1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/clocksource/arm_arch_timer.c 4 * 5 * Copyright (C) 2011 ARM Ltd. 6 * All Rights Reserved 7 */ 8 9 #define pr_fmt(fmt) "arch_timer: " fmt 10 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/device.h> 14 #include <linux/smp.h> 15 #include <linux/cpu.h> 16 #include <linux/cpu_pm.h> 17 #include <linux/clockchips.h> 18 #include <linux/clocksource.h> 19 #include <linux/clocksource_ids.h> 20 #include <linux/interrupt.h> 21 #include <linux/of_irq.h> 22 #include <linux/of_address.h> 23 #include <linux/io.h> 24 #include <linux/slab.h> 25 #include <linux/sched/clock.h> 26 #include <linux/sched_clock.h> 27 #include <linux/acpi.h> 28 #include <linux/arm-smccc.h> 29 #include <linux/ptp_kvm.h> 30 31 #include <asm/arch_timer.h> 32 #include <asm/virt.h> 33 34 #include <clocksource/arm_arch_timer.h> 35 36 #define CNTTIDR 0x08 37 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4)) 38 39 #define CNTACR(n) (0x40 + ((n) * 4)) 40 #define CNTACR_RPCT BIT(0) 41 #define CNTACR_RVCT BIT(1) 42 #define CNTACR_RFRQ BIT(2) 43 #define CNTACR_RVOFF BIT(3) 44 #define CNTACR_RWVT BIT(4) 45 #define CNTACR_RWPT BIT(5) 46 47 #define CNTPCT_LO 0x00 48 #define CNTVCT_LO 0x08 49 #define CNTFRQ 0x10 50 #define CNTP_CVAL_LO 0x20 51 #define CNTP_CTL 0x2c 52 #define CNTV_CVAL_LO 0x30 53 #define CNTV_CTL 0x3c 54 55 /* 56 * The minimum amount of time a generic counter is guaranteed to not roll over 57 * (40 years) 58 */ 59 #define MIN_ROLLOVER_SECS (40ULL * 365 * 24 * 3600) 60 61 static unsigned arch_timers_present __initdata; 62 63 struct arch_timer { 64 void __iomem *base; 65 struct clock_event_device evt; 66 }; 67 68 static struct arch_timer *arch_timer_mem __ro_after_init; 69 70 #define to_arch_timer(e) container_of(e, struct arch_timer, evt) 71 72 static u32 arch_timer_rate __ro_after_init; 73 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init; 74 75 static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = { 76 [ARCH_TIMER_PHYS_SECURE_PPI] = "sec-phys", 77 [ARCH_TIMER_PHYS_NONSECURE_PPI] = "phys", 78 [ARCH_TIMER_VIRT_PPI] = "virt", 79 [ARCH_TIMER_HYP_PPI] = "hyp-phys", 80 [ARCH_TIMER_HYP_VIRT_PPI] = "hyp-virt", 81 }; 82 83 static struct clock_event_device __percpu *arch_timer_evt; 84 85 static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI; 86 static bool arch_timer_c3stop __ro_after_init; 87 static bool arch_timer_mem_use_virtual __ro_after_init; 88 static bool arch_counter_suspend_stop __ro_after_init; 89 #ifdef CONFIG_GENERIC_GETTIMEOFDAY 90 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER; 91 #else 92 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE; 93 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */ 94 95 static cpumask_t evtstrm_available = CPU_MASK_NONE; 96 static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM); 97 98 static int __init early_evtstrm_cfg(char *buf) 99 { 100 return strtobool(buf, &evtstrm_enable); 101 } 102 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg); 103 104 /* 105 * Makes an educated guess at a valid counter width based on the Generic Timer 106 * specification. Of note: 107 * 1) the system counter is at least 56 bits wide 108 * 2) a roll-over time of not less than 40 years 109 * 110 * See 'ARM DDI 0487G.a D11.1.2 ("The system counter")' for more details. 111 */ 112 static int arch_counter_get_width(void) 113 { 114 u64 min_cycles = MIN_ROLLOVER_SECS * arch_timer_rate; 115 116 /* guarantee the returned width is within the valid range */ 117 return clamp_val(ilog2(min_cycles - 1) + 1, 56, 64); 118 } 119 120 /* 121 * Architected system timer support. 122 */ 123 124 static __always_inline 125 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u64 val, 126 struct clock_event_device *clk) 127 { 128 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 129 struct arch_timer *timer = to_arch_timer(clk); 130 switch (reg) { 131 case ARCH_TIMER_REG_CTRL: 132 writel_relaxed((u32)val, timer->base + CNTP_CTL); 133 break; 134 case ARCH_TIMER_REG_CVAL: 135 /* 136 * Not guaranteed to be atomic, so the timer 137 * must be disabled at this point. 138 */ 139 writeq_relaxed(val, timer->base + CNTP_CVAL_LO); 140 break; 141 default: 142 BUILD_BUG(); 143 } 144 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 145 struct arch_timer *timer = to_arch_timer(clk); 146 switch (reg) { 147 case ARCH_TIMER_REG_CTRL: 148 writel_relaxed((u32)val, timer->base + CNTV_CTL); 149 break; 150 case ARCH_TIMER_REG_CVAL: 151 /* Same restriction as above */ 152 writeq_relaxed(val, timer->base + CNTV_CVAL_LO); 153 break; 154 default: 155 BUILD_BUG(); 156 } 157 } else { 158 arch_timer_reg_write_cp15(access, reg, val); 159 } 160 } 161 162 static __always_inline 163 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg, 164 struct clock_event_device *clk) 165 { 166 u32 val; 167 168 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 169 struct arch_timer *timer = to_arch_timer(clk); 170 switch (reg) { 171 case ARCH_TIMER_REG_CTRL: 172 val = readl_relaxed(timer->base + CNTP_CTL); 173 break; 174 default: 175 BUILD_BUG(); 176 } 177 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 178 struct arch_timer *timer = to_arch_timer(clk); 179 switch (reg) { 180 case ARCH_TIMER_REG_CTRL: 181 val = readl_relaxed(timer->base + CNTV_CTL); 182 break; 183 default: 184 BUILD_BUG(); 185 } 186 } else { 187 val = arch_timer_reg_read_cp15(access, reg); 188 } 189 190 return val; 191 } 192 193 static notrace u64 arch_counter_get_cntpct_stable(void) 194 { 195 return __arch_counter_get_cntpct_stable(); 196 } 197 198 static notrace u64 arch_counter_get_cntpct(void) 199 { 200 return __arch_counter_get_cntpct(); 201 } 202 203 static notrace u64 arch_counter_get_cntvct_stable(void) 204 { 205 return __arch_counter_get_cntvct_stable(); 206 } 207 208 static notrace u64 arch_counter_get_cntvct(void) 209 { 210 return __arch_counter_get_cntvct(); 211 } 212 213 /* 214 * Default to cp15 based access because arm64 uses this function for 215 * sched_clock() before DT is probed and the cp15 method is guaranteed 216 * to exist on arm64. arm doesn't use this before DT is probed so even 217 * if we don't have the cp15 accessors we won't have a problem. 