stream_div) - 1;
838 	if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
839 		lsb++;
840 
841 	/* enable event stream */
842 	arch_timer_evtstrm_enable(max(0, min(lsb, 15)));
843 }
844 
845 static void arch_counter_set_user_access(void)
846 {
847 	u32 cntkctl = arch_timer_get_cntkctl();
848 
849 	/* Disable user access to the timers and both counters */
850 	/* Also disable virtual event stream */
851 	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
852 			| ARCH_TIMER_USR_VT_ACCESS_EN
853 		        | ARCH_TIMER_USR_VCT_ACCESS_EN
854 			| ARCH_TIMER_VIRT_EVT_EN
855 			| ARCH_TIMER_USR_PCT_ACCESS_EN);
856 
857 	/*
858 	 * Enable user access to the virtual counter if it doesn't
859 	 * need to be workaround. The vdso may have been already
860 	 * disabled though.
861 	 */
862 	if (arch_timer_this_cpu_has_cntvct_wa())
863 		pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
864 	else
865 		cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
866 
867 	arch_timer_set_cntkctl(cntkctl);
868 }
869 
870 static bool arch_timer_has_nonsecure_ppi(void)
871 {
872 	return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
873 		arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
874 }
875 
876 static u32 check_ppi_trigger(int irq)
877 {
878 	u32 flags = irq_get_trigger_type(irq);
879 
880 	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
881 		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
882 		pr_warn("WARNING: Please fix your firmware\n");
883 		flags = IRQF_TRIGGER_LOW;
884 	}
885 
886 	return flags;
887 }
888 
889 static int arch_timer_starting_cpu(unsigned int cpu)
890 {
891 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
892 	u32 flags;
893 
894 	__arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
895 
896 	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
897 	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
898 
899 	if (arch_timer_has_nonsecure_ppi()) {
900 		flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
901 		enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
902 				  flags);
903 	}
904 
905 	arch_counter_set_user_access();
906 	if (evtstrm_enable)
907 		arch_timer_configure_evtstream();
908 
909 	return 0;
910 }
911 
912 static int validate_timer_rate(void)
913 {
914 	if (!arch_timer_rate)
915 		return -EINVAL;
916 
917 	/* Arch timer frequency < 1MHz can cause trouble */
918 	WARN_ON(arch_timer_rate < 1000000);
919 
920 	return 0;
921 }
922 
923 /*
924  * For historical reasons, when probing with DT we use whichever (non-zero)
925  * rate was probed first, and don't verify that others match. If the first node
926  * probed has a clock-frequency property, this overrides the HW register.
927  */
928 static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
929 {
930 	/* Who has more than one independent system counter? */
931 	if (arch_timer_rate)
932 		return;
933 
934 	if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
935 		arch_timer_rate = rate;
936 
937 	/* Check the timer frequency. */
938 	if (validate_timer_rate())
939 		pr_warn("frequency not available\n");
940 }
941 
942 static void arch_timer_banner(unsigned type)
943 {
944 	pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
945 		type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
946 		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
947 			" and " : "",
948 		type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
949 		(unsigned long)arch_timer_rate / 1000000,
950 		(unsigned long)(arch_timer_rate / 10000) % 100,
951 		type & ARCH_TIMER_TYPE_CP15 ?
952 			(arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
953 			"",
954 		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
955 		type & ARCH_TIMER_TYPE_MEM ?
956 			arch_timer_mem_use_virtual ? "virt" : "phys" :
957 			"");
958 }
959 
960 u32 arch_timer_get_rate(void)
961 {
962 	return arch_timer_rate;
963 }
964 
965 bool arch_timer_evtstrm_available(void)
966 {
967 	/*
968 	 * We might get called from a preemptible context. This is fine
969 	 * because availability of the event stream should be always the same
970 	 * for a preemptible context and context where we might resume a task.
