1 /* 2 * linux/drivers/clocksource/arm_arch_timer.c 3 * 4 * Copyright (C) 2011 ARM Ltd. 5 * All Rights Reserved 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #define pr_fmt(fmt) "arm_arch_timer: " fmt 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/device.h> 17 #include <linux/smp.h> 18 #include <linux/cpu.h> 19 #include <linux/cpu_pm.h> 20 #include <linux/clockchips.h> 21 #include <linux/clocksource.h> 22 #include <linux/interrupt.h> 23 #include <linux/of_irq.h> 24 #include <linux/of_address.h> 25 #include <linux/io.h> 26 #include <linux/slab.h> 27 #include <linux/sched/clock.h> 28 #include <linux/sched_clock.h> 29 #include <linux/acpi.h> 30 31 #include <asm/arch_timer.h> 32 #include <asm/virt.h> 33 34 #include <clocksource/arm_arch_timer.h> 35 36 #undef pr_fmt 37 #define pr_fmt(fmt) "arch_timer: " fmt 38 39 #define CNTTIDR 0x08 40 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4)) 41 42 #define CNTACR(n) (0x40 + ((n) * 4)) 43 #define CNTACR_RPCT BIT(0) 44 #define CNTACR_RVCT BIT(1) 45 #define CNTACR_RFRQ BIT(2) 46 #define CNTACR_RVOFF BIT(3) 47 #define CNTACR_RWVT BIT(4) 48 #define CNTACR_RWPT BIT(5) 49 50 #define CNTVCT_LO 0x08 51 #define CNTVCT_HI 0x0c 52 #define CNTFRQ 0x10 53 #define CNTP_TVAL 0x28 54 #define CNTP_CTL 0x2c 55 #define CNTV_TVAL 0x38 56 #define CNTV_CTL 0x3c 57 58 static unsigned arch_timers_present __initdata; 59 60 static void __iomem *arch_counter_base; 61 62 struct arch_timer { 63 void __iomem *base; 64 struct clock_event_device evt; 65 }; 66 67 #define to_arch_timer(e) container_of(e, struct arch_timer, evt) 68 69 static u32 arch_timer_rate; 70 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI]; 71 72 static struct clock_event_device __percpu *arch_timer_evt; 73 74 static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI; 75 static bool arch_timer_c3stop; 76 static bool arch_timer_mem_use_virtual; 77 static bool arch_counter_suspend_stop; 78 static bool vdso_default = true; 79 80 static cpumask_t evtstrm_available = CPU_MASK_NONE; 81 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM); 82 83 static int __init early_evtstrm_cfg(char *buf) 84 { 85 return strtobool(buf, &evtstrm_enable); 86 } 87 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg); 88 89 /* 90 * Architected system timer support. 91 */ 92 93 static __always_inline 94 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val, 95 struct clock_event_device *clk) 96 { 97 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 98 struct arch_timer *timer = to_arch_timer(clk); 99 switch (reg) { 100 case ARCH_TIMER_REG_CTRL: 101 writel_relaxed(val, timer->base + CNTP_CTL); 102 break; 103 case ARCH_TIMER_REG_TVAL: 104 writel_relaxed(val, timer->base + CNTP_TVAL); 105 break; 106 } 107 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 108 struct arch_timer *timer = to_arch_timer(clk); 109 switch (reg) { 110 case ARCH_TIMER_REG_CTRL: 111 writel_relaxed(val, timer->base + CNTV_CTL); 112 break; 113 case ARCH_TIMER_REG_TVAL: 114 writel_relaxed(val, timer->base + CNTV_TVAL); 115 break; 116 } 117 } else { 118 arch_timer_reg_write_cp15(access, reg, val); 119 } 120 } 121 122 static __always_inline 123 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg, 124 struct clock_event_device *clk) 125 { 126 u32 val; 127 128 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 129 struct arch_timer *timer = to_arch_timer(clk); 130 switch (reg) { 131 case ARCH_TIMER_REG_CTRL: 132 val = readl_relaxed(timer->base + CNTP_CTL); 133 break; 134 case ARCH_TIMER_REG_TVAL: 135 val = readl_relaxed(timer->base + CNTP_TVAL); 136 break; 137 } 138 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 139 struct arch_timer *timer = to_arch_timer(clk); 140 switch (reg) { 141 case ARCH_TIMER_REG_CTRL: 142 val = readl_relaxed(timer->base + CNTV_CTL); 143 break; 144 case ARCH_TIMER_REG_TVAL: 145 val = readl_relaxed(timer->base + CNTV_TVAL); 146 break; 147 } 148 } else { 149 val = arch_timer_reg_read_cp15(access, reg); 150 } 151 152 return val; 153 } 154 155 /* 156 * Default to cp15 based access because arm64 uses this function for 157 * sched_clock() before DT is probed and the cp15 method is guaranteed 158 * to exist on arm64. arm doesn't use this before DT is probed so even 159 * if we don't have the cp15 accessors we won't have a problem. 160 */ 161 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct; 162 163 static u64 arch_counter_read(struct clocksource *cs) 164 { 165 return arch_timer_read_counter(); 166 } 167 168 static u64 arch_counter_read_cc(const struct cyclecounter *cc) 169 { 170 return arch_timer_read_counter(); 171 } 172 173 static struct clocksource clocksource_counter = { 174 .name = "arch_sys_counter", 175 .rating = 400, 176 .read = arch_counter_read, 177 .mask = CLOCKSOURCE_MASK(56), 178 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 179 }; 180 181 static struct cyclecounter cyclecounter __ro_after_init = { 182 .read = arch_counter_read_cc, 183 .mask = CLOCKSOURCE_MASK(56), 184 }; 185 186 struct ate_acpi_oem_info { 187 char oem_id[ACPI_OEM_ID_SIZE + 1]; 188 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1]; 189 u32 oem_revision; 190 }; 191 192 #ifdef CONFIG_FSL_ERRATUM_A008585 193 /* 194 * The number of retries is an arbitrary value well beyond the highest number 195 * of iterations the loop has been observed to take. 196 */ 197 #define __fsl_a008585_read_reg(reg) ({ \ 198 u64 _old, _new; \ 199 int _retries = 200; \ 200 \ 201 do { \ 202 _old = read_sysreg(reg); \ 203 _new = read_sysreg(reg); \ 204 _retries--; \ 205 } while (unlikely(_old != _new) && _retries); \ 206 \ 207 WARN_ON_ONCE(!