218 */ 219 u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct; 220 EXPORT_SYMBOL_GPL(arch_timer_read_counter); 221 222 static u64 arch_counter_read(struct clocksource *cs) 223 { 224 return arch_timer_read_counter(); 225 } 226 227 static u64 arch_counter_read_cc(const struct cyclecounter *cc) 228 { 229 return arch_timer_read_counter(); 230 } 231 232 static struct clocksource clocksource_counter = { 233 .name = "arch_sys_counter", 234 .id = CSID_ARM_ARCH_COUNTER, 235 .rating = 400, 236 .read = arch_counter_read, 237 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 238 }; 239 240 static struct cyclecounter cyclecounter __ro_after_init = { 241 .read = arch_counter_read_cc, 242 }; 243 244 struct ate_acpi_oem_info { 245 char oem_id[ACPI_OEM_ID_SIZE + 1]; 246 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1]; 247 u32 oem_revision; 248 }; 249 250 #ifdef CONFIG_FSL_ERRATUM_A008585 251 /* 252 * The number of retries is an arbitrary value well beyond the highest number 253 * of iterations the loop has been observed to take. 254 */ 255 #define __fsl_a008585_read_reg(reg) ({ \ 256 u64 _old, _new; \ 257 int _retries = 200; \ 258 \ 259 do { \ 260 _old = read_sysreg(reg); \ 261 _new = read_sysreg(reg); \ 262 _retries--; \ 263 } while (unlikely(_old != _new) && _retries); \ 264 \ 265 WARN_ON_ONCE(!_retries); \ 266 _new; \ 267 }) 268 269 static u64 notrace fsl_a008585_read_cntpct_el0(void) 270 { 271 return __fsl_a008585_read_reg(cntpct_el0); 272 } 273 274 static u64 notrace fsl_a008585_read_cntvct_el0(void) 275 { 276 return __fsl_a008585_read_reg(cntvct_el0); 277 } 278 #endif 279 280 #ifdef CONFIG_HISILICON_ERRATUM_161010101 281 /* 282 * Verify whether the value of the second read is larger than the first by 283 * less than 32 is the only way to confirm the value is correct, so clear the 284 * lower 5 bits to check whether the difference is greater than 32 or not. 285 * Theoretically the erratum should not occur more than twice in succession 286 * when reading the system counter, but it is possible that some interrupts 287 * may lead to more than twice read errors, triggering the warning, so setting 288 * the number of retries far beyond the number of iterations the loop has been 289 * observed to take. 290 */ 291 #define __hisi_161010101_read_reg(reg) ({ \ 292 u64 _old, _new; \ 293 int _retries = 50; \ 294 \ 295 do { \ 296 _old = read_sysreg(reg); \ 297 _new = read_sysreg(reg); \ 298 _retries--; \ 299 } while (unlikely((_new - _old) >> 5) && _retries); \ 300 \ 301 WARN_ON_ONCE(!_retries); \ 302 _new; \ 303 }) 304 305 static u64 notrace hisi_161010101_read_cntpct_el0(void) 306 { 307 return __hisi_161010101_read_reg(cntpct_el0); 308 } 309 310 static u64 notrace hisi_161010101_read_cntvct_el0(void) 311 { 312 return __hisi_161010101_read_reg(cntvct_el0); 313 } 314 315 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = { 316 /* 317 * Note that trailing spaces are required to properly match 318 * the OEM table information. 319 */ 320 { 321 .oem_id = "HISI ", 322 .oem_table_id = "HIP05 ", 323 .oem_revision = 0, 324 }, 325 { 326 .oem_id = "HISI ", 327 .oem_table_id = "HIP06 ", 328 .oem_revision = 0, 329 }, 330 { 331 .oem_id = "HISI ", 332 .oem_table_id = "HIP07 ", 333 .oem_revision = 0, 334 }, 335 { /* Sentinel indicating the end of the OEM array */ }, 336 }; 337 #endif 338 339 #ifdef CONFIG_ARM64_ERRATUM_858921 340 static u64 notrace arm64_858921_read_cntpct_el0(void) 341 { 342 u64 old, new; 343 344 old = read_sysreg(cntpct_el0); 345 new = read_sysreg(cntpct_el0); 346 return (((old ^ new) >> 32) & 1) ? old : new; 347 } 348 349 static u64 notrace arm64_858921_read_cntvct_el0(void) 350 { 351 u64 old, new; 352 353 old = read_sysreg(cntvct_el0); 354 new = read_sysreg(cntvct_el0); 355 return (((old ^ new) >> 32) & 1) ? old : new; 356 } 357 #endif 358 359 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1 360 /* 361 * The low bits of the counter registers are indeterminate while bit 10 or 362 * greater is rolling over. Since the counter value can jump both backward 363 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values 364 * with all ones or all zeros in the low bits. Bound the loop by the maximum 365 * number of CPU cycles in 3 consecutive 24 MHz counter periods. 366 */ 367 #define __sun50i_a64_read_reg(reg) ({ \ 368 u64 _val; \ 369 int _retries = 150; \ 370 \ 371 do { \ 372 _val = read_sysreg(reg); \ 373 _retries--; \ 374 } while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries); \ 375 \ 376 WARN_ON_ONCE(!_retries); \ 377 _val; \ 378 }) 379 380 static u64 notrace sun50i_a64_read_cntpct_el0(void) 381 { 382 return __sun50i_a64_read_reg(cntpct_el0); 383 } 384 385 static u64 notrace sun50i_a64_read_cntvct_el0(void) 386 { 387 return __sun50i_a64_read_reg(cntvct_el0); 388 } 389 #endif 390 391 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND 392 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround); 393 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround); 394 395 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0); 396 397 /* 398 * Force the inlining of this function so that the register accesses 399 * can be themselves correctly inlined. 400 */ 401 static __always_inline 402 void erratum_set_next_event_generic(const int access, unsigned long evt, 403 struct clock_event_device *clk) 404 { 405 unsigned long ctrl; 406 u64 cval; 407 408 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 409 ctrl |= ARCH_TIMER_CTRL_ENABLE; 410 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 411 412 if (access == ARCH_TIMER_PHYS_ACCESS) { 413 cval = evt + arch_counter_get_cntpct_stable(); 414 write_sysreg(cval, cntp_cval_el0); 415 } else { 416 cval = evt + arch_counter_get_cntvct_stable(); 417 write_sysreg(cval, cntv_cval_el0); 418 } 419 420 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 421 } 422 423 static __maybe_unused int erratum_set_next_event_virt(unsigned long evt, 424 struct clock_event_device *clk) 425 { 426 erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk); 427 return 0; 428 } 429 430 static __maybe_unused int erratum_set_next_event_phys(unsigned long evt, 431 struct clock_event_device *clk) 432 { 433 erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk); 434 return 0; 435 } 436 437 static const struct arch_timer_erratum_workaround ool_workarounds[] = { 438 #ifdef CONFIG_FSL_ERRATUM_A008585 439 { 440 .match_type = ate_match_dt, 441 .id = "fsl,erratum-a008585", 442 .desc = "Freescale erratum a005858", 443 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0, 444 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0, 445 .set_next_event_phys = erratum_set_next_event_phys, 446 .set_next_event_virt = erratum_set_next_event_virt, 447 }, 448 #endif 449 #ifdef CONFIG_HISILICON_ERRATUM_161010101 450 { 451 .match_type = ate_match_dt, 