xref: /openbmc/linux/drivers/clocksource/arm_arch_timer.c (revision a8f4fcdd8ba7d191c29ae87a2315906fe90368d6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/clocksource/arm_arch_timer.c
4  *
5  *  Copyright (C) 2011 ARM Ltd.
6  *  All Rights Reserved
7  */
8 
9 #define pr_fmt(fmt) 	"arch_timer: " fmt
10 
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/clocksource_ids.h>
20 #include <linux/interrupt.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_address.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/sched/clock.h>
26 #include <linux/sched_clock.h>
27 #include <linux/acpi.h>
28 #include <linux/arm-smccc.h>
29 #include <linux/ptp_kvm.h>
30 
31 #include <asm/arch_timer.h>
32 #include <asm/virt.h>
33 
34 #include <clocksource/arm_arch_timer.h>
35 
36 #define CNTTIDR		0x08
37 #define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
38 
39 #define CNTACR(n)	(0x40 + ((n) * 4))
40 #define CNTACR_RPCT	BIT(0)
41 #define CNTACR_RVCT	BIT(1)
42 #define CNTACR_RFRQ	BIT(2)
43 #define CNTACR_RVOFF	BIT(3)
44 #define CNTACR_RWVT	BIT(4)
45 #define CNTACR_RWPT	BIT(5)
46 
47 #define CNTVCT_LO	0x00
48 #define CNTPCT_LO	0x08
49 #define CNTFRQ		0x10
50 #define CNTP_CVAL_LO	0x20
51 #define CNTP_CTL	0x2c
52 #define CNTV_CVAL_LO	0x30
53 #define CNTV_CTL	0x3c
54 
55 /*
56  * The minimum amount of time a generic counter is guaranteed to not roll over
57  * (40 years)
58  */
59 #define MIN_ROLLOVER_SECS	(40ULL * 365 * 24 * 3600)
60 
61 static unsigned arch_timers_present __initdata;
62 
63 struct arch_timer {
64 	void __iomem *base;
65 	struct clock_event_device evt;
66 };
67 
68 static struct arch_timer *arch_timer_mem __ro_after_init;
69 
70 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
71 
72 static u32 arch_timer_rate __ro_after_init;
73 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
74 
75 static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
76 	[ARCH_TIMER_PHYS_SECURE_PPI]	= "sec-phys",
77 	[ARCH_TIMER_PHYS_NONSECURE_PPI]	= "phys",
78 	[ARCH_TIMER_VIRT_PPI]		= "virt",
79 	[ARCH_TIMER_HYP_PPI]		= "hyp-phys",
80 	[ARCH_TIMER_HYP_VIRT_PPI]	= "hyp-virt",
81 };
82 
83 static struct clock_event_device __percpu *arch_timer_evt;
84 
85 static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
86 static bool arch_timer_c3stop __ro_after_init;
87 static bool arch_timer_mem_use_virtual __ro_after_init;
88 static bool arch_counter_suspend_stop __ro_after_init;
89 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
90 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
91 #else
92 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
93 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
94 
95 static cpumask_t evtstrm_available = CPU_MASK_NONE;
96 static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
97 
98 static int __init early_evtstrm_cfg(char *buf)
99 {
100 	return strtobool(buf, &evtstrm_enable);
101 }
102 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
103 
104 /*
105  * Makes an educated guess at a valid counter width based on the Generic Timer
106  * specification. Of note:
107  *   1) the system counter is at least 56 bits wide
108  *   2) a roll-over time of not less than 40 years
109  *
110  * See 'ARM DDI 0487G.a D11.1.2 ("The system counter")' for more details.
111  */
112 static int arch_counter_get_width(void)
113 {
114 	u64 min_cycles = MIN_ROLLOVER_SECS * arch_timer_rate;
115 
116 	/* guarantee the returned width is within the valid range */
117 	return clamp_val(ilog2(min_cycles - 1) + 1, 56, 64);
118 }
119 
120 /*
121  * Architected system timer support.
122  */
123 
124 static __always_inline
125 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u64 val,
126 			  struct clock_event_device *clk)
127 {
128 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
129 		struct arch_timer *timer = to_arch_timer(clk);
130 		switch (reg) {
131 		case ARCH_TIMER_REG_CTRL:
132 			writel_relaxed((u32)val, timer->base + CNTP_CTL);
133 			break;
134 		case ARCH_TIMER_REG_CVAL:
135 			/*
136 			 * Not guaranteed to be atomic, so the timer
137 			 * must be disabled at this point.
138 			 */
139 			writeq_relaxed(val, timer->base + CNTP_CVAL_LO);
140 			break;
141 		default:
142 			BUILD_BUG();
143 		}
144 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
145 		struct arch_timer *timer = to_arch_timer(clk);
146 		switch (reg) {
147 		case ARCH_TIMER_REG_CTRL:
148 			writel_relaxed((u32)val, timer->base + CNTV_CTL);
149 			break;
150 		case ARCH_TIMER_REG_CVAL:
151 			/* Same restriction as above */
152 			writeq_relaxed(val, timer->base + CNTV_CVAL_LO);
153 			break;
154 		default:
155 			BUILD_BUG();
156 		}
157 	} else {
158 		arch_timer_reg_write_cp15(access, reg, val);
159 	}
160 }
161 
162 static __always_inline
163 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
164 			struct clock_event_device *clk)
165 {
166 	u32 val;
167 
168 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
169 		struct arch_timer *timer = to_arch_timer(clk);
170 		switch (reg) {
171 		case ARCH_TIMER_REG_CTRL:
172 			val = readl_relaxed(timer->base + CNTP_CTL);
173 			break;
174 		default:
175 			BUILD_BUG();
176 		}
177 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
178 		struct arch_timer *timer = to_arch_timer(clk);
179 		switch (reg) {
180 		case ARCH_TIMER_REG_CTRL:
181 			val = readl_relaxed(timer->base + CNTV_CTL);
182 			break;
183 		default:
184 			BUILD_BUG();
185 		}
186 	} else {
187 		val = arch_timer_reg_read_cp15(access, reg);
188 	}
189 
190 	return val;
191 }
192 
193 static notrace u64 arch_counter_get_cntpct_stable(void)
194 {
195 	return __arch_counter_get_cntpct_stable();
196 }
197 
198 static notrace u64 arch_counter_get_cntpct(void)
199 {
200 	return __arch_counter_get_cntpct();
201 }
202 
203 static notrace u64 arch_counter_get_cntvct_stable(void)
204 {
205 	return __arch_counter_get_cntvct_stable();
206 }
207 
208 static notrace u64 arch_counter_get_cntvct(void)
209 {
210 	return __arch_counter_get_cntvct();
211 }
212 
213 /*
214  * Default to cp15 based access because arm64 uses this function for
215  * sched_clock() before DT is probed and the cp15 method is guaranteed
216  * to exist on arm64. arm doesn't use this before DT is probed so even
217  * if we don't have the cp15 accessors we won't have a problem.
