1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/clocksource/arm_arch_timer.c
4  *
5  *  Copyright (C) 2011 ARM Ltd.
6  *  All Rights Reserved
7  */
8 
9 #define pr_fmt(fmt) 	"arch_timer: " fmt
10 
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
22 #include <linux/io.h>
23 #include <linux/slab.h>
24 #include <linux/sched/clock.h>
25 #include <linux/sched_clock.h>
26 #include <linux/acpi.h>
27 
28 #include <asm/arch_timer.h>
29 #include <asm/virt.h>
30 
31 #include <clocksource/arm_arch_timer.h>
32 
33 #define CNTTIDR		0x08
34 #define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
35 
36 #define CNTACR(n)	(0x40 + ((n) * 4))
37 #define CNTACR_RPCT	BIT(0)
38 #define CNTACR_RVCT	BIT(1)
39 #define CNTACR_RFRQ	BIT(2)
40 #define CNTACR_RVOFF	BIT(3)
41 #define CNTACR_RWVT	BIT(4)
42 #define CNTACR_RWPT	BIT(5)
43 
44 #define CNTVCT_LO	0x08
45 #define CNTVCT_HI	0x0c
46 #define CNTFRQ		0x10
47 #define CNTP_TVAL	0x28
48 #define CNTP_CTL	0x2c
49 #define CNTV_TVAL	0x38
50 #define CNTV_CTL	0x3c
51 
52 static unsigned arch_timers_present __initdata;
53 
54 static void __iomem *arch_counter_base;
55 
56 struct arch_timer {
57 	void __iomem *base;
58 	struct clock_event_device evt;
59 };
60 
61 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
62 
63 static u32 arch_timer_rate;
64 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
65 
66 static struct clock_event_device __percpu *arch_timer_evt;
67 
68 static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
69 static bool arch_timer_c3stop;
70 static bool arch_timer_mem_use_virtual;
71 static bool arch_counter_suspend_stop;
72 static bool vdso_default = true;
73 
74 static cpumask_t evtstrm_available = CPU_MASK_NONE;
75 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
76 
77 static int __init early_evtstrm_cfg(char *buf)
78 {
79 	return strtobool(buf, &evtstrm_enable);
80 }
81 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
82 
83 /*
84  * Architected system timer support.
85  */
86 
87 static __always_inline
88 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
89 			  struct clock_event_device *clk)
90 {
91 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
92 		struct arch_timer *timer = to_arch_timer(clk);
93 		switch (reg) {
94 		case ARCH_TIMER_REG_CTRL:
95 			writel_relaxed(val, timer->base + CNTP_CTL);
96 			break;
97 		case ARCH_TIMER_REG_TVAL:
98 			writel_relaxed(val, timer->base + CNTP_TVAL);
99 			break;
100 		}
101 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
102 		struct arch_timer *timer = to_arch_timer(clk);
103 		switch (reg) {
104 		case ARCH_TIMER_REG_CTRL:
105 			writel_relaxed(val, timer->base + CNTV_CTL);
106 			break;
107 		case ARCH_TIMER_REG_TVAL:
108 			writel_relaxed(val, timer->base + CNTV_TVAL);
109 			break;
110 		}
111 	} else {
112 		arch_timer_reg_write_cp15(access, reg, val);
113 	}
114 }
115 
116 static __always_inline
117 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
118 			struct clock_event_device *clk)
119 {
120 	u32 val;
121 
122 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
123 		struct arch_timer *timer = to_arch_timer(clk);
124 		switch (reg) {
125 		case ARCH_TIMER_REG_CTRL:
126 			val = readl_relaxed(timer->base + CNTP_CTL);
127 			break;
128 		case ARCH_TIMER_REG_TVAL:
129 			val = readl_relaxed(timer->base + CNTP_TVAL);
130 			break;
131 		}
132 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
133 		struct arch_timer *timer = to_arch_timer(clk);
134 		switch (reg) {
135 		case ARCH_TIMER_REG_CTRL:
136 			val = readl_relaxed(timer->base + CNTV_CTL);
137 			break;
138 		case ARCH_TIMER_REG_TVAL:
139 			val = readl_relaxed(timer->base + CNTV_TVAL);
140 			break;
141 		}
142 	} else {
143 		val = arch_timer_reg_read_cp15(access, reg);
144 	}
145 
146 	return val;
147 }
148 
149 static notrace u64 arch_counter_get_cntpct_stable(void)
150 {
151 	return __arch_counter_get_cntpct_stable();
152 }
153 
154 static notrace u64 arch_counter_get_cntpct(void)
155 {
156 	return __arch_counter_get_cntpct();
157 }
158 
159 static notrace u64 arch_counter_get_cntvct_stable(void)
160 {
161 	return __arch_counter_get_cntvct_stable();
162 }
163 
164 static notrace u64 arch_counter_get_cntvct(void)
165 {
166 	return __arch_counter_get_cntvct();
167 }
168 
169 /*
170  * Default to cp15 based access because arm64 uses this function for
171  * sched_clock() before DT is probed and the cp15 method is guaranteed
172  * to exist on arm64. arm doesn't use this before DT is probed so even
173  * if we don't have the cp15 accessors we won't have a problem.
174  */
175 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
176 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
177 
178 static u64 arch_counter_read(struct clocksource *cs)
179 {
180 	return arch_timer_read_counter();
181 }
182 
183 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
184 {
185 	return arch_timer_read_counter();
186 }
187 
188 static struct clocksource clocksource_counter = {
189 	.name	= "arch_sys_counter",
190 	.rating	= 400,
191 	.read	= arch_counter_read,
192 	.mask	= CLOCKSOURCE_MASK(56),
193 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
194 };
195 
196 static struct cyclecounter cyclecounter __ro_after_init = {
197 	.read	= arch_counter_read_cc,
198 	.mask	= CLOCKSOURCE_MASK(56),
199 };
200 
201 struct ate_acpi_oem_info {
202 	char oem_id[ACPI_OEM_ID_SIZE + 1];
203 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
204 	u32 oem_revision;
205 };
206 
207 #ifdef CONFIG_FSL_ERRATUM_A008585
208 /*
209  * The number of retries is an arbitrary value well beyond the highest number
210  * of iterations the loop has been observed to take.
