1 /*
2  *  linux/drivers/clocksource/arm_arch_timer.c
3  *
4  *  Copyright (C) 2011 ARM Ltd.
5  *  All Rights Reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #define pr_fmt(fmt)	"arm_arch_timer: " fmt
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/device.h>
17 #include <linux/smp.h>
18 #include <linux/cpu.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/clockchips.h>
21 #include <linux/clocksource.h>
22 #include <linux/interrupt.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_address.h>
25 #include <linux/io.h>
26 #include <linux/slab.h>
27 #include <linux/sched_clock.h>
28 #include <linux/acpi.h>
29 
30 #include <asm/arch_timer.h>
31 #include <asm/virt.h>
32 
33 #include <clocksource/arm_arch_timer.h>
34 
35 #define CNTTIDR		0x08
36 #define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
37 
38 #define CNTACR(n)	(0x40 + ((n) * 4))
39 #define CNTACR_RPCT	BIT(0)
40 #define CNTACR_RVCT	BIT(1)
41 #define CNTACR_RFRQ	BIT(2)
42 #define CNTACR_RVOFF	BIT(3)
43 #define CNTACR_RWVT	BIT(4)
44 #define CNTACR_RWPT	BIT(5)
45 
46 #define CNTVCT_LO	0x08
47 #define CNTVCT_HI	0x0c
48 #define CNTFRQ		0x10
49 #define CNTP_TVAL	0x28
50 #define CNTP_CTL	0x2c
51 #define CNTV_TVAL	0x38
52 #define CNTV_CTL	0x3c
53 
54 #define ARCH_CP15_TIMER	BIT(0)
55 #define ARCH_MEM_TIMER	BIT(1)
56 static unsigned arch_timers_present __initdata;
57 
58 static void __iomem *arch_counter_base;
59 
60 struct arch_timer {
61 	void __iomem *base;
62 	struct clock_event_device evt;
63 };
64 
65 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
66 
67 static u32 arch_timer_rate;
68 
69 enum ppi_nr {
70 	PHYS_SECURE_PPI,
71 	PHYS_NONSECURE_PPI,
72 	VIRT_PPI,
73 	HYP_PPI,
74 	MAX_TIMER_PPI
75 };
76 
77 static int arch_timer_ppi[MAX_TIMER_PPI];
78 
79 static struct clock_event_device __percpu *arch_timer_evt;
80 
81 static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI;
82 static bool arch_timer_c3stop;
83 static bool arch_timer_mem_use_virtual;
84 static bool arch_counter_suspend_stop;
85 
86 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
87 
88 static int __init early_evtstrm_cfg(char *buf)
89 {
90 	return strtobool(buf, &evtstrm_enable);
91 }
92 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
93 
94 /*
95  * Architected system timer support.
96  */
97 
98 #ifdef CONFIG_FSL_ERRATUM_A008585
99 /*
100  * The number of retries is an arbitrary value well beyond the highest number
101  * of iterations the loop has been observed to take.
102  */
103 #define __fsl_a008585_read_reg(reg) ({			\
104 	u64 _old, _new;					\
105 	int _retries = 200;				\
106 							\
107 	do {						\
108 		_old = read_sysreg(reg);		\
109 		_new = read_sysreg(reg);		\
110 		_retries--;				\
111 	} while (unlikely(_old != _new) && _retries);	\
112 							\
113 	WARN_ON_ONCE(!_retries);			\
114 	_new;						\
115 })
116 
117 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
118 {
119 	return __fsl_a008585_read_reg(cntp_tval_el0);
120 }
121 
122 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
123 {
124 	return __fsl_a008585_read_reg(cntv_tval_el0);
125 }
126 
127 static u64 notrace fsl_a008585_read_cntvct_el0(void)
128 {
129 	return __fsl_a008585_read_reg(cntvct_el0);
130 }
131 #endif
132 
133 #ifdef CONFIG_HISILICON_ERRATUM_161010101
134 /*
135  * Verify whether the value of the second read is larger than the first by
136  * less than 32 is the only way to confirm the value is correct, so clear the
137  * lower 5 bits to check whether the difference is greater than 32 or not.
138  * Theoretically the erratum should not occur more than twice in succession
139  * when reading the system counter, but it is possible that some interrupts
140  * may lead to more than twice read errors, triggering the warning, so setting
141  * the number of retries far beyond the number of iterations the loop has been
142  * observed to take.
