xref: /openbmc/linux/drivers/clocksource/arm_arch_timer.c (revision 892204e06cb9e89fbc4b299a678f9ca358e97cac)
1 /*
2  *  linux/drivers/clocksource/arm_arch_timer.c
3  *
4  *  Copyright (C) 2011 ARM Ltd.
5  *  All Rights Reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #define pr_fmt(fmt)	"arm_arch_timer: " fmt
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/device.h>
17 #include <linux/smp.h>
18 #include <linux/cpu.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/clockchips.h>
21 #include <linux/clocksource.h>
22 #include <linux/interrupt.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_address.h>
25 #include <linux/io.h>
26 #include <linux/slab.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched_clock.h>
29 #include <linux/acpi.h>
30 
31 #include <asm/arch_timer.h>
32 #include <asm/virt.h>
33 
34 #include <clocksource/arm_arch_timer.h>
35 
36 #undef pr_fmt
37 #define pr_fmt(fmt) "arch_timer: " fmt
38 
39 #define CNTTIDR		0x08
40 #define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
41 
42 #define CNTACR(n)	(0x40 + ((n) * 4))
43 #define CNTACR_RPCT	BIT(0)
44 #define CNTACR_RVCT	BIT(1)
45 #define CNTACR_RFRQ	BIT(2)
46 #define CNTACR_RVOFF	BIT(3)
47 #define CNTACR_RWVT	BIT(4)
48 #define CNTACR_RWPT	BIT(5)
49 
50 #define CNTVCT_LO	0x08
51 #define CNTVCT_HI	0x0c
52 #define CNTFRQ		0x10
53 #define CNTP_TVAL	0x28
54 #define CNTP_CTL	0x2c
55 #define CNTV_TVAL	0x38
56 #define CNTV_CTL	0x3c
57 
58 static unsigned arch_timers_present __initdata;
59 
60 static void __iomem *arch_counter_base;
61 
62 struct arch_timer {
63 	void __iomem *base;
64 	struct clock_event_device evt;
65 };
66 
67 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
68 
69 static u32 arch_timer_rate;
70 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
71 
72 static struct clock_event_device __percpu *arch_timer_evt;
73 
74 static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
75 static bool arch_timer_c3stop;
76 static bool arch_timer_mem_use_virtual;
77 static bool arch_counter_suspend_stop;
78 static bool vdso_default = true;
79 
80 static cpumask_t evtstrm_available = CPU_MASK_NONE;
81 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
82 
83 static int __init early_evtstrm_cfg(char *buf)
84 {
85 	return strtobool(buf, &evtstrm_enable);
86 }
87 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
88 
89 /*
90  * Architected system timer support.
91  */
92 
93 static __always_inline
94 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
95 			  struct clock_event_device *clk)
96 {
97 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
98 		struct arch_timer *timer = to_arch_timer(clk);
99 		switch (reg) {
100 		case ARCH_TIMER_REG_CTRL:
101 			writel_relaxed(val, timer->base + CNTP_CTL);
102 			break;
103 		case ARCH_TIMER_REG_TVAL:
104 			writel_relaxed(val, timer->base + CNTP_TVAL);
105 			break;
106 		}
107 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
108 		struct arch_timer *timer = to_arch_timer(clk);
109 		switch (reg) {
110 		case ARCH_TIMER_REG_CTRL:
111 			writel_relaxed(val, timer->base + CNTV_CTL);
112 			break;
113 		case ARCH_TIMER_REG_TVAL:
114 			writel_relaxed(val, timer->base + CNTV_TVAL);
115 			break;
116 		}
117 	} else {
118 		arch_timer_reg_write_cp15(access, reg, val);
119 	}
120 }
121 
122 static __always_inline
123 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
124 			struct clock_event_device *clk)
125 {
126 	u32 val;
127 
128 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
129 		struct arch_timer *timer = to_arch_timer(clk);
130 		switch (reg) {
131 		case ARCH_TIMER_REG_CTRL:
132 			val = readl_relaxed(timer->base + CNTP_CTL);
133 			break;
134 		case ARCH_TIMER_REG_TVAL:
135 			val = readl_relaxed(timer->base + CNTP_TVAL);
136 			break;
137 		}
138 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
139 		struct arch_timer *timer = to_arch_timer(clk);
140 		switch (reg) {
141 		case ARCH_TIMER_REG_CTRL:
142 			val = readl_relaxed(timer->base + CNTV_CTL);
143 			break;
144 		case ARCH_TIMER_REG_TVAL:
145 			val = readl_relaxed(timer->base + CNTV_TVAL);
146 			break;
147 		}
148 	} else {
149 		val = arch_timer_reg_read_cp15(access, reg);
150 	}
151 
152 	return val;
153 }
154 
155 /*
156  * Default to cp15 based access because arm64 uses this function for
157  * sched_clock() before DT is probed and the cp15 method is guaranteed
158  * to exist on arm64. arm doesn't use this before DT is probed so even
159  * if we don't have the cp15 accessors we won't have a problem.
160  */
161 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
162 
163 static u64 arch_counter_read(struct clocksource *cs)
164 {
165 	return arch_timer_read_counter();
166 }
167 
168 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
169 {
170 	return arch_timer_read_counter();
171 }
172 
173 static struct clocksource clocksource_counter = {
174 	.name	= "arch_sys_counter",
175 	.rating	= 400,
176 	.read	= arch_counter_read,
177 	.mask	= CLOCKSOURCE_MASK(56),
178 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
179 };
180 
181 static struct cyclecounter cyclecounter __ro_after_init = {
182 	.read	= arch_counter_read_cc,
183 	.mask	= CLOCKSOURCE_MASK(56),
184 };
185 
186 struct ate_acpi_oem_info {
187 	char oem_id[ACPI_OEM_ID_SIZE + 1];
188 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
189 	u32 oem_revision;
190 };
191 
192 #ifdef CONFIG_FSL_ERRATUM_A008585
193 /*
194  * The number of retries is an arbitrary value well beyond the highest number
195  * of iterations the loop has been observed to take.