_retries); \ 208 _new; \ 209 }) 210 211 static u32 notrace fsl_a008585_read_cntp_tval_el0(void) 212 { 213 return __fsl_a008585_read_reg(cntp_tval_el0); 214 } 215 216 static u32 notrace fsl_a008585_read_cntv_tval_el0(void) 217 { 218 return __fsl_a008585_read_reg(cntv_tval_el0); 219 } 220 221 static u64 notrace fsl_a008585_read_cntvct_el0(void) 222 { 223 return __fsl_a008585_read_reg(cntvct_el0); 224 } 225 #endif 226 227 #ifdef CONFIG_HISILICON_ERRATUM_161010101 228 /* 229 * Verify whether the value of the second read is larger than the first by 230 * less than 32 is the only way to confirm the value is correct, so clear the 231 * lower 5 bits to check whether the difference is greater than 32 or not. 232 * Theoretically the erratum should not occur more than twice in succession 233 * when reading the system counter, but it is possible that some interrupts 234 * may lead to more than twice read errors, triggering the warning, so setting 235 * the number of retries far beyond the number of iterations the loop has been 236 * observed to take. 237 */ 238 #define __hisi_161010101_read_reg(reg) ({ \ 239 u64 _old, _new; \ 240 int _retries = 50; \ 241 \ 242 do { \ 243 _old = read_sysreg(reg); \ 244 _new = read_sysreg(reg); \ 245 _retries--; \ 246 } while (unlikely((_new - _old) >> 5) && _retries); \ 247 \ 248 WARN_ON_ONCE(!_retries); \ 249 _new; \ 250 }) 251 252 static u32 notrace hisi_161010101_read_cntp_tval_el0(void) 253 { 254 return __hisi_161010101_read_reg(cntp_tval_el0); 255 } 256 257 static u32 notrace hisi_161010101_read_cntv_tval_el0(void) 258 { 259 return __hisi_161010101_read_reg(cntv_tval_el0); 260 } 261 262 static u64 notrace hisi_161010101_read_cntvct_el0(void) 263 { 264 return __hisi_161010101_read_reg(cntvct_el0); 265 } 266 267 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = { 268 /* 269 * Note that trailing spaces are required to properly match 270 * the OEM table information. 271 */ 272 { 273 .oem_id = "HISI ", 274 .oem_table_id = "HIP05 ", 275 .oem_revision = 0, 276 }, 277 { 278 .oem_id = "HISI ", 279 .oem_table_id = "HIP06 ", 280 .oem_revision = 0, 281 }, 282 { 283 .oem_id = "HISI ", 284 .oem_table_id = "HIP07 ", 285 .oem_revision = 0, 286 }, 287 { /* Sentinel indicating the end of the OEM array */ }, 288 }; 289 #endif 290 291 #ifdef CONFIG_ARM64_ERRATUM_858921 292 static u64 notrace arm64_858921_read_cntvct_el0(void) 293 { 294 u64 old, new; 295 296 old = read_sysreg(cntvct_el0); 297 new = read_sysreg(cntvct_el0); 298 return (((old ^ new) >> 32) & 1) ? old : new; 299 } 300 #endif 301 302 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND 303 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround); 304 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround); 305 306 DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled); 307 EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled); 308 309 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt, 310 struct clock_event_device *clk) 311 { 312 unsigned long ctrl; 313 u64 cval = evt + arch_counter_get_cntvct(); 314 315 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 316 ctrl |= ARCH_TIMER_CTRL_ENABLE; 317 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 318 319 if (access == ARCH_TIMER_PHYS_ACCESS) 320 write_sysreg(cval, cntp_cval_el0); 321 else 322 write_sysreg(cval, cntv_cval_el0); 323 324 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 325 } 326 327 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt, 328 struct clock_event_device *clk) 329 { 330 erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk); 331 return 0; 332 } 333 334 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt, 335 struct clock_event_device *clk) 336 { 337 erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk); 338 return 0; 339 } 340 341 static const struct arch_timer_erratum_workaround ool_workarounds[] = { 342 #ifdef CONFIG_FSL_ERRATUM_A008585 343 { 344 .match_type = ate_match_dt, 345 .id = "fsl,erratum-a008585", 346 .desc = "Freescale erratum a005858", 347 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0, 348 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0, 349 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0, 350 .set_next_event_phys = erratum_set_next_event_tval_phys, 351 .set_next_event_virt = erratum_set_next_event_tval_virt, 352 }, 353 #endif 354 #ifdef CONFIG_HISILICON_ERRATUM_161010101 355 { 356 .match_type = ate_match_dt, 357 .id = "hisilicon,erratum-161010101", 358 .desc = "HiSilicon erratum 161010101", 359 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0, 360 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0, 361 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, 362 .set_next_event_phys = erratum_set_next_event_tval_phys, 363 .set_next_event_virt = erratum_set_next_event_tval_virt, 364 }, 365 { 366 .match_type = ate_match_acpi_oem_info, 367 .id = hisi_161010101_oem_info, 368 .desc = "HiSilicon erratum 161010101", 369 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0, 370 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0, 371 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, 372 .set_next_event_phys = erratum_set_next_event_tval_phys, 373 .set_next_event_virt = erratum_set_next_event_tval_virt, 374 }, 375 #endif 376 #ifdef CONFIG_ARM64_ERRATUM_858921 377 { 378 .match_type = ate_match_local_cap_id, 379 .id = (void *)ARM64_WORKAROUND_858921, 380 .desc = "ARM erratum 858921", 381 .read_cntvct_el0 = arm64_858921_read_cntvct_el0, 382 }, 383 #endif 384 }; 385 386 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *, 387 const