971 	 */
972 	return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
973 }
974 
975 static u64 arch_counter_get_cntvct_mem(void)
976 {
977 	u32 vct_lo, vct_hi, tmp_hi;
978 
979 	do {
980 		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
981 		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
982 		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
983 	} while (vct_hi != tmp_hi);
984 
985 	return ((u64) vct_hi << 32) | vct_lo;
986 }
987 
988 static struct arch_timer_kvm_info arch_timer_kvm_info;
989 
990 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
991 {
992 	return &arch_timer_kvm_info;
993 }
994 
995 static void __init arch_counter_register(unsigned type)
996 {
997 	u64 start_count;
998 
999 	/* Register the CP15 based counter if we have one */
1000 	if (type & ARCH_TIMER_TYPE_CP15) {
1001 		u64 (*rd)(void);
1002 
1003 		if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1004 		    arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1005 			if (arch_timer_counter_has_wa())
1006 				rd = arch_counter_get_cntvct_stable;
1007 			else
1008 				rd = arch_counter_get_cntvct;
1009 		} else {
1010 			if (arch_timer_counter_has_wa())
1011 				rd = arch_counter_get_cntpct_stable;
1012 			else
1013 				rd = arch_counter_get_cntpct;
1014 		}
1015 
1016 		arch_timer_read_counter = rd;
1017 		clocksource_counter.vdso_clock_mode = vdso_default;
1018 	} else {
1019 		arch_timer_read_counter = arch_counter_get_cntvct_mem;
1020 	}
1021 
1022 	if (!arch_counter_suspend_stop)
1023 		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1024 	start_count = arch_timer_read_counter();
1025 	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1026 	cyclecounter.mult = clocksource_counter.mult;
1027 	cyclecounter.shift = clocksource_counter.shift;
1028 	timecounter_init(&arch_timer_kvm_info.timecounter,
1029 			 &cyclecounter, start_count);
1030 
1031 	/* 56 bits minimum, so we assume worst case rollover */
1032 	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
1033 }
1034 
1035 static void arch_timer_stop(struct clock_event_device *clk)
1036 {
1037 	pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1038 
1039 	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1040 	if (arch_timer_has_nonsecure_ppi())
1041 		disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1042 
1043 	clk->set_state_shutdown(clk);
1044 }
1045 
1046 static int arch_timer_dying_cpu(unsigned int cpu)
1047 {
1048 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1049 
1050 	cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1051 
1052 	arch_timer_stop(clk);
1053 	return 0;
1054 }
1055 
1056 #ifdef CONFIG_CPU_PM
1057 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1058 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1059 				    unsigned long action, void *hcpu)
1060 {
1061 	if (action == CPU_PM_ENTER) {
1062 		__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1063 
1064 		cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1065 	} else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1066 		arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1067 
1068 		if (arch_timer_have_evtstrm_feature())
1069 			cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1070 	}
1071 	return NOTIFY_OK;
1072 }
1073 
1074 static struct notifier_block arch_timer_cpu_pm_notifier = {
1075 	.notifier_call = arch_timer_cpu_pm_notify,
1076 };
1077 
1078 static int __init arch_timer_cpu_pm_init(void)
1079 {
1080 	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1081 }
1082 
1083 static void __init arch_timer_cpu_pm_deinit(void)
1084 {
1085 	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1086 }
1087 
1088 #else
1089 static int __init arch_timer_cpu_pm_init(void)
1090 {
1091 	return 0;
1092 }
1093 
1094 static void __init arch_timer_cpu_pm_deinit(void)
1095 {
1096 }
1097 #endif
1098 
1099 static int __init arch_timer_register(void)
1100 {
1101 	int err;
1102 	int ppi;
1103 
1104 	arch_timer_evt = alloc_percpu(struct clock_event_device);
1105 	if (!arch_timer_evt) {
1106 		err = -ENOMEM;
1107 		goto out;
1108 	}
1109 
1110 	ppi = arch_timer_ppi[arch_timer_uses_ppi];
1111 	switch (arch_timer_uses_ppi) {
1112 	case ARCH_TIMER_VIRT_PPI:
1113 		err = request_percpu_irq(ppi, arch_timer_handler_virt,
1114 					 "arch_timer", arch_timer_evt);
1115 		break;
1116 	case ARCH_TIMER_PHYS_SECURE_PPI:
1117 	case ARCH_TIMER_PHYS_NONSECURE_PPI:
1118 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1119 					 "arch_timer", arch_timer_evt);
1120 		if (!err && arch_timer_has_nonsecure_ppi()) {
1121 			ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1122 			err = request_percpu_irq(ppi, arch_timer_handler_phys,
1123 						 "arch_timer", arch_timer_evt);
1124 			if (err)
1125 				free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1126 						arch_timer_evt);
1127 		}
1128 		break;
1129 	case ARCH_TIMER_HYP_PPI:
1130 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1131 					 "arch_timer", arch_timer_evt);
1132 		break;
1133 	default:
1134 		BUG();
1135 	}
1136 
1137 	if (err) {
1138 		pr_err("can't register interrupt %d (%d)\n", ppi, err);
1139 		goto out_free;
1140 	}
1141 
1142 	err = arch_timer_cpu_pm_init();
1143 	if (err)
1144 		goto out_unreg_notify;
1145 
1146 	/* Register and immediately configure the timer on the boot CPU */
1147 	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1148 				"clockevents/arm/arch_timer:starting",
1149 				arch_timer_starting_cpu, arch_timer_dying_cpu);
1150 	if (err)
1151 		goto out_unreg_cpupm;
1152 	return 0;
1153 
1154 out_unreg_cpupm:
1155 	arch_timer_cpu_pm_deinit();
1156 
1157 out_unreg_notify:
1158 	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1159 	if (arch_timer_has_nonsecure_ppi())
1160 		free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1161 				arch_timer_evt);
1162 
1163 out_free:
1164 	free_percpu(arch_timer_evt);
1165 out:
1166 	return err;
1167 }
1168 
1169 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1170 {
1171 	int ret;
1172 	irq_handler_t func;
1173 	struct arch_timer *t;
1174 
1175 	t = kzalloc(sizeof(*t), GFP_KERNEL);
1176 	if (!t)
1177 		return -ENOMEM;
1178 
1179 	t->base = base;
1180 	t->evt.irq = irq;
1181 	__arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1182 
1183 	if (arch_timer_mem_use_virtual)
1184 		func = arch_timer_handler_virt_mem;
1185 	else
1186 		func = arch_timer_handler_phys_mem;
1187 
1188 	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1189 	if (ret) {
1190 		pr_err("Failed to request mem timer irq\n");
1191 		kfree(t);
1192 	}
1193 
1194 	return ret;
1195 }
1196 
1197 static const struct of_device_id arch_timer_of_match[] __initconst = {
1198 	{ .compatible   = "arm,armv7-timer",    },
1199 	{ .compatible   = "arm,armv8-timer",    },
1200 	{},
1201 };
1202 
1203 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1204 	{ .compatible   = "arm,armv7-timer-mem", },
1205 	{},
1206 };
1207 
1208 static bool __init arch_timer_needs_of_probing(void)
1209 {
1210 	struct device_node *dn;
1211 	bool needs_probing = false;
1212 	unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1213 
1214 	/* We have two timers, and both device-tree nodes are probed. */
1215 	if ((arch_timers_present & mask) == mask)
1216 		return false;
1217 
1218 	/*
1219 	 * Only one type of timer is probed,
1220 	 * check if we have another type of timer node in device-tree.
1221 	 */
1222 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1223 		dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1224 	else
1225 		dn = of_find_matching_node(NULL, arch_timer_of_match);
1226 
1227 	if (dn && of_device_is_available(dn))
1228 		needs_probing = true;
1229 
1230 	of_node_put(dn);
1231 
1232 	return needs_probing;
1233 }
1234 
1235 static int __init arch_timer_common_init(void)
1236 {
1237 	arch_timer_banner(arch_timers_present);
1238 	arch_counter_register(arch_timers_present);
1239 	return arch_timer_arch_init();
1240 }
1241 
1242 /**
1243  * arch_timer_select_ppi() - Select suitable PPI for the current system.
1244  *
1245  * If HYP mode is available, we know that the physical timer
1246  * has been configured to be accessible from PL1. Use it, so
1247  * that a guest can use the virtual timer instead.
1248  *
1249  * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1250  * accesses to CNTP_*_EL1 registers are silently redirected to
1251  * their CNTHP_*_EL2 counterparts, and use a different PPI
1252  * number.