143  */
144 #define __hisi_161010101_read_reg(reg) ({				\
145 	u64 _old, _new;						\
146 	int _retries = 50;					\
147 								\
148 	do {							\
149 		_old = read_sysreg(reg);			\
150 		_new = read_sysreg(reg);			\
151 		_retries--;					\
152 	} while (unlikely((_new - _old) >> 5) && _retries);	\
153 								\
154 	WARN_ON_ONCE(!_retries);				\
155 	_new;							\
156 })
157 
158 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
159 {
160 	return __hisi_161010101_read_reg(cntp_tval_el0);
161 }
162 
163 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
164 {
165 	return __hisi_161010101_read_reg(cntv_tval_el0);
166 }
167 
168 static u64 notrace hisi_161010101_read_cntvct_el0(void)
169 {
170 	return __hisi_161010101_read_reg(cntvct_el0);
171 }
172 #endif
173 
174 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
175 const struct arch_timer_erratum_workaround *timer_unstable_counter_workaround = NULL;
176 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
177 
178 DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
179 EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);
180 
181 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
182 #ifdef CONFIG_FSL_ERRATUM_A008585
183 	{
184 		.id = "fsl,erratum-a008585",
185 		.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
186 		.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
187 		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
188 	},
189 #endif
190 #ifdef CONFIG_HISILICON_ERRATUM_161010101
191 	{
192 		.id = "hisilicon,erratum-161010101",
193 		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
194 		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
195 		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
196 	},
197 #endif
198 };
199 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
200 
201 static __always_inline
202 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
203 			  struct clock_event_device *clk)
204 {
205 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
206 		struct arch_timer *timer = to_arch_timer(clk);
207 		switch (reg) {
208 		case ARCH_TIMER_REG_CTRL:
209 			writel_relaxed(val, timer->base + CNTP_CTL);
210 			break;
211 		case ARCH_TIMER_REG_TVAL:
212 			writel_relaxed(val, timer->base + CNTP_TVAL);
213 			break;
214 		}
215 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
216 		struct arch_timer *timer = to_arch_timer(clk);
217 		switch (reg) {
218 		case ARCH_TIMER_REG_CTRL:
219 			writel_relaxed(val, timer->base + CNTV_CTL);
220 			break;
221 		case ARCH_TIMER_REG_TVAL:
222 			writel_relaxed(val, timer->base + CNTV_TVAL);
223 			break;
224 		}
225 	} else {
226 		arch_timer_reg_write_cp15(access, reg, val);
227 	}
228 }
229 
230 static __always_inline
231 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
232 			struct clock_event_device *clk)
233 {
234 	u32 val;
235 
236 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
237 		struct arch_timer *timer = to_arch_timer(clk);
238 		switch (reg) {
239 		case ARCH_TIMER_REG_CTRL:
240 			val = readl_relaxed(timer->base + CNTP_CTL);
241 			break;
242 		case ARCH_TIMER_REG_TVAL:
243 			val = readl_relaxed(timer->base + CNTP_TVAL);
244 			break;
245 		}
246 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
247 		struct arch_timer *timer = to_arch_timer(clk);
248 		switch (reg) {
249 		case ARCH_TIMER_REG_CTRL:
250 			val = readl_relaxed(timer->base + CNTV_CTL);
251 			break;
252 		case ARCH_TIMER_REG_TVAL:
253 			val = readl_relaxed(timer->base + CNTV_TVAL);
254 			break;
255 		}
256 	} else {
257 		val = arch_timer_reg_read_cp15(access, reg);
258 	}
259 
260 	return val;
261 }
262 
263 static __always_inline irqreturn_t timer_handler(const int access,
264 					struct clock_event_device *evt)
265 {
266 	unsigned long ctrl;
267 
268 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
269 	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
270 		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
271 		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
272 		evt->event_handler(evt);
273 		return IRQ_HANDLED;
274 	}
275 
276 	return IRQ_NONE;
277 }
278 
279 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
280 {
281 	struct clock_event_device *evt = dev_id;
282 
283 	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
284 }
285 
286 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
287 {
288 	struct clock_event_device *evt = dev_id;
289 
290 	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
291 }
292 
293 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
294 {
295 	struct clock_event_device *evt = dev_id;
296 
297 	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
298 }
299 
300 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
301 {
302 	struct clock_event_device *evt = dev_id;
303 
304 	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
305 }
306 
307 static __always_inline int timer_shutdown(const int access,
308 					  struct clock_event_device *clk)
309 {
310 	unsigned long ctrl;