211  */
212 #define __fsl_a008585_read_reg(reg) ({			\
213 	u64 _old, _new;					\
214 	int _retries = 200;				\
215 							\
216 	do {						\
217 		_old = read_sysreg(reg);		\
218 		_new = read_sysreg(reg);		\
219 		_retries--;				\
220 	} while (unlikely(_old != _new) && _retries);	\
221 							\
222 	WARN_ON_ONCE(!_retries);			\
223 	_new;						\
224 })
225 
226 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
227 {
228 	return __fsl_a008585_read_reg(cntp_tval_el0);
229 }
230 
231 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
232 {
233 	return __fsl_a008585_read_reg(cntv_tval_el0);
234 }
235 
236 static u64 notrace fsl_a008585_read_cntpct_el0(void)
237 {
238 	return __fsl_a008585_read_reg(cntpct_el0);
239 }
240 
241 static u64 notrace fsl_a008585_read_cntvct_el0(void)
242 {
243 	return __fsl_a008585_read_reg(cntvct_el0);
244 }
245 #endif
246 
247 #ifdef CONFIG_HISILICON_ERRATUM_161010101
248 /*
249  * Verify whether the value of the second read is larger than the first by
250  * less than 32 is the only way to confirm the value is correct, so clear the
251  * lower 5 bits to check whether the difference is greater than 32 or not.
252  * Theoretically the erratum should not occur more than twice in succession
253  * when reading the system counter, but it is possible that some interrupts
254  * may lead to more than twice read errors, triggering the warning, so setting
255  * the number of retries far beyond the number of iterations the loop has been
256  * observed to take.
257  */
258 #define __hisi_161010101_read_reg(reg) ({				\
259 	u64 _old, _new;						\
260 	int _retries = 50;					\
261 								\
262 	do {							\
263 		_old = read_sysreg(reg);			\
264 		_new = read_sysreg(reg);			\
265 		_retries--;					\
266 	} while (unlikely((_new - _old) >> 5) && _retries);	\
267 								\
268 	WARN_ON_ONCE(!_retries);				\
269 	_new;							\
270 })
271 
272 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
273 {
274 	return __hisi_161010101_read_reg(cntp_tval_el0);
275 }
276 
277 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
278 {
279 	return __hisi_161010101_read_reg(cntv_tval_el0);
280 }
281 
282 static u64 notrace hisi_161010101_read_cntpct_el0(void)
283 {
284 	return __hisi_161010101_read_reg(cntpct_el0);
285 }
286 
287 static u64 notrace hisi_161010101_read_cntvct_el0(void)
288 {
289 	return __hisi_161010101_read_reg(cntvct_el0);
290 }
291 
292 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
293 	/*
294 	 * Note that trailing spaces are required to properly match
295 	 * the OEM table information.
296 	 */
297 	{
298 		.oem_id		= "HISI  ",
299 		.oem_table_id	= "HIP05   ",
300 		.oem_revision	= 0,
301 	},
302 	{
303 		.oem_id		= "HISI  ",
304 		.oem_table_id	= "HIP06   ",
305 		.oem_revision	= 0,
306 	},
307 	{
308 		.oem_id		= "HISI  ",
309 		.oem_table_id	= "HIP07   ",
310 		.oem_revision	= 0,
311 	},
312 	{ /* Sentinel indicating the end of the OEM array */ },
313 };
314 #endif
315 
316 #ifdef CONFIG_ARM64_ERRATUM_858921
317 static u64 notrace arm64_858921_read_cntpct_el0(void)
318 {
319 	u64 old, new;
320 
321 	old = read_sysreg(cntpct_el0);
322 	new = read_sysreg(cntpct_el0);
323 	return (((old ^ new) >> 32) & 1) ? old : new;
324 }
325 
326 static u64 notrace arm64_858921_read_cntvct_el0(void)
327 {
328 	u64 old, new;
329 
330 	old = read_sysreg(cntvct_el0);
331 	new = read_sysreg(cntvct_el0);
332 	return (((old ^ new) >> 32) & 1) ? old : new;
333 }
334 #endif
335 
336 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
337 /*
338  * The low bits of the counter registers are indeterminate while bit 10 or
339  * greater is rolling over. Since the counter value can jump both backward
340  * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
341  * with all ones or all zeros in the low bits. Bound the loop by the maximum
342  * number of CPU cycles in 3 consecutive 24 MHz counter periods.