196  */
197 #define __fsl_a008585_read_reg(reg) ({			\
198 	u64 _old, _new;					\
199 	int _retries = 200;				\
200 							\
201 	do {						\
202 		_old = read_sysreg(reg);		\
203 		_new = read_sysreg(reg);		\
204 		_retries--;				\
205 	} while (unlikely(_old != _new) && _retries);	\
206 							\
207 	WARN_ON_ONCE(!_retries);			\
208 	_new;						\
209 })
210 
211 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
212 {
213 	return __fsl_a008585_read_reg(cntp_tval_el0);
214 }
215 
216 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
217 {
218 	return __fsl_a008585_read_reg(cntv_tval_el0);
219 }
220 
221 static u64 notrace fsl_a008585_read_cntvct_el0(void)
222 {
223 	return __fsl_a008585_read_reg(cntvct_el0);
224 }
225 #endif
226 
227 #ifdef CONFIG_HISILICON_ERRATUM_161010101
228 /*
229  * Verify whether the value of the second read is larger than the first by
230  * less than 32 is the only way to confirm the value is correct, so clear the
231  * lower 5 bits to check whether the difference is greater than 32 or not.
232  * Theoretically the erratum should not occur more than twice in succession
233  * when reading the system counter, but it is possible that some interrupts
234  * may lead to more than twice read errors, triggering the warning, so setting
235  * the number of retries far beyond the number of iterations the loop has been
236  * observed to take.
237  */
238 #define __hisi_161010101_read_reg(reg) ({				\
239 	u64 _old, _new;						\
240 	int _retries = 50;					\
241 								\
242 	do {							\
243 		_old = read_sysreg(reg);			\
244 		_new = read_sysreg(reg);			\
245 		_retries--;					\
246 	} while (unlikely((_new - _old) >> 5) && _retries);	\
247 								\
248 	WARN_ON_ONCE(!_retries);				\
249 	_new;							\
250 })
251 
252 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
253 {
254 	return __hisi_161010101_read_reg(cntp_tval_el0);
255 }
256 
257 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
258 {
259 	return __hisi_161010101_read_reg(cntv_tval_el0);
260 }
261 
262 static u64 notrace hisi_161010101_read_cntvct_el0(void)
263 {
264 	return __hisi_161010101_read_reg(cntvct_el0);
265 }
266 
267 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
268 	/*
269 	 * Note that trailing spaces are required to properly match
270 	 * the OEM table information.
271 	 */
272 	{
273 		.oem_id		= "HISI  ",
274 		.oem_table_id	= "HIP05   ",
275 		.oem_revision	= 0,
276 	},
277 	{
278 		.oem_id		= "HISI  ",
279 		.oem_table_id	= "HIP06   ",
280 		.oem_revision	= 0,
281 	},
282 	{
283 		.oem_id		= "HISI  ",
284 		.oem_table_id	= "HIP07   ",
285 		.oem_revision	= 0,
286 	},
287 	{ /* Sentinel indicating the end of the OEM array */ },
288 };
289 #endif
290 
291 #ifdef CONFIG_ARM64_ERRATUM_858921
292 static u64 notrace arm64_858921_read_cntvct_el0(void)
293 {
294 	u64 old, new;
295 
296 	old = read_sysreg(cntvct_el0);
297 	new = read_sysreg(cntvct_el0);
298 	return (((old ^ new) >> 32) & 1) ? old : new;
299 }
300 #endif
301 
302 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
303 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
304 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
305 
306 DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
307 EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);
308 
309 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
310 						struct clock_event_device *clk)
311 {
312 	unsigned long ctrl;
313 	u64 cval = evt + arch_counter_get_cntvct();
314 
315 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
316 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
317 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
318 
319 	if (access == ARCH_TIMER_PHYS_ACCESS)
320 		write_sysreg(cval, cntp_cval_el0);
321 	else
322 		write_sysreg(cval, cntv_cval_el0);
323 
324 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
325 }
326 
327 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
328 					    struct clock_event_device *clk)
329 {
330 	erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
331 	return 0;
332 }
333 
334 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
335 					    struct clock_event_device *clk)
336 {
337 	erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
338 	return 0;
339 }
340 
341 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
342 #ifdef CONFIG_FSL_ERRATUM_A008585
343 	{
344 		.match_type = ate_match_dt,
345 		.id = "fsl,erratum-a008585",
346 		.desc = "Freescale erratum a005858",
347 		.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
348 		.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
349 		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
350 		.set_next_event_phys = erratum_set_next_event_tval_phys,
351 		.set_next_event_virt = erratum_set_next_event_tval_virt,
352 	},
353 #endif
354 #ifdef CONFIG_HISILICON_ERRATUM_161010101
355 	{
356 		.match_type = ate_match_dt,
357 		.id = "hisilicon,erratum-161010101",
358 		.desc = "HiSilicon erratum 161010101",
359 		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
360 		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
361 		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
362 		.set_next_event_phys = erratum_set_next_event_tval_phys,
363 		.set_next_event_virt = erratum_set_next_event_tval_virt,
364 	},
365 	{
366 		.match_type = ate_match_acpi_oem_info,
367 		.id = hisi_161010101_oem_info,
368 		.desc = "HiSilicon erratum 161010101",
369 		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
370 		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
371 		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
372 		.set_next_event_phys = erratum_set_next_event_tval_phys,
373 		.set_next_event_virt = erratum_set_next_event_tval_virt,
374 	},
375 #endif
376 #ifdef CONFIG_ARM64_ERRATUM_858921
377 	{
378 		.match_type = ate_match_local_cap_id,
379 		.id = (void *)ARM64_WORKAROUND_858921,
380 		.desc = "ARM erratum 858921",