218  */
219 u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
220 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
221 
222 static u64 arch_counter_read(struct clocksource *cs)
223 {
224 	return arch_timer_read_counter();
225 }
226 
227 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
228 {
229 	return arch_timer_read_counter();
230 }
231 
232 static struct clocksource clocksource_counter = {
233 	.name	= "arch_sys_counter",
234 	.id	= CSID_ARM_ARCH_COUNTER,
235 	.rating	= 400,
236 	.read	= arch_counter_read,
237 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
238 };
239 
240 static struct cyclecounter cyclecounter __ro_after_init = {
241 	.read	= arch_counter_read_cc,
242 };
243 
244 struct ate_acpi_oem_info {
245 	char oem_id[ACPI_OEM_ID_SIZE + 1];
246 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
247 	u32 oem_revision;
248 };
249 
250 #ifdef CONFIG_FSL_ERRATUM_A008585
251 /*
252  * The number of retries is an arbitrary value well beyond the highest number
253  * of iterations the loop has been observed to take.
254  */
255 #define __fsl_a008585_read_reg(reg) ({			\
256 	u64 _old, _new;					\
257 	int _retries = 200;				\
258 							\
259 	do {						\
260 		_old = read_sysreg(reg);		\
261 		_new = read_sysreg(reg);		\
262 		_retries--;				\
263 	} while (unlikely(_old != _new) && _retries);	\
264 							\
265 	WARN_ON_ONCE(!_retries);			\
266 	_new;						\
267 })
268 
269 static u64 notrace fsl_a008585_read_cntpct_el0(void)
270 {
271 	return __fsl_a008585_read_reg(cntpct_el0);
272 }
273 
274 static u64 notrace fsl_a008585_read_cntvct_el0(void)
275 {
276 	return __fsl_a008585_read_reg(cntvct_el0);
277 }
278 #endif
279 
280 #ifdef CONFIG_HISILICON_ERRATUM_161010101
281 /*
282  * Verify whether the value of the second read is larger than the first by
283  * less than 32 is the only way to confirm the value is correct, so clear the
284  * lower 5 bits to check whether the difference is greater than 32 or not.
285  * Theoretically the erratum should not occur more than twice in succession
286  * when reading the system counter, but it is possible that some interrupts
287  * may lead to more than twice read errors, triggering the warning, so setting
288  * the number of retries far beyond the number of iterations the loop has been
289  * observed to take.
290  */
291 #define __hisi_161010101_read_reg(reg) ({				\
292 	u64 _old, _new;						\
293 	int _retries = 50;					\
294 								\
295 	do {							\
296 		_old = read_sysreg(reg);			\
297 		_new = read_sysreg(reg);			\
298 		_retries--;					\
299 	} while (unlikely((_new - _old) >> 5) && _retries);	\
300 								\
301 	WARN_ON_ONCE(!_retries);				\
302 	_new;							\
303 })
304 
305 static u64 notrace hisi_161010101_read_cntpct_el0(void)
306 {
307 	return __hisi_161010101_read_reg(cntpct_el0);
308 }
309 
310 static u64 notrace hisi_161010101_read_cntvct_el0(void)
311 {
312 	return __hisi_161010101_read_reg(cntvct_el0);
313 }
314 
315 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
316 	/*
317 	 * Note that trailing spaces are required to properly match
318 	 * the OEM table information.
319 	 */
320 	{
321 		.oem_id		= "HISI  ",
322 		.oem_table_id	= "HIP05   ",
323 		.oem_revision	= 0,
324 	},
325 	{
326 		.oem_id		= "HISI  ",
327 		.oem_table_id	= "HIP06   ",
328 		.oem_revision	= 0,
329 	},
330 	{
331 		.oem_id		= "HISI  ",
332 		.oem_table_id	= "HIP07   ",
333 		.oem_revision	= 0,
334 	},
335 	{ /* Sentinel indicating the end of the OEM array */ },
336 };
337 #endif
338 
339 #ifdef CONFIG_ARM64_ERRATUM_858921
340 static u64 notrace arm64_858921_read_cntpct_el0(void)
341 {
342 	u64 old, new;
343 
344 	old = read_sysreg(cntpct_el0);
345 	new = read_sysreg(cntpct_el0);
346 	return (((old ^ new) >> 32) & 1) ? old : new;
347 }
348 
349 static u64 notrace arm64_858921_read_cntvct_el0(void)
350 {
351 	u64 old, new;
352 
353 	old = read_sysreg(cntvct_el0);
354 	new = read_sysreg(cntvct_el0);
355 	return (((old ^ new) >> 32) & 1) ? old : new;
356 }
357 #endif
358 
359 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
360 /*
361  * The low bits of the counter registers are indeterminate while bit 10 or
362  * greater is rolling over. Since the counter value can jump both backward
363  * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
364  * with all ones or all zeros in the low bits. Bound the loop by the maximum
365  * number of CPU cycles in 3 consecutive 24 MHz counter periods.