452 .id = "hisilicon,erratum-161010101", 453 .desc = "HiSilicon erratum 161010101", 454 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0, 455 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, 456 .set_next_event_phys = erratum_set_next_event_phys, 457 .set_next_event_virt = erratum_set_next_event_virt, 458 }, 459 { 460 .match_type = ate_match_acpi_oem_info, 461 .id = hisi_161010101_oem_info, 462 .desc = "HiSilicon erratum 161010101", 463 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0, 464 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, 465 .set_next_event_phys = erratum_set_next_event_phys, 466 .set_next_event_virt = erratum_set_next_event_virt, 467 }, 468 #endif 469 #ifdef CONFIG_ARM64_ERRATUM_858921 470 { 471 .match_type = ate_match_local_cap_id, 472 .id = (void *)ARM64_WORKAROUND_858921, 473 .desc = "ARM erratum 858921", 474 .read_cntpct_el0 = arm64_858921_read_cntpct_el0, 475 .read_cntvct_el0 = arm64_858921_read_cntvct_el0, 476 .set_next_event_phys = erratum_set_next_event_phys, 477 .set_next_event_virt = erratum_set_next_event_virt, 478 }, 479 #endif 480 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1 481 { 482 .match_type = ate_match_dt, 483 .id = "allwinner,erratum-unknown1", 484 .desc = "Allwinner erratum UNKNOWN1", 485 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0, 486 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0, 487 .set_next_event_phys = erratum_set_next_event_phys, 488 .set_next_event_virt = erratum_set_next_event_virt, 489 }, 490 #endif 491 #ifdef CONFIG_ARM64_ERRATUM_1418040 492 { 493 .match_type = ate_match_local_cap_id, 494 .id = (void *)ARM64_WORKAROUND_1418040, 495 .desc = "ARM erratum 1418040", 496 .disable_compat_vdso = true, 497 }, 498 #endif 499 }; 500 501 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *, 502 const void *); 503 504 static 505 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa, 506 const void *arg) 507 { 508 const struct device_node *np = arg; 509 510 return of_property_read_bool(np, wa->id); 511 } 512 513 static 514 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa, 515 const void *arg) 516 { 517 return this_cpu_has_cap((uintptr_t)wa->id); 518 } 519 520 521 static 522 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa, 523 const void *arg) 524 { 525 static const struct ate_acpi_oem_info empty_oem_info = {}; 526 const struct ate_acpi_oem_info *info = wa->id; 527 const struct acpi_table_header *table = arg; 528 529 /* Iterate over the ACPI OEM info array, looking for a match */ 530 while (memcmp(info, &empty_oem_info, sizeof(*info))) { 531 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) && 532 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) && 533 info->oem_revision == table->oem_revision) 534 return true; 535 536 info++; 537 } 538 539 return false; 540 } 541 542 static const struct arch_timer_erratum_workaround * 543 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type, 544 ate_match_fn_t match_fn, 545 void *arg) 546 { 547 int i; 548 549 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) { 550 if (ool_workarounds[i].match_type != type) 551 continue; 552 553 if (match_fn(&ool_workarounds[i], arg)) 554 return &ool_workarounds[i]; 555 } 556 557 return NULL; 558 } 559 560 static 561 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa, 562 bool local) 563 { 564 int i; 565 566 if (local) { 567 __this_cpu_write(timer_unstable_counter_workaround, wa); 568 } else { 569 for_each_possible_cpu(i) 570 per_cpu(timer_unstable_counter_workaround, i) = wa; 571 } 572 573 if (wa->read_cntvct_el0 || wa->read_cntpct_el0) 574 atomic_set(&timer_unstable_counter_workaround_in_use, 1); 575 576 /* 577 * Don't use the vdso fastpath if errata require using the 578 * out-of-line counter accessor. We may change our mind pretty 579 * late in the game (with a per-CPU erratum, for example), so 580 * change both the default value and the vdso itself. 581 */ 582 if (wa->read_cntvct_el0) { 583 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE; 584 vdso_default = VDSO_CLOCKMODE_NONE; 585 } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) { 586 vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT; 587 clocksource_counter.vdso_clock_mode = vdso_default; 588 } 589 } 590 591 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type, 592 void *arg) 593 { 594 const struct arch_timer_erratum_workaround *wa, *__wa; 595 ate_match_fn_t match_fn = NULL; 596 bool local = false; 597 598 switch (type) { 599 case ate_match_dt: 600 match_fn = arch_timer_check_dt_erratum; 601 break; 602 case ate_match_local_cap_id: 603 match_fn = arch_timer_check_local_cap_erratum; 604 local = true; 605 break; 606 case ate_match_acpi_oem_info: 607 match_fn = arch_timer_check_acpi_oem_erratum; 608 break; 609 default: 610 WARN_ON(1); 611 return; 612 } 613 614 wa = arch_timer_iterate_errata(type, match_fn, arg); 615 if (!wa) 616 return; 617 618 __wa = __this_cpu_read(timer_unstable_counter_workaround); 619 if (__wa && wa != __wa) 620 pr_warn("Can't enable workaround for %s (clashes with %s\n)", 621 wa->desc, __wa->desc); 622 623 if (__wa) 624 return; 625 626 arch_timer_enable_workaround(wa, local); 627 pr_info("Enabling %s workaround for %s\n", 628 local ? "local" : "global", wa->desc); 629 } 630 631 static bool arch_timer_this_cpu_has_cntvct_wa(void) 632 { 633 return has_erratum_handler(read_cntvct_el0); 634 } 635 636 static bool arch_timer_counter_has_wa(void) 637 { 638 return atomic_read(&timer_unstable_counter_workaround_in_use); 639 } 640 #else 641 #define arch_timer_check_ool_workaround(t,a) do { } while(0) 642 #define arch_timer_this_cpu_has_cntvct_wa() ({false;}) 643 #define arch_timer_counter_has_wa() ({false;}) 644 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */ 645 646 static __always_inline irqreturn_t timer_handler(const int access, 647 struct clock_event_device *evt) 648 { 649 unsigned long ctrl; 650 651 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt); 652 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { 653 ctrl |= ARCH_TIMER_CTRL_IT_MASK; 654 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt); 655 evt->event_handler(evt); 656 return IRQ_HANDLED; 657 } 658 659 return IRQ_NONE; 660 } 661 662 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id) 663 { 664 struct clock_event_device *evt = dev_id; 665 666 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt); 667 } 668 669 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id) 670 { 671 struct clock_event_device *evt = dev_id; 672 673 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt); 674 } 675 676 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id) 677 { 678 struct clock_event_device *evt = dev_id; 679 680 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt); 681 } 682 683 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id) 684 { 685 struct clock_event_device *evt = dev_id; 686 687 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt); 688 } 689 690 static __always_inline int timer_shutdown(const int access, 691 struct clock_event_device *clk) 692 { 693 unsigned long ctrl; 694 695 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 696 ctrl &= ~ARCH_TIMER_CTRL_ENABLE; 697 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 698 699 return 0; 700 } 701 702 static int arch_timer_shutdown_virt(struct clock_event_device *clk) 703 { 704 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk); 705 } 706 707 static int arch_timer_shutdown_phys(struct clock_event_device *clk) 708 { 709 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk); 710 } 711 712 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk) 713 { 714 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk); 715 } 716 717 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk) 718 { 719 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk); 720 } 721 722 static __always_inline void set_next_event(const int access, unsigned long evt, 723 struct clock_event_device *clk) 724 { 725 unsigned long ctrl; 726 u64 cnt; 727 728 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 729 ctrl |= ARCH_TIMER_CTRL_ENABLE; 730 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 731 732 if (access == ARCH_TIMER_PHYS_ACCESS) 733 cnt = __arch_counter_get_cntpct(); 734 else 735 cnt = __arch_counter_get_cntvct(); 736 737 arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk); 738 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 739 } 740 741 static int arch_timer_set_next_event_virt(unsigned long evt, 742 struct clock_event_device *clk) 743 { 744 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk); 745 return 0; 746 } 747 748 static int arch_timer_set_next_event_phys(unsigned long evt, 749 struct clock_event_device *clk) 750 { 751 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk); 752 return 0; 753 } 754 755 static u64 arch_counter_get_cnt_mem(struct arch_timer *t, int offset_lo) 756 { 757 u32 cnt_lo, cnt_hi, tmp_hi; 758 759 do { 760 cnt_hi = readl_relaxed(t->base + offset_lo + 4); 761 cnt_lo = readl_relaxed(t->base + offset_lo); 762 tmp_hi = readl_relaxed(t->base + offset_lo + 4); 763 } while (cnt_hi != tmp_hi); 764 765 return ((u64) cnt_hi << 32) | cnt_lo; 766 } 767 768 static __always_inline void set_next_event_mem(const int access, unsigned long evt, 769 struct clock_event_device *clk) 770 { 771 struct arch_timer *timer = to_arch_timer(clk); 772 unsigned long ctrl; 773 u64 cnt; 774 775 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 776 ctrl |= ARCH_TIMER_CTRL_ENABLE; 777 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 778 779 if (access == ARCH_TIMER_MEM_VIRT_ACCESS) 780 cnt = arch_counter_get_cnt_mem(timer, CNTVCT_LO); 781 else 782 cnt = arch_counter_get_cnt_mem(timer, CNTPCT_LO); 783 784 arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk); 785 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 786 } 787 788 static int arch_timer_set_next_event_virt_mem(unsigned long evt, 789 struct clock_event_device *clk) 790 { 791 set_next_event_mem(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk); 792 return 0; 793 } 794 795 static int arch_timer_set_next_event_phys_mem(unsigned long evt, 796 struct clock_event_device *clk) 797 { 798 set_next_event_mem(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk); 799 return 0; 800 } 801 802 static u64 __arch_timer_check_delta(void) 803 { 804 #ifdef CONFIG_ARM64 805 const struct midr_range broken_cval_midrs[] = { 806 /* 807 * XGene-1 implements CVAL in terms of TVAL, meaning 808 * that the maximum timer range is 32bit. Shame on them. 809 */ 810 MIDR_ALL_VERSIONS(MIDR_CPU_MODEL(ARM_CPU_IMP_APM, 811 APM_CPU_PART_POTENZA)), 812 {}, 813 }; 814 815 if (is_midr_in_range_list(read_cpuid_id(), broken_cval_midrs)) { 816 pr_warn_once("Broken CNTx_CVAL_EL1, limiting width to 32bits"); 817 return CLOCKSOURCE_MASK(32); 818 } 819 #endif 820 return CLOCKSOURCE_MASK(arch_counter_get_width()); 821 } 822 823 static void __arch_timer_setup(unsigned type, 824 struct clock_event_device *clk) 825 { 826 u64 max_delta; 827 828 clk->features = CLOCK_EVT_FEAT_ONESHOT; 829 830 if (type == ARCH_TIMER_TYPE_CP15) { 831 typeof(clk->set_next_event) sne; 832 833 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL); 834 835 if (arch_timer_c3stop) 836 clk->features |= CLOCK_EVT_FEAT_C3STOP; 837 clk->name = "arch_sys_timer"; 838 clk->rating = 450; 839 clk->cpumask = cpumask_of(smp_processor_id()); 840 clk->irq = arch_timer_ppi[arch_timer_uses_ppi]; 841 switch (arch_timer_uses_ppi) { 842 case ARCH_TIMER_VIRT_PPI: 843 clk->set_state_shutdown = arch_timer_shutdown_virt; 844 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt; 845 sne = erratum_handler(set_next_event_virt); 846 break; 847 case ARCH_TIMER_PHYS_SECURE_PPI: 848 case ARCH_TIMER_PHYS_NONSECURE_PPI: 849 case ARCH_TIMER_HYP_PPI: 850 clk->set_state_shutdown = arch_timer_shutdown_phys; 851 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys; 852 sne = erratum_handler(set_next_event_phys); 853 break; 854 default: 855 BUG(); 856 } 857 858 clk->set_next_event = sne; 859 max_delta = __arch_timer_check_delta(); 860 } else { 861 clk->features |= CLOCK_EVT_FEAT_DYNIRQ; 862 clk->name = "arch_mem_timer"; 863 clk->rating = 400; 864 clk->cpumask = cpu_possible_mask; 865 if (arch_timer_mem_use_virtual) { 866 clk->set_state_shutdown = arch_timer_shutdown_virt_mem; 867 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem; 868 clk->set_next_event = 869 arch_timer_set_next_event_virt_mem; 870 } else { 871 clk->set_state_shutdown = arch_timer_shutdown_phys_mem; 872 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem; 873 clk->set_next_event = 874 arch_timer_set_next_event_phys_mem; 875 } 876 877 max_delta = CLOCKSOURCE_MASK(56); 878 } 879 880 clk->set_state_shutdown(clk); 881 882 clockevents_config_and_register(clk, arch_timer_rate, 0xf, max_delta); 883 } 884 885 static void arch_timer_evtstrm_enable(unsigned int divider) 886 { 887 u32 cntkctl = arch_timer_get_cntkctl(); 888 889 #ifdef CONFIG_ARM64 890 /* ECV is likely to require a large divider. Use the EVNTIS flag. */ 891 if (cpus_have_const_cap(ARM64_HAS_ECV) && divider > 15) { 892 cntkctl |= ARCH_TIMER_EVT_INTERVAL_SCALE; 893 divider -= 8; 894 } 895 #endif 896 897 divider = min(divider, 15U); 898 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK; 899 /* Set the divider and enable virtual event stream */ 900 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT) 901 | ARCH_TIMER_VIRT_EVT_EN; 902 arch_timer_set_cntkctl(cntkctl); 903 arch_timer_set_evtstrm_feature(); 904 cpumask_set_cpu(smp_processor_id(), &evtstrm_available); 905 } 906 907 static void arch_timer_configure_evtstream(void) 908 { 909 int evt_stream_div, lsb; 910 911 /* 912 * As the event stream can at most be generated at half the frequency 913 * of the counter, use half the frequency when computing the divider. 