1 /*
2  *  linux/drivers/clocksource/arm_arch_timer.c
3  *
4  *  Copyright (C) 2011 ARM Ltd.
5  *  All Rights Reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
22 #include <linux/io.h>
23 #include <linux/slab.h>
24 #include <linux/sched_clock.h>
25 #include <linux/acpi.h>
26 
27 #include <asm/arch_timer.h>
28 #include <asm/virt.h>
29 
30 #include <clocksource/arm_arch_timer.h>
31 
32 #define CNTTIDR		0x08
33 #define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
34 
35 #define CNTVCT_LO	0x08
36 #define CNTVCT_HI	0x0c
37 #define CNTFRQ		0x10
38 #define CNTP_TVAL	0x28
39 #define CNTP_CTL	0x2c
40 #define CNTV_TVAL	0x38
41 #define CNTV_CTL	0x3c
42 
43 #define ARCH_CP15_TIMER	BIT(0)
44 #define ARCH_MEM_TIMER	BIT(1)
45 static unsigned arch_timers_present __initdata;
46 
47 static void __iomem *arch_counter_base;
48 
49 struct arch_timer {
50 	void __iomem *base;
51 	struct clock_event_device evt;
52 };
53 
54 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
55 
56 static u32 arch_timer_rate;
57 
58 enum ppi_nr {
59 	PHYS_SECURE_PPI,
60 	PHYS_NONSECURE_PPI,
61 	VIRT_PPI,
62 	HYP_PPI,
63 	MAX_TIMER_PPI
64 };
65 
66 static int arch_timer_ppi[MAX_TIMER_PPI];
67 
68 static struct clock_event_device __percpu *arch_timer_evt;
69 
70 static bool arch_timer_use_virtual = true;
71 static bool arch_timer_c3stop;
72 static bool arch_timer_mem_use_virtual;
73 
74 /*
75  * Architected system timer support.
76  */
77 
78 static __always_inline
79 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
80 			  struct clock_event_device *clk)
81 {
82 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
83 		struct arch_timer *timer = to_arch_timer(clk);
84 		switch (reg) {
85 		case ARCH_TIMER_REG_CTRL:
86 			writel_relaxed(val, timer->base + CNTP_CTL);
87 			break;
88 		case ARCH_TIMER_REG_TVAL:
89 			writel_relaxed(val, timer->base + CNTP_TVAL);
90 			break;
91 		}
92 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
93 		struct arch_timer *timer = to_arch_timer(clk);
94 		switch (reg) {
95 		case ARCH_TIMER_REG_CTRL:
96 			writel_relaxed(val, timer->base + CNTV_CTL);
97 			break;
98 		case ARCH_TIMER_REG_TVAL:
99 			writel_relaxed(val, timer->base + CNTV_TVAL);
100 			break;
101 		}
102 	} else {
103 		arch_timer_reg_write_cp15(access, reg, val);
104 	}
105 }
106 
107 static __always_inline
108 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
109 			struct clock_event_device *clk)
110 {
111 	u32 val;
112 
113 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
114 		struct arch_timer *timer = to_arch_timer(clk);
115 		switch (reg) {
116 		case ARCH_TIMER_REG_CTRL:
117 			val = readl_relaxed(timer->base + CNTP_CTL);
118 			break;
119 		case ARCH_TIMER_REG_TVAL:
120 			val = readl_relaxed(timer->base + CNTP_TVAL);
121 			break;
122 		}
123 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
124 		struct arch_timer *timer = to_arch_timer(clk);
125 		switch (reg) {
126 		case ARCH_TIMER_REG_CTRL:
127 			val = readl_relaxed(timer->base + CNTV_CTL);
128 			break;
129 		case ARCH_TIMER_REG_TVAL:
130 			val = readl_relaxed(timer->base + CNTV_TVAL);
131 			break;
132 		}
133 	} else {
134 		val = arch_timer_reg_read_cp15(access, reg);
135 	}
136 
137 	return val;
138 }
139 
140 static __always_inline irqreturn_t timer_handler(const int access,
141 					struct clock_event_device *evt)
142 {
143 	unsigned long ctrl;
144 
145 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
146 	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
147 		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
148 		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
149 		evt->event_handler(evt);
150 		return IRQ_HANDLED;
151 	}
152 
153 	return IRQ_NONE;
154 }
155 
156 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
157 {
158 	struct clock_event_device *evt = dev_id;
159 
160 	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
161 }
162 
163 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
164 {
165 	struct clock_event_device *evt = dev_id;
166 
167 	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
168 }
169 
170 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
171 {
172 	struct clock_event_device *evt = dev_id;
173 
174 	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
175 }
176 
177 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
178 {
179 	struct clock_event_device *evt = dev_id;
180 
181 	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
182 }
183 
184 static __always_inline int timer_shutdown(const int access,