void *); 388 389 static 390 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa, 391 const void *arg) 392 { 393 const struct device_node *np = arg; 394 395 return of_property_read_bool(np, wa->id); 396 } 397 398 static 399 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa, 400 const void *arg) 401 { 402 return this_cpu_has_cap((uintptr_t)wa->id); 403 } 404 405 406 static 407 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa, 408 const void *arg) 409 { 410 static const struct ate_acpi_oem_info empty_oem_info = {}; 411 const struct ate_acpi_oem_info *info = wa->id; 412 const struct acpi_table_header *table = arg; 413 414 /* Iterate over the ACPI OEM info array, looking for a match */ 415 while (memcmp(info, &empty_oem_info, sizeof(*info))) { 416 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) && 417 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) && 418 info->oem_revision == table->oem_revision) 419 return true; 420 421 info++; 422 } 423 424 return false; 425 } 426 427 static const struct arch_timer_erratum_workaround * 428 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type, 429 ate_match_fn_t match_fn, 430 void *arg) 431 { 432 int i; 433 434 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) { 435 if (ool_workarounds[i].match_type != type) 436 continue; 437 438 if (match_fn(&ool_workarounds[i], arg)) 439 return &ool_workarounds[i]; 440 } 441 442 return NULL; 443 } 444 445 static 446 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa, 447 bool local) 448 { 449 int i; 450 451 if (local) { 452 __this_cpu_write(timer_unstable_counter_workaround, wa); 453 } else { 454 for_each_possible_cpu(i) 455 per_cpu(timer_unstable_counter_workaround, i) = wa; 456 } 457 458 /* 459 * Use the locked version, as we're called from the CPU 460 * hotplug framework. Otherwise, we end-up in deadlock-land. 461 */ 462 static_branch_enable_cpuslocked(&arch_timer_read_ool_enabled); 463 464 /* 465 * Don't use the vdso fastpath if errata require using the 466 * out-of-line counter accessor. We may change our mind pretty 467 * late in the game (with a per-CPU erratum, for example), so 468 * change both the default value and the vdso itself. 469 */ 470 if (wa->read_cntvct_el0) { 471 clocksource_counter.archdata.vdso_direct = false; 472 vdso_default = false; 473 } 474 } 475 476 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type, 477 void *arg) 478 { 479 const struct arch_timer_erratum_workaround *wa; 480 ate_match_fn_t match_fn = NULL; 481 bool local = false; 482 483 switch (type) { 484 case ate_match_dt: 485 match_fn = arch_timer_check_dt_erratum; 486 break; 487 case ate_match_local_cap_id: 488 match_fn = arch_timer_check_local_cap_erratum; 489 local = true; 490 break; 491 case ate_match_acpi_oem_info: 492 match_fn = arch_timer_check_acpi_oem_erratum; 493 break; 494 default: 495 WARN_ON(1); 496 return; 497 } 498 499 wa = arch_timer_iterate_errata(type, match_fn, arg); 500 if (!wa) 501 return; 502 503 if (needs_unstable_timer_counter_workaround()) { 504 const struct arch_timer_erratum_workaround *__wa; 505 __wa = __this_cpu_read(timer_unstable_counter_workaround); 506 if (__wa && wa != __wa) 507 pr_warn("Can't enable workaround for %s (clashes with %s\n)", 508 wa->desc, __wa->desc); 509 510 if (__wa) 511 return; 512 } 513 514 arch_timer_enable_workaround(wa, local); 515 pr_info("Enabling %s workaround for %s\n", 516 local ? "local" : "global", wa->desc); 517 } 518 519 #define erratum_handler(fn, r, ...) \ 520 ({ \ 521 bool __val; \ 522 if (needs_unstable_timer_counter_workaround()) { \ 523 const struct arch_timer_erratum_workaround *__wa; \ 524 __wa = __this_cpu_read(timer_unstable_counter_workaround); \ 525 if (__wa && __wa->fn) { \ 526 r = __wa->fn(__VA_ARGS__); \ 527 __val = true; \ 528 } else { \ 529 __val = false; \ 530 } \ 531 } else { \ 532 __val = false; \ 533 } \ 534 __val; \ 535 }) 536 537 static bool arch_timer_this_cpu_has_cntvct_wa(void) 538 { 539 const struct arch_timer_erratum_workaround *wa; 540 541 wa = __this_cpu_read(timer_unstable_counter_workaround); 542 return wa && wa->read_cntvct_el0; 543 } 544 #else 545 #define arch_timer_check_ool_workaround(t,a) do { } while(0) 546 #define erratum_set_next_event_tval_virt(...) ({BUG(); 0;}) 547 #define erratum_set_next_event_tval_phys(...) ({BUG(); 0;}) 548 #define erratum_handler(fn, r, ...) ({false;}) 549 #define arch_timer_this_cpu_has_cntvct_wa() ({false;}) 550 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */ 551 552 static __always_inline irqreturn_t timer_handler(const int access, 553 struct clock_event_device *evt) 554 { 555 unsigned long ctrl; 556 557 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt); 558 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { 559 ctrl |= ARCH_TIMER_CTRL_IT_MASK; 560 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt); 561 evt->event_handler(evt); 562 return IRQ_HANDLED; 563 } 564 565 return IRQ_NONE; 566 } 567 568 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id) 569 { 570 struct clock_event_device *evt = dev_id; 571 572 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt); 573 } 574 575 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id) 576 { 577 struct clock_event_device *evt = dev_id; 578 579 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt); 580 } 581 582 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id) 583 { 584 struct clock_event_device *evt = dev_id; 585 586 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt); 587 } 588 589 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id) 590 { 591 struct clock_event_device *evt = dev_id; 592 593 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt); 594 } 595 596 static __always_inline int timer_shutdown(const int access, 597 struct clock_event_device *clk) 598 { 599 unsigned long ctrl; 600 601 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 602 ctrl &= ~ARCH_TIMER_CTRL_ENABLE; 603 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 604 605 return 0; 606 } 607 608 static int arch_timer_shutdown_virt(struct clock_event_device *clk) 609 { 610 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk); 611 } 612 613 static int arch_timer_shutdown_phys(struct clock_event_device *clk) 614 { 615 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk); 616 } 617 618 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk) 619 { 620 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk); 621 } 622 623 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk) 624 { 625 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk); 626 } 627 628 static __always_inline void set_next_event(const int access, unsigned long evt, 629 struct clock_event_device *clk) 630 { 631 unsigned long ctrl; 632 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 633 ctrl |= ARCH_TIMER_CTRL_ENABLE; 634 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 635 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk); 636 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 637 } 638 639 static int arch_timer_set_next_event_virt(unsigned long evt, 640 struct clock_event_device *clk) 641 { 642 int ret; 643 644 if (erratum_handler(set_next_event_virt, ret, evt, clk)) 645 return ret; 646 647 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk); 648 return 0; 649 } 650 651 static int arch_timer_set_next_event_phys(unsigned long evt, 652 struct clock_event_device *clk) 653 { 654 int ret; 655 656 if (erratum_handler(set_next_event_phys, ret, evt, clk)) 657 return ret; 658 659 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk); 660 return 0; 661 } 662 663 static int arch_timer_set_next_event_virt_mem(unsigned long evt, 664 struct clock_event_device *clk) 665 { 666 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk); 667 return 0; 668 } 669 670 static int arch_timer_set_next_event_phys_mem(unsigned long evt, 671 struct clock_event_device *clk) 672 { 673 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk); 674 return 0; 675 } 676 677 static void __arch_timer_setup(unsigned type, 678 struct clock_event_device *clk) 679 { 680 clk->features = CLOCK_EVT_FEAT_ONESHOT; 681 682 if (type == ARCH_TIMER_TYPE_CP15) { 683 if (arch_timer_c3stop) 684 clk->features |= CLOCK_EVT_FEAT_C3STOP; 685 clk->name = "arch_sys_timer"; 686 clk->rating = 450; 687 clk->cpumask = cpumask_of(smp_processor_id()); 688 clk->irq = arch_timer_ppi[arch_timer_uses_ppi]; 689 switch (arch_timer_uses_ppi) { 690 case ARCH_TIMER_VIRT_PPI: 691 clk->set_state_shutdown = arch_timer_shutdown_virt; 692 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt; 693 clk->set_next_event = arch_timer_set_next_event_virt; 694 break; 695 case ARCH_TIMER_PHYS_SECURE_PPI: 696 case ARCH_TIMER_PHYS_NONSECURE_PPI: 697 case ARCH_TIMER_HYP_PPI: 698 clk->set_state_shutdown = arch_timer_shutdown_phys; 699 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys; 700 clk->set_next_event = arch_timer_set_next_event_phys; 701 break; 702 default: 703 BUG(); 704 } 705 706 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL); 707 } else { 708 clk->features |= CLOCK_EVT_FEAT_DYNIRQ; 709 clk->name = "arch_mem_timer"; 710 clk->rating = 400; 711 clk->cpumask = cpu_all_mask; 712 if (arch_timer_mem_use_virtual) { 713 clk->set_state_shutdown = arch_timer_shutdown_virt_mem; 714 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem; 715 clk->set_next_event = 716 arch_timer_set_next_event_virt_mem; 717 } else { 718 clk->set_state_shutdown = arch_timer_shutdown_phys_mem; 719 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem; 720 clk->set_next_event = 721 arch_timer_set_next_event_phys_mem; 722 } 723 } 724 725 clk->set_state_shutdown(clk); 726 727 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff); 728 } 729 730 static void arch_timer_evtstrm_enable(int divider) 731 { 732 u32 cntkctl = arch_timer_get_cntkctl(); 733 734 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK; 735 /* Set the divider and enable virtual event stream */ 736 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT) 737 | ARCH_TIMER_VIRT_EVT_EN; 738 arch_timer_set_cntkctl(cntkctl); 739 elf_hwcap |= HWCAP_EVTSTRM; 740 #ifdef CONFIG_COMPAT 741 compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM; 742 #endif 743 cpumask_set_cpu(smp_processor_id(), &evtstrm_available); 744 } 745 746 static void arch_timer_configure_evtstream(void) 747 { 748 int evt_stream_div, pos; 749 750 /* Find the closest power of two to the divisor */ 751 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ; 752 pos = fls(evt_stream_div); 753 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2)))) 754 pos--; 755 /* enable event stream */ 756 arch_timer_evtstrm_enable(min(pos, 15)); 757 } 758 759 static void arch_counter_set_user_access(void) 760 { 761 u32 cntkctl = arch_timer_get_cntkctl(); 762 763 /* Disable user access to the timers and both counters */ 764 /* Also disable virtual event stream */ 765 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN 766 | ARCH_TIMER_USR_VT_ACCESS_EN 767 | ARCH_TIMER_USR_VCT_ACCESS_EN 768 | ARCH_TIMER_VIRT_EVT_EN 769 | ARCH_TIMER_USR_PCT_ACCESS_EN); 770 771 /* 772 * Enable user access to the virtual counter if it doesn't 773 * need to be workaround. The vdso may have been already 774 * disabled though. 