343  */
344 #define __sun50i_a64_read_reg(reg) ({					\
345 	u64 _val;							\
346 	int _retries = 150;						\
347 									\
348 	do {								\
349 		_val = read_sysreg(reg);				\
350 		_retries--;						\
351 	} while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries);	\
352 									\
353 	WARN_ON_ONCE(!_retries);					\
354 	_val;								\
355 })
356 
357 static u64 notrace sun50i_a64_read_cntpct_el0(void)
358 {
359 	return __sun50i_a64_read_reg(cntpct_el0);
360 }
361 
362 static u64 notrace sun50i_a64_read_cntvct_el0(void)
363 {
364 	return __sun50i_a64_read_reg(cntvct_el0);
365 }
366 
367 static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
368 {
369 	return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
370 }
371 
372 static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
373 {
374 	return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
375 }
376 #endif
377 
378 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
379 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
380 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
381 
382 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
383 
384 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
385 						struct clock_event_device *clk)
386 {
387 	unsigned long ctrl;
388 	u64 cval;
389 
390 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
391 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
392 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
393 
394 	if (access == ARCH_TIMER_PHYS_ACCESS) {
395 		cval = evt + arch_counter_get_cntpct();
396 		write_sysreg(cval, cntp_cval_el0);
397 	} else {
398 		cval = evt + arch_counter_get_cntvct();
399 		write_sysreg(cval, cntv_cval_el0);
400 	}
401 
402 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
403 }
404 
405 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
406 					    struct clock_event_device *clk)
407 {
408 	erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
409 	return 0;
410 }
411 
412 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
413 					    struct clock_event_device *clk)
414 {
415 	erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
416 	return 0;
417 }
418 
419 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
420 #ifdef CONFIG_FSL_ERRATUM_A008585
421 	{
422 		.match_type = ate_match_dt,
423 		.id = "fsl,erratum-a008585",
424 		.desc = "Freescale erratum a005858",
425 		.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
426 		.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
427 		.read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
428 		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
429 		.set_next_event_phys = erratum_set_next_event_tval_phys,
430 		.set_next_event_virt = erratum_set_next_event_tval_virt,
431 	},
432 #endif
433 #ifdef CONFIG_HISILICON_ERRATUM_161010101
434 	{
435 		.match_type = ate_match_dt,
436 		.id = "hisilicon,erratum-161010101",
437 		.desc = "HiSilicon erratum 161010101",
438 		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
439 		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
440 		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
441 		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
442 		.set_next_event_phys = erratum_set_next_event_tval_phys,
443 		.set_next_event_virt = erratum_set_next_event_tval_virt,
444 	},
445 	{
446 		.match_type = ate_match_acpi_oem_info,
447 		.id = hisi_161010101_oem_info,
448 		.desc = "HiSilicon erratum 161010101",
449 		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
450 		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
451 		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
452 		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
453 		.set_next_event_phys = erratum_set_next_event_tval_phys,
454 		.set_next_event_virt = erratum_set_next_event_tval_virt,
455 	},
456 #endif
457 #ifdef CONFIG_ARM64_ERRATUM_858921
458 	{
459 		.match_type = ate_match_local_cap_id,
460 		.id = (void *)ARM64_WORKAROUND_858921,
461 		.desc = "ARM erratum 858921",
462 		.read_cntpct_el0 = arm64_858921_read_cntpct_el0,
463 		.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
464 	},
465 #endif
466 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
467 	{
468 		.match_type = ate_match_dt,
469 		.id = "allwinner,erratum-unknown1",
470 		.desc = "Allwinner erratum UNKNOWN1",
471 		.read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
472 		.read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
473 		.read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
474 		.read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
475 		.set_next_event_phys = erratum_set_next_event_tval_phys,
476 		.set_next_event_virt = erratum_set_next_event_tval_virt,
477 	},
478 #endif
479 };
480 
481 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
482 			       const void *);
483 
484 static
485 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
486 				 const void *arg)
487 {
488 	const struct device_node *np = arg;
489 
490 	return of_property_read_bool(np, wa->id);
491 }
492 
493 static
494 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
495 					const void *arg)
496 {
497 	return this_cpu_has_cap((uintptr_t)wa->id);
498 }
499 
500 
501 static
502 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
503 				       const void *arg)
504 {
505 	static const struct ate_acpi_oem_info empty_oem_info = {};
506 	const struct ate_acpi_oem_info *info = wa->id;
507 	const struct acpi_table_header *table = arg;
508 
509 	/* Iterate over the ACPI OEM info array, looking for a match */
510 	while (memcmp(info, &empty_oem_info, sizeof(*info))) {
511 		if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
512 		    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
513 		    info->oem_revision == table->oem_revision)
514 			return true;
515 
516 		info++;
517 	}
518 
519 	return false;
520 }
521 
522 static const struct arch_timer_erratum_workaround *
523 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
524 			  ate_match_fn_t match_fn,
525 			  void *arg)
526 {
527 	int i;
528 
529 	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
530 		if (ool_workarounds[i].match_type != type)
531 			continue;
532 
533 		if (match_fn(&ool_workarounds[i], arg))
534 			return &ool_workarounds[i];
535 	}
536 
537 	return NULL;
538 }
539 
540 static
541 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
542 				  bool local)
543 {
544 	int i;
545 
546 	if (local) {
547 		__this_cpu_write(timer_unstable_counter_workaround, wa);
548 	} else {
549 		for_each_possible_cpu(i)
550 			per_cpu(timer_unstable_counter_workaround, i) = wa;
551 	}
552 
553 	if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
554 		atomic_set(&timer_unstable_counter_workaround_in_use, 1);
555 
556 	/*
557 	 * Don't use the vdso fastpath if errata require using the
558 	 * out-of-line counter accessor. We may change our mind pretty
559 	 * late in the game (with a per-CPU erratum, for example), so
560 	 * change both the default value and the vdso itself.