185 					  struct clock_event_device *clk)
186 {
187 	unsigned long ctrl;
188 
189 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
190 	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
191 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
192 
193 	return 0;
194 }
195 
196 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
197 {
198 	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
199 }
200 
201 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
202 {
203 	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
204 }
205 
206 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
207 {
208 	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
209 }
210 
211 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
212 {
213 	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
214 }
215 
216 static __always_inline void set_next_event(const int access, unsigned long evt,
217 					   struct clock_event_device *clk)
218 {
219 	unsigned long ctrl;
220 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
221 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
222 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
223 	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
224 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
225 }
226 
227 static int arch_timer_set_next_event_virt(unsigned long evt,
228 					  struct clock_event_device *clk)
229 {
230 	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
231 	return 0;
232 }
233 
234 static int arch_timer_set_next_event_phys(unsigned long evt,
235 					  struct clock_event_device *clk)
236 {
237 	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
238 	return 0;
239 }
240 
241 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
242 					      struct clock_event_device *clk)
243 {
244 	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
245 	return 0;
246 }
247 
248 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
249 					      struct clock_event_device *clk)
250 {
251 	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
252 	return 0;
253 }
254 
255 static void __arch_timer_setup(unsigned type,
256 			       struct clock_event_device *clk)
257 {
258 	clk->features = CLOCK_EVT_FEAT_ONESHOT;
259 
260 	if (type == ARCH_CP15_TIMER) {
261 		if (arch_timer_c3stop)
262 			clk->features |= CLOCK_EVT_FEAT_C3STOP;
263 		clk->name = "arch_sys_timer";
264 		clk->rating = 450;
265 		clk->cpumask = cpumask_of(smp_processor_id());
266 		if (arch_timer_use_virtual) {
267 			clk->irq = arch_timer_ppi[VIRT_PPI];
268 			clk->set_state_shutdown = arch_timer_shutdown_virt;
269 			clk->set_next_event = arch_timer_set_next_event_virt;
270 		} else {
271 			clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
272 			clk->set_state_shutdown = arch_timer_shutdown_phys;
273 			clk->set_next_event = arch_timer_set_next_event_phys;
274 		}
275 	} else {
276 		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
277 		clk->name = "arch_mem_timer";
278 		clk->rating = 400;
279 		clk->cpumask = cpu_all_mask;
280 		if (arch_timer_mem_use_virtual) {
281 			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
282 			clk->set_next_event =
283 				arch_timer_set_next_event_virt_mem;
284 		} else {
285 			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
286 			clk->set_next_event =
287 				arch_timer_set_next_event_phys_mem;
288 		}
289 	}
290 
291 	clk->set_state_shutdown(clk);
292 
293 	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
294 }
295 
296 static void arch_timer_evtstrm_enable(int divider)
297 {
298 	u32 cntkctl = arch_timer_get_cntkctl();
299 
300 	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
301 	/* Set the divider and enable virtual event stream */
302 	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
303 			| ARCH_TIMER_VIRT_EVT_EN;
304 	arch_timer_set_cntkctl(cntkctl);
305 	elf_hwcap |= HWCAP_EVTSTRM;
306 #ifdef CONFIG_COMPAT
307 	compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
308 #endif
309 }
310 
311 static void arch_timer_configure_evtstream(void)
312 {
313 	int evt_stream_div, pos;
314 
315 	/* Find the closest power of two to the divisor */
316 	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
317 	pos = fls(evt_stream_div);
318 	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
319 		pos--;
320 	/* enable event stream */
321 	arch_timer_evtstrm_enable(min(pos, 15));
322 }
323 
324 static void arch_counter_set_user_access(void)
325 {
326 	u32 cntkctl = arch_timer_get_cntkctl();
327 
328 	/* Disable user access to the timers and the physical counter */