366  */
367 #define __sun50i_a64_read_reg(reg) ({					\
368 	u64 _val;							\
369 	int _retries = 150;						\
370 									\
371 	do {								\
372 		_val = read_sysreg(reg);				\
373 		_retries--;						\
374 	} while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries);	\
375 									\
376 	WARN_ON_ONCE(!_retries);					\
377 	_val;								\
378 })
379 
380 static u64 notrace sun50i_a64_read_cntpct_el0(void)
381 {
382 	return __sun50i_a64_read_reg(cntpct_el0);
383 }
384 
385 static u64 notrace sun50i_a64_read_cntvct_el0(void)
386 {
387 	return __sun50i_a64_read_reg(cntvct_el0);
388 }
389 #endif
390 
391 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
392 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
393 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
394 
395 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
396 
397 static void erratum_set_next_event_generic(const int access, unsigned long evt,
398 						struct clock_event_device *clk)
399 {
400 	unsigned long ctrl;
401 	u64 cval;
402 
403 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
404 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
405 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
406 
407 	if (access == ARCH_TIMER_PHYS_ACCESS) {
408 		cval = evt + arch_counter_get_cntpct_stable();
409 		write_sysreg(cval, cntp_cval_el0);
410 	} else {
411 		cval = evt + arch_counter_get_cntvct_stable();
412 		write_sysreg(cval, cntv_cval_el0);
413 	}
414 
415 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
416 }
417 
418 static __maybe_unused int erratum_set_next_event_virt(unsigned long evt,
419 					    struct clock_event_device *clk)
420 {
421 	erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
422 	return 0;
423 }
424 
425 static __maybe_unused int erratum_set_next_event_phys(unsigned long evt,
426 					    struct clock_event_device *clk)
427 {
428 	erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
429 	return 0;
430 }
431 
432 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
433 #ifdef CONFIG_FSL_ERRATUM_A008585
434 	{
435 		.match_type = ate_match_dt,
436 		.id = "fsl,erratum-a008585",
437 		.desc = "Freescale erratum a005858",
438 		.read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
439 		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
440 		.set_next_event_phys = erratum_set_next_event_phys,
441 		.set_next_event_virt = erratum_set_next_event_virt,
442 	},
443 #endif
444 #ifdef CONFIG_HISILICON_ERRATUM_161010101
445 	{
446 		.match_type = ate_match_dt,
447 		.id = "hisilicon,erratum-161010101",
448 		.desc = "HiSilicon erratum 161010101",
449 		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
450 		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
451 		.set_next_event_phys = erratum_set_next_event_phys,
452 		.set_next_event_virt = erratum_set_next_event_virt,
453 	},
454 	{
455 		.match_type = ate_match_acpi_oem_info,
456 		.id = hisi_161010101_oem_info,
457 		.desc = "HiSilicon erratum 161010101",
458 		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
459 		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
460 		.set_next_event_phys = erratum_set_next_event_phys,
461 		.set_next_event_virt = erratum_set_next_event_virt,
462 	},
463 #endif
464 #ifdef CONFIG_ARM64_ERRATUM_858921
465 	{
466 		.match_type = ate_match_local_cap_id,
467 		.id = (void *)ARM64_WORKAROUND_858921,
468 		.desc = "ARM erratum 858921",
469 		.read_cntpct_el0 = arm64_858921_read_cntpct_el0,
470 		.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
471 	},
472 #endif
473 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
474 	{
475 		.match_type = ate_match_dt,
476 		.id = "allwinner,erratum-unknown1",
477 		.desc = "Allwinner erratum UNKNOWN1",
478 		.read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
479 		.read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
480 		.set_next_event_phys = erratum_set_next_event_phys,
481 		.set_next_event_virt = erratum_set_next_event_virt,
482 	},
483 #endif
484 #ifdef CONFIG_ARM64_ERRATUM_1418040
485 	{
486 		.match_type = ate_match_local_cap_id,
487 		.id = (void *)ARM64_WORKAROUND_1418040,
488 		.desc = "ARM erratum 1418040",
489 		.disable_compat_vdso = true,
490 	},
491 #endif
492 };
493 
494 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
495 			       const void *);
496 
497 static
498 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
499 				 const void *arg)
500 {
501 	const struct device_node *np = arg;
502 
503 	return of_property_read_bool(np, wa->id);
504 }
505 
506 static
507 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
508 					const void *arg)
509 {
510 	return this_cpu_has_cap((uintptr_t)wa->id);
511 }
512 
513 
514 static
515 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
516 				       const void *arg)
517 {
518 	static const struct ate_acpi_oem_info empty_oem_info = {};
519 	const struct ate_acpi_oem_info *info = wa->id;
520 	const struct acpi_table_header *table = arg;
521 
522 	/* Iterate over the ACPI OEM info array, looking for a match */
523 	while (memcmp(info, &empty_oem_info, sizeof(*info))) {
524 		if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
525 		    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
526 		    info->oem_revision == table->oem_revision)
527 			return true;
528 
529 		info++;
530 	}
531 
532 	return false;
533 }
534 
535 static const struct arch_timer_erratum_workaround *
536 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
537 			  ate_match_fn_t match_fn,
538 			  void *arg)
539 {
540 	int i;
541 
542 	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
543 		if (ool_workarounds[i].match_type != type)
544 			continue;
545 
546 		if (match_fn(&ool_workarounds[i], arg))
547 			return &ool_workarounds[i];
548 	}
549 
550 	return NULL;
551 }
552 
553 static
554 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
555 				  bool local)
556 {
557 	int i;
558 
559 	if (local) {
560 		__this_cpu_write(timer_unstable_counter_workaround, wa);
561 	} else {
562 		for_each_possible_cpu(i)
563 			per_cpu(timer_unstable_counter_workaround, i) = wa;
564 	}
565 
566 	if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
567 		atomic_set(&timer_unstable_counter_workaround_in_use, 1);
568 
569 	/*
570 	 * Don't use the vdso fastpath if errata require using the
571 	 * out-of-line counter accessor. We may change our mind pretty
572 	 * late in the game (with a per-CPU erratum, for example), so
573 	 * change both the default value and the vdso itself.
574 	 */
575 	if (wa->read_cntvct_el0) {
576 		clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
577 		vdso_default = VDSO_CLOCKMODE_NONE;
578 	} else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
579 		vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
580 		clocksource_counter.vdso_clock_mode = vdso_default;
581 	}
582 }
583 
584 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
585 					    void *arg)
586 {
587 	const struct arch_timer_erratum_workaround *wa, *__wa;
588 	ate_match_fn_t match_fn = NULL;
589 	bool local = false;
590 
591 	switch (type) {
592 	case ate_match_dt:
593 		match_fn = arch_timer_check_dt_erratum;
594 		break;
595 	case ate_match_local_cap_id:
596 		match_fn = arch_timer_check_local_cap_erratum;
597 		local = true;
598 		break;
599 	case ate_match_acpi_oem_info:
600 		match_fn = arch_timer_check_acpi_oem_erratum;
601 		break;
602 	default:
603 		WARN_ON(1);
604 		return;
605 	}
606 
607 	wa = arch_timer_iterate_errata(type, match_fn, arg);
608 	if (!wa)
609 		return;
610 
611 	__wa = __this_cpu_read(timer_unstable_counter_workaround);
612 	if (__wa && wa != __wa)
613 		pr_warn("Can't enable workaround for %s (clashes with %s\n)",
614 			wa->desc, __wa->desc);
615 
616 	if (__wa)
617 		return;
618 
619 	arch_timer_enable_workaround(wa, local);
620 	pr_info("Enabling %s workaround for %s\n",
621 		local ? "local" : "global", wa->desc);
622 }
623 
624 static bool arch_timer_this_cpu_has_cntvct_wa(void)
625 {
626 	return has_erratum_handler(read_cntvct_el0);
627 }
628 
629 static bool arch_timer_counter_has_wa(void)
630 {
631 	return atomic_read(&timer_unstable_counter_workaround_in_use);
632 }
633 #else
634 #define arch_timer_check_ool_workaround(t,a)		do { } while(0)