775 */ 776 if (arch_timer_this_cpu_has_cntvct_wa()) 777 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id()); 778 else 779 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN; 780 781 arch_timer_set_cntkctl(cntkctl); 782 } 783 784 static bool arch_timer_has_nonsecure_ppi(void) 785 { 786 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI && 787 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 788 } 789 790 static u32 check_ppi_trigger(int irq) 791 { 792 u32 flags = irq_get_trigger_type(irq); 793 794 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) { 795 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq); 796 pr_warn("WARNING: Please fix your firmware\n"); 797 flags = IRQF_TRIGGER_LOW; 798 } 799 800 return flags; 801 } 802 803 static int arch_timer_starting_cpu(unsigned int cpu) 804 { 805 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 806 u32 flags; 807 808 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk); 809 810 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]); 811 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags); 812 813 if (arch_timer_has_nonsecure_ppi()) { 814 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 815 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], 816 flags); 817 } 818 819 arch_counter_set_user_access(); 820 if (evtstrm_enable) 821 arch_timer_configure_evtstream(); 822 823 return 0; 824 } 825 826 /* 827 * For historical reasons, when probing with DT we use whichever (non-zero) 828 * rate was probed first, and don't verify that others match. If the first node 829 * probed has a clock-frequency property, this overrides the HW register. 830 */ 831 static void arch_timer_of_configure_rate(u32 rate, struct device_node *np) 832 { 833 /* Who has more than one independent system counter? */ 834 if (arch_timer_rate) 835 return; 836 837 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) 838 arch_timer_rate = rate; 839 840 /* Check the timer frequency. */ 841 if (arch_timer_rate == 0) 842 pr_warn("frequency not available\n"); 843 } 844 845 static void arch_timer_banner(unsigned type) 846 { 847 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n", 848 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "", 849 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? 850 " and " : "", 851 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "", 852 (unsigned long)arch_timer_rate / 1000000, 853 (unsigned long)(arch_timer_rate / 10000) % 100, 854 type & ARCH_TIMER_TYPE_CP15 ? 855 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" : 856 "", 857 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "", 858 type & ARCH_TIMER_TYPE_MEM ? 859 arch_timer_mem_use_virtual ? "virt" : "phys" : 860 ""); 861 } 862 863 u32 arch_timer_get_rate(void) 864 { 865 return arch_timer_rate; 866 } 867 868 bool arch_timer_evtstrm_available(void) 869 { 870 /* 871 * We might get called from a preemptible context. This is fine 872 * because availability of the event stream should be always the same 873 * for a preemptible context and context where we might resume a task. 874 */ 875 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available); 876 } 877 878 static u64 arch_counter_get_cntvct_mem(void) 879 { 880 u32 vct_lo, vct_hi, tmp_hi; 881 882 do { 883 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); 884 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO); 885 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); 886 } while (vct_hi != tmp_hi); 887 888 return ((u64) vct_hi << 32) | vct_lo; 889 } 890 891 static struct arch_timer_kvm_info arch_timer_kvm_info; 892 893 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void) 894 { 895 return &arch_timer_kvm_info; 896 } 897 898 static void __init arch_counter_register(unsigned type) 899 { 900 u64 start_count; 901 902 /* Register the CP15 based counter if we have one */ 903 if (type & ARCH_TIMER_TYPE_CP15) { 904 if (IS_ENABLED(CONFIG_ARM64) || 905 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) 906 arch_timer_read_counter = arch_counter_get_cntvct; 907 else 908 arch_timer_read_counter = arch_counter_get_cntpct; 909 910 clocksource_counter.archdata.vdso_direct = vdso_default; 911 } else { 912 arch_timer_read_counter = arch_counter_get_cntvct_mem; 913 } 914 915 if (!arch_counter_suspend_stop) 916 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; 917 start_count = arch_timer_read_counter(); 918 clocksource_register_hz(&clocksource_counter, arch_timer_rate); 919 cyclecounter.mult = clocksource_counter.mult; 920 cyclecounter.shift = clocksource_counter.shift; 921 timecounter_init(&arch_timer_kvm_info.timecounter, 922 &cyclecounter, start_count); 923 924 /* 56 bits minimum, so we assume worst case rollover */ 925 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate); 926 } 927 928 static void arch_timer_stop(struct clock_event_device *clk) 929 { 930 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id()); 931 932 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]); 933 if (arch_timer_has_nonsecure_ppi()) 934 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 935 936 clk->set_state_shutdown(clk); 937 } 938 939 static int arch_timer_dying_cpu(unsigned int cpu) 940 { 941 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 942 943 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available); 944 945 arch_timer_stop(clk); 946 return 0; 947 } 948 949 #ifdef CONFIG_CPU_PM 950 static DEFINE_PER_CPU(unsigned long, saved_cntkctl); 951 static int arch_timer_cpu_pm_notify(struct notifier_block *self, 