311 
312 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
313 	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
314 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
315 
316 	return 0;
317 }
318 
319 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
320 {
321 	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
322 }
323 
324 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
325 {
326 	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
327 }
328 
329 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
330 {
331 	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
332 }
333 
334 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
335 {
336 	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
337 }
338 
339 static __always_inline void set_next_event(const int access, unsigned long evt,
340 					   struct clock_event_device *clk)
341 {
342 	unsigned long ctrl;
343 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
344 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
345 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
346 	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
347 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
348 }
349 
350 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
351 static __always_inline void erratum_set_next_event_generic(const int access,
352 		unsigned long evt, struct clock_event_device *clk)
353 {
354 	unsigned long ctrl;
355 	u64 cval = evt + arch_counter_get_cntvct();
356 
357 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
358 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
359 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
360 
361 	if (access == ARCH_TIMER_PHYS_ACCESS)
362 		write_sysreg(cval, cntp_cval_el0);
363 	else if (access == ARCH_TIMER_VIRT_ACCESS)
364 		write_sysreg(cval, cntv_cval_el0);
365 
366 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
367 }
368 
369 static int erratum_set_next_event_virt(unsigned long evt,
370 					   struct clock_event_device *clk)
371 {
372 	erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
373 	return 0;
374 }
375 
376 static int erratum_set_next_event_phys(unsigned long evt,
377 					   struct clock_event_device *clk)
378 {
379 	erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
380 	return 0;
381 }
382 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
383 
384 static int arch_timer_set_next_event_virt(unsigned long evt,
385 					  struct clock_event_device *clk)
386 {
387 	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
388 	return 0;
389 }
390 
391 static int arch_timer_set_next_event_phys(unsigned long evt,
392 					  struct clock_event_device *clk)
393 {
394 	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
395 	return 0;
396 }
397 
398 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
399 					      struct clock_event_device *clk)
400 {
401 	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
402 	return 0;
403 }
404 
405 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
406 					      struct clock_event_device *clk)
407 {
408 	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
409 	return 0;
410 }
411 
412 static void erratum_workaround_set_sne(struct clock_event_device *clk)
413 {
414 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
415 	if (!static_branch_unlikely(&arch_timer_read_ool_enabled))
416 		return;
417 
418 	if (arch_timer_uses_ppi == VIRT_PPI)
419 		clk->set_next_event = erratum_set_next_event_virt;
420 	else
421 		clk->set_next_event = erratum_set_next_event_phys;
422 #endif
423 }
424 
425 static void __arch_timer_setup(unsigned type,
426 			       struct clock_event_device *clk)
427 {
428 	clk->features = CLOCK_EVT_FEAT_ONESHOT;
429 
430 	if (type == ARCH_CP15_TIMER) {
431 		if (arch_timer_c3stop)
432 			clk->features |= CLOCK_EVT_FEAT_C3STOP;
433 		clk->name = "arch_sys_timer";
434 		clk->rating = 450;
435 		clk->cpumask = cpumask_of(smp_processor_id());
436 		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
437 		switch (arch_timer_uses_ppi) {
438 		case VIRT_PPI:
439 			clk->set_state_shutdown = arch_timer_shutdown_virt;
440 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
441 			clk->set_next_event = arch_timer_set_next_event_virt;
442 			break;
443 		case PHYS_SECURE_PPI:
444 		case PHYS_NONSECURE_PPI:
445 		case HYP_PPI:
446 			clk->set_state_shutdown = arch_timer_shutdown_phys;
447 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
448 			clk->set_next_event = arch_timer_set_next_event_phys;
449 			break;
450 		default:
451 			BUG();
452 		}
453 
454 		erratum_workaround_set_sne(clk);
455 	} else {
456 		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
457 		clk->name = "arch_mem_timer";
458 		clk->rating = 400;
459 		clk->cpumask = cpu_all_mask;
460 		if (arch_timer_mem_use_virtual) {
461 			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
462 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
463 			clk->set_next_event =
464 				arch_timer_set_next_event_virt_mem;