381 		.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
382 	},
383 #endif
384 };
385 
386 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
387 			       const void *);
388 
389 static
390 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
391 				 const void *arg)
392 {
393 	const struct device_node *np = arg;
394 
395 	return of_property_read_bool(np, wa->id);
396 }
397 
398 static
399 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
400 					const void *arg)
401 {
402 	return this_cpu_has_cap((uintptr_t)wa->id);
403 }
404 
405 
406 static
407 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
408 				       const void *arg)
409 {
410 	static const struct ate_acpi_oem_info empty_oem_info = {};
411 	const struct ate_acpi_oem_info *info = wa->id;
412 	const struct acpi_table_header *table = arg;
413 
414 	/* Iterate over the ACPI OEM info array, looking for a match */
415 	while (memcmp(info, &empty_oem_info, sizeof(*info))) {
416 		if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
417 		    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
418 		    info->oem_revision == table->oem_revision)
419 			return true;
420 
421 		info++;
422 	}
423 
424 	return false;
425 }
426 
427 static const struct arch_timer_erratum_workaround *
428 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
429 			  ate_match_fn_t match_fn,
430 			  void *arg)
431 {
432 	int i;
433 
434 	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
435 		if (ool_workarounds[i].match_type != type)
436 			continue;
437 
438 		if (match_fn(&ool_workarounds[i], arg))
439 			return &ool_workarounds[i];
440 	}
441 
442 	return NULL;
443 }
444 
445 static
446 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
447 				  bool local)
448 {
449 	int i;
450 
451 	if (local) {
452 		__this_cpu_write(timer_unstable_counter_workaround, wa);
453 	} else {
454 		for_each_possible_cpu(i)
455 			per_cpu(timer_unstable_counter_workaround, i) = wa;
456 	}
457 
458 	/*
459 	 * Use the locked version, as we're called from the CPU
460 	 * hotplug framework. Otherwise, we end-up in deadlock-land.
461 	 */
462 	static_branch_enable_cpuslocked(&arch_timer_read_ool_enabled);
463 
464 	/*
465 	 * Don't use the vdso fastpath if errata require using the
466 	 * out-of-line counter accessor. We may change our mind pretty
467 	 * late in the game (with a per-CPU erratum, for example), so
468 	 * change both the default value and the vdso itself.
469 	 */
470 	if (wa->read_cntvct_el0) {
471 		clocksource_counter.archdata.vdso_direct = false;
472 		vdso_default = false;
473 	}
474 }
475 
476 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
477 					    void *arg)
478 {
479 	const struct arch_timer_erratum_workaround *wa;
480 	ate_match_fn_t match_fn = NULL;
481 	bool local = false;
482 
483 	switch (type) {
484 	case ate_match_dt:
485 		match_fn = arch_timer_check_dt_erratum;
486 		break;
487 	case ate_match_local_cap_id:
488 		match_fn = arch_timer_check_local_cap_erratum;
489 		local = true;
490 		break;
491 	case ate_match_acpi_oem_info:
492 		match_fn = arch_timer_check_acpi_oem_erratum;
493 		break;
494 	default:
495 		WARN_ON(1);
496 		return;
497 	}
498 
499 	wa = arch_timer_iterate_errata(type, match_fn, arg);
500 	if (!wa)
501 		return;
502 
503 	if (needs_unstable_timer_counter_workaround()) {
504 		const struct arch_timer_erratum_workaround *__wa;
505 		__wa = __this_cpu_read(timer_unstable_counter_workaround);
506 		if (__wa && wa != __wa)
507 			pr_warn("Can't enable workaround for %s (clashes with %s\n)",
508 				wa->desc, __wa->desc);
509 
510 		if (__wa)
511 			return;
512 	}
513 
514 	arch_timer_enable_workaround(wa, local);
515 	pr_info("Enabling %s workaround for %s\n",
516 		local ? "local" : "global", wa->desc);
517 }
518 
519 #define erratum_handler(fn, r, ...)					\
520 ({									\
521 	bool __val;							\
522 	if (needs_unstable_timer_counter_workaround()) {		\
523 		const struct arch_timer_erratum_workaround *__wa;	\
524 		__wa = __this_cpu_read(timer_unstable_counter_workaround); \
525 		if (__wa && __wa->fn) {					\
526 			r = __wa->fn(__VA_ARGS__);			\
527 			__val = true;					\
528 		} else {						\
529 			__val = false;					\
530 		}							\
531 	} else {							\
532 		__val = false;						\
533 	}								\
534 	__val;								\
535 })
536 
537 static bool arch_timer_this_cpu_has_cntvct_wa(void)
538 {
539 	const struct arch_timer_erratum_workaround *wa;
540 
541 	wa = __this_cpu_read(timer_unstable_counter_workaround);
542 	return wa && wa->read_cntvct_el0;
543 }
544 #else
545 #define arch_timer_check_ool_workaround(t,a)		do { } while(0)
546 #define erratum_set_next_event_tval_virt(...)		({BUG(); 0;})
547 #define erratum_set_next_event_tval_phys(...)		({BUG(); 0;})
548 #define erratum_handler(fn, r, ...)			({false;})
549 #define arch_timer_this_cpu_has_cntvct_wa()		({false;})
550 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
551 
552 static __always_inline irqreturn_t timer_handler(const int access,
553 					struct clock_event_device *evt)
554 {
555 	unsigned long ctrl;
556 
557 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
558 	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
559 		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
560 		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
561 		evt->event_handler(evt);
562 		return IRQ_HANDLED;
563 	}
564 
565 	return IRQ_NONE;
566 }
567 
568 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
569 {
570 	struct clock_event_device *evt = dev_id;
571 
572 	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
573 }
574 
575 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
576 {
577 	struct clock_event_device *evt = dev_id;
578 
579 	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
580 }
581 
582 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
583 {
584 	struct clock_event_device *evt = dev_id;
585 
586 	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