635 #define arch_timer_this_cpu_has_cntvct_wa()		({false;})
636 #define arch_timer_counter_has_wa()			({false;})
637 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
638 
639 static __always_inline irqreturn_t timer_handler(const int access,
640 					struct clock_event_device *evt)
641 {
642 	unsigned long ctrl;
643 
644 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
645 	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
646 		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
647 		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
648 		evt->event_handler(evt);
649 		return IRQ_HANDLED;
650 	}
651 
652 	return IRQ_NONE;
653 }
654 
655 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
656 {
657 	struct clock_event_device *evt = dev_id;
658 
659 	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
660 }
661 
662 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
663 {
664 	struct clock_event_device *evt = dev_id;
665 
666 	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
667 }
668 
669 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
670 {
671 	struct clock_event_device *evt = dev_id;
672 
673 	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
674 }
675 
676 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
677 {
678 	struct clock_event_device *evt = dev_id;
679 
680 	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
681 }
682 
683 static __always_inline int timer_shutdown(const int access,
684 					  struct clock_event_device *clk)
685 {
686 	unsigned long ctrl;
687 
688 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
689 	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
690 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
691 
692 	return 0;
693 }
694 
695 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
696 {
697 	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
698 }
699 
700 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
701 {
702 	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
703 }
704 
705 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
706 {
707 	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
708 }
709 
710 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
711 {
712 	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
713 }
714 
715 static __always_inline void set_next_event(const int access, unsigned long evt,
716 					   struct clock_event_device *clk)
717 {
718 	unsigned long ctrl;
719 	u64 cnt;
720 
721 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
722 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
723 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
724 
725 	if (access == ARCH_TIMER_PHYS_ACCESS)
726 		cnt = __arch_counter_get_cntpct();
727 	else
728 		cnt = __arch_counter_get_cntvct();
729 
730 	arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
731 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
732 }
733 
734 static int arch_timer_set_next_event_virt(unsigned long evt,
735 					  struct clock_event_device *clk)
736 {
737 	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
738 	return 0;
739 }
740 
741 static int arch_timer_set_next_event_phys(unsigned long evt,
742 					  struct clock_event_device *clk)
743 {
744 	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
745 	return 0;
746 }
747 
748 static u64 arch_counter_get_cnt_mem(struct arch_timer *t, int offset_lo)
749 {
750 	u32 cnt_lo, cnt_hi, tmp_hi;
751 
752 	do {
753 		cnt_hi = readl_relaxed(t->base + offset_lo + 4);
754 		cnt_lo = readl_relaxed(t->base + offset_lo);
755 		tmp_hi = readl_relaxed(t->base + offset_lo + 4);
756 	} while (cnt_hi != tmp_hi);
757 
758 	return ((u64) cnt_hi << 32) | cnt_lo;
759 }
760 
761 static __always_inline void set_next_event_mem(const int access, unsigned long evt,
762 					   struct clock_event_device *clk)
763 {
764 	struct arch_timer *timer = to_arch_timer(clk);
765 	unsigned long ctrl;
766 	u64 cnt;
767 
768 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
769 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
770 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
771 
772 	if (access ==  ARCH_TIMER_MEM_VIRT_ACCESS)
773 		cnt = arch_counter_get_cnt_mem(timer, CNTVCT_LO);
774 	else
775 		cnt = arch_counter_get_cnt_mem(timer, CNTPCT_LO);
776 
777 	arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
778 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
779 }
780 
781 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
782 					      struct clock_event_device *clk)
783 {
784 	set_next_event_mem(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
785 	return 0;
786 }
787 
788 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
789 					      struct clock_event_device *clk)
790 {
791 	set_next_event_mem(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
792 	return 0;
793 }
794 
795 static u64 __arch_timer_check_delta(void)
796 {
797 #ifdef CONFIG_ARM64
798 	const struct midr_range broken_cval_midrs[] = {
799 		/*
800 		 * XGene-1 implements CVAL in terms of TVAL, meaning
801 		 * that the maximum timer range is 32bit. Shame on them.
802 		 */
803 		MIDR_ALL_VERSIONS(MIDR_CPU_MODEL(ARM_CPU_IMP_APM,
804 						 APM_CPU_PART_POTENZA)),
805 		{},
806 	};
807 
808 	if (is_midr_in_range_list(read_cpuid_id(), broken_cval_midrs)) {
809 		pr_warn_once("Broken CNTx_CVAL_EL1, limiting width to 32bits");
810 		return CLOCKSOURCE_MASK(32);
811 	}
812 #endif
813 	return CLOCKSOURCE_MASK(arch_counter_get_width());
814 }
815 
816 static void __arch_timer_setup(unsigned type,
817 			       struct clock_event_device *clk)
818 {
819 	u64 max_delta;
820 
821 	clk->features = CLOCK_EVT_FEAT_ONESHOT;
822 
823 	if (type == ARCH_TIMER_TYPE_CP15) {
824 		typeof(clk->set_next_event) sne;
825 
826 		arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
827 
828 		if (arch_timer_c3stop)
829 			clk->features |= CLOCK_EVT_FEAT_C3STOP;
830 		clk->name = "arch_sys_timer";
831 		clk->rating = 450;
832 		clk->cpumask = cpumask_of(smp_processor_id());
833 		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
834 		switch (arch_timer_uses_ppi) {
835 		case ARCH_TIMER_VIRT_PPI:
836 			clk->set_state_shutdown = arch_timer_shutdown_virt;
837 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
838 			sne = erratum_handler(set_next_event_virt);
839 			break;
840 		case ARCH_TIMER_PHYS_SECURE_PPI:
841 		case ARCH_TIMER_PHYS_NONSECURE_PPI:
842 		case ARCH_TIMER_HYP_PPI:
843 			clk->set_state_shutdown = arch_timer_shutdown_phys;
844 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
845 			sne = erratum_handler(set_next_event_phys);
846 			break;
847 		default:
848 			BUG();
849 		}
850 
851 		clk->set_next_event = sne;
852 		max_delta = __arch_timer_check_delta();
853 	} else {
854 		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
855 		clk->name = "arch_mem_timer";
856 		clk->rating = 400;
857 		clk->cpumask = cpu_possible_mask;
858 		if (arch_timer_mem_use_virtual) {
859 			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
860 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
861 			clk->set_next_event =
862 				arch_timer_set_next_event_virt_mem;
863 		} else {
864 			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
865 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
866 			clk->set_next_event =
867 				arch_timer_set_next_event_phys_mem;
868 		}
869 
870 		max_delta = CLOCKSOURCE_MASK(56);
871 	}
872 
873 	clk->set_state_shutdown(clk);
874 
875 	clockevents_config_and_register(clk, arch_timer_rate, 0xf, max_delta);
876 }
877 
878 static void arch_timer_evtstrm_enable(int divider)
879 {
880 	u32 cntkctl = arch_timer_get_cntkctl();
881 
882 	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
883 	/* Set the divider and enable virtual event stream */
884 	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
885 			| ARCH_TIMER_VIRT_EVT_EN;
886 	arch_timer_set_cntkctl(cntkctl);
887 	arch_timer_set_evtstrm_feature();
888 	cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
889 }
890 
891 static void arch_timer_configure_evtstream(void)
892 {
893 	int evt_stream_div, lsb;
894 
895 	/*
896 	 * As the event stream can at most be generated at half the frequency
897 	 * of the counter, use half the frequency when computing the divider.