561 	 */
562 	if (wa->read_cntvct_el0) {
563 		clocksource_counter.archdata.vdso_direct = false;
564 		vdso_default = false;
565 	}
566 }
567 
568 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
569 					    void *arg)
570 {
571 	const struct arch_timer_erratum_workaround *wa, *__wa;
572 	ate_match_fn_t match_fn = NULL;
573 	bool local = false;
574 
575 	switch (type) {
576 	case ate_match_dt:
577 		match_fn = arch_timer_check_dt_erratum;
578 		break;
579 	case ate_match_local_cap_id:
580 		match_fn = arch_timer_check_local_cap_erratum;
581 		local = true;
582 		break;
583 	case ate_match_acpi_oem_info:
584 		match_fn = arch_timer_check_acpi_oem_erratum;
585 		break;
586 	default:
587 		WARN_ON(1);
588 		return;
589 	}
590 
591 	wa = arch_timer_iterate_errata(type, match_fn, arg);
592 	if (!wa)
593 		return;
594 
595 	__wa = __this_cpu_read(timer_unstable_counter_workaround);
596 	if (__wa && wa != __wa)
597 		pr_warn("Can't enable workaround for %s (clashes with %s\n)",
598 			wa->desc, __wa->desc);
599 
600 	if (__wa)
601 		return;
602 
603 	arch_timer_enable_workaround(wa, local);
604 	pr_info("Enabling %s workaround for %s\n",
605 		local ? "local" : "global", wa->desc);
606 }
607 
608 static bool arch_timer_this_cpu_has_cntvct_wa(void)
609 {
610 	return has_erratum_handler(read_cntvct_el0);
611 }
612 
613 static bool arch_timer_counter_has_wa(void)
614 {
615 	return atomic_read(&timer_unstable_counter_workaround_in_use);
616 }
617 #else
618 #define arch_timer_check_ool_workaround(t,a)		do { } while(0)
619 #define arch_timer_this_cpu_has_cntvct_wa()		({false;})
620 #define arch_timer_counter_has_wa()			({false;})
621 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
622 
623 static __always_inline irqreturn_t timer_handler(const int access,
624 					struct clock_event_device *evt)
625 {
626 	unsigned long ctrl;
627 
628 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
629 	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
630 		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
631 		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
632 		evt->event_handler(evt);
633 		return IRQ_HANDLED;
634 	}
635 
636 	return IRQ_NONE;
637 }
638 
639 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
640 {
641 	struct clock_event_device *evt = dev_id;
642 
643 	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
644 }
645 
646 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
647 {
648 	struct clock_event_device *evt = dev_id;
649 
650 	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
651 }
652 
653 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
654 {
655 	struct clock_event_device *evt = dev_id;
656 
657 	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
658 }
659 
660 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
661 {
662 	struct clock_event_device *evt = dev_id;
663 
664 	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
665 }
666 
667 static __always_inline int timer_shutdown(const int access,
668 					  struct clock_event_device *clk)
669 {
670 	unsigned long ctrl;
671 
672 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
673 	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
674 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
675 
676 	return 0;
677 }
678 
679 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
680 {
681 	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
682 }
683 
684 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
685 {
686 	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
687 }
688 
689 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
690 {
691 	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
692 }
693 
694 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
695 {
696 	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
697 }
698 
699 static __always_inline void set_next_event(const int access, unsigned long evt,
700 					   struct clock_event_device *clk)
701 {
702 	unsigned long ctrl;
703 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
704 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
705 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
706 	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
707 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
708 }
709 
710 static int arch_timer_set_next_event_virt(unsigned long evt,
711 					  struct clock_event_device *clk)
712 {
713 	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
714 	return 0;
715 }
716 
717 static int arch_timer_set_next_event_phys(unsigned long evt,
718 					  struct clock_event_device *clk)
719 {
720 	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
721 	return 0;
722 }
723 
724 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
725 					      struct clock_event_device *clk)
726 {
727 	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
728 	return 0;
729 }
730 
731 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
732 					      struct clock_event_device *clk)
733 {
734 	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
735 	return 0;
736 }
737 
738 static void __arch_timer_setup(unsigned type,
739 			       struct clock_event_device *clk)
740 {
741 	clk->features = CLOCK_EVT_FEAT_ONESHOT;
742 
743 	if (type == ARCH_TIMER_TYPE_CP15) {
744 		typeof(clk->set_next_event) sne;
745 
746 		arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
747 
748 		if (arch_timer_c3stop)
749 			clk->features |= CLOCK_EVT_FEAT_C3STOP;
750 		clk->name = "arch_sys_timer";
751 		clk->rating = 450;
752 		clk->cpumask = cpumask_of(smp_processor_id());
753 		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
754 		switch (arch_timer_uses_ppi) {
755 		case ARCH_TIMER_VIRT_PPI:
756 			clk->set_state_shutdown = arch_timer_shutdown_virt;
757 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
758 			sne = erratum_handler(set_next_event_virt);
759 			break;
760 		case ARCH_TIMER_PHYS_SECURE_PPI:
761 		case ARCH_TIMER_PHYS_NONSECURE_PPI:
762 		case ARCH_TIMER_HYP_PPI:
763 			clk->set_state_shutdown = arch_timer_shutdown_phys;
764 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
765 			sne = erratum_handler(set_next_event_phys);
766 			break;
767 		default:
768 			BUG();
769 		}
770 
771 		clk->set_next_event = sne;
772 	} else {
773 		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
774 		clk->name = "arch_mem_timer";
775 		clk->rating = 400;
776 		clk->cpumask = cpu_possible_mask;
777 		if (arch_timer_mem_use_virtual) {
778 			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
779 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
780 			clk->set_next_event =
781 				arch_timer_set_next_event_virt_mem;
782 		} else {
783 			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
784 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
785 			clk->set_next_event =
786 				arch_timer_set_next_event_phys_mem;
787 		}
788 	}
789 
790 	clk->set_state_shutdown(clk);
791 
792 	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
793 }
794 
795 static void arch_timer_evtstrm_enable(int divider)
796 {
797 	u32 cntkctl = arch_timer_get_cntkctl();
798 
799 	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
800 	/* Set the divider and enable virtual event stream */
801 	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
802 			| ARCH_TIMER_VIRT_EVT_EN;
803 	arch_timer_set_cntkctl(cntkctl);
804 #ifdef CONFIG_ARM64
805 	cpu_set_named_feature(EVTSTRM);
806 #else
807 	elf_hwcap |= HWCAP_EVTSTRM;
808 #endif
809 #ifdef CONFIG_COMPAT
810 	compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
811 #endif
812 	cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
813 }
814 
815 static void arch_timer_configure_evtstream(void)
816 {
817 	int evt_stream_div, pos;
818 
819 	/* Find the closest power of two to the divisor */
820 	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
821 	pos = fls(evt_stream_div);
822 	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
823 		pos--;
824 	/* enable event stream */
825 	arch_timer_evtstrm_enable(min(pos, 15));
826 }
827 
828 static void arch_counter_set_user_access(void)
829 {
830 	u32 cntkctl = arch_timer_get_cntkctl();
831 
832 	/* Disable user access to the timers and both counters */
833 	/* Also disable virtual event stream */
834 	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
835 			| ARCH_TIMER_USR_VT_ACCESS_EN
836 		        | ARCH_TIMER_USR_VCT_ACCESS_EN
837 			| ARCH_TIMER_VIRT_EVT_EN
838 			| ARCH_TIMER_USR_PCT_ACCESS_EN);
839 
840 	/*
841 	 * Enable user access to the virtual counter if it doesn't
842 	 * need to be workaround. The vdso may have been already
843 	 * disabled though.