587 }
588 
589 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
590 {
591 	struct clock_event_device *evt = dev_id;
592 
593 	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
594 }
595 
596 static __always_inline int timer_shutdown(const int access,
597 					  struct clock_event_device *clk)
598 {
599 	unsigned long ctrl;
600 
601 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
602 	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
603 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
604 
605 	return 0;
606 }
607 
608 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
609 {
610 	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
611 }
612 
613 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
614 {
615 	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
616 }
617 
618 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
619 {
620 	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
621 }
622 
623 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
624 {
625 	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
626 }
627 
628 static __always_inline void set_next_event(const int access, unsigned long evt,
629 					   struct clock_event_device *clk)
630 {
631 	unsigned long ctrl;
632 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
633 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
634 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
635 	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
636 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
637 }
638 
639 static int arch_timer_set_next_event_virt(unsigned long evt,
640 					  struct clock_event_device *clk)
641 {
642 	int ret;
643 
644 	if (erratum_handler(set_next_event_virt, ret, evt, clk))
645 		return ret;
646 
647 	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
648 	return 0;
649 }
650 
651 static int arch_timer_set_next_event_phys(unsigned long evt,
652 					  struct clock_event_device *clk)
653 {
654 	int ret;
655 
656 	if (erratum_handler(set_next_event_phys, ret, evt, clk))
657 		return ret;
658 
659 	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
660 	return 0;
661 }
662 
663 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
664 					      struct clock_event_device *clk)
665 {
666 	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
667 	return 0;
668 }
669 
670 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
671 					      struct clock_event_device *clk)
672 {
673 	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
674 	return 0;
675 }
676 
677 static void __arch_timer_setup(unsigned type,
678 			       struct clock_event_device *clk)
679 {
680 	clk->features = CLOCK_EVT_FEAT_ONESHOT;
681 
682 	if (type == ARCH_TIMER_TYPE_CP15) {
683 		if (arch_timer_c3stop)
684 			clk->features |= CLOCK_EVT_FEAT_C3STOP;
685 		clk->name = "arch_sys_timer";
686 		clk->rating = 450;
687 		clk->cpumask = cpumask_of(smp_processor_id());
688 		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
689 		switch (arch_timer_uses_ppi) {
690 		case ARCH_TIMER_VIRT_PPI:
691 			clk->set_state_shutdown = arch_timer_shutdown_virt;
692 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
693 			clk->set_next_event = arch_timer_set_next_event_virt;
694 			break;
695 		case ARCH_TIMER_PHYS_SECURE_PPI:
696 		case ARCH_TIMER_PHYS_NONSECURE_PPI:
697 		case ARCH_TIMER_HYP_PPI:
698 			clk->set_state_shutdown = arch_timer_shutdown_phys;
699 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
700 			clk->set_next_event = arch_timer_set_next_event_phys;
701 			break;
702 		default:
703 			BUG();
704 		}
705 
706 		arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
707 	} else {
708 		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
709 		clk->name = "arch_mem_timer";
710 		clk->rating = 400;
711 		clk->cpumask = cpu_all_mask;
712 		if (arch_timer_mem_use_virtual) {
713 			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
714 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
715 			clk->set_next_event =
716 				arch_timer_set_next_event_virt_mem;
717 		} else {
718 			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
719 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
720 			clk->set_next_event =
721 				arch_timer_set_next_event_phys_mem;
722 		}
723 	}
724 
725 	clk->set_state_shutdown(clk);
726 
727 	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
728 }
729 
730 static void arch_timer_evtstrm_enable(int divider)
731 {
732 	u32 cntkctl = arch_timer_get_cntkctl();
733 
734 	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
735 	/* Set the divider and enable virtual event stream */
736 	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
737 			| ARCH_TIMER_VIRT_EVT_EN;
738 	arch_timer_set_cntkctl(cntkctl);
739 	elf_hwcap |= HWCAP_EVTSTRM;
740 #ifdef CONFIG_COMPAT
741 	compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
742 #endif
743 	cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
744 }
745 
746 static void arch_timer_configure_evtstream(void)
747 {
748 	int evt_stream_div, pos;
749 
750 	/* Find the closest power of two to the divisor */
751 	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
752 	pos = fls(evt_stream_div);
753 	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
754 		pos--;
755 	/* enable event stream */
756 	arch_timer_evtstrm_enable(min(pos, 15));
757 }
758 
759 static void arch_counter_set_user_access(void)
760 {
761 	u32 cntkctl = arch_timer_get_cntkctl();
762 
763 	/* Disable user access to the timers and both counters */
764 	/* Also disable virtual event stream */
765 	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
766 			| ARCH_TIMER_USR_VT_ACCESS_EN
767 		        | ARCH_TIMER_USR_VCT_ACCESS_EN
768 			| ARCH_TIMER_VIRT_EVT_EN
769 			| ARCH_TIMER_USR_PCT_ACCESS_EN);
770 
771 	/*
772 	 * Enable user access to the virtual counter if it doesn't
773 	 * need to be workaround. The vdso may have been already
774 	 * disabled though.