952 unsigned long action, void *hcpu) 953 { 954 if (action == CPU_PM_ENTER) { 955 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl()); 956 957 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available); 958 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) { 959 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl)); 960 961 if (elf_hwcap & HWCAP_EVTSTRM) 962 cpumask_set_cpu(smp_processor_id(), &evtstrm_available); 963 } 964 return NOTIFY_OK; 965 } 966 967 static struct notifier_block arch_timer_cpu_pm_notifier = { 968 .notifier_call = arch_timer_cpu_pm_notify, 969 }; 970 971 static int __init arch_timer_cpu_pm_init(void) 972 { 973 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier); 974 } 975 976 static void __init arch_timer_cpu_pm_deinit(void) 977 { 978 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier)); 979 } 980 981 #else 982 static int __init arch_timer_cpu_pm_init(void) 983 { 984 return 0; 985 } 986 987 static void __init arch_timer_cpu_pm_deinit(void) 988 { 989 } 990 #endif 991 992 static int __init arch_timer_register(void) 993 { 994 int err; 995 int ppi; 996 997 arch_timer_evt = alloc_percpu(struct clock_event_device); 998 if (!arch_timer_evt) { 999 err = -ENOMEM; 1000 goto out; 1001 } 1002 1003 ppi = arch_timer_ppi[arch_timer_uses_ppi]; 1004 switch (arch_timer_uses_ppi) { 1005 case ARCH_TIMER_VIRT_PPI: 1006 err = request_percpu_irq(ppi, arch_timer_handler_virt, 1007 "arch_timer", arch_timer_evt); 1008 break; 1009 case ARCH_TIMER_PHYS_SECURE_PPI: 1010 case ARCH_TIMER_PHYS_NONSECURE_PPI: 1011 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1012 "arch_timer", arch_timer_evt); 1013 if (!err && arch_timer_has_nonsecure_ppi()) { 1014 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]; 1015 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1016 "arch_timer", arch_timer_evt); 1017 if (err) 1018 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI], 1019 arch_timer_evt); 1020 } 1021 break; 1022 case ARCH_TIMER_HYP_PPI: 1023 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1024 "arch_timer", arch_timer_evt); 1025 break; 1026 default: 1027 BUG(); 1028 } 1029 1030 if (err) { 1031 pr_err("can't register interrupt %d (%d)\n", ppi, err); 1032 goto out_free; 1033 } 1034 1035 err = arch_timer_cpu_pm_init(); 1036 if (err) 1037 goto out_unreg_notify; 1038 1039 /* Register and immediately configure the timer on the boot CPU */ 1040 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING, 1041 "clockevents/arm/arch_timer:starting", 1042 arch_timer_starting_cpu, arch_timer_dying_cpu); 1043 if (err) 1044 goto out_unreg_cpupm; 1045 return 0; 1046 1047 out_unreg_cpupm: 1048 arch_timer_cpu_pm_deinit(); 1049 1050 out_unreg_notify: 1051 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt); 1052 if (arch_timer_has_nonsecure_ppi()) 1053 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], 1054 arch_timer_evt); 1055 1056 out_free: 1057 free_percpu(arch_timer_evt); 1058 out: 1059 return err; 1060 } 1061 1062 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq) 1063 { 1064 int ret; 1065 irq_handler_t func; 1066 struct arch_timer *t; 1067 1068 t = kzalloc(sizeof(*t), GFP_KERNEL); 1069 if (!t) 1070 return -ENOMEM; 1071 1072 t->base = base; 1073 t->evt.irq = irq; 1074 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt); 1075 1076 if (arch_timer_mem_use_virtual) 1077 func = arch_timer_handler_virt_mem; 1078 else 1079 func = arch_timer_handler_phys_mem; 1080 1081 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt); 1082 if (ret) { 1083 pr_err("Failed to request mem timer irq\n"); 1084 kfree(t); 1085 } 1086 1087 return ret; 1088 } 1089 1090 static const struct of_device_id arch_timer_of_match[] __initconst = { 1091 { .compatible = "arm,armv7-timer", }, 1092 { .compatible = "arm,armv8-timer", }, 1093 {}, 1094 }; 1095 1096 static const struct of_device_id arch_timer_mem_of_match[] __initconst = { 1097 { .compatible = "arm,armv7-timer-mem", }, 1098 {}, 1099 }; 1100 1101 static bool __init arch_timer_needs_of_probing(void) 1102 { 1103 struct device_node *dn; 1104 bool needs_probing = false; 1105 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM; 1106 1107 /* We have two timers, and both device-tree nodes are probed. */ 1108 if ((arch_timers_present & mask) == mask) 1109 return false; 1110 1111 /* 1112 * Only one type of timer is probed, 1113 * check if we have another type of timer node in device-tree. 1114 */ 1115 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) 1116 dn = of_find_matching_node(NULL, arch_timer_mem_of_match); 1117 else 1118 dn = of_find_matching_node(NULL, arch_timer_of_match); 1119 1120 if (dn && of_device_is_available(dn)) 1121 needs_probing = true; 1122 1123 of_node_put(dn); 1124 1125 return needs_probing; 1126 } 1127 1128 static int __init arch_timer_common_init(void) 1129 { 1130 arch_timer_banner(arch_timers_present); 1131 arch_counter_register(arch_timers_present); 1132 return arch_timer_arch_init(); 1133 } 1134 1135 /** 1136 * arch_timer_select_ppi() - Select suitable PPI for the current system. 1137 * 1138 * If HYP mode is available, we know that the physical timer 1139 * has been configured to be accessible from PL1. Use it, so 1140 * that a guest can use the virtual timer instead. 1141 * 1142 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE 1143 * accesses to CNTP_*_EL1 registers are silently redirected to 1144 * their CNTHP_*_EL2 counterparts, and use a different PPI 1145 * number. 1146 * 1147 * If no interrupt provided for virtual timer, we'll have to 1148 * stick to the physical timer. It'd better be accessible... 