844 	 */
845 	if (arch_timer_this_cpu_has_cntvct_wa())
846 		pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
847 	else
848 		cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
849 
850 	arch_timer_set_cntkctl(cntkctl);
851 }
852 
853 static bool arch_timer_has_nonsecure_ppi(void)
854 {
855 	return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
856 		arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
857 }
858 
859 static u32 check_ppi_trigger(int irq)
860 {
861 	u32 flags = irq_get_trigger_type(irq);
862 
863 	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
864 		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
865 		pr_warn("WARNING: Please fix your firmware\n");
866 		flags = IRQF_TRIGGER_LOW;
867 	}
868 
869 	return flags;
870 }
871 
872 static int arch_timer_starting_cpu(unsigned int cpu)
873 {
874 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
875 	u32 flags;
876 
877 	__arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
878 
879 	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
880 	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
881 
882 	if (arch_timer_has_nonsecure_ppi()) {
883 		flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
884 		enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
885 				  flags);
886 	}
887 
888 	arch_counter_set_user_access();
889 	if (evtstrm_enable)
890 		arch_timer_configure_evtstream();
891 
892 	return 0;
893 }
894 
895 /*
896  * For historical reasons, when probing with DT we use whichever (non-zero)
897  * rate was probed first, and don't verify that others match. If the first node
898  * probed has a clock-frequency property, this overrides the HW register.
899  */
900 static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
901 {
902 	/* Who has more than one independent system counter? */
903 	if (arch_timer_rate)
904 		return;
905 
906 	if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
907 		arch_timer_rate = rate;
908 
909 	/* Check the timer frequency. */
910 	if (arch_timer_rate == 0)
911 		pr_warn("frequency not available\n");
912 }
913 
914 static void arch_timer_banner(unsigned type)
915 {
916 	pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
917 		type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
918 		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
919 			" and " : "",
920 		type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
921 		(unsigned long)arch_timer_rate / 1000000,
922 		(unsigned long)(arch_timer_rate / 10000) % 100,
923 		type & ARCH_TIMER_TYPE_CP15 ?
924 			(arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
925 			"",
926 		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
927 		type & ARCH_TIMER_TYPE_MEM ?
928 			arch_timer_mem_use_virtual ? "virt" : "phys" :
929 			"");
930 }
931 
932 u32 arch_timer_get_rate(void)
933 {
934 	return arch_timer_rate;
935 }
936 
937 bool arch_timer_evtstrm_available(void)
938 {
939 	/*
940 	 * We might get called from a preemptible context. This is fine
941 	 * because availability of the event stream should be always the same
942 	 * for a preemptible context and context where we might resume a task.
943 	 */
944 	return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
945 }
946 
947 static u64 arch_counter_get_cntvct_mem(void)
948 {
949 	u32 vct_lo, vct_hi, tmp_hi;
950 
951 	do {
952 		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
953 		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
954 		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
955 	} while (vct_hi != tmp_hi);
956 
957 	return ((u64) vct_hi << 32) | vct_lo;
958 }
959 
960 static struct arch_timer_kvm_info arch_timer_kvm_info;
961 
962 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
963 {
964 	return &arch_timer_kvm_info;
965 }
966 
967 static void __init arch_counter_register(unsigned type)
968 {
969 	u64 start_count;
970 
971 	/* Register the CP15 based counter if we have one */
972 	if (type & ARCH_TIMER_TYPE_CP15) {
973 		u64 (*rd)(void);
974 
975 		if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
976 		    arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
977 			if (arch_timer_counter_has_wa())
978 				rd = arch_counter_get_cntvct_stable;
979 			else
980 				rd = arch_counter_get_cntvct;
981 		} else {
982 			if (arch_timer_counter_has_wa())
983 				rd = arch_counter_get_cntpct_stable;
984 			else
985 				rd = arch_counter_get_cntpct;
986 		}
987 
988 		arch_timer_read_counter = rd;
989 		clocksource_counter.archdata.vdso_direct = vdso_default;
990 	} else {
991 		arch_timer_read_counter = arch_counter_get_cntvct_mem;
992 	}
993 
994 	if (!arch_counter_suspend_stop)
995 		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
996 	start_count = arch_timer_read_counter();
997 	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
998 	cyclecounter.mult = clocksource_counter.mult;
999 	cyclecounter.shift = clocksource_counter.shift;
1000 	timecounter_init(&arch_timer_kvm_info.timecounter,
1001 			 &cyclecounter, start_count);
1002 
1003 	/* 56 bits minimum, so we assume worst case rollover */
1004 	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
1005 }
1006 
1007 static void arch_timer_stop(struct clock_event_device *clk)
1008 {
1009 	pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1010 
1011 	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1012 	if (arch_timer_has_nonsecure_ppi())
1013 		disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1014 
1015 	clk->set_state_shutdown(clk);
1016 }
1017 
1018 static int arch_timer_dying_cpu(unsigned int cpu)
1019 {
1020 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1021 
1022 	cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1023 
1024 	arch_timer_stop(clk);
1025 	return 0;
1026 }
1027 
1028 #ifdef CONFIG_CPU_PM
1029 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1030 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1031 				    unsigned long action, void *hcpu)
1032 {
