xref: /openbmc/linux/drivers/clocksource/arm_arch_timer.c (revision 840ef8b7cc584a23c4f9d05352f4dbaf8e56e5ab)
1 /*
2  *  linux/drivers/clocksource/arm_arch_timer.c
3  *
4  *  Copyright (C) 2011 ARM Ltd.
5  *  All Rights Reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/clockchips.h>
17 #include <linux/interrupt.h>
18 #include <linux/of_irq.h>
19 #include <linux/io.h>
20 
21 #include <asm/arch_timer.h>
22 #include <asm/virt.h>
23 
24 #include <clocksource/arm_arch_timer.h>
25 
26 static u32 arch_timer_rate;
27 
28 enum ppi_nr {
29 	PHYS_SECURE_PPI,
30 	PHYS_NONSECURE_PPI,
31 	VIRT_PPI,
32 	HYP_PPI,
33 	MAX_TIMER_PPI
34 };
35 
36 static int arch_timer_ppi[MAX_TIMER_PPI];
37 
38 static struct clock_event_device __percpu *arch_timer_evt;
39 
40 static bool arch_timer_use_virtual = true;
41 
42 /*
43  * Architected system timer support.
44  */
45 
46 static inline irqreturn_t timer_handler(const int access,
47 					struct clock_event_device *evt)
48 {
49 	unsigned long ctrl;
50 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
51 	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
52 		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
53 		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
54 		evt->event_handler(evt);
55 		return IRQ_HANDLED;
56 	}
57 
58 	return IRQ_NONE;
59 }
60 
61 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
62 {
63 	struct clock_event_device *evt = dev_id;
64 
65 	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
66 }
67 
68 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
69 {
70 	struct clock_event_device *evt = dev_id;
71 
72 	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
73 }
74 
75 static inline void timer_set_mode(const int access, int mode)
76 {
77 	unsigned long ctrl;
78 	switch (mode) {
79 	case CLOCK_EVT_MODE_UNUSED:
80 	case CLOCK_EVT_MODE_SHUTDOWN:
81 		ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
82 		ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
83 		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
84 		break;
85 	default:
86 		break;
87 	}
88 }
89 
90 static void arch_timer_set_mode_virt(enum clock_event_mode mode,
91 				     struct clock_event_device *clk)
92 {
93 	timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode);
94 }
95 
96 static void arch_timer_set_mode_phys(enum clock_event_mode mode,
97 				     struct clock_event_device *clk)
98 {
99 	timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode);
100 }
101 
102 static inline void set_next_event(const int access, unsigned long evt)
103 {
104 	unsigned long ctrl;
105 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
106 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
107 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
108 	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt);
109 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
110 }
111 
112 static int arch_timer_set_next_event_virt(unsigned long evt,
113 					  struct clock_event_device *unused)
114 {
115 	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt);
116 	return 0;
117 }
118 
119 static int arch_timer_set_next_event_phys(unsigned long evt,
120 					  struct clock_event_device *unused)
121 {
122 	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt);
123 	return 0;
124 }
125 
126 static int __cpuinit arch_timer_setup(struct clock_event_device *clk)
127 {
128 	clk->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP;
129 	clk->name = "arch_sys_timer";
130 	clk->rating = 450;
131 	if (arch_timer_use_virtual) {
132 		clk->irq = arch_timer_ppi[VIRT_PPI];
133 		clk->set_mode = arch_timer_set_mode_virt;
134 		clk->set_next_event = arch_timer_set_next_event_virt;
135 	} else {
136 		clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
137 		clk->set_mode = arch_timer_set_mode_phys;
138 		clk->set_next_event = arch_timer_set_next_event_phys;
139 	}
140 
141 	clk->cpumask = cpumask_of(smp_processor_id());
142 
143 	clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, NULL);
144 
145 	clockevents_config_and_register(clk, arch_timer_rate,
146 					0xf, 0x7fffffff);
147 
148 	if (arch_timer_use_virtual)
149 		enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
150 	else {
151 		enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
152 		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
153 			enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
154 	}
155 
156 	arch_counter_set_user_access();
157 
158 	return 0;
159 }
160 
161 static int arch_timer_available(void)
162 {
163 	u32 freq;
164 
165 	if (arch_timer_rate == 0) {
166 		freq = arch_timer_get_cntfrq();
167 
168 		/* Check the timer frequency. */
169 		if (freq == 0) {
170 			pr_warn("Architected timer frequency not available\n");
171 			return -EINVAL;
172 		}
173 
174 		arch_timer_rate = freq;
175 	}
176 
177 	pr_info_once("Architected local timer running at %lu.%02luMHz (%s).\n",
178 		     (unsigned long)arch_timer_rate / 1000000,
179 		     (unsigned long)(arch_timer_rate / 10000) % 100,
180 		     arch_timer_use_virtual ? "virt" : "phys");
181 	return 0;
182 }
183 
184 u32 arch_timer_get_rate(void)
185 {
186 	return arch_timer_rate;
187 }
188 
189 /*
190  * Some external users of arch_timer_read_counter (e.g. sched_clock) may try to
191  * call it before it has been initialised. Rather than incur a performance
192  * penalty checking for initialisation, provide a default implementation that
193  * won't lead to time appearing to jump backwards.