1149 * For arm64 we never use the secure interrupt. 1150 * 1151 * Return: a suitable PPI type for the current system. 1152 */ 1153 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void) 1154 { 1155 if (is_kernel_in_hyp_mode()) 1156 return ARCH_TIMER_HYP_PPI; 1157 1158 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI]) 1159 return ARCH_TIMER_VIRT_PPI; 1160 1161 if (IS_ENABLED(CONFIG_ARM64)) 1162 return ARCH_TIMER_PHYS_NONSECURE_PPI; 1163 1164 return ARCH_TIMER_PHYS_SECURE_PPI; 1165 } 1166 1167 static int __init arch_timer_of_init(struct device_node *np) 1168 { 1169 int i, ret; 1170 u32 rate; 1171 1172 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { 1173 pr_warn("multiple nodes in dt, skipping\n"); 1174 return 0; 1175 } 1176 1177 arch_timers_present |= ARCH_TIMER_TYPE_CP15; 1178 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) 1179 arch_timer_ppi[i] = irq_of_parse_and_map(np, i); 1180 1181 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI]; 1182 1183 rate = arch_timer_get_cntfrq(); 1184 arch_timer_of_configure_rate(rate, np); 1185 1186 arch_timer_c3stop = !of_property_read_bool(np, "always-on"); 1187 1188 /* Check for globally applicable workarounds */ 1189 arch_timer_check_ool_workaround(ate_match_dt, np); 1190 1191 /* 1192 * If we cannot rely on firmware initializing the timer registers then 1193 * we should use the physical timers instead. 1194 */ 1195 if (IS_ENABLED(CONFIG_ARM) && 1196 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured")) 1197 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI; 1198 else 1199 arch_timer_uses_ppi = arch_timer_select_ppi(); 1200 1201 if (!arch_timer_ppi[arch_timer_uses_ppi]) { 1202 pr_err("No interrupt available, giving up\n"); 1203 return -EINVAL; 1204 } 1205 1206 /* On some systems, the counter stops ticking when in suspend. */ 1207 arch_counter_suspend_stop = of_property_read_bool(np, 1208 "arm,no-tick-in-suspend"); 1209 1210 ret = arch_timer_register(); 1211 if (ret) 1212 return ret; 1213 1214 if (arch_timer_needs_of_probing()) 1215 return 0; 1216 1217 return arch_timer_common_init(); 1218 } 1219 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init); 1220 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init); 1221 1222 static u32 __init 1223 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame) 1224 { 1225 void __iomem *base; 1226 u32 rate; 1227 1228 base = ioremap(frame->cntbase, frame->size); 1229 if (!base) { 1230 pr_err("Unable to map frame @ %pa\n", &frame->cntbase); 1231 return 0; 1232 } 1233 1234 rate = readl_relaxed(base + CNTFRQ); 1235 1236 iounmap(base); 1237 1238 return rate; 1239 } 1240 1241 static struct arch_timer_mem_frame * __init 1242 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem) 1243 { 1244 struct arch_timer_mem_frame *frame, *best_frame = NULL; 1245 void __iomem *cntctlbase; 1246 u32 cnttidr; 1247 int i; 1248 1249 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size); 1250 if (!cntctlbase) { 1251 pr_err("Can't map CNTCTLBase @ %pa\n", 1252 &timer_mem->cntctlbase); 1253 return NULL; 1254 } 1255 1256 cnttidr = readl_relaxed(cntctlbase + CNTTIDR); 1257 1258 /* 1259 * Try to find a virtual capable frame. Otherwise fall back to a 1260 * physical capable frame. 1261 */ 1262 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) { 1263 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT | 1264 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT; 1265 1266 frame = &timer_mem->frame[i]; 1267 if (!frame->valid) 1268 continue; 1269 1270 /* Try enabling everything, and see what sticks */ 1271 writel_relaxed(cntacr, cntctlbase + CNTACR(i)); 1272 cntacr = readl_relaxed(cntctlbase + CNTACR(i)); 1273 1274 if ((cnttidr & CNTTIDR_VIRT(i)) && 1275 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) { 1276 best_frame = frame; 1277 arch_timer_mem_use_virtual = true; 1278 break; 1279 } 1280 1281 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT)) 1282 continue; 1283 1284 best_frame = frame; 1285 } 1286 1287 iounmap(cntctlbase); 1288 1289 return best_frame; 1290 } 1291 1292 static int __init 1293 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame) 1294 { 1295 void __iomem *base; 1296 int ret, irq = 0; 1297 1298 if (arch_timer_mem_use_virtual) 1299 irq = frame->virt_irq; 1300 else 1301 irq = frame->phys_irq; 1302 1303 if (!irq) { 1304 pr_err("Frame missing %s irq.\n", 1305 arch_timer_mem_use_virtual ? "virt" : "phys"); 1306 return -EINVAL; 1307 } 1308 1309 if (!request_mem_region(frame->cntbase, frame->size, 1310 "arch_mem_timer")) 1311 return -EBUSY; 1312 1313 base = ioremap(frame->cntbase, frame->size); 1314 if (!base) { 1315 pr_err("Can't map frame's registers\n"); 1316 return -ENXIO; 1317 } 1318 1319 ret = arch_timer_mem_register(base, irq); 1320 if (ret) { 1321 iounmap(base); 1322 return ret; 1323 } 1324 1325 arch_counter_base = base; 1326 arch_timers_present |= ARCH_TIMER_TYPE_MEM; 1327 1328 return 0; 1329 } 1330 1331 static int __init arch_timer_mem_of_init(struct device_node *np) 1332 { 1333 struct arch_timer_mem *timer_mem; 1334 struct arch_timer_mem_frame *frame; 1335 struct device_node *frame_node; 1336 struct resource res; 1337 int ret = -EINVAL; 1338 u32 rate; 1339 1340 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL); 1341 if (!timer_mem) 1342 return -ENOMEM; 1343 1344 if (of_address_to_resource(np, 0, &res)) 1345 goto out; 1346 timer_mem->cntctlbase = res.start; 1347 timer_mem->size = resource_size(&res); 1348 1349 for_each_available_child_of_node(np, frame_node) { 1350 u32 n; 1351 struct arch_timer_mem_frame *frame; 1352 1353 if (of_property_read_u32(frame_node, "frame-number", &n)) { 1354 pr_err(FW_BUG "Missing frame-number.