898 	 */
899 	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
900 
901 	/*
902 	 * Find the closest power of two to the divisor. If the adjacent bit
903 	 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
904 	 */
905 	lsb = fls(evt_stream_div) - 1;
906 	if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
907 		lsb++;
908 
909 	/* enable event stream */
910 	arch_timer_evtstrm_enable(max(0, min(lsb, 15)));
911 }
912 
913 static void arch_counter_set_user_access(void)
914 {
915 	u32 cntkctl = arch_timer_get_cntkctl();
916 
917 	/* Disable user access to the timers and both counters */
918 	/* Also disable virtual event stream */
919 	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
920 			| ARCH_TIMER_USR_VT_ACCESS_EN
921 		        | ARCH_TIMER_USR_VCT_ACCESS_EN
922 			| ARCH_TIMER_VIRT_EVT_EN
923 			| ARCH_TIMER_USR_PCT_ACCESS_EN);
924 
925 	/*
926 	 * Enable user access to the virtual counter if it doesn't
927 	 * need to be workaround. The vdso may have been already
928 	 * disabled though.
929 	 */
930 	if (arch_timer_this_cpu_has_cntvct_wa())
931 		pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
932 	else
933 		cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
934 
935 	arch_timer_set_cntkctl(cntkctl);
936 }
937 
938 static bool arch_timer_has_nonsecure_ppi(void)
939 {
940 	return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
941 		arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
942 }
943 
944 static u32 check_ppi_trigger(int irq)
945 {
946 	u32 flags = irq_get_trigger_type(irq);
947 
948 	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
949 		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
950 		pr_warn("WARNING: Please fix your firmware\n");
951 		flags = IRQF_TRIGGER_LOW;
952 	}
953 
954 	return flags;
955 }
956 
957 static int arch_timer_starting_cpu(unsigned int cpu)
958 {
959 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
960 	u32 flags;
961 
962 	__arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
963 
964 	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
965 	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
966 
967 	if (arch_timer_has_nonsecure_ppi()) {
968 		flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
969 		enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
970 				  flags);
971 	}
972 
973 	arch_counter_set_user_access();
974 	if (evtstrm_enable)
975 		arch_timer_configure_evtstream();
976 
977 	return 0;
978 }
979 
980 static int validate_timer_rate(void)
981 {
982 	if (!arch_timer_rate)
983 		return -EINVAL;
984 
985 	/* Arch timer frequency < 1MHz can cause trouble */
986 	WARN_ON(arch_timer_rate < 1000000);
987 
988 	return 0;
989 }
990 
991 /*
992  * For historical reasons, when probing with DT we use whichever (non-zero)
993  * rate was probed first, and don't verify that others match. If the first node
994  * probed has a clock-frequency property, this overrides the HW register.
995  */
996 static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
997 {
998 	/* Who has more than one independent system counter? */
999 	if (arch_timer_rate)
1000 		return;
1001 
1002 	if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
1003 		arch_timer_rate = rate;
1004 
1005 	/* Check the timer frequency. */
1006 	if (validate_timer_rate())
1007 		pr_warn("frequency not available\n");
1008 }
1009 
1010 static void __init arch_timer_banner(unsigned type)
1011 {
1012 	pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
1013 		type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
1014 		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
1015 			" and " : "",
1016 		type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
1017 		(unsigned long)arch_timer_rate / 1000000,
1018 		(unsigned long)(arch_timer_rate / 10000) % 100,
1019 		type & ARCH_TIMER_TYPE_CP15 ?
1020 			(arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
1021 			"",
1022 		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
1023 		type & ARCH_TIMER_TYPE_MEM ?
1024 			arch_timer_mem_use_virtual ? "virt" : "phys" :
1025 			"");
1026 }
1027 
1028 u32 arch_timer_get_rate(void)
1029 {
1030 	return arch_timer_rate;
1031 }
1032 
1033 bool arch_timer_evtstrm_available(void)
1034 {
1035 	/*
1036 	 * We might get called from a preemptible context. This is fine
1037 	 * because availability of the event stream should be always the same
1038 	 * for a preemptible context and context where we might resume a task.
1039 	 */
1040 	return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
1041 }
1042 
1043 static u64 arch_counter_get_cntvct_mem(void)
1044 {
1045 	return arch_counter_get_cnt_mem(arch_timer_mem, CNTVCT_LO);
1046 }
1047 
1048 static struct arch_timer_kvm_info arch_timer_kvm_info;
1049 
1050 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
1051 {
1052 	return &arch_timer_kvm_info;
1053 }
1054 
1055 static void __init arch_counter_register(unsigned type)
1056 {
1057 	u64 start_count;
1058 	int width;
1059 
1060 	/* Register the CP15 based counter if we have one */
1061 	if (type & ARCH_TIMER_TYPE_CP15) {
1062 		u64 (*rd)(void);
1063 
1064 		if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1065 		    arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1066 			if (arch_timer_counter_has_wa())
1067 				rd = arch_counter_get_cntvct_stable;
1068 			else
1069 				rd = arch_counter_get_cntvct;
1070 		} else {
1071 			if (arch_timer_counter_has_wa())
1072 				rd = arch_counter_get_cntpct_stable;
1073 			else
1074 				rd = arch_counter_get_cntpct;
1075 		}
1076 
1077 		arch_timer_read_counter = rd;
1078 		clocksource_counter.vdso_clock_mode = vdso_default;
1079 	} else {
1080 		arch_timer_read_counter = arch_counter_get_cntvct_mem;
1081 	}
1082 
1083 	width = arch_counter_get_width();
1084 	clocksource_counter.mask = CLOCKSOURCE_MASK(width);
1085 	cyclecounter.mask = CLOCKSOURCE_MASK(width);
1086 
1087 	if (!arch_counter_suspend_stop)
1088 		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1089 	start_count = arch_timer_read_counter();
1090 	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1091 	cyclecounter.mult = clocksource_counter.mult;
1092 	cyclecounter.shift = clocksource_counter.shift;
1093 	timecounter_init(&arch_timer_kvm_info.timecounter,
1094 			 &cyclecounter, start_count);
1095 
1096 	sched_clock_register(arch_timer_read_counter, width, arch_timer_rate);
1097 }
1098 
1099 static void arch_timer_stop(struct clock_event_device *clk)
1100 {