1253  *
1254  * If no interrupt provided for virtual timer, we'll have to
1255  * stick to the physical timer. It'd better be accessible...
1256  * For arm64 we never use the secure interrupt.
1257  *
1258  * Return: a suitable PPI type for the current system.
1259  */
1260 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1261 {
1262 	if (is_kernel_in_hyp_mode())
1263 		return ARCH_TIMER_HYP_PPI;
1264 
1265 	if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1266 		return ARCH_TIMER_VIRT_PPI;
1267 
1268 	if (IS_ENABLED(CONFIG_ARM64))
1269 		return ARCH_TIMER_PHYS_NONSECURE_PPI;
1270 
1271 	return ARCH_TIMER_PHYS_SECURE_PPI;
1272 }
1273 
1274 static void __init arch_timer_populate_kvm_info(void)
1275 {
1276 	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1277 	if (is_kernel_in_hyp_mode())
1278 		arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1279 }
1280 
1281 static int __init arch_timer_of_init(struct device_node *np)
1282 {
1283 	int i, ret;
1284 	u32 rate;
1285 
1286 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1287 		pr_warn("multiple nodes in dt, skipping\n");
1288 		return 0;
1289 	}
1290 
1291 	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1292 	for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1293 		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
1294 
1295 	arch_timer_populate_kvm_info();
1296 
1297 	rate = arch_timer_get_cntfrq();
1298 	arch_timer_of_configure_rate(rate, np);
1299 
1300 	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1301 
1302 	/* Check for globally applicable workarounds */
1303 	arch_timer_check_ool_workaround(ate_match_dt, np);
1304 
1305 	/*
1306 	 * If we cannot rely on firmware initializing the timer registers then
1307 	 * we should use the physical timers instead.
1308 	 */
1309 	if (IS_ENABLED(CONFIG_ARM) &&
1310 	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1311 		arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1312 	else
1313 		arch_timer_uses_ppi = arch_timer_select_ppi();
1314 
1315 	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1316 		pr_err("No interrupt available, giving up\n");
1317 		return -EINVAL;
1318 	}
1319 
1320 	/* On some systems, the counter stops ticking when in suspend. */
1321 	arch_counter_suspend_stop = of_property_read_bool(np,
1322 							 "arm,no-tick-in-suspend");
1323 
1324 	ret = arch_timer_register();
1325 	if (ret)
1326 		return ret;
1327 
1328 	if (arch_timer_needs_of_probing())
1329 		return 0;
1330 
1331 	return arch_timer_common_init();
1332 }
1333 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1334 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1335 
1336 static u32 __init
1337 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1338 {
1339 	void __iomem *base;
1340 	u32 rate;
1341 
1342 	base = ioremap(frame->cntbase, frame->size);
1343 	if (!base) {
1344 		pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1345 		return 0;
1346 	}
1347 
1348 	rate = readl_relaxed(base + CNTFRQ);
1349 
1350 	iounmap(base);
1351 
1352 	return rate;
1353 }
1354 
1355 static struct arch_timer_mem_frame * __init
1356 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1357 {
1358 	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1359 	void __iomem *cntctlbase;
1360 	u32 cnttidr;
1361 	int i;
1362 
1363 	cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1364 	if (!cntctlbase) {
1365 		pr_err("Can't map CNTCTLBase @ %pa\n",
1366 			&timer_mem->cntctlbase);
1367 		return NULL;
1368 	}
1369 
1370 	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1371 
1372 	/*
1373 	 * Try to find a virtual capable frame. Otherwise fall back to a
1374 	 * physical capable frame.