\n"); 1355 of_node_put(frame_node); 1356 goto out; 1357 } 1358 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) { 1359 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n", 1360 ARCH_TIMER_MEM_MAX_FRAMES - 1); 1361 of_node_put(frame_node); 1362 goto out; 1363 } 1364 frame = &timer_mem->frame[n]; 1365 1366 if (frame->valid) { 1367 pr_err(FW_BUG "Duplicated frame-number.\n"); 1368 of_node_put(frame_node); 1369 goto out; 1370 } 1371 1372 if (of_address_to_resource(frame_node, 0, &res)) { 1373 of_node_put(frame_node); 1374 goto out; 1375 } 1376 frame->cntbase = res.start; 1377 frame->size = resource_size(&res); 1378 1379 frame->virt_irq = irq_of_parse_and_map(frame_node, 1380 ARCH_TIMER_VIRT_SPI); 1381 frame->phys_irq = irq_of_parse_and_map(frame_node, 1382 ARCH_TIMER_PHYS_SPI); 1383 1384 frame->valid = true; 1385 } 1386 1387 frame = arch_timer_mem_find_best_frame(timer_mem); 1388 if (!frame) { 1389 pr_err("Unable to find a suitable frame in timer @ %pa\n", 1390 &timer_mem->cntctlbase); 1391 ret = -EINVAL; 1392 goto out; 1393 } 1394 1395 rate = arch_timer_mem_frame_get_cntfrq(frame); 1396 arch_timer_of_configure_rate(rate, np); 1397 1398 ret = arch_timer_mem_frame_register(frame); 1399 if (!ret && !arch_timer_needs_of_probing()) 1400 ret = arch_timer_common_init(); 1401 out: 1402 kfree(timer_mem); 1403 return ret; 1404 } 1405 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem", 1406 arch_timer_mem_of_init); 1407 1408 #ifdef CONFIG_ACPI_GTDT 1409 static int __init 1410 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem) 1411 { 1412 struct arch_timer_mem_frame *frame; 1413 u32 rate; 1414 int i; 1415 1416 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) { 1417 frame = &timer_mem->frame[i]; 1418 1419 if (!frame->valid) 1420 continue; 1421 1422 rate = arch_timer_mem_frame_get_cntfrq(frame); 1423 if (rate == arch_timer_rate) 1424 continue; 1425 1426 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n", 1427 &frame->cntbase, 1428 (unsigned long)rate, (unsigned long)arch_timer_rate); 1429 1430 return -EINVAL; 1431 } 1432 1433 return 0; 1434 } 1435 1436 static int __init arch_timer_mem_acpi_init(int platform_timer_count) 1437 { 1438 struct arch_timer_mem *timers, *timer; 1439 struct arch_timer_mem_frame *frame, *best_frame = NULL; 1440 int timer_count, i, ret = 0; 1441 1442 timers = kcalloc(platform_timer_count, sizeof(*timers), 1443 GFP_KERNEL); 1444 if (!timers) 1445 return -ENOMEM; 1446 1447 ret = acpi_arch_timer_mem_init(timers, &timer_count); 1448 if (ret || !timer_count) 1449 goto out; 1450 1451 /* 1452 * While unlikely, it's theoretically possible that none of the frames 1453 * in a timer expose the combination of feature we want. 1454 */ 1455 for (i = 0; i < timer_count; i++) { 1456 timer = &timers[i]; 1457 1458 frame = arch_timer_mem_find_best_frame(timer); 1459 if (!best_frame) 1460 best_frame = frame; 1461 1462 ret = arch_timer_mem_verify_cntfrq(timer); 1463 if (ret) { 1464 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n"); 1465 goto out; 1466 } 1467 1468 if (!best_frame) /* implies !frame */ 1469 /* 1470 * Only complain about missing suitable frames if we 1471 * haven't already found one in a previous iteration. 1472 */ 1473 pr_err("Unable to find a suitable frame in timer @ %pa\n", 1474 &timer->cntctlbase); 1475 } 1476 1477 if (best_frame) 1478 ret = arch_timer_mem_frame_register(best_frame); 1479 out: 1480 kfree(timers); 1481 return ret; 1482 } 1483 1484 /* Initialize per-processor generic timer and memory-mapped timer(if present) */ 1485 static int __init arch_timer_acpi_init(struct acpi_table_header *table) 1486 { 1487 int ret, platform_timer_count; 1488 1489 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { 1490 pr_warn("already initialized, skipping\n"); 1491 return -EINVAL; 1492 } 1493 1494 arch_timers_present |= ARCH_TIMER_TYPE_CP15; 1495 1496 ret = acpi_gtdt_init(table, &platform_timer_count); 1497 if (ret) { 1498 pr_err("Failed to init GTDT table.\n"); 1499 return ret; 1500 } 1501 1502 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] = 1503 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI); 1504 1505 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] = 1506 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI); 1507 1508 arch_timer_ppi[ARCH_TIMER_HYP_PPI] = 1509 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI); 1510 1511 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI]; 1512 1513 /* 1514 * When probing via ACPI, we have no mechanism to override the sysreg 1515 * CNTFRQ value. This *must* be correct. 1516 */ 1517 arch_timer_rate = arch_timer_get_cntfrq(); 1518 if (!arch_timer_rate) { 1519 pr_err(FW_BUG "frequency not available.\n"); 1520 return -EINVAL; 1521 } 1522 1523 arch_timer_uses_ppi = arch_timer_select_ppi(); 1524 if (!arch_timer_ppi[arch_timer_uses_ppi]) { 1525 pr_err("No interrupt available, giving up\n"); 1526 return -EINVAL; 1527 } 1528 1529 /* Always-on capability */ 1530 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi); 1531 1532 /* Check for globally applicable workarounds */ 1533 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table); 1534 1535 ret = arch_timer_register(); 1536 if (ret) 1537 return ret; 1538 1539 if (platform_timer_count && 1540 arch_timer_mem_acpi_init(platform_timer_count)) 1541 pr_err("Failed to initialize memory-mapped timer.\n"); 1542 1543 return arch_timer_common_init(); 1544 } 1545 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init); 1546 #endif 1547