1033 	if (action == CPU_PM_ENTER) {
1034 		__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1035 
1036 		cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1037 	} else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1038 		arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1039 
1040 #ifdef CONFIG_ARM64
1041 		if (cpu_have_named_feature(EVTSTRM))
1042 #else
1043 		if (elf_hwcap & HWCAP_EVTSTRM)
1044 #endif
1045 			cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1046 	}
1047 	return NOTIFY_OK;
1048 }
1049 
1050 static struct notifier_block arch_timer_cpu_pm_notifier = {
1051 	.notifier_call = arch_timer_cpu_pm_notify,
1052 };
1053 
1054 static int __init arch_timer_cpu_pm_init(void)
1055 {
1056 	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1057 }
1058 
1059 static void __init arch_timer_cpu_pm_deinit(void)
1060 {
1061 	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1062 }
1063 
1064 #else
1065 static int __init arch_timer_cpu_pm_init(void)
1066 {
1067 	return 0;
1068 }
1069 
1070 static void __init arch_timer_cpu_pm_deinit(void)
1071 {
1072 }
1073 #endif
1074 
1075 static int __init arch_timer_register(void)
1076 {
1077 	int err;
1078 	int ppi;
1079 
1080 	arch_timer_evt = alloc_percpu(struct clock_event_device);
1081 	if (!arch_timer_evt) {
1082 		err = -ENOMEM;
1083 		goto out;
1084 	}
1085 
1086 	ppi = arch_timer_ppi[arch_timer_uses_ppi];
1087 	switch (arch_timer_uses_ppi) {
1088 	case ARCH_TIMER_VIRT_PPI:
1089 		err = request_percpu_irq(ppi, arch_timer_handler_virt,
1090 					 "arch_timer", arch_timer_evt);
1091 		break;
1092 	case ARCH_TIMER_PHYS_SECURE_PPI:
1093 	case ARCH_TIMER_PHYS_NONSECURE_PPI:
1094 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1095 					 "arch_timer", arch_timer_evt);
1096 		if (!err && arch_timer_has_nonsecure_ppi()) {
1097 			ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1098 			err = request_percpu_irq(ppi, arch_timer_handler_phys,
1099 						 "arch_timer", arch_timer_evt);
1100 			if (err)
1101 				free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1102 						arch_timer_evt);
1103 		}
1104 		break;
1105 	case ARCH_TIMER_HYP_PPI:
1106 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1107 					 "arch_timer", arch_timer_evt);
1108 		break;
1109 	default:
1110 		BUG();
1111 	}
1112 
1113 	if (err) {
1114 		pr_err("can't register interrupt %d (%d)\n", ppi, err);
1115 		goto out_free;
1116 	}
1117 
1118 	err = arch_timer_cpu_pm_init();
1119 	if (err)
1120 		goto out_unreg_notify;
1121 
1122 	/* Register and immediately configure the timer on the boot CPU */
1123 	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1124 				"clockevents/arm/arch_timer:starting",
1125 				arch_timer_starting_cpu, arch_timer_dying_cpu);
1126 	if (err)
1127 		goto out_unreg_cpupm;
1128 	return 0;
1129 
1130 out_unreg_cpupm:
1131 	arch_timer_cpu_pm_deinit();
1132 
1133 out_unreg_notify:
1134 	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1135 	if (arch_timer_has_nonsecure_ppi())
1136 		free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1137 				arch_timer_evt);
1138 
1139 out_free:
1140 	free_percpu(arch_timer_evt);
1141 out:
1142 	return err;
1143 }
1144 
1145 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1146 {
1147 	int ret;
1148 	irq_handler_t func;
1149 	struct arch_timer *t;
1150 
1151 	t = kzalloc(sizeof(*t), GFP_KERNEL);
1152 	if (!t)
1153 		return -ENOMEM;
1154 
1155 	t->base = base;
1156 	t->evt.irq = irq;
1157 	__arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1158 
1159 	if (arch_timer_mem_use_virtual)
1160 		func = arch_timer_handler_virt_mem;
1161 	else
1162 		func = arch_timer_handler_phys_mem;
1163 
1164 	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1165 	if (ret) {
1166 		pr_err("Failed to request mem timer irq\n");
1167 		kfree(t);
1168 	}
1169 
1170 	return ret;
1171 }
1172 
1173 static const struct of_device_id arch_timer_of_match[] __initconst = {
1174 	{ .compatible   = "arm,armv7-timer",    },
1175 	{ .compatible   = "arm,armv8-timer",    },
1176 	{},
1177 };
1178 
1179 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1180 	{ .compatible   = "arm,armv7-timer-mem", },
1181 	{},
1182 };
1183 
1184 static bool __init arch_timer_needs_of_probing(void)
1185 {
1186 	struct device_node *dn;
1187 	bool needs_probing = false;
1188 	unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1189 
1190 	/* We have two timers, and both device-tree nodes are probed. */
1191 	if ((arch_timers_present & mask) == mask)
1192 		return false;
1193 
1194 	/*
1195 	 * Only one type of timer is probed,
1196 	 * check if we have another type of timer node in device-tree.
1197 	 */
1198 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1199 		dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1200 	else
1201 		dn = of_find_matching_node(NULL, arch_timer_of_match);
1202 
1203 	if (dn && of_device_is_available(dn))
1204 		needs_probing = true;
1205 
1206 	of_node_put(dn);
1207 
1208 	return needs_probing;
1209 }
1210 
1211 static int __init arch_timer_common_init(void)
1212 {
1213 	arch_timer_banner(arch_timers_present);
1214 	arch_counter_register(arch_timers_present);
1215 	return arch_timer_arch_init();
1216 }
1217 
1218 /**
1219  * arch_timer_select_ppi() - Select suitable PPI for the current system.
1220  *
1221  * If HYP mode is available, we know that the physical timer
1222  * has been configured to be accessible from PL1. Use it, so
1223  * that a guest can use the virtual timer instead.
1224  *
1225  * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1226  * accesses to CNTP_*_EL1 registers are silently redirected to
1227  * their CNTHP_*_EL2 counterparts, and use a different PPI
1228  * number.
1229  *
1230  * If no interrupt provided for virtual timer, we'll have to
1231  * stick to the physical timer. It'd better be accessible...
1232  * For arm64 we never use the secure interrupt.
1233  *
1234  * Return: a suitable PPI type for the current system.