1101 	pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1102 
1103 	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1104 	if (arch_timer_has_nonsecure_ppi())
1105 		disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1106 
1107 	clk->set_state_shutdown(clk);
1108 }
1109 
1110 static int arch_timer_dying_cpu(unsigned int cpu)
1111 {
1112 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1113 
1114 	cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1115 
1116 	arch_timer_stop(clk);
1117 	return 0;
1118 }
1119 
1120 #ifdef CONFIG_CPU_PM
1121 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1122 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1123 				    unsigned long action, void *hcpu)
1124 {
1125 	if (action == CPU_PM_ENTER) {
1126 		__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1127 
1128 		cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1129 	} else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1130 		arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1131 
1132 		if (arch_timer_have_evtstrm_feature())
1133 			cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1134 	}
1135 	return NOTIFY_OK;
1136 }
1137 
1138 static struct notifier_block arch_timer_cpu_pm_notifier = {
1139 	.notifier_call = arch_timer_cpu_pm_notify,
1140 };
1141 
1142 static int __init arch_timer_cpu_pm_init(void)
1143 {
1144 	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1145 }
1146 
1147 static void __init arch_timer_cpu_pm_deinit(void)
1148 {
1149 	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1150 }
1151 
1152 #else
1153 static int __init arch_timer_cpu_pm_init(void)
1154 {
1155 	return 0;
1156 }
1157 
1158 static void __init arch_timer_cpu_pm_deinit(void)
1159 {
1160 }
1161 #endif
1162 
1163 static int __init arch_timer_register(void)
1164 {
1165 	int err;
1166 	int ppi;
1167 
1168 	arch_timer_evt = alloc_percpu(struct clock_event_device);
1169 	if (!arch_timer_evt) {
1170 		err = -ENOMEM;
1171 		goto out;
1172 	}
1173 
1174 	ppi = arch_timer_ppi[arch_timer_uses_ppi];
1175 	switch (arch_timer_uses_ppi) {
1176 	case ARCH_TIMER_VIRT_PPI:
1177 		err = request_percpu_irq(ppi, arch_timer_handler_virt,
1178 					 "arch_timer", arch_timer_evt);
1179 		break;
1180 	case ARCH_TIMER_PHYS_SECURE_PPI:
1181 	case ARCH_TIMER_PHYS_NONSECURE_PPI:
1182 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1183 					 "arch_timer", arch_timer_evt);
1184 		if (!err && arch_timer_has_nonsecure_ppi()) {
1185 			ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1186 			err = request_percpu_irq(ppi, arch_timer_handler_phys,
1187 						 "arch_timer", arch_timer_evt);
1188 			if (err)
1189 				free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1190 						arch_timer_evt);
1191 		}
1192 		break;
1193 	case ARCH_TIMER_HYP_PPI:
1194 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1195 					 "arch_timer", arch_timer_evt);
1196 		break;
1197 	default:
1198 		BUG();
1199 	}
1200 
1201 	if (err) {
1202 		pr_err("can't register interrupt %d (%d)\n", ppi, err);
1203 		goto out_free;
1204 	}
1205 
1206 	err = arch_timer_cpu_pm_init();
1207 	if (err)
1208 		goto out_unreg_notify;
1209 
1210 	/* Register and immediately configure the timer on the boot CPU */
1211 	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1212 				"clockevents/arm/arch_timer:starting",
1213 				arch_timer_starting_cpu, arch_timer_dying_cpu);
1214 	if (err)
1215 		goto out_unreg_cpupm;
1216 	return 0;
1217 
1218 out_unreg_cpupm:
1219 	arch_timer_cpu_pm_deinit();
1220 
1221 out_unreg_notify:
1222 	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1223 	if (arch_timer_has_nonsecure_ppi())
1224 		free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1225 				arch_timer_evt);
1226 
1227 out_free:
1228 	free_percpu(arch_timer_evt);
1229 out:
1230 	return err;
1231 }
1232 
1233 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1234 {
1235 	int ret;
1236 	irq_handler_t func;
1237 
1238 	arch_timer_mem = kzalloc(sizeof(*arch_timer_mem), GFP_KERNEL);
1239 	if (!arch_timer_mem)
1240 		return -ENOMEM;
1241 
1242 	arch_timer_mem->base = base;
1243 	arch_timer_mem->evt.irq = irq;
1244 	__arch_timer_setup(ARCH_TIMER_TYPE_MEM, &arch_timer_mem->evt);
1245 
1246 	if (arch_timer_mem_use_virtual)
1247 		func = arch_timer_handler_virt_mem;
1248 	else
1249 		func = arch_timer_handler_phys_mem;
1250 
1251 	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &arch_timer_mem->evt);
1252 	if (ret) {
1253 		pr_err("Failed to request mem timer irq\n");
1254 		kfree(arch_timer_mem);
1255 		arch_timer_mem = NULL;
1256 	}
1257 
1258 	return ret;
1259 }
1260 
1261 static const struct of_device_id arch_timer_of_match[] __initconst = {
1262 	{ .compatible   = "arm,armv7-timer",    },
1263 	{ .compatible   = "arm,armv8-timer",    },
1264 	{},
1265 };
1266 
1267 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1268 	{ .compatible   = "arm,armv7-timer-mem", },
1269 	{},
1270 };
1271 
1272 static bool __init arch_timer_needs_of_probing(void)
1273 {
1274 	struct device_node *dn;
1275 	bool needs_probing = false;
1276 	unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1277 
1278 	/* We have two timers, and both device-tree nodes are probed. */
1279 	if ((arch_timers_present & mask) == mask)
1280 		return false;
1281 
1282 	/*
1283 	 * Only one type of timer is probed,
1284 	 * check if we have another type of timer node in device-tree.
1285 	 */
1286 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1287 		dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1288 	else
1289 		dn = of_find_matching_node(NULL, arch_timer_of_match);
1290 
1291 	if (dn && of_device_is_available(dn))
1292 		needs_probing = true;
1293 
1294 	of_node_put(dn);
1295 
1296 	return needs_probing;
1297 }
1298 
1299 static int __init arch_timer_common_init(void)
1300 {
1301 	arch_timer_banner(arch_timers_present);
1302 	arch_counter_register(arch_timers_present);
1303 	return arch_timer_arch_init();
1304 }
1305 
1306 /**
1307  * arch_timer_select_ppi() - Select suitable PPI for the current system.
1308  *
1309  * If HYP mode is available, we know that the physical timer
1310  * has been configured to be accessible from PL1. Use it, so
1311  * that a guest can use the virtual timer instead.
1312  *
1313  * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1314  * accesses to CNTP_*_EL1 registers are silently redirected to
1315  * their CNTHP_*_EL2 counterparts, and use a different PPI
1316  * number.