329 	/* Also disable virtual event stream */
330 	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
331 			| ARCH_TIMER_USR_VT_ACCESS_EN
332 			| ARCH_TIMER_VIRT_EVT_EN
333 			| ARCH_TIMER_USR_PCT_ACCESS_EN);
334 
335 	/* Enable user access to the virtual counter */
336 	cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
337 
338 	arch_timer_set_cntkctl(cntkctl);
339 }
340 
341 static int arch_timer_setup(struct clock_event_device *clk)
342 {
343 	__arch_timer_setup(ARCH_CP15_TIMER, clk);
344 
345 	if (arch_timer_use_virtual)
346 		enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
347 	else {
348 		enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
349 		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
350 			enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
351 	}
352 
353 	arch_counter_set_user_access();
354 	if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM))
355 		arch_timer_configure_evtstream();
356 
357 	return 0;
358 }
359 
360 static void
361 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
362 {
363 	/* Who has more than one independent system counter? */
364 	if (arch_timer_rate)
365 		return;
366 
367 	/*
368 	 * Try to determine the frequency from the device tree or CNTFRQ,
369 	 * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
370 	 */
371 	if (!acpi_disabled ||
372 	    of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
373 		if (cntbase)
374 			arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
375 		else
376 			arch_timer_rate = arch_timer_get_cntfrq();
377 	}
378 
379 	/* Check the timer frequency. */
380 	if (arch_timer_rate == 0)
381 		pr_warn("Architected timer frequency not available\n");
382 }
383 
384 static void arch_timer_banner(unsigned type)
385 {
386 	pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
387 		     type & ARCH_CP15_TIMER ? "cp15" : "",
388 		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
389 		     type & ARCH_MEM_TIMER ? "mmio" : "",
390 		     (unsigned long)arch_timer_rate / 1000000,
391 		     (unsigned long)(arch_timer_rate / 10000) % 100,
392 		     type & ARCH_CP15_TIMER ?
393 			arch_timer_use_virtual ? "virt" : "phys" :
394 			"",
395 		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
396 		     type & ARCH_MEM_TIMER ?
397 			arch_timer_mem_use_virtual ? "virt" : "phys" :
398 			"");
399 }
400 
401 u32 arch_timer_get_rate(void)
402 {
403 	return arch_timer_rate;
404 }
405 
406 static u64 arch_counter_get_cntvct_mem(void)
407 {
408 	u32 vct_lo, vct_hi, tmp_hi;
409 
410 	do {
411 		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
412 		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
413 		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
414 	} while (vct_hi != tmp_hi);
415 
416 	return ((u64) vct_hi << 32) | vct_lo;
417 }
418 
419 /*
420  * Default to cp15 based access because arm64 uses this function for
421  * sched_clock() before DT is probed and the cp15 method is guaranteed
422  * to exist on arm64. arm doesn't use this before DT is probed so even
423  * if we don't have the cp15 accessors we won't have a problem.
424  */
425 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
426 
427 static cycle_t arch_counter_read(struct clocksource *cs)
428 {
429 	return arch_timer_read_counter();
430 }
431 
432 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
433 {
434 	return arch_timer_read_counter();
435 }
436 
437 static struct clocksource clocksource_counter = {
438 	.name	= "arch_sys_counter",
439 	.rating	= 400,
440 	.read	= arch_counter_read,
441 	.mask	= CLOCKSOURCE_MASK(56),
442 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
443 };
444 
445 static struct cyclecounter cyclecounter = {
446 	.read	= arch_counter_read_cc,
447 	.mask	= CLOCKSOURCE_MASK(56),
448 };
449 
450 static struct timecounter timecounter;
451 
452 struct timecounter *arch_timer_get_timecounter(void)
453 {
454 	return &timecounter;
455 }
456 
457 static void __init arch_counter_register(unsigned type)
458 {
459 	u64 start_count;
460 
461 	/* Register the CP15 based counter if we have one */
462 	if (type & ARCH_CP15_TIMER) {
463 		if (IS_ENABLED(CONFIG_ARM64) || arch_timer_use_virtual)
464 			arch_timer_read_counter = arch_counter_get_cntvct;
465 		else
466 			arch_timer_read_counter = arch_counter_get_cntpct;
467 	} else {
468 		arch_timer_read_counter = arch_counter_get_cntvct_mem;
469 
470 		/* If the clocksource name is "arch_sys_counter" the
471 		 * VDSO will attempt to read the CP15-based counter.