1235  */
1236 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1237 {
1238 	if (is_kernel_in_hyp_mode())
1239 		return ARCH_TIMER_HYP_PPI;
1240 
1241 	if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1242 		return ARCH_TIMER_VIRT_PPI;
1243 
1244 	if (IS_ENABLED(CONFIG_ARM64))
1245 		return ARCH_TIMER_PHYS_NONSECURE_PPI;
1246 
1247 	return ARCH_TIMER_PHYS_SECURE_PPI;
1248 }
1249 
1250 static void __init arch_timer_populate_kvm_info(void)
1251 {
1252 	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1253 	if (is_kernel_in_hyp_mode())
1254 		arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1255 }
1256 
1257 static int __init arch_timer_of_init(struct device_node *np)
1258 {
1259 	int i, ret;
1260 	u32 rate;
1261 
1262 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1263 		pr_warn("multiple nodes in dt, skipping\n");
1264 		return 0;
1265 	}
1266 
1267 	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1268 	for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1269 		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
1270 
1271 	arch_timer_populate_kvm_info();
1272 
1273 	rate = arch_timer_get_cntfrq();
1274 	arch_timer_of_configure_rate(rate, np);
1275 
1276 	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1277 
1278 	/* Check for globally applicable workarounds */
1279 	arch_timer_check_ool_workaround(ate_match_dt, np);
1280 
1281 	/*
1282 	 * If we cannot rely on firmware initializing the timer registers then
1283 	 * we should use the physical timers instead.
1284 	 */
1285 	if (IS_ENABLED(CONFIG_ARM) &&
1286 	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1287 		arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1288 	else
1289 		arch_timer_uses_ppi = arch_timer_select_ppi();
1290 
1291 	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1292 		pr_err("No interrupt available, giving up\n");
1293 		return -EINVAL;
1294 	}
1295 
1296 	/* On some systems, the counter stops ticking when in suspend. */
1297 	arch_counter_suspend_stop = of_property_read_bool(np,
1298 							 "arm,no-tick-in-suspend");
1299 
1300 	ret = arch_timer_register();
1301 	if (ret)
1302 		return ret;
1303 
1304 	if (arch_timer_needs_of_probing())
1305 		return 0;
1306 
1307 	return arch_timer_common_init();
1308 }
1309 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1310 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1311 
1312 static u32 __init
1313 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1314 {
1315 	void __iomem *base;
1316 	u32 rate;
1317 
1318 	base = ioremap(frame->cntbase, frame->size);
1319 	if (!base) {
1320 		pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1321 		return 0;
1322 	}
1323 
1324 	rate = readl_relaxed(base + CNTFRQ);
1325 
1326 	iounmap(base);
1327 
1328 	return rate;
1329 }
1330 
1331 static struct arch_timer_mem_frame * __init
1332 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1333 {
1334 	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1335 	void __iomem *cntctlbase;
1336 	u32 cnttidr;
1337 	int i;
1338 
1339 	cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1340 	if (!cntctlbase) {
1341 		pr_err("Can't map CNTCTLBase @ %pa\n",
1342 			&timer_mem->cntctlbase);
1343 		return NULL;
1344 	}
1345 
1346 	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1347 
1348 	/*
1349 	 * Try to find a virtual capable frame. Otherwise fall back to a
1350 	 * physical capable frame.
1351 	 */
1352 	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1353 		u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1354 			     CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1355 
1356 		frame = &timer_mem->frame[i];
1357 		if (!frame->valid)
1358 			continue;
1359 
1360 		/* Try enabling everything, and see what sticks */
1361 		writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1362 		cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1363 
1364 		if ((cnttidr & CNTTIDR_VIRT(i)) &&
1365 		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1366 			best_frame = frame;
1367 			arch_timer_mem_use_virtual = true;
1368 			break;
1369 		}
1370 
1371 		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1372 			continue;
1373 
1374 		best_frame = frame;
1375 	}
1376 
1377 	iounmap(cntctlbase);
1378 
1379 	return best_frame;
1380 }
1381 
1382 static int __init
1383 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1384 {
1385 	void __iomem *base;
1386 	int ret, irq = 0;
1387 
1388 	if (arch_timer_mem_use_virtual)
1389 		irq = frame->virt_irq;
1390 	else
1391 		irq = frame->phys_irq;
1392 
1393 	if (!irq) {
1394 		pr_err("Frame missing %s irq.\n",
1395 		       arch_timer_mem_use_virtual ? "virt" : "phys");
1396 		return -EINVAL;
1397 	}
1398 
1399 	if (!request_mem_region(frame->cntbase, frame->size,
1400 				"arch_mem_timer"))
1401 		return -EBUSY;
1402 
1403 	base = ioremap(frame->cntbase, frame->size);
1404 	if (!base) {
1405 		pr_err("Can't map frame's registers\n");
1406 		return -ENXIO;
1407 	}
1408 
1409 	ret = arch_timer_mem_register(base, irq);
1410 	if (ret) {
1411 		iounmap(base);
1412 		return ret;
1413 	}
1414 
1415 	arch_counter_base = base;
1416 	arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1417 
1418 	return 0;
1419 }
1420 
1421 static int __init arch_timer_mem_of_init(struct device_node *np)
1422 {
1423 	struct arch_timer_mem *timer_mem;
1424 	struct arch_timer_mem_frame *frame;
1425 	struct device_node *frame_node;
1426 	struct resource res;
1427 	int ret = -EINVAL;
1428 	u32 rate;
1429 
1430 	timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1431 	if (!timer_mem)
1432 		return -ENOMEM;
1433 
1434 	if (of_address_to_resource(np, 0, &res))
1435 		goto out;
1436 	timer_mem->cntctlbase = res.start;
1437 	timer_mem->size = resource_size(&res);
1438 
1439 	for_each_available_child_of_node(np, frame_node) {
1440 		u32 n;