1317  *
1318  * If no interrupt provided for virtual timer, we'll have to
1319  * stick to the physical timer. It'd better be accessible...
1320  * For arm64 we never use the secure interrupt.
1321  *
1322  * Return: a suitable PPI type for the current system.
1323  */
1324 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1325 {
1326 	if (is_kernel_in_hyp_mode())
1327 		return ARCH_TIMER_HYP_PPI;
1328 
1329 	if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1330 		return ARCH_TIMER_VIRT_PPI;
1331 
1332 	if (IS_ENABLED(CONFIG_ARM64))
1333 		return ARCH_TIMER_PHYS_NONSECURE_PPI;
1334 
1335 	return ARCH_TIMER_PHYS_SECURE_PPI;
1336 }
1337 
1338 static void __init arch_timer_populate_kvm_info(void)
1339 {
1340 	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1341 	if (is_kernel_in_hyp_mode())
1342 		arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1343 }
1344 
1345 static int __init arch_timer_of_init(struct device_node *np)
1346 {
1347 	int i, irq, ret;
1348 	u32 rate;
1349 	bool has_names;
1350 
1351 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1352 		pr_warn("multiple nodes in dt, skipping\n");
1353 		return 0;
1354 	}
1355 
1356 	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1357 
1358 	has_names = of_property_read_bool(np, "interrupt-names");
1359 
1360 	for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1361 		if (has_names)
1362 			irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1363 		else
1364 			irq = of_irq_get(np, i);
1365 		if (irq > 0)
1366 			arch_timer_ppi[i] = irq;
1367 	}
1368 
1369 	arch_timer_populate_kvm_info();
1370 
1371 	rate = arch_timer_get_cntfrq();
1372 	arch_timer_of_configure_rate(rate, np);
1373 
1374 	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1375 
1376 	/* Check for globally applicable workarounds */
1377 	arch_timer_check_ool_workaround(ate_match_dt, np);
1378 
1379 	/*
1380 	 * If we cannot rely on firmware initializing the timer registers then
1381 	 * we should use the physical timers instead.
1382 	 */
1383 	if (IS_ENABLED(CONFIG_ARM) &&
1384 	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1385 		arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1386 	else
1387 		arch_timer_uses_ppi = arch_timer_select_ppi();
1388 
1389 	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1390 		pr_err("No interrupt available, giving up\n");
1391 		return -EINVAL;
1392 	}
1393 
1394 	/* On some systems, the counter stops ticking when in suspend. */
1395 	arch_counter_suspend_stop = of_property_read_bool(np,
1396 							 "arm,no-tick-in-suspend");
1397 
1398 	ret = arch_timer_register();
1399 	if (ret)
1400 		return ret;
1401 
1402 	if (arch_timer_needs_of_probing())
1403 		return 0;
1404 
1405 	return arch_timer_common_init();
1406 }
1407 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1408 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1409 
1410 static u32 __init
1411 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1412 {
1413 	void __iomem *base;
1414 	u32 rate;
1415 
1416 	base = ioremap(frame->cntbase, frame->size);
1417 	if (!base) {
1418 		pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1419 		return 0;
1420 	}
1421 
1422 	rate = readl_relaxed(base + CNTFRQ);
1423 
1424 	iounmap(base);
1425 
1426 	return rate;
1427 }
1428 
1429 static struct arch_timer_mem_frame * __init
1430 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1431 {
1432 	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1433 	void __iomem *cntctlbase;
1434 	u32 cnttidr;
1435 	int i;
1436 
1437 	cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1438 	if (!cntctlbase) {
1439 		pr_err("Can't map CNTCTLBase @ %pa\n",
1440 			&timer_mem->cntctlbase);
1441 		return NULL;
1442 	}
1443 
1444 	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1445 
1446 	/*
1447 	 * Try to find a virtual capable frame. Otherwise fall back to a
1448 	 * physical capable frame.
1449 	 */
1450 	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1451 		u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1452 			     CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1453 
1454 		frame = &timer_mem->frame[i];
1455 		if (!frame->valid)
1456 			continue;
1457 
1458 		/* Try enabling everything, and see what sticks */
1459 		writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1460 		cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1461 
1462 		if ((cnttidr & CNTTIDR_VIRT(i)) &&
1463 		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1464 			best_frame = frame;
1465 			arch_timer_mem_use_virtual = true;
1466 			break;
1467 		}
1468 
1469 		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1470 			continue;
1471 
1472 		best_frame = frame;
1473 	}
1474 
1475 	iounmap(cntctlbase);
1476 
1477 	return best_frame;
1478 }
1479 
1480 static int __init
1481 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1482 {
1483 	void __iomem *base;
1484 	int ret, irq = 0;
1485 
1486 	if (arch_timer_mem_use_virtual)
1487 		irq = frame->virt_irq;
1488 	else
1489 		irq = frame->phys_irq;
1490 
1491 	if (!irq) {
1492 		pr_err("Frame missing %s irq.\n",
1493 		       arch_timer_mem_use_virtual ? "virt" : "phys");
1494 		return -EINVAL;
1495 	}
1496 
1497 	if (!request_mem_region(frame->cntbase, frame->size,
1498 				"arch_mem_timer"))
1499 		return -EBUSY;
1500 
1501 	base = ioremap(frame->cntbase, frame->size);
1502 	if (!base) {
1503 		pr_err("Can't map frame's registers\n");
1504 		return -ENXIO;
1505 	}
1506 
1507 	ret = arch_timer_mem_register(base, irq);
1508 	if (ret) {
1509 		iounmap(base);
1510 		return ret;
1511 	}
1512 
1513 	arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1514 
1515 	return 0;
1516 }
1517 
1518 static int __init arch_timer_mem_of_init(struct device_node *np)
1519 {
1520 	struct arch_timer_mem *timer_mem;
1521 	struct arch_timer_mem_frame *frame;
1522 	struct device_node *frame_node;
1523 	struct resource res;
1524 	int ret = -EINVAL;
1525 	u32 rate;
1526 
1527 	timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1528 	if (!timer_mem)
1529 		return -ENOMEM;
1530 
1531 	if (of_address_to_resource(np, 0, &res))
1532 		goto out;
1533 	timer_mem->cntctlbase = res.start;
1534 	timer_mem->size = resource_size(&res);
1535 
1536 	for_each_available_child_of_node(np, frame_node) {
1537 		u32 n;
1538 		struct arch_timer_mem_frame *frame;
1539 
1540 		if (of_property_read_u32(frame_node, "frame-number", &n)) {
1541 			pr_err(FW_BUG "Missing frame-number.\n");
1542 			of_node_put(frame_node);
1543 			goto out;
1544 		}