194  */
195 static u64 arch_timer_read_zero(void)
196 {
197 	return 0;
198 }
199 
200 u64 (*arch_timer_read_counter)(void) = arch_timer_read_zero;
201 
202 static cycle_t arch_counter_read(struct clocksource *cs)
203 {
204 	return arch_timer_read_counter();
205 }
206 
207 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
208 {
209 	return arch_timer_read_counter();
210 }
211 
212 static struct clocksource clocksource_counter = {
213 	.name	= "arch_sys_counter",
214 	.rating	= 400,
215 	.read	= arch_counter_read,
216 	.mask	= CLOCKSOURCE_MASK(56),
217 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
218 };
219 
220 static struct cyclecounter cyclecounter = {
221 	.read	= arch_counter_read_cc,
222 	.mask	= CLOCKSOURCE_MASK(56),
223 };
224 
225 static struct timecounter timecounter;
226 
227 struct timecounter *arch_timer_get_timecounter(void)
228 {
229 	return &timecounter;
230 }
231 
232 static void __cpuinit arch_timer_stop(struct clock_event_device *clk)
233 {
234 	pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
235 		 clk->irq, smp_processor_id());
236 
237 	if (arch_timer_use_virtual)
238 		disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
239 	else {
240 		disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
241 		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
242 			disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
243 	}
244 
245 	clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
246 }
247 
248 static int __cpuinit arch_timer_cpu_notify(struct notifier_block *self,
249 					   unsigned long action, void *hcpu)
250 {
251 	struct clock_event_device *evt = this_cpu_ptr(arch_timer_evt);
252 
253 	switch (action & ~CPU_TASKS_FROZEN) {
254 	case CPU_STARTING:
255 		arch_timer_setup(evt);
256 		break;
257 	case CPU_DYING:
258 		arch_timer_stop(evt);
259 		break;
260 	}
261 
262 	return NOTIFY_OK;
263 }
264 
265 static struct notifier_block arch_timer_cpu_nb __cpuinitdata = {
266 	.notifier_call = arch_timer_cpu_notify,
267 };
268 
269 static int __init arch_timer_register(void)
270 {
271 	int err;
272 	int ppi;
273 
274 	err = arch_timer_available();
275 	if (err)
276 		goto out;
277 
278 	arch_timer_evt = alloc_percpu(struct clock_event_device);
279 	if (!arch_timer_evt) {
280 		err = -ENOMEM;
281 		goto out;
282 	}
283 
284 	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
285 	cyclecounter.mult = clocksource_counter.mult;
286 	cyclecounter.shift = clocksource_counter.shift;
287 	timecounter_init(&timecounter, &cyclecounter,
288 			 arch_counter_get_cntpct());
289 
290 	if (arch_timer_use_virtual) {
291 		ppi = arch_timer_ppi[VIRT_PPI];
292 		err = request_percpu_irq(ppi, arch_timer_handler_virt,
293 					 "arch_timer", arch_timer_evt);
294 	} else {
295 		ppi = arch_timer_ppi[PHYS_SECURE_PPI];
296 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
297 					 "arch_timer", arch_timer_evt);
298 		if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
299 			ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
300 			err = request_percpu_irq(ppi, arch_timer_handler_phys,
301 						 "arch_timer", arch_timer_evt);
302 			if (err)
303 				free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
304 						arch_timer_evt);
305 		}
306 	}
307 
308 	if (err) {
309 		pr_err("arch_timer: can't register interrupt %d (%d)\n",
310 		       ppi, err);
311 		goto out_free;
312 	}
313 
314 	err = register_cpu_notifier(&arch_timer_cpu_nb);
315 	if (err)
316 		goto out_free_irq;
317 
318 	/* Immediately configure the timer on the boot CPU */
319 	arch_timer_setup(this_cpu_ptr(arch_timer_evt));
320 
321 	return 0;
322 
323 out_free_irq:
324 	if (arch_timer_use_virtual)
325 		free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
326 	else {
327 		free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
328 				arch_timer_evt);
329 		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
330 			free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
331 					arch_timer_evt);
332 	}
333 
334 out_free:
335 	free_percpu(arch_timer_evt);
336 out:
337 	return err;
338 }
339 
340 static const struct of_device_id arch_timer_of_match[] __initconst = {
341 	{ .compatible	= "arm,armv7-timer",	},
342 	{ .compatible	= "arm,armv8-timer",	},
343 	{},
344 };
345 
346 int __init arch_timer_init(void)
347 {
348 	struct device_node *np;
349 	u32 freq;
350 	int i;
351 
352 	np = of_find_matching_node(NULL, arch_timer_of_match);
353 	if (!np) {
354 		pr_err("arch_timer: can't find DT node\n");
355 		return -ENODEV;
356 	}
357 
358 	/* Try to determine the frequency from the device tree or CNTFRQ */
359 	if (!of_property_read_u32(np, "clock-frequency", &freq))
360 		arch_timer_rate = freq;
361 
362 	for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
363 		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
364 
365 	of_node_put(np);
366 
367 	/*
368 	 * If HYP mode is available, we know that the physical timer
369 	 * has been configured to be accessible from PL1. Use it, so
370 	 * that a guest can use the virtual timer instead.
371 	 *
372 	 * If no interrupt provided for virtual timer, we'll have to
373 	 * stick to the physical timer. It'd better be accessible...
374 	 */
375 	if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
376 		arch_timer_use_virtual = false;
377 
378 		if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
379 		    !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
380 			pr_warn("arch_timer: No interrupt available, giving up\n");
381 			return -EINVAL;
382 		}
383 	}
384 
385 	if (arch_timer_use_virtual)
386 		arch_timer_read_counter = arch_counter_get_cntvct;
387 	else
388 		arch_timer_read_counter = arch_counter_get_cntpct;
389 
390 	return arch_timer_register();
391 }
392