1441 		struct arch_timer_mem_frame *frame;
1442 
1443 		if (of_property_read_u32(frame_node, "frame-number", &n)) {
1444 			pr_err(FW_BUG "Missing frame-number.\n");
1445 			of_node_put(frame_node);
1446 			goto out;
1447 		}
1448 		if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1449 			pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1450 			       ARCH_TIMER_MEM_MAX_FRAMES - 1);
1451 			of_node_put(frame_node);
1452 			goto out;
1453 		}
1454 		frame = &timer_mem->frame[n];
1455 
1456 		if (frame->valid) {
1457 			pr_err(FW_BUG "Duplicated frame-number.\n");
1458 			of_node_put(frame_node);
1459 			goto out;
1460 		}
1461 
1462 		if (of_address_to_resource(frame_node, 0, &res)) {
1463 			of_node_put(frame_node);
1464 			goto out;
1465 		}
1466 		frame->cntbase = res.start;
1467 		frame->size = resource_size(&res);
1468 
1469 		frame->virt_irq = irq_of_parse_and_map(frame_node,
1470 						       ARCH_TIMER_VIRT_SPI);
1471 		frame->phys_irq = irq_of_parse_and_map(frame_node,
1472 						       ARCH_TIMER_PHYS_SPI);
1473 
1474 		frame->valid = true;
1475 	}
1476 
1477 	frame = arch_timer_mem_find_best_frame(timer_mem);
1478 	if (!frame) {
1479 		pr_err("Unable to find a suitable frame in timer @ %pa\n",
1480 			&timer_mem->cntctlbase);
1481 		ret = -EINVAL;
1482 		goto out;
1483 	}
1484 
1485 	rate = arch_timer_mem_frame_get_cntfrq(frame);
1486 	arch_timer_of_configure_rate(rate, np);
1487 
1488 	ret = arch_timer_mem_frame_register(frame);
1489 	if (!ret && !arch_timer_needs_of_probing())
1490 		ret = arch_timer_common_init();
1491 out:
1492 	kfree(timer_mem);
1493 	return ret;
1494 }
1495 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1496 		       arch_timer_mem_of_init);
1497 
1498 #ifdef CONFIG_ACPI_GTDT
1499 static int __init
1500 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1501 {
1502 	struct arch_timer_mem_frame *frame;
1503 	u32 rate;
1504 	int i;
1505 
1506 	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1507 		frame = &timer_mem->frame[i];
1508 
1509 		if (!frame->valid)
1510 			continue;
1511 
1512 		rate = arch_timer_mem_frame_get_cntfrq(frame);
1513 		if (rate == arch_timer_rate)
1514 			continue;
1515 
1516 		pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1517 			&frame->cntbase,
1518 			(unsigned long)rate, (unsigned long)arch_timer_rate);
1519 
1520 		return -EINVAL;
1521 	}
1522 
1523 	return 0;
1524 }
1525 
1526 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1527 {
1528 	struct arch_timer_mem *timers, *timer;
1529 	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1530 	int timer_count, i, ret = 0;
1531 
1532 	timers = kcalloc(platform_timer_count, sizeof(*timers),
1533 			    GFP_KERNEL);
1534 	if (!timers)
1535 		return -ENOMEM;
1536 
1537 	ret = acpi_arch_timer_mem_init(timers, &timer_count);
1538 	if (ret || !timer_count)
1539 		goto out;
1540 
1541 	/*
1542 	 * While unlikely, it's theoretically possible that none of the frames
1543 	 * in a timer expose the combination of feature we want.
1544 	 */
1545 	for (i = 0; i < timer_count; i++) {
1546 		timer = &timers[i];
1547 
1548 		frame = arch_timer_mem_find_best_frame(timer);
1549 		if (!best_frame)
1550 			best_frame = frame;
1551 
1552 		ret = arch_timer_mem_verify_cntfrq(timer);
1553 		if (ret) {
1554 			pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1555 			goto out;
1556 		}
1557 
1558 		if (!best_frame) /* implies !frame */
1559 			/*
1560 			 * Only complain about missing suitable frames if we
1561 			 * haven't already found one in a previous iteration.
1562 			 */
1563 			pr_err("Unable to find a suitable frame in timer @ %pa\n",
1564 				&timer->cntctlbase);
1565 	}
1566 
1567 	if (best_frame)
1568 		ret = arch_timer_mem_frame_register(best_frame);
1569 out:
1570 	kfree(timers);
1571 	return ret;
1572 }
1573 
1574 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1575 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1576 {
1577 	int ret, platform_timer_count;
1578 
1579 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1580 		pr_warn("already initialized, skipping\n");
1581 		return -EINVAL;
1582 	}
1583 
1584 	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1585 
1586 	ret = acpi_gtdt_init(table, &platform_timer_count);
1587 	if (ret) {
1588 		pr_err("Failed to init GTDT table.\n");
1589 		return ret;
1590 	}
1591 
1592 	arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1593 		acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1594 
1595 	arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1596 		acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1597 
1598 	arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1599 		acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1600 
1601 	arch_timer_populate_kvm_info();
1602 
1603 	/*
1604 	 * When probing via ACPI, we have no mechanism to override the sysreg
1605 	 * CNTFRQ value. This *must* be correct.
1606 	 */
1607 	arch_timer_rate = arch_timer_get_cntfrq();
1608 	if (!arch_timer_rate) {
1609 		pr_err(FW_BUG "frequency not available.\n");
1610 		return -EINVAL;
1611 	}
1612 
1613 	arch_timer_uses_ppi = arch_timer_select_ppi();
1614 	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1615 		pr_err("No interrupt available, giving up\n");
1616 		return -EINVAL;
1617 	}
1618 
1619 	/* Always-on capability */
1620 	arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1621 
1622 	/* Check for globally applicable workarounds */
1623 	arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1624 
1625 	ret = arch_timer_register();
1626 	if (ret)
1627 		return ret;
1628 
1629 	if (platform_timer_count &&
1630 	    arch_timer_mem_acpi_init(platform_timer_count))
1631 		pr_err("Failed to initialize memory-mapped timer.\n");
1632 
1633 	return arch_timer_common_init();
1634 }
1635 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1636 #endif
1637