1545 		if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1546 			pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1547 			       ARCH_TIMER_MEM_MAX_FRAMES - 1);
1548 			of_node_put(frame_node);
1549 			goto out;
1550 		}
1551 		frame = &timer_mem->frame[n];
1552 
1553 		if (frame->valid) {
1554 			pr_err(FW_BUG "Duplicated frame-number.\n");
1555 			of_node_put(frame_node);
1556 			goto out;
1557 		}
1558 
1559 		if (of_address_to_resource(frame_node, 0, &res)) {
1560 			of_node_put(frame_node);
1561 			goto out;
1562 		}
1563 		frame->cntbase = res.start;
1564 		frame->size = resource_size(&res);
1565 
1566 		frame->virt_irq = irq_of_parse_and_map(frame_node,
1567 						       ARCH_TIMER_VIRT_SPI);
1568 		frame->phys_irq = irq_of_parse_and_map(frame_node,
1569 						       ARCH_TIMER_PHYS_SPI);
1570 
1571 		frame->valid = true;
1572 	}
1573 
1574 	frame = arch_timer_mem_find_best_frame(timer_mem);
1575 	if (!frame) {
1576 		pr_err("Unable to find a suitable frame in timer @ %pa\n",
1577 			&timer_mem->cntctlbase);
1578 		ret = -EINVAL;
1579 		goto out;
1580 	}
1581 
1582 	rate = arch_timer_mem_frame_get_cntfrq(frame);
1583 	arch_timer_of_configure_rate(rate, np);
1584 
1585 	ret = arch_timer_mem_frame_register(frame);
1586 	if (!ret && !arch_timer_needs_of_probing())
1587 		ret = arch_timer_common_init();
1588 out:
1589 	kfree(timer_mem);
1590 	return ret;
1591 }
1592 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1593 		       arch_timer_mem_of_init);
1594 
1595 #ifdef CONFIG_ACPI_GTDT
1596 static int __init
1597 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1598 {
1599 	struct arch_timer_mem_frame *frame;
1600 	u32 rate;
1601 	int i;
1602 
1603 	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1604 		frame = &timer_mem->frame[i];
1605 
1606 		if (!frame->valid)
1607 			continue;
1608 
1609 		rate = arch_timer_mem_frame_get_cntfrq(frame);
1610 		if (rate == arch_timer_rate)
1611 			continue;
1612 
1613 		pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1614 			&frame->cntbase,
1615 			(unsigned long)rate, (unsigned long)arch_timer_rate);
1616 
1617 		return -EINVAL;
1618 	}
1619 
1620 	return 0;
1621 }
1622 
1623 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1624 {
1625 	struct arch_timer_mem *timers, *timer;
1626 	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1627 	int timer_count, i, ret = 0;
1628 
1629 	timers = kcalloc(platform_timer_count, sizeof(*timers),
1630 			    GFP_KERNEL);
1631 	if (!timers)
1632 		return -ENOMEM;
1633 
1634 	ret = acpi_arch_timer_mem_init(timers, &timer_count);
1635 	if (ret || !timer_count)
1636 		goto out;
1637 
1638 	/*
1639 	 * While unlikely, it's theoretically possible that none of the frames
1640 	 * in a timer expose the combination of feature we want.
1641 	 */
1642 	for (i = 0; i < timer_count; i++) {
1643 		timer = &timers[i];
1644 
1645 		frame = arch_timer_mem_find_best_frame(timer);
1646 		if (!best_frame)
1647 			best_frame = frame;
1648 
1649 		ret = arch_timer_mem_verify_cntfrq(timer);
1650 		if (ret) {
1651 			pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1652 			goto out;
1653 		}
1654 
1655 		if (!best_frame) /* implies !frame */
1656 			/*
1657 			 * Only complain about missing suitable frames if we
1658 			 * haven't already found one in a previous iteration.
1659 			 */
1660 			pr_err("Unable to find a suitable frame in timer @ %pa\n",
1661 				&timer->cntctlbase);
1662 	}
1663 
1664 	if (best_frame)
1665 		ret = arch_timer_mem_frame_register(best_frame);
1666 out:
1667 	kfree(timers);
1668 	return ret;
1669 }
1670 
1671 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1672 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1673 {
1674 	int ret, platform_timer_count;
1675 
1676 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1677 		pr_warn("already initialized, skipping\n");
1678 		return -EINVAL;
1679 	}
1680 
1681 	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1682 
1683 	ret = acpi_gtdt_init(table, &platform_timer_count);
1684 	if (ret)
1685 		return ret;
1686 
1687 	arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1688 		acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1689 
1690 	arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1691 		acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1692 
1693 	arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1694 		acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1695 
1696 	arch_timer_populate_kvm_info();
1697 
1698 	/*
1699 	 * When probing via ACPI, we have no mechanism to override the sysreg
1700 	 * CNTFRQ value. This *must* be correct.
1701 	 */
1702 	arch_timer_rate = arch_timer_get_cntfrq();
1703 	ret = validate_timer_rate();
1704 	if (ret) {
1705 		pr_err(FW_BUG "frequency not available.\n");
1706 		return ret;
1707 	}
1708 
1709 	arch_timer_uses_ppi = arch_timer_select_ppi();
1710 	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1711 		pr_err("No interrupt available, giving up\n");
1712 		return -EINVAL;
1713 	}
1714 
1715 	/* Always-on capability */
1716 	arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1717 
1718 	/* Check for globally applicable workarounds */
1719 	arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1720 
1721 	ret = arch_timer_register();
1722 	if (ret)
1723 		return ret;
1724 
1725 	if (platform_timer_count &&
1726 	    arch_timer_mem_acpi_init(platform_timer_count))
1727 		pr_err("Failed to initialize memory-mapped timer.\n");
1728 
1729 	return arch_timer_common_init();
1730 }
1731 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1732 #endif
1733 
1734 int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
1735 				 struct clocksource **cs)
1736 {
1737 	struct arm_smccc_res hvc_res;
1738 	u32 ptp_counter;
1739 	ktime_t ktime;
1740 
1741 	if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
1742 		return -EOPNOTSUPP;
1743 
1744 	if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1745 		ptp_counter = KVM_PTP_VIRT_COUNTER;
1746 	else
1747 		ptp_counter = KVM_PTP_PHYS_COUNTER;
1748 
1749 	arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
1750 			     ptp_counter, &hvc_res);
1751 
1752 	if ((int)(hvc_res.a0) < 0)
1753 		return -EOPNOTSUPP;
1754 
1755 	ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
1756 	*ts = ktime_to_timespec64(ktime);
1757 	if (cycle)
1758 		*cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
1759 	if (cs)
1760 		*cs = &clocksource_counter;
1761 
1762 	return 0;
1763 }
1764 EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);
1765