775 	 */
776 	if (arch_timer_this_cpu_has_cntvct_wa())
777 		pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
778 	else
779 		cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
780 
781 	arch_timer_set_cntkctl(cntkctl);
782 }
783 
784 static bool arch_timer_has_nonsecure_ppi(void)
785 {
786 	return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
787 		arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
788 }
789 
790 static u32 check_ppi_trigger(int irq)
791 {
792 	u32 flags = irq_get_trigger_type(irq);
793 
794 	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
795 		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
796 		pr_warn("WARNING: Please fix your firmware\n");
797 		flags = IRQF_TRIGGER_LOW;
798 	}
799 
800 	return flags;
801 }
802 
803 static int arch_timer_starting_cpu(unsigned int cpu)
804 {
805 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
806 	u32 flags;
807 
808 	__arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
809 
810 	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
811 	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
812 
813 	if (arch_timer_has_nonsecure_ppi()) {
814 		flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
815 		enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
816 				  flags);
817 	}
818 
819 	arch_counter_set_user_access();
820 	if (evtstrm_enable)
821 		arch_timer_configure_evtstream();
822 
823 	return 0;
824 }
825 
826 /*
827  * For historical reasons, when probing with DT we use whichever (non-zero)
828  * rate was probed first, and don't verify that others match. If the first node
829  * probed has a clock-frequency property, this overrides the HW register.
830  */
831 static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
832 {
833 	/* Who has more than one independent system counter? */
834 	if (arch_timer_rate)
835 		return;
836 
837 	if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
838 		arch_timer_rate = rate;
839 
840 	/* Check the timer frequency. */
841 	if (arch_timer_rate == 0)
842 		pr_warn("frequency not available\n");
843 }
844 
845 static void arch_timer_banner(unsigned type)
846 {
847 	pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
848 		type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
849 		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
850 			" and " : "",
851 		type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
852 		(unsigned long)arch_timer_rate / 1000000,
853 		(unsigned long)(arch_timer_rate / 10000) % 100,
854 		type & ARCH_TIMER_TYPE_CP15 ?
855 			(arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
856 			"",
857 		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
858 		type & ARCH_TIMER_TYPE_MEM ?
859 			arch_timer_mem_use_virtual ? "virt" : "phys" :
860 			"");
861 }
862 
863 u32 arch_timer_get_rate(void)
864 {
865 	return arch_timer_rate;
866 }
867 
868 bool arch_timer_evtstrm_available(void)
869 {
870 	/*
871 	 * We might get called from a preemptible context. This is fine
872 	 * because availability of the event stream should be always the same
873 	 * for a preemptible context and context where we might resume a task.
874 	 */
875 	return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
876 }
877 
878 static u64 arch_counter_get_cntvct_mem(void)
879 {
880 	u32 vct_lo, vct_hi, tmp_hi;
881 
882 	do {
883 		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
884 		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
885 		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
886 	} while (vct_hi != tmp_hi);
887 
888 	return ((u64) vct_hi << 32) | vct_lo;
889 }
890 
891 static struct arch_timer_kvm_info arch_timer_kvm_info;
892 
893 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
894 {
895 	return &arch_timer_kvm_info;
896 }
897 
898 static void __init arch_counter_register(unsigned type)
899 {
900 	u64 start_count;
901 
902 	/* Register the CP15 based counter if we have one */
903 	if (type & ARCH_TIMER_TYPE_CP15) {
904 		if (IS_ENABLED(CONFIG_ARM64) ||
905 		    arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
906 			arch_timer_read_counter = arch_counter_get_cntvct;
907 		else
908 			arch_timer_read_counter = arch_counter_get_cntpct;
909 
910 		clocksource_counter.archdata.vdso_direct = vdso_default;
911 	} else {
912 		arch_timer_read_counter = arch_counter_get_cntvct_mem;
913 	}
914 
915 	if (!arch_counter_suspend_stop)
916 		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
917 	start_count = arch_timer_read_counter();
918 	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
919 	cyclecounter.mult = clocksource_counter.mult;
920 	cyclecounter.shift = clocksource_counter.shift;
921 	timecounter_init(&arch_timer_kvm_info.timecounter,
922 			 &cyclecounter, start_count);
923 
924 	/* 56 bits minimum, so we assume worst case rollover */
925 	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
926 }
927 
928 static void arch_timer_stop(struct clock_event_device *clk)
929 {
930 	pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
931 
932 	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
933 	if (arch_timer_has_nonsecure_ppi())
934 		disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
935 
936 	clk->set_state_shutdown(clk);
937 }
938 
939 static int arch_timer_dying_cpu(unsigned int cpu)
940 {
941 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
942 
943 	cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
944 
945 	arch_timer_stop(clk);
946 	return 0;
947 }
948 
949 #ifdef CONFIG_CPU_PM
950 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
951 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
952 				    unsigned long action, void *hcpu)
953 {
954 	if (action == CPU_PM_ENTER) {
955 		__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