914 */ 915 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2; 916 917 /* 918 * Find the closest power of two to the divisor. If the adjacent bit 919 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1). 920 */ 921 lsb = fls(evt_stream_div) - 1; 922 if (lsb > 0 && (evt_stream_div & BIT(lsb - 1))) 923 lsb++; 924 925 /* enable event stream */ 926 arch_timer_evtstrm_enable(max(0, lsb)); 927 } 928 929 static void arch_counter_set_user_access(void) 930 { 931 u32 cntkctl = arch_timer_get_cntkctl(); 932 933 /* Disable user access to the timers and both counters */ 934 /* Also disable virtual event stream */ 935 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN 936 | ARCH_TIMER_USR_VT_ACCESS_EN 937 | ARCH_TIMER_USR_VCT_ACCESS_EN 938 | ARCH_TIMER_VIRT_EVT_EN 939 | ARCH_TIMER_USR_PCT_ACCESS_EN); 940 941 /* 942 * Enable user access to the virtual counter if it doesn't 943 * need to be workaround. The vdso may have been already 944 * disabled though. 945 */ 946 if (arch_timer_this_cpu_has_cntvct_wa()) 947 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id()); 948 else 949 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN; 950 951 arch_timer_set_cntkctl(cntkctl); 952 } 953 954 static bool arch_timer_has_nonsecure_ppi(void) 955 { 956 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI && 957 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 958 } 959 960 static u32 check_ppi_trigger(int irq) 961 { 962 u32 flags = irq_get_trigger_type(irq); 963 964 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) { 965 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq); 966 pr_warn("WARNING: Please fix your firmware\n"); 967 flags = IRQF_TRIGGER_LOW; 968 } 969 970 return flags; 971 } 972 973 static int arch_timer_starting_cpu(unsigned int cpu) 974 { 975 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 976 u32 flags; 977 978 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk); 979 980 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]); 981 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags); 982 983 if (arch_timer_has_nonsecure_ppi()) { 984 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 985 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], 986 flags); 987 } 988 989 arch_counter_set_user_access(); 990 if (evtstrm_enable) 991 arch_timer_configure_evtstream(); 992 993 return 0; 994 } 995 996 static int validate_timer_rate(void) 997 { 998 if (!arch_timer_rate) 999 return -EINVAL; 1000 1001 /* Arch timer frequency < 1MHz can cause trouble */ 1002 WARN_ON(arch_timer_rate < 1000000); 1003 1004 return 0; 1005 } 1006 1007 /* 1008 * For historical reasons, when probing with DT we use whichever (non-zero) 1009 * rate was probed first, and don't verify that others match. If the first node 1010 * probed has a clock-frequency property, this overrides the HW register. 1011 */ 1012 static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np) 1013 { 1014 /* Who has more than one independent system counter? */ 1015 if (arch_timer_rate) 1016 return; 1017 1018 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) 1019 arch_timer_rate = rate; 1020 1021 /* Check the timer frequency. */ 1022 if (validate_timer_rate()) 1023 pr_warn("frequency not available\n"); 1024 } 1025 1026 static void __init arch_timer_banner(unsigned type) 1027 { 1028 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n", 1029 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "", 1030 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? 1031 " and " : "", 1032 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "", 1033 (unsigned long)arch_timer_rate / 1000000, 1034 (unsigned long)(arch_timer_rate / 10000) % 100, 1035 type & ARCH_TIMER_TYPE_CP15 ? 1036 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" : 1037 "", 1038 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "", 1039 type & ARCH_TIMER_TYPE_MEM ? 1040 arch_timer_mem_use_virtual ? "virt" : "phys" : 1041 ""); 1042 } 1043 1044 u32 arch_timer_get_rate(void) 1045 { 1046 return arch_timer_rate; 1047 } 1048 1049 bool arch_timer_evtstrm_available(void) 1050 { 1051 /* 1052 * We might get called from a preemptible context. This is fine 1053 * because availability of the event stream should be always the same 1054 * for a preemptible context and context where we might resume a task. 1055 */ 1056 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available); 1057 } 1058 1059 static u64 arch_counter_get_cntvct_mem(void) 1060 { 1061 return arch_counter_get_cnt_mem(arch_timer_mem, CNTVCT_LO); 1062 } 1063 1064 static struct arch_timer_kvm_info arch_timer_kvm_info; 1065 1066 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void) 1067 { 1068 return &arch_timer_kvm_info; 1069 } 1070 1071 static void __init arch_counter_register(unsigned type) 1072 { 1073 u64 start_count; 1074 int width; 1075 1076 /* Register the CP15 based counter if we have one */ 1077 if (type & ARCH_TIMER_TYPE_CP15) { 1078 u64 (*rd)(void); 1079 1080 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) || 1081 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) { 1082 if (arch_timer_counter_has_wa()) 1083 rd = arch_counter_get_cntvct_stable; 1084 else 1085 rd = arch_counter_get_cntvct; 1086 } else { 1087 if (arch_timer_counter_has_wa()) 1088 rd = arch_counter_get_cntpct_stable; 1089 else 1090 rd = arch_counter_get_cntpct; 1091 } 1092 1093 arch_timer_read_counter = rd; 1094 clocksource_counter.vdso_clock_mode = vdso_default; 1095 } else { 1096 arch_timer_read_counter = arch_counter_get_cntvct_mem; 1097 } 1098 1099 width = arch_counter_get_width(); 1100 clocksource_counter.mask = CLOCKSOURCE_MASK(width); 1101 cyclecounter.mask = CLOCKSOURCE_MASK(width); 1102 1103 if (!arch_counter_suspend_stop) 1104 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; 1105 start_count = arch_timer_read_counter(); 1106 clocksource_register_hz(&clocksource_counter, arch_timer_rate); 1107 cyclecounter.mult = clocksource_counter.mult; 1108 cyclecounter.shift = clocksource_counter.shift; 1109 timecounter_init(&arch_timer_kvm_info.timecounter, 1110 &cyclecounter, start_count); 1111 1112 sched_clock_register(arch_timer_read_counter, width, arch_timer_rate); 1113 } 1114 1115 static void arch_timer_stop(struct clock_event_device *clk) 1116 { 1117 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id()); 1118 1119 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]); 1120 if (arch_timer_has_nonsecure_ppi()) 1121 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 1122 1123 clk->set_state_shutdown(clk); 1124 } 1125 1126 static int arch_timer_dying_cpu(unsigned int cpu) 1127 { 1128 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 1129 1130 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available); 1131 1132 arch_timer_stop(clk); 1133 return 0; 1134 } 1135 1136 #ifdef CONFIG_CPU_PM 1137 static DEFINE_PER_CPU(unsigned long, saved_cntkctl); 1138 static int arch_timer_cpu_pm_notify(struct notifier_block *self, 1139 unsigned long action, void *hcpu) 1140 { 1141 if (action == CPU_PM_ENTER) { 1142 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl()); 1143 1144 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available); 1145 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) { 1146 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl)); 1147 1148 if (arch_timer_have_evtstrm_feature()) 1149 cpumask_set_cpu(smp_processor_id(), &evtstrm_available); 1150 } 1151 return NOTIFY_OK; 1152 } 1153 1154 static struct notifier_block arch_timer_cpu_pm_notifier = { 1155 .notifier_call = arch_timer_cpu_pm_notify, 1156 }; 1157 1158 static int __init arch_timer_cpu_pm_init(void) 1159 { 1160 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier); 1161 } 1162 1163 static void __init arch_timer_cpu_pm_deinit(void) 1164 { 1165 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier)); 1166 } 1167 1168 #else 1169 static int __init arch_timer_cpu_pm_init(void) 1170 { 1171 return 0; 1172 } 1173 1174 static void __init arch_timer_cpu_pm_deinit(void) 1175 { 1176 } 1177 #endif 1178 1179 static int __init arch_timer_register(void) 1180 { 1181 int err; 1182 int ppi; 1183 1184 arch_timer_evt = alloc_percpu(struct clock_event_device); 1185 if (!arch_timer_evt) { 1186 err = -ENOMEM; 1187 goto out; 1188 } 1189 1190 ppi = arch_timer_ppi[arch_timer_uses_ppi]; 1191 switch (arch_timer_uses_ppi) { 1192 case ARCH_TIMER_VIRT_PPI: 1193 err = request_percpu_irq(ppi, arch_timer_handler_virt, 1194 "arch_timer", arch_timer_evt); 1195 break; 1196 case ARCH_TIMER_PHYS_SECURE_PPI: 1197 case ARCH_TIMER_PHYS_NONSECURE_PPI: 1198 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1199 "arch_timer", arch_timer_evt); 1200 if (!err && arch_timer_has_nonsecure_ppi()) { 1201 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]; 1202 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1203 "arch_timer", arch_timer_evt); 1204 if (err) 1205 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI], 1206 arch_timer_evt); 1207 } 1208 break; 1209 case ARCH_TIMER_HYP_PPI: 1210 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1211 "arch_timer", arch_timer_evt); 1212 break; 1213 default: 1214 BUG(); 1215 } 1216 1217 if (err) { 1218 pr_err("can't register interrupt %d (%d)\n", ppi, err); 1219 goto out_free; 1220 } 1221 1222 err = arch_timer_cpu_pm_init(); 1223 if (err) 1224 goto out_unreg_notify; 1225 1226 /* Register and immediately configure the timer on the boot CPU */ 1227 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING, 1228 "clockevents/arm/arch_timer:starting", 1229 arch_timer_starting_cpu, arch_timer_dying_cpu); 1230 if (err) 1231 goto out_unreg_cpupm; 1232 return 0; 1233 1234 out_unreg_cpupm: 1235 arch_timer_cpu_pm_deinit(); 1236 1237 out_unreg_notify: 1238 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt); 1239 if (arch_timer_has_nonsecure_ppi()) 1240 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], 1241 arch_timer_evt); 1242 1243 out_free: 1244 free_percpu(arch_timer_evt); 1245 out: 1246 return err; 1247 } 1248 1249 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq) 1250 { 1251 int ret; 1252 irq_handler_t func; 1253 1254 arch_timer_mem = kzalloc(sizeof(*arch_timer_mem), GFP_KERNEL); 1255 if (!arch_timer_mem) 1256 return -ENOMEM; 1257 1258 arch_timer_mem->base = base; 1259 arch_timer_mem->evt.irq = irq; 1260 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &arch_timer_mem->evt); 1261 1262 if (arch_timer_mem_use_virtual) 1263 func = arch_timer_handler_virt_mem; 1264 else 1265 func = arch_timer_handler_phys_mem; 1266 1267 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &arch_timer_mem->evt); 1268 if (ret) { 1269 pr_err("Failed to request mem timer irq\n"); 1270 kfree(arch_timer_mem); 1271 arch_timer_mem = NULL; 1272 } 1273 1274 return ret; 1275 } 1276 1277 static const struct of_device_id arch_timer_of_match[] __initconst = { 1278 { .compatible = "arm,armv7-timer", }, 1279 { .compatible = "arm,armv8-timer", }, 1280 {}, 1281 }; 1282 1283 static const struct of_device_id arch_timer_mem_of_match[] __initconst = { 1284 { .compatible = "arm,armv7-timer-mem", }, 1285 {}, 1286 }; 1287 1288 static bool __init arch_timer_needs_of_probing(void) 1289 { 1290 struct device_node *dn; 1291 bool needs_probing = false; 1292 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM; 1293 1294 /* We have two timers, and both device-tree nodes are probed. */ 1295 if ((arch_timers_present & mask) == mask) 1296 return false; 1297 1298 /* 1299 * Only one type of timer is probed, 1300 * check if we have another type of timer node in device-tree. 1301 */ 1302 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) 1303 dn = of_find_matching_node(NULL, arch_timer_mem_of_match); 1304 else 1305 dn = of_find_matching_node(NULL, arch_timer_of_match); 1306 1307 if (dn && of_device_is_available(dn)) 1308 needs_probing = true; 1309 1310 of_node_put(dn); 1311 1312 return needs_probing; 1313 } 1314 1315 static int __init arch_timer_common_init(void) 1316 { 1317 arch_timer_banner(arch_timers_present); 1318 arch_counter_register(arch_timers_present); 1319 return arch_timer_arch_init(); 1320 } 1321 1322 /** 1323 * arch_timer_select_ppi() - Select suitable PPI for the current system. 