1375 	 */
1376 	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1377 		u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1378 			     CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1379 
1380 		frame = &timer_mem->frame[i];
1381 		if (!frame->valid)
1382 			continue;
1383 
1384 		/* Try enabling everything, and see what sticks */
1385 		writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1386 		cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1387 
1388 		if ((cnttidr & CNTTIDR_VIRT(i)) &&
1389 		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1390 			best_frame = frame;
1391 			arch_timer_mem_use_virtual = true;
1392 			break;
1393 		}
1394 
1395 		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1396 			continue;
1397 
1398 		best_frame = frame;
1399 	}
1400 
1401 	iounmap(cntctlbase);
1402 
1403 	return best_frame;
1404 }
1405 
1406 static int __init
1407 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1408 {
1409 	void __iomem *base;
1410 	int ret, irq = 0;
1411 
1412 	if (arch_timer_mem_use_virtual)
1413 		irq = frame->virt_irq;
1414 	else
1415 		irq = frame->phys_irq;
1416 
1417 	if (!irq) {
1418 		pr_err("Frame missing %s irq.\n",
1419 		       arch_timer_mem_use_virtual ? "virt" : "phys");
1420 		return -EINVAL;
1421 	}
1422 
1423 	if (!request_mem_region(frame->cntbase, frame->size,
1424 				"arch_mem_timer"))
1425 		return -EBUSY;
1426 
1427 	base = ioremap(frame->cntbase, frame->size);
1428 	if (!base) {
1429 		pr_err("Can't map frame's registers\n");
1430 		return -ENXIO;
1431 	}
1432 
1433 	ret = arch_timer_mem_register(base, irq);
1434 	if (ret) {
1435 		iounmap(base);
1436 		return ret;
1437 	}
1438 
1439 	arch_counter_base = base;
1440 	arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1441 
1442 	return 0;
1443 }
1444 
1445 static int __init arch_timer_mem_of_init(struct device_node *np)
1446 {
1447 	struct arch_timer_mem *timer_mem;
1448 	struct arch_timer_mem_frame *frame;
1449 	struct device_node *frame_node;
1450 	struct resource res;
1451 	int ret = -EINVAL;
1452 	u32 rate;
1453 
1454 	timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1455 	if (!timer_mem)
1456 		return -ENOMEM;
1457 
1458 	if (of_address_to_resource(np, 0, &res))
1459 		goto out;
1460 	timer_mem->cntctlbase = res.start;
1461 	timer_mem->size = resource_size(&res);
1462 
1463 	for_each_available_child_of_node(np, frame_node) {
1464 		u32 n;
1465 		struct arch_timer_mem_frame *frame;
1466 
1467 		if (of_property_read_u32(frame_node, "frame-number", &n)) {
1468 			pr_err(FW_BUG "Missing frame-number.\n");
1469 			of_node_put(frame_node);
1470 			goto out;
1471 		}
1472 		if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1473 			pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1474 			       ARCH_TIMER_MEM_MAX_FRAMES - 1);
1475 			of_node_put(frame_node);
1476 			goto out;
1477 		}
1478 		frame = &timer_mem->frame[n];
1479 
1480 		if (frame->valid) {
1481 			pr_err(FW_BUG "Duplicated frame-number.\n");
1482 			of_node_put(frame_node);
1483 			goto out;
1484 		}
1485 
1486 		if (of_address_to_resource(frame_node, 0, &res)) {
1487 			of_node_put(frame_node);
1488 			goto out;
1489 		}
1490 		frame->cntbase = res.start;
1491 		frame->size = resource_size(&res);
1492 
1493 		frame->virt_irq = irq_of_parse_and_map(frame_node,
1494 						       ARCH_TIMER_VIRT_SPI);
1495 		frame->phys_irq = irq_of_parse_and_map(frame_node,
1496 						       ARCH_TIMER_PHYS_SPI);
1497 
1498 		frame->valid = true;
1499 	}
1500 
1501 	frame = arch_timer_mem_find_best_frame(timer_mem);
1502 	if (!frame) {
1503 		pr_err("Unable to find a suitable frame in timer @ %pa\n",
1504 			&timer_mem->cntctlbase);
1505 		ret = -EINVAL;
1506 		goto out;
1507 	}
1508 
1509 	rate = arch_timer_mem_frame_get_cntfrq(frame);
1510 	arch_timer_of_configure_rate(rate, np);
1511 
1512 	ret = arch_timer_mem_frame_register(frame);
1513 	if (!ret && !arch_timer_needs_of_probing())
1514 		ret = arch_timer_common_init();
1515 out:
1516 	kfree(timer_mem);
1517 	return ret;
1518 }
1519 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1520 		       arch_timer_mem_of_init);