956 
957 		cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
958 	} else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
959 		arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
960 
961 		if (elf_hwcap & HWCAP_EVTSTRM)
962 			cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
963 	}
964 	return NOTIFY_OK;
965 }
966 
967 static struct notifier_block arch_timer_cpu_pm_notifier = {
968 	.notifier_call = arch_timer_cpu_pm_notify,
969 };
970 
971 static int __init arch_timer_cpu_pm_init(void)
972 {
973 	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
974 }
975 
976 static void __init arch_timer_cpu_pm_deinit(void)
977 {
978 	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
979 }
980 
981 #else
982 static int __init arch_timer_cpu_pm_init(void)
983 {
984 	return 0;
985 }
986 
987 static void __init arch_timer_cpu_pm_deinit(void)
988 {
989 }
990 #endif
991 
992 static int __init arch_timer_register(void)
993 {
994 	int err;
995 	int ppi;
996 
997 	arch_timer_evt = alloc_percpu(struct clock_event_device);
998 	if (!arch_timer_evt) {
999 		err = -ENOMEM;
1000 		goto out;
1001 	}
1002 
1003 	ppi = arch_timer_ppi[arch_timer_uses_ppi];
1004 	switch (arch_timer_uses_ppi) {
1005 	case ARCH_TIMER_VIRT_PPI:
1006 		err = request_percpu_irq(ppi, arch_timer_handler_virt,
1007 					 "arch_timer", arch_timer_evt);
1008 		break;
1009 	case ARCH_TIMER_PHYS_SECURE_PPI:
1010 	case ARCH_TIMER_PHYS_NONSECURE_PPI:
1011 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1012 					 "arch_timer", arch_timer_evt);
1013 		if (!err && arch_timer_has_nonsecure_ppi()) {
1014 			ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1015 			err = request_percpu_irq(ppi, arch_timer_handler_phys,
1016 						 "arch_timer", arch_timer_evt);
1017 			if (err)
1018 				free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1019 						arch_timer_evt);
1020 		}
1021 		break;
1022 	case ARCH_TIMER_HYP_PPI:
1023 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1024 					 "arch_timer", arch_timer_evt);
1025 		break;
1026 	default:
1027 		BUG();
1028 	}
1029 
1030 	if (err) {
1031 		pr_err("can't register interrupt %d (%d)\n", ppi, err);
1032 		goto out_free;
1033 	}
1034 
1035 	err = arch_timer_cpu_pm_init();
1036 	if (err)
1037 		goto out_unreg_notify;
1038 
1039 	/* Register and immediately configure the timer on the boot CPU */
1040 	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1041 				"clockevents/arm/arch_timer:starting",
1042 				arch_timer_starting_cpu, arch_timer_dying_cpu);
1043 	if (err)
1044 		goto out_unreg_cpupm;
1045 	return 0;
1046 
1047 out_unreg_cpupm:
1048 	arch_timer_cpu_pm_deinit();
1049 
1050 out_unreg_notify:
1051 	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1052 	if (arch_timer_has_nonsecure_ppi())
1053 		free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1054 				arch_timer_evt);
1055 
1056 out_free:
1057 	free_percpu(arch_timer_evt);
1058 out:
1059 	return err;
1060 }
1061 
1062 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1063 {
1064 	int ret;
1065 	irq_handler_t func;
1066 	struct arch_timer *t;
1067 
1068 	t = kzalloc(sizeof(*t), GFP_KERNEL);
1069 	if (!t)
1070 		return -ENOMEM;
1071 
1072 	t->base = base;
1073 	t->evt.irq = irq;
1074 	__arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1075 
1076 	if (arch_timer_mem_use_virtual)
1077 		func = arch_timer_handler_virt_mem;
1078 	else
1079 		func = arch_timer_handler_phys_mem;
1080 
1081 	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1082 	if (ret) {
1083 		pr_err("Failed to request mem timer irq\n");
1084 		kfree(t);
1085 	}
1086 
1087 	return ret;
1088 }
1089 
1090 static const struct of_device_id arch_timer_of_match[] __initconst = {
1091 	{ .compatible   = "arm,armv7-timer",    },
1092 	{ .compatible   = "arm,armv8-timer",    },
1093 	{},
1094 };
1095 
1096 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1097 	{ .compatible   = "arm,armv7-timer-mem", },
1098 	{},
1099 };
1100 
1101 static bool __init arch_timer_needs_of_probing(void)
1102 {
1103 	struct device_node *dn;
1104 	bool needs_probing = false;
1105 	unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1106 
1107 	/* We have two timers, and both device-tree nodes are probed. */
1108 	if ((arch_timers_present & mask) == mask)
1109 		return false;
1110 
1111 	/*
1112 	 * Only one type of timer is probed,
1113 	 * check if we have another type of timer node in device-tree.
1114 	 */
1115 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1116 		dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1117 	else
1118 		dn = of_find_matching_node(NULL, arch_timer_of_match);
1119 
1120 	if (dn && of_device_is_available(dn))
1121 		needs_probing = true;
1122 
1123 	of_node_put(dn);
1124 
1125 	return needs_probing;
1126 }
1127 
1128 static int __init arch_timer_common_init(void)
1129 {
1130 	arch_timer_banner(arch_timers_present);
1131 	arch_counter_register(arch_timers_present);
1132 	return arch_timer_arch_init();
1133 }
1134 
1135 /**
1136  * arch_timer_select_ppi() - Select suitable PPI for the current system.
1137  *
1138  * If HYP mode is available, we know that the physical timer
1139  * has been configured to be accessible from PL1. Use it, so
1140  * that a guest can use the virtual timer instead.
1141  *
1142  * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1143  * accesses to CNTP_*_EL1 registers are silently redirected to
1144  * their CNTHP_*_EL2 counterparts, and use a different PPI
1145  * number.
1146  *
1147  * If no interrupt provided for virtual timer, we'll have to
1148  * stick to the physical timer. It'd better be accessible...
1149  * For arm64 we never use the secure interrupt.
1150  *
1151  * Return: a suitable PPI type for the current system.