1324 * 1325 * If HYP mode is available, we know that the physical timer 1326 * has been configured to be accessible from PL1. Use it, so 1327 * that a guest can use the virtual timer instead. 1328 * 1329 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE 1330 * accesses to CNTP_*_EL1 registers are silently redirected to 1331 * their CNTHP_*_EL2 counterparts, and use a different PPI 1332 * number. 1333 * 1334 * If no interrupt provided for virtual timer, we'll have to 1335 * stick to the physical timer. It'd better be accessible... 1336 * For arm64 we never use the secure interrupt. 1337 * 1338 * Return: a suitable PPI type for the current system. 1339 */ 1340 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void) 1341 { 1342 if (is_kernel_in_hyp_mode()) 1343 return ARCH_TIMER_HYP_PPI; 1344 1345 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI]) 1346 return ARCH_TIMER_VIRT_PPI; 1347 1348 if (IS_ENABLED(CONFIG_ARM64)) 1349 return ARCH_TIMER_PHYS_NONSECURE_PPI; 1350 1351 return ARCH_TIMER_PHYS_SECURE_PPI; 1352 } 1353 1354 static void __init arch_timer_populate_kvm_info(void) 1355 { 1356 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI]; 1357 if (is_kernel_in_hyp_mode()) 1358 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]; 1359 } 1360 1361 static int __init arch_timer_of_init(struct device_node *np) 1362 { 1363 int i, irq, ret; 1364 u32 rate; 1365 bool has_names; 1366 1367 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { 1368 pr_warn("multiple nodes in dt, skipping\n"); 1369 return 0; 1370 } 1371 1372 arch_timers_present |= ARCH_TIMER_TYPE_CP15; 1373 1374 has_names = of_property_read_bool(np, "interrupt-names"); 1375 1376 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) { 1377 if (has_names) 1378 irq = of_irq_get_byname(np, arch_timer_ppi_names[i]); 1379 else 1380 irq = of_irq_get(np, i); 1381 if (irq > 0) 1382 arch_timer_ppi[i] = irq; 1383 } 1384 1385 arch_timer_populate_kvm_info(); 1386 1387 rate = arch_timer_get_cntfrq(); 1388 arch_timer_of_configure_rate(rate, np); 1389 1390 arch_timer_c3stop = !of_property_read_bool(np, "always-on"); 1391 1392 /* Check for globally applicable workarounds */ 1393 arch_timer_check_ool_workaround(ate_match_dt, np); 1394 1395 /* 1396 * If we cannot rely on firmware initializing the timer registers then 1397 * we should use the physical timers instead. 1398 */ 1399 if (IS_ENABLED(CONFIG_ARM) && 1400 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured")) 1401 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI; 1402 else 1403 arch_timer_uses_ppi = arch_timer_select_ppi(); 1404 1405 if (!arch_timer_ppi[arch_timer_uses_ppi]) { 1406 pr_err("No interrupt available, giving up\n"); 1407 return -EINVAL; 1408 } 1409 1410 /* On some systems, the counter stops ticking when in suspend. */ 1411 arch_counter_suspend_stop = of_property_read_bool(np, 1412 "arm,no-tick-in-suspend"); 1413 1414 ret = arch_timer_register(); 1415 if (ret) 1416 return ret; 1417 1418 if (arch_timer_needs_of_probing()) 1419 return 0; 1420 1421 return arch_timer_common_init(); 1422 } 1423 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init); 1424 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init); 1425 1426 static u32 __init 1427 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame) 1428 { 1429 void __iomem *base; 1430 u32 rate; 1431 1432 base = ioremap(frame->cntbase, frame->size); 1433 if (!base) { 1434 pr_err("Unable to map frame @ %pa\n", &frame->cntbase); 1435 return 0; 1436 } 1437 1438 rate = readl_relaxed(base + CNTFRQ); 1439 1440 iounmap(base); 1441 1442 return rate; 1443 } 1444 1445 static struct arch_timer_mem_frame * __init 1446 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem) 1447 { 1448 struct arch_timer_mem_frame *frame, *best_frame = NULL; 1449 void __iomem *cntctlbase; 1450 u32 cnttidr; 1451 int i; 1452 1453 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size); 1454 if (!cntctlbase) { 1455 pr_err("Can't map CNTCTLBase @ %pa\n", 1456 &timer_mem->cntctlbase); 1457 return NULL; 1458 } 1459 1460 cnttidr = readl_relaxed(cntctlbase + CNTTIDR); 1461 1462 /* 1463 * Try to find a virtual capable frame. Otherwise fall back to a 1464 * physical capable frame. 1465 */ 1466 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) { 1467 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT | 1468 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT; 1469 1470 frame = &timer_mem->frame[i]; 1471 if (!frame->valid) 1472 continue; 1473 1474 /* Try enabling everything, and see what sticks */ 1475 writel_relaxed(cntacr, cntctlbase + CNTACR(i)); 1476 cntacr = readl_relaxed(cntctlbase + CNTACR(i)); 1477 1478 if ((cnttidr & CNTTIDR_VIRT(i)) && 1479 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) { 1480 best_frame = frame; 1481 arch_timer_mem_use_virtual = true; 1482 break; 1483 } 1484 1485 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT)) 1486 continue; 1487 1488 best_frame = frame; 1489 } 1490 1491 iounmap(cntctlbase); 1492 1493 return best_frame; 1494 } 1495 1496 static int __init 1497 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame) 1498 { 1499 void __iomem *base; 1500 int ret, irq = 0; 1501 1502 if (arch_timer_mem_use_virtual) 1503 irq = frame->virt_irq; 1504 else 1505 irq = frame->phys_irq; 1506 1507 if (!irq) { 1508 pr_err("Frame missing %s irq.\n", 1509 arch_timer_mem_use_virtual ? "virt" : "phys"); 1510 return -EINVAL; 1511 } 1512 1513 if (!request_mem_region(frame->cntbase, frame->size, 1514 "arch_mem_timer")) 1515 return -EBUSY; 1516 1517 base = ioremap(frame->cntbase, frame->size); 1518 if (!base) { 1519 pr_err("Can't map frame's registers\n"); 1520 return -ENXIO; 1521 } 1522 1523 ret = arch_timer_mem_register(base, irq); 1524 if (ret) { 1525 iounmap(base); 1526 return ret; 1527 } 1528 1529 arch_timers_present |= ARCH_TIMER_TYPE_MEM; 1530 1531 return 0; 1532 } 1533 1534 static int __init arch_timer_mem_of_init(struct device_node *np) 1535 { 1536 struct arch_timer_mem *timer_mem; 1537 struct arch_timer_mem_frame *frame; 1538 struct device_node *frame_node; 1539 struct resource res; 1540 int ret = -EINVAL; 1541 u32 rate; 1542 1543 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL); 1544 if (!timer_mem) 1545 return -ENOMEM; 1546 1547 if (of_address_to_resource(np, 0, &res)) 1548 goto out; 1549 timer_mem->cntctlbase = res.start; 1550 timer_mem->size = resource_size(&res); 1551 1552 for_each_available_child_of_node(np, frame_node) { 1553 u32 n; 1554 struct arch_timer_mem_frame *frame; 1555 1556 if (of_property_read_u32(frame_node, "frame-number", &n)) { 1557 pr_err(FW_BUG "Missing frame-number.