472 		 * Ensure this does not happen when CP15-based
473 		 * counter is not available.
474 		 */
475 		clocksource_counter.name = "arch_mem_counter";
476 	}
477 
478 	start_count = arch_timer_read_counter();
479 	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
480 	cyclecounter.mult = clocksource_counter.mult;
481 	cyclecounter.shift = clocksource_counter.shift;
482 	timecounter_init(&timecounter, &cyclecounter, start_count);
483 
484 	/* 56 bits minimum, so we assume worst case rollover */
485 	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
486 }
487 
488 static void arch_timer_stop(struct clock_event_device *clk)
489 {
490 	pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
491 		 clk->irq, smp_processor_id());
492 
493 	if (arch_timer_use_virtual)
494 		disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
495 	else {
496 		disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
497 		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
498 			disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
499 	}
500 
501 	clk->set_state_shutdown(clk);
502 }
503 
504 static int arch_timer_cpu_notify(struct notifier_block *self,
505 					   unsigned long action, void *hcpu)
506 {
507 	/*
508 	 * Grab cpu pointer in each case to avoid spurious
509 	 * preemptible warnings
510 	 */
511 	switch (action & ~CPU_TASKS_FROZEN) {
512 	case CPU_STARTING:
513 		arch_timer_setup(this_cpu_ptr(arch_timer_evt));
514 		break;
515 	case CPU_DYING:
516 		arch_timer_stop(this_cpu_ptr(arch_timer_evt));
517 		break;
518 	}
519 
520 	return NOTIFY_OK;
521 }
522 
523 static struct notifier_block arch_timer_cpu_nb = {
524 	.notifier_call = arch_timer_cpu_notify,
525 };
526 
527 #ifdef CONFIG_CPU_PM
528 static unsigned int saved_cntkctl;
529 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
530 				    unsigned long action, void *hcpu)
531 {
532 	if (action == CPU_PM_ENTER)
533 		saved_cntkctl = arch_timer_get_cntkctl();
534 	else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
535 		arch_timer_set_cntkctl(saved_cntkctl);
536 	return NOTIFY_OK;
537 }
538 
539 static struct notifier_block arch_timer_cpu_pm_notifier = {
540 	.notifier_call = arch_timer_cpu_pm_notify,
541 };
542 
543 static int __init arch_timer_cpu_pm_init(void)
544 {
545 	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
546 }
547 #else
548 static int __init arch_timer_cpu_pm_init(void)
549 {
550 	return 0;
551 }
552 #endif
553 
554 static int __init arch_timer_register(void)
555 {
556 	int err;
557 	int ppi;
558 
559 	arch_timer_evt = alloc_percpu(struct clock_event_device);
560 	if (!arch_timer_evt) {
561 		err = -ENOMEM;
562 		goto out;
563 	}
564 
565 	if (arch_timer_use_virtual) {
566 		ppi = arch_timer_ppi[VIRT_PPI];
567 		err = request_percpu_irq(ppi, arch_timer_handler_virt,
568 					 "arch_timer", arch_timer_evt);
569 	} else {
570 		ppi = arch_timer_ppi[PHYS_SECURE_PPI];
571 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
572 					 "arch_timer", arch_timer_evt);
573 		if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
574 			ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
575 			err = request_percpu_irq(ppi, arch_timer_handler_phys,
576 						 "arch_timer", arch_timer_evt);
577 			if (err)
578 				free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
579 						arch_timer_evt);
580 		}
581 	}
582 
583 	if (err) {
584 		pr_err("arch_timer: can't register interrupt %d (%d)\n",
585 		       ppi, err);
586 		goto out_free;
587 	}
588 
589 	err = register_cpu_notifier(&arch_timer_cpu_nb);
590 	if (err)
591 		goto out_free_irq;
592 
593 	err = arch_timer_cpu_pm_init();
594 	if (err)
595 		goto out_unreg_notify;
596 
597 	/* Immediately configure the timer on the boot CPU */
598 	arch_timer_setup(this_cpu_ptr(arch_timer_evt));
599 
600 	return 0;
601 
602 out_unreg_notify:
603 	unregister_cpu_notifier(&arch_timer_cpu_nb);
604 out_free_irq:
605 	if (arch_timer_use_virtual)
606 		free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
607 	else {
608 		free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
609 				arch_timer_evt);
610 		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
611 			free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
612 					arch_timer_evt);
613 	}
614 
615 out_free:
616 	free_percpu(arch_timer_evt);
617 out:
618 	return err;
619 }
620 
621 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
622 {
623 	int ret;
624 	irq_handler_t func;
625 	struct arch_timer *t;
626 
627 	t = kzalloc(sizeof(*t), GFP_KERNEL);
628 	if (!t)
629 		return -ENOMEM;
630 
631 	t->base = base;
632 	t->evt.irq = irq;
633 	__arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
634 
635 	if (arch_timer_mem_use_virtual)
636 		func = arch_timer_handler_virt_mem;
637 	else
638 		func = arch_timer_handler_phys_mem;
639 
640 	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
641 	if (ret) {
642 		pr_err("arch_timer: Failed to request mem timer irq\n");
643 		kfree(t);
644 	}
645 
646 	return ret;
647 }
648 
649 static const struct of_device_id arch_timer_of_match[] __initconst = {
650 	{ .compatible   = "arm,armv7-timer",    },
651 	{ .compatible   = "arm,armv8-timer",    },
652 	{},
653 };
654 
655 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
656 	{ .compatible   = "arm,armv7-timer-mem", },
657 	{},
658 };
659 
660 static bool __init
661 arch_timer_needs_probing(int type, const struct of_device_id *matches)
662 {
663 	struct device_node *dn;
664 	bool needs_probing = false;
665 
666 	dn = of_find_matching_node(NULL, matches);
667 	if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
668 		needs_probing = true;
669 	of_node_put(dn);
670 
671 	return needs_probing;
672 }
673 
674 static void __init arch_timer_common_init(void)
675 {
676 	unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
677 
678 	/* Wait until both nodes are probed if we have two timers */
679 	if ((arch_timers_present & mask) != mask) {
680 		if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
681 			return;
682 		if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
683 			return;
684 	}
685 
686 	arch_timer_banner(arch_timers_present);
687 	arch_counter_register(arch_timers_present);
688 	arch_timer_arch_init();
689 }
690 
691 static void __init arch_timer_init(void)
692 {
693 	/*
694 	 * If HYP mode is available, we know that the physical timer
695 	 * has been configured to be accessible from PL1. Use it, so
696 	 * that a guest can use the virtual timer instead.
697 	 *
698 	 * If no interrupt provided for virtual timer, we'll have to
699 	 * stick to the physical timer. It'd better be accessible...
700 	 */
701 	if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
702 		arch_timer_use_virtual = false;
703 
704 		if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
705 		    !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
706 			pr_warn("arch_timer: No interrupt available, giving up\n");
707 			return;
708 		}
709 	}
710 
711 	arch_timer_register();
712 	arch_timer_common_init();
713 }
714 
715 static void __init arch_timer_of_init(struct device_node *np)
716 {
717 	int i;
718 
719 	if (arch_timers_present & ARCH_CP15_TIMER) {
720 		pr_warn("arch_timer: multiple nodes in dt, skipping\n");
721 		return;
722 	}
723 
724 	arch_timers_present |= ARCH_CP15_TIMER;
725 	for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
726 		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
727 
728 	arch_timer_detect_rate(NULL, np);
729 
730 	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
731 
732 	/*
733 	 * If we cannot rely on firmware initializing the timer registers then
734 	 * we should use the physical timers instead.