1152  */
1153 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1154 {
1155 	if (is_kernel_in_hyp_mode())
1156 		return ARCH_TIMER_HYP_PPI;
1157 
1158 	if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1159 		return ARCH_TIMER_VIRT_PPI;
1160 
1161 	if (IS_ENABLED(CONFIG_ARM64))
1162 		return ARCH_TIMER_PHYS_NONSECURE_PPI;
1163 
1164 	return ARCH_TIMER_PHYS_SECURE_PPI;
1165 }
1166 
1167 static int __init arch_timer_of_init(struct device_node *np)
1168 {
1169 	int i, ret;
1170 	u32 rate;
1171 
1172 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1173 		pr_warn("multiple nodes in dt, skipping\n");
1174 		return 0;
1175 	}
1176 
1177 	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1178 	for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1179 		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
1180 
1181 	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1182 
1183 	rate = arch_timer_get_cntfrq();
1184 	arch_timer_of_configure_rate(rate, np);
1185 
1186 	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1187 
1188 	/* Check for globally applicable workarounds */
1189 	arch_timer_check_ool_workaround(ate_match_dt, np);
1190 
1191 	/*
1192 	 * If we cannot rely on firmware initializing the timer registers then
1193 	 * we should use the physical timers instead.
1194 	 */
1195 	if (IS_ENABLED(CONFIG_ARM) &&
1196 	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1197 		arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1198 	else
1199 		arch_timer_uses_ppi = arch_timer_select_ppi();
1200 
1201 	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1202 		pr_err("No interrupt available, giving up\n");
1203 		return -EINVAL;
1204 	}
1205 
1206 	/* On some systems, the counter stops ticking when in suspend. */
1207 	arch_counter_suspend_stop = of_property_read_bool(np,
1208 							 "arm,no-tick-in-suspend");
1209 
1210 	ret = arch_timer_register();
1211 	if (ret)
1212 		return ret;
1213 
1214 	if (arch_timer_needs_of_probing())
1215 		return 0;
1216 
1217 	return arch_timer_common_init();
1218 }
1219 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1220 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1221 
1222 static u32 __init
1223 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1224 {
1225 	void __iomem *base;
1226 	u32 rate;
1227 
1228 	base = ioremap(frame->cntbase, frame->size);
1229 	if (!base) {
1230 		pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1231 		return 0;
1232 	}
1233 
1234 	rate = readl_relaxed(base + CNTFRQ);
1235 
1236 	iounmap(base);
1237 
1238 	return rate;
1239 }
1240 
1241 static struct arch_timer_mem_frame * __init
1242 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1243 {
1244 	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1245 	void __iomem *cntctlbase;
1246 	u32 cnttidr;
1247 	int i;
1248 
1249 	cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1250 	if (!cntctlbase) {
1251 		pr_err("Can't map CNTCTLBase @ %pa\n",
1252 			&timer_mem->cntctlbase);
1253 		return NULL;
1254 	}
1255 
1256 	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1257 
1258 	/*
1259 	 * Try to find a virtual capable frame. Otherwise fall back to a
1260 	 * physical capable frame.
1261 	 */
1262 	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1263 		u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1264 			     CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1265 
1266 		frame = &timer_mem->frame[i];
1267 		if (!frame->valid)
1268 			continue;
1269 
1270 		/* Try enabling everything, and see what sticks */
1271 		writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1272 		cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1273 
1274 		if ((cnttidr & CNTTIDR_VIRT(i)) &&
1275 		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1276 			best_frame = frame;
1277 			arch_timer_mem_use_virtual = true;
1278 			break;
1279 		}
1280 
1281 		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1282 			continue;
1283 
1284 		best_frame = frame;
1285 	}
1286 
1287 	iounmap(cntctlbase);
1288 
1289 	return best_frame;
1290 }
1291 
1292 static int __init
1293 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1294 {
1295 	void __iomem *base;
1296 	int ret, irq = 0;
1297 
1298 	if (arch_timer_mem_use_virtual)
1299 		irq = frame->virt_irq;
1300 	else
1301 		irq = frame->phys_irq;
1302 
1303 	if (!irq) {
1304 		pr_err("Frame missing %s irq.\n",
1305 		       arch_timer_mem_use_virtual ? "virt" : "phys");
1306 		return -EINVAL;
1307 	}
1308 
1309 	if (!request_mem_region(frame->cntbase, frame->size,
1310 				"arch_mem_timer"))
1311 		return -EBUSY;
1312 
1313 	base = ioremap(frame->cntbase, frame->size);
1314 	if (!base) {
1315 		pr_err("Can't map frame's registers\n");
1316 		return -ENXIO;
1317 	}
1318 
1319 	ret = arch_timer_mem_register(base, irq);
1320 	if (ret) {
1321 		iounmap(base);
1322 		return ret;
1323 	}
1324 
1325 	arch_counter_base = base;
1326 	arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1327 
1328 	return 0;
1329 }
1330 
1331 static int __init arch_timer_mem_of_init(struct device_node *np)
1332 {
1333 	struct arch_timer_mem *timer_mem;
1334 	struct arch_timer_mem_frame *frame;
1335 	struct device_node *frame_node;
1336 	struct resource res;
1337 	int ret = -EINVAL;
1338 	u32 rate;
1339 
1340 	timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1341 	if (!timer_mem)
1342 		return -ENOMEM;
1343 
1344 	if (of_address_to_resource(np, 0, &res))
1345 		goto out;
1346 	timer_mem->cntctlbase = res.start;
1347 	timer_mem->size = resource_size(&res);
1348 
1349 	for_each_available_child_of_node(np, frame_node) {
1350 		u32 n;
1351 		struct arch_timer_mem_frame *frame;
1352 
1353 		if (of_property_read_u32(frame_node, "frame-number", &n)) {