\n"); 1558 of_node_put(frame_node); 1559 goto out; 1560 } 1561 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) { 1562 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n", 1563 ARCH_TIMER_MEM_MAX_FRAMES - 1); 1564 of_node_put(frame_node); 1565 goto out; 1566 } 1567 frame = &timer_mem->frame[n]; 1568 1569 if (frame->valid) { 1570 pr_err(FW_BUG "Duplicated frame-number.\n"); 1571 of_node_put(frame_node); 1572 goto out; 1573 } 1574 1575 if (of_address_to_resource(frame_node, 0, &res)) { 1576 of_node_put(frame_node); 1577 goto out; 1578 } 1579 frame->cntbase = res.start; 1580 frame->size = resource_size(&res); 1581 1582 frame->virt_irq = irq_of_parse_and_map(frame_node, 1583 ARCH_TIMER_VIRT_SPI); 1584 frame->phys_irq = irq_of_parse_and_map(frame_node, 1585 ARCH_TIMER_PHYS_SPI); 1586 1587 frame->valid = true; 1588 } 1589 1590 frame = arch_timer_mem_find_best_frame(timer_mem); 1591 if (!frame) { 1592 pr_err("Unable to find a suitable frame in timer @ %pa\n", 1593 &timer_mem->cntctlbase); 1594 ret = -EINVAL; 1595 goto out; 1596 } 1597 1598 rate = arch_timer_mem_frame_get_cntfrq(frame); 1599 arch_timer_of_configure_rate(rate, np); 1600 1601 ret = arch_timer_mem_frame_register(frame); 1602 if (!ret && !arch_timer_needs_of_probing()) 1603 ret = arch_timer_common_init(); 1604 out: 1605 kfree(timer_mem); 1606 return ret; 1607 } 1608 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem", 1609 arch_timer_mem_of_init); 1610 1611 #ifdef CONFIG_ACPI_GTDT 1612 static int __init 1613 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem) 1614 { 1615 struct arch_timer_mem_frame *frame; 1616 u32 rate; 1617 int i; 1618 1619 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) { 1620 frame = &timer_mem->frame[i]; 1621 1622 if (!frame->valid) 1623 continue; 1624 1625 rate = arch_timer_mem_frame_get_cntfrq(frame); 1626 if (rate == arch_timer_rate) 1627 continue; 1628 1629 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n", 1630 &frame->cntbase, 1631 (unsigned long)rate, (unsigned long)arch_timer_rate); 1632 1633 return -EINVAL; 1634 } 1635 1636 return 0; 1637 } 1638 1639 static int __init arch_timer_mem_acpi_init(int platform_timer_count) 1640 { 1641 struct arch_timer_mem *timers, *timer; 1642 struct arch_timer_mem_frame *frame, *best_frame = NULL; 1643 int timer_count, i, ret = 0; 1644 1645 timers = kcalloc(platform_timer_count, sizeof(*timers), 1646 GFP_KERNEL); 1647 if (!timers) 1648 return -ENOMEM; 1649 1650 ret = acpi_arch_timer_mem_init(timers, &timer_count); 1651 if (ret || !timer_count) 1652 goto out; 1653 1654 /* 1655 * While unlikely, it's theoretically possible that none of the frames 1656 * in a timer expose the combination of feature we want. 1657 */ 1658 for (i = 0; i < timer_count; i++) { 1659 timer = &timers[i]; 1660 1661 frame = arch_timer_mem_find_best_frame(timer); 1662 if (!best_frame) 1663 best_frame = frame; 1664 1665 ret = arch_timer_mem_verify_cntfrq(timer); 1666 if (ret) { 1667 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n"); 1668 goto out; 1669 } 1670 1671 if (!best_frame) /* implies !frame */ 1672 /* 1673 * Only complain about missing suitable frames if we 1674 * haven't already found one in a previous iteration. 1675 */ 1676 pr_err("Unable to find a suitable frame in timer @ %pa\n", 1677 &timer->cntctlbase); 1678 } 1679 1680 if (best_frame) 1681 ret = arch_timer_mem_frame_register(best_frame); 1682 out: 1683 kfree(timers); 1684 return ret; 1685 } 1686 1687 /* Initialize per-processor generic timer and memory-mapped timer(if present) */ 1688 static int __init arch_timer_acpi_init(struct acpi_table_header *table) 1689 { 1690 int ret, platform_timer_count; 1691 1692 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { 1693 pr_warn("already initialized, skipping\n"); 1694 return -EINVAL; 1695 } 1696 1697 arch_timers_present |= ARCH_TIMER_TYPE_CP15; 1698 1699 ret = acpi_gtdt_init(table, &platform_timer_count); 1700 if (ret) 1701 return ret; 1702 1703 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] = 1704 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI); 1705 1706 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] = 1707 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI); 1708 1709 arch_timer_ppi[ARCH_TIMER_HYP_PPI] = 1710 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI); 1711 1712 arch_timer_populate_kvm_info(); 1713 1714 /* 1715 * When probing via ACPI, we have no mechanism to override the sysreg 1716 * CNTFRQ value. This *must* be correct. 1717 */ 1718 arch_timer_rate = arch_timer_get_cntfrq(); 1719 ret = validate_timer_rate(); 1720 if (ret) { 1721 pr_err(FW_BUG "frequency not available.\n"); 1722 return ret; 1723 } 1724 1725 arch_timer_uses_ppi = arch_timer_select_ppi(); 1726 if (!arch_timer_ppi[arch_timer_uses_ppi]) { 1727 pr_err("No interrupt available, giving up\n"); 1728 return -EINVAL; 1729 } 1730 1731 /* Always-on capability */ 1732 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi); 1733 1734 /* Check for globally applicable workarounds */ 1735 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table); 1736 1737 ret = arch_timer_register(); 1738 if (ret) 1739 return ret; 1740 1741 if (platform_timer_count && 1742 arch_timer_mem_acpi_init(platform_timer_count)) 1743 pr_err("Failed to initialize memory-mapped timer.\n"); 1744 1745 return arch_timer_common_init(); 1746 } 1747 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init); 1748 #endif 1749 1750 int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts, 1751 struct clocksource **cs) 1752 { 1753 struct arm_smccc_res hvc_res; 1754 u32 ptp_counter; 1755 ktime_t ktime; 1756 1757 if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY)) 1758 return -EOPNOTSUPP; 1759 1760 if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) 1761 ptp_counter = KVM_PTP_VIRT_COUNTER; 1762 else 1763 ptp_counter = KVM_PTP_PHYS_COUNTER; 1764 1765 arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID, 1766 ptp_counter, &hvc_res); 1767 1768 if ((int)(hvc_res.a0) < 0) 1769 return -EOPNOTSUPP; 1770 1771 ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1; 1772 *ts = ktime_to_timespec64(ktime); 1773 if (cycle) 1774 *cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3; 1775 if (cs) 1776 *cs = &clocksource_counter; 1777 1778 return 0; 1779 } 1780 EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp); 1781