1521 
1522 #ifdef CONFIG_ACPI_GTDT
1523 static int __init
1524 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1525 {
1526 	struct arch_timer_mem_frame *frame;
1527 	u32 rate;
1528 	int i;
1529 
1530 	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1531 		frame = &timer_mem->frame[i];
1532 
1533 		if (!frame->valid)
1534 			continue;
1535 
1536 		rate = arch_timer_mem_frame_get_cntfrq(frame);
1537 		if (rate == arch_timer_rate)
1538 			continue;
1539 
1540 		pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1541 			&frame->cntbase,
1542 			(unsigned long)rate, (unsigned long)arch_timer_rate);
1543 
1544 		return -EINVAL;
1545 	}
1546 
1547 	return 0;
1548 }
1549 
1550 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1551 {
1552 	struct arch_timer_mem *timers, *timer;
1553 	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1554 	int timer_count, i, ret = 0;
1555 
1556 	timers = kcalloc(platform_timer_count, sizeof(*timers),
1557 			    GFP_KERNEL);
1558 	if (!timers)
1559 		return -ENOMEM;
1560 
1561 	ret = acpi_arch_timer_mem_init(timers, &timer_count);
1562 	if (ret || !timer_count)
1563 		goto out;
1564 
1565 	/*
1566 	 * While unlikely, it's theoretically possible that none of the frames
1567 	 * in a timer expose the combination of feature we want.
1568 	 */
1569 	for (i = 0; i < timer_count; i++) {
1570 		timer = &timers[i];
1571 
1572 		frame = arch_timer_mem_find_best_frame(timer);
1573 		if (!best_frame)
1574 			best_frame = frame;
1575 
1576 		ret = arch_timer_mem_verify_cntfrq(timer);
1577 		if (ret) {
1578 			pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1579 			goto out;
1580 		}
1581 
1582 		if (!best_frame) /* implies !frame */
1583 			/*
1584 			 * Only complain about missing suitable frames if we
1585 			 * haven't already found one in a previous iteration.
1586 			 */
1587 			pr_err("Unable to find a suitable frame in timer @ %pa\n",
1588 				&timer->cntctlbase);
1589 	}
1590 
1591 	if (best_frame)
1592 		ret = arch_timer_mem_frame_register(best_frame);
1593 out:
1594 	kfree(timers);
1595 	return ret;
1596 }
1597 
1598 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1599 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1600 {
1601 	int ret, platform_timer_count;
1602 
1603 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1604 		pr_warn("already initialized, skipping\n");
1605 		return -EINVAL;
1606 	}
1607 
1608 	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1609 
1610 	ret = acpi_gtdt_init(table, &platform_timer_count);
1611 	if (ret)
1612 		return ret;
1613 
1614 	arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1615 		acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1616 
1617 	arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1618 		acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1619 
1620 	arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1621 		acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1622 
1623 	arch_timer_populate_kvm_info();
1624 
1625 	/*
1626 	 * When probing via ACPI, we have no mechanism to override the sysreg
1627 	 * CNTFRQ value. This *must* be correct.
1628 	 */
1629 	arch_timer_rate = arch_timer_get_cntfrq();
1630 	ret = validate_timer_rate();
1631 	if (ret) {
1632 		pr_err(FW_BUG "frequency not available.\n");
1633 		return ret;
1634 	}
1635 
1636 	arch_timer_uses_ppi = arch_timer_select_ppi();
1637 	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1638 		pr_err("No interrupt available, giving up\n");
1639 		return -EINVAL;
1640 	}
1641 
1642 	/* Always-on capability */
1643 	arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1644 
1645 	/* Check for globally applicable workarounds */
1646 	arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1647 
1648 	ret = arch_timer_register();
1649 	if (ret)
1650 		return ret;
1651 
1652 	if (platform_timer_count &&
1653 	    arch_timer_mem_acpi_init(platform_timer_count))
1654 		pr_err("Failed to initialize memory-mapped timer.\n");
1655 
1656 	return arch_timer_common_init();
1657 }
1658 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1659 #endif
1660