1354 			pr_err(FW_BUG "Missing frame-number.\n");
1355 			of_node_put(frame_node);
1356 			goto out;
1357 		}
1358 		if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1359 			pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1360 			       ARCH_TIMER_MEM_MAX_FRAMES - 1);
1361 			of_node_put(frame_node);
1362 			goto out;
1363 		}
1364 		frame = &timer_mem->frame[n];
1365 
1366 		if (frame->valid) {
1367 			pr_err(FW_BUG "Duplicated frame-number.\n");
1368 			of_node_put(frame_node);
1369 			goto out;
1370 		}
1371 
1372 		if (of_address_to_resource(frame_node, 0, &res)) {
1373 			of_node_put(frame_node);
1374 			goto out;
1375 		}
1376 		frame->cntbase = res.start;
1377 		frame->size = resource_size(&res);
1378 
1379 		frame->virt_irq = irq_of_parse_and_map(frame_node,
1380 						       ARCH_TIMER_VIRT_SPI);
1381 		frame->phys_irq = irq_of_parse_and_map(frame_node,
1382 						       ARCH_TIMER_PHYS_SPI);
1383 
1384 		frame->valid = true;
1385 	}
1386 
1387 	frame = arch_timer_mem_find_best_frame(timer_mem);
1388 	if (!frame) {
1389 		pr_err("Unable to find a suitable frame in timer @ %pa\n",
1390 			&timer_mem->cntctlbase);
1391 		ret = -EINVAL;
1392 		goto out;
1393 	}
1394 
1395 	rate = arch_timer_mem_frame_get_cntfrq(frame);
1396 	arch_timer_of_configure_rate(rate, np);
1397 
1398 	ret = arch_timer_mem_frame_register(frame);
1399 	if (!ret && !arch_timer_needs_of_probing())
1400 		ret = arch_timer_common_init();
1401 out:
1402 	kfree(timer_mem);
1403 	return ret;
1404 }
1405 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1406 		       arch_timer_mem_of_init);
1407 
1408 #ifdef CONFIG_ACPI_GTDT
1409 static int __init
1410 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1411 {
1412 	struct arch_timer_mem_frame *frame;
1413 	u32 rate;
1414 	int i;
1415 
1416 	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1417 		frame = &timer_mem->frame[i];
1418 
1419 		if (!frame->valid)
1420 			continue;
1421 
1422 		rate = arch_timer_mem_frame_get_cntfrq(frame);
1423 		if (rate == arch_timer_rate)
1424 			continue;
1425 
1426 		pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1427 			&frame->cntbase,
1428 			(unsigned long)rate, (unsigned long)arch_timer_rate);
1429 
1430 		return -EINVAL;
1431 	}
1432 
1433 	return 0;
1434 }
1435 
1436 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1437 {
1438 	struct arch_timer_mem *timers, *timer;
1439 	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1440 	int timer_count, i, ret = 0;
1441 
1442 	timers = kcalloc(platform_timer_count, sizeof(*timers),
1443 			    GFP_KERNEL);
1444 	if (!timers)
1445 		return -ENOMEM;
1446 
1447 	ret = acpi_arch_timer_mem_init(timers, &timer_count);
1448 	if (ret || !timer_count)
1449 		goto out;
1450 
1451 	/*
1452 	 * While unlikely, it's theoretically possible that none of the frames
1453 	 * in a timer expose the combination of feature we want.
1454 	 */
1455 	for (i = 0; i < timer_count; i++) {
1456 		timer = &timers[i];
1457 
1458 		frame = arch_timer_mem_find_best_frame(timer);
1459 		if (!best_frame)
1460 			best_frame = frame;
1461 
1462 		ret = arch_timer_mem_verify_cntfrq(timer);
1463 		if (ret) {
1464 			pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1465 			goto out;
1466 		}
1467 
1468 		if (!best_frame) /* implies !frame */
1469 			/*
1470 			 * Only complain about missing suitable frames if we
1471 			 * haven't already found one in a previous iteration.
1472 			 */
1473 			pr_err("Unable to find a suitable frame in timer @ %pa\n",
1474 				&timer->cntctlbase);
1475 	}
1476 
1477 	if (best_frame)
1478 		ret = arch_timer_mem_frame_register(best_frame);
1479 out:
1480 	kfree(timers);
1481 	return ret;
1482 }
1483 
1484 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1485 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1486 {
1487 	int ret, platform_timer_count;
1488 
1489 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1490 		pr_warn("already initialized, skipping\n");
1491 		return -EINVAL;
1492 	}
1493 
1494 	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1495 
1496 	ret = acpi_gtdt_init(table, &platform_timer_count);
1497 	if (ret) {
1498 		pr_err("Failed to init GTDT table.\n");
1499 		return ret;
1500 	}
1501 
1502 	arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1503 		acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1504 
1505 	arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1506 		acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1507 
1508 	arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1509 		acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1510 
1511 	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1512 
1513 	/*
1514 	 * When probing via ACPI, we have no mechanism to override the sysreg
1515 	 * CNTFRQ value. This *must* be correct.
1516 	 */
1517 	arch_timer_rate = arch_timer_get_cntfrq();
1518 	if (!arch_timer_rate) {
1519 		pr_err(FW_BUG "frequency not available.\n");
1520 		return -EINVAL;
1521 	}
1522 
1523 	arch_timer_uses_ppi = arch_timer_select_ppi();
1524 	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1525 		pr_err("No interrupt available, giving up\n");
1526 		return -EINVAL;
1527 	}
1528 
1529 	/* Always-on capability */
1530 	arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1531 
1532 	/* Check for globally applicable workarounds */
1533 	arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1534 
1535 	ret = arch_timer_register();
1536 	if (ret)
1537 		return ret;
1538 
1539 	if (platform_timer_count &&
1540 	    arch_timer_mem_acpi_init(platform_timer_count))
1541 		pr_err("Failed to initialize memory-mapped timer.\n");
1542 
1543 	return arch_timer_common_init();
1544 }
1545 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1546 #endif
1547