735 	 */
736 	if (IS_ENABLED(CONFIG_ARM) &&
737 	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
738 			arch_timer_use_virtual = false;
739 
740 	arch_timer_init();
741 }
742 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
743 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
744 
745 static void __init arch_timer_mem_init(struct device_node *np)
746 {
747 	struct device_node *frame, *best_frame = NULL;
748 	void __iomem *cntctlbase, *base;
749 	unsigned int irq;
750 	u32 cnttidr;
751 
752 	arch_timers_present |= ARCH_MEM_TIMER;
753 	cntctlbase = of_iomap(np, 0);
754 	if (!cntctlbase) {
755 		pr_err("arch_timer: Can't find CNTCTLBase\n");
756 		return;
757 	}
758 
759 	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
760 	iounmap(cntctlbase);
761 
762 	/*
763 	 * Try to find a virtual capable frame. Otherwise fall back to a
764 	 * physical capable frame.
765 	 */
766 	for_each_available_child_of_node(np, frame) {
767 		int n;
768 
769 		if (of_property_read_u32(frame, "frame-number", &n)) {
770 			pr_err("arch_timer: Missing frame-number\n");
771 			of_node_put(best_frame);
772 			of_node_put(frame);
773 			return;
774 		}
775 
776 		if (cnttidr & CNTTIDR_VIRT(n)) {
777 			of_node_put(best_frame);
778 			best_frame = frame;
779 			arch_timer_mem_use_virtual = true;
780 			break;
781 		}
782 		of_node_put(best_frame);
783 		best_frame = of_node_get(frame);
784 	}
785 
786 	base = arch_counter_base = of_iomap(best_frame, 0);
787 	if (!base) {
788 		pr_err("arch_timer: Can't map frame's registers\n");
789 		of_node_put(best_frame);
790 		return;
791 	}
792 
793 	if (arch_timer_mem_use_virtual)
794 		irq = irq_of_parse_and_map(best_frame, 1);
795 	else
796 		irq = irq_of_parse_and_map(best_frame, 0);
797 	of_node_put(best_frame);
798 	if (!irq) {
799 		pr_err("arch_timer: Frame missing %s irq",
800 		       arch_timer_mem_use_virtual ? "virt" : "phys");
801 		return;
802 	}
803 
804 	arch_timer_detect_rate(base, np);
805 	arch_timer_mem_register(base, irq);
806 	arch_timer_common_init();
807 }
808 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
809 		       arch_timer_mem_init);
810 
811 #ifdef CONFIG_ACPI
812 static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
813 {
814 	int trigger, polarity;
815 
816 	if (!interrupt)
817 		return 0;
818 
819 	trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
820 			: ACPI_LEVEL_SENSITIVE;
821 
822 	polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
823 			: ACPI_ACTIVE_HIGH;
824 
825 	return acpi_register_gsi(NULL, interrupt, trigger, polarity);
826 }
827 
828 /* Initialize per-processor generic timer */
829 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
830 {
831 	struct acpi_table_gtdt *gtdt;
832 
833 	if (arch_timers_present & ARCH_CP15_TIMER) {
834 		pr_warn("arch_timer: already initialized, skipping\n");
835 		return -EINVAL;
836 	}
837 
838 	gtdt = container_of(table, struct acpi_table_gtdt, header);
839 
840 	arch_timers_present |= ARCH_CP15_TIMER;
841 
842 	arch_timer_ppi[PHYS_SECURE_PPI] =
843 		map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
844 		gtdt->secure_el1_flags);
845 
846 	arch_timer_ppi[PHYS_NONSECURE_PPI] =
847 		map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
848 		gtdt->non_secure_el1_flags);
849 
850 	arch_timer_ppi[VIRT_PPI] =
851 		map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
852 		gtdt->virtual_timer_flags);
853 
854 	arch_timer_ppi[HYP_PPI] =
855 		map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
856 		gtdt->non_secure_el2_flags);
857 
858 	/* Get the frequency from CNTFRQ */
859 	arch_timer_detect_rate(NULL, NULL);
860 
861 	/* Always-on capability */
862 	arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
863 
864 	arch_timer_init();
865 	return 0;
866 }
867 CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
868 #endif
869