465 		} else {
466 			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
467 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
468 			clk->set_next_event =
469 				arch_timer_set_next_event_phys_mem;
470 		}
471 	}
472 
473 	clk->set_state_shutdown(clk);
474 
475 	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
476 }
477 
478 static void arch_timer_evtstrm_enable(int divider)
479 {
480 	u32 cntkctl = arch_timer_get_cntkctl();
481 
482 	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
483 	/* Set the divider and enable virtual event stream */
484 	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
485 			| ARCH_TIMER_VIRT_EVT_EN;
486 	arch_timer_set_cntkctl(cntkctl);
487 	elf_hwcap |= HWCAP_EVTSTRM;
488 #ifdef CONFIG_COMPAT
489 	compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
490 #endif
491 }
492 
493 static void arch_timer_configure_evtstream(void)
494 {
495 	int evt_stream_div, pos;
496 
497 	/* Find the closest power of two to the divisor */
498 	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
499 	pos = fls(evt_stream_div);
500 	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
501 		pos--;
502 	/* enable event stream */
503 	arch_timer_evtstrm_enable(min(pos, 15));
504 }
505 
506 static void arch_counter_set_user_access(void)
507 {
508 	u32 cntkctl = arch_timer_get_cntkctl();
509 
510 	/* Disable user access to the timers and the physical counter */
511 	/* Also disable virtual event stream */
512 	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
513 			| ARCH_TIMER_USR_VT_ACCESS_EN
514 			| ARCH_TIMER_VIRT_EVT_EN
515 			| ARCH_TIMER_USR_PCT_ACCESS_EN);
516 
517 	/* Enable user access to the virtual counter */
518 	cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
519 
520 	arch_timer_set_cntkctl(cntkctl);
521 }
522 
523 static bool arch_timer_has_nonsecure_ppi(void)
524 {
525 	return (arch_timer_uses_ppi == PHYS_SECURE_PPI &&
526 		arch_timer_ppi[PHYS_NONSECURE_PPI]);
527 }
528 
529 static u32 check_ppi_trigger(int irq)
530 {
531 	u32 flags = irq_get_trigger_type(irq);
532 
533 	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
534 		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
535 		pr_warn("WARNING: Please fix your firmware\n");
536 		flags = IRQF_TRIGGER_LOW;
537 	}
538 
539 	return flags;
540 }
541 
542 static int arch_timer_starting_cpu(unsigned int cpu)
543 {
544 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
545 	u32 flags;
546 
547 	__arch_timer_setup(ARCH_CP15_TIMER, clk);
548 
549 	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
550 	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
551 
552 	if (arch_timer_has_nonsecure_ppi()) {
553 		flags = check_ppi_trigger(arch_timer_ppi[PHYS_NONSECURE_PPI]);
554 		enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], flags);
555 	}
556 
557 	arch_counter_set_user_access();
558 	if (evtstrm_enable)
559 		arch_timer_configure_evtstream();
560 
561 	return 0;
562 }
563 
564 static void
565 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
566 {
567 	/* Who has more than one independent system counter? */
568 	if (arch_timer_rate)
569 		return;
570 
571 	/*
572 	 * Try to determine the frequency from the device tree or CNTFRQ,
573 	 * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
574 	 */
575 	if (!acpi_disabled ||
576 	    of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
577 		if (cntbase)
578 			arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
579 		else
580 			arch_timer_rate = arch_timer_get_cntfrq();
581 	}
582 
583 	/* Check the timer frequency. */
584 	if (arch_timer_rate == 0)
585 		pr_warn("Architected timer frequency not available\n");
586 }
587 
588 static void arch_timer_banner(unsigned type)
589 {
590 	pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
591 		     type & ARCH_CP15_TIMER ? "cp15" : "",
592 		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
593 		     type & ARCH_MEM_TIMER ? "mmio" : "",
594 		     (unsigned long)arch_timer_rate / 1000000,
595 		     (unsigned long)(arch_timer_rate / 10000) % 100,
596 		     type & ARCH_CP15_TIMER ?
597 		     (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" :
598 			"",
599 		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
600 		     type & ARCH_MEM_TIMER ?
601 			arch_timer_mem_use_virtual ? "virt" : "phys" :
602 			"");
603 }
604 
605 u32 arch_timer_get_rate(void)
606 {
607 	return arch_timer_rate;
608 }
609 
610 static u64 arch_counter_get_cntvct_mem(void)
611 {
612 	u32 vct_lo, vct_hi, tmp_hi;
613 
614 	do {
615 		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
616 		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
617 		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
618 	} while (vct_hi != tmp_hi);
619 
620 	return ((u64) vct_hi << 32) | vct_lo;
621 }
622 
623 /*
624  * Default to cp15 based access because arm64 uses this function for
625  * sched_clock() before DT is probed and the cp15 method is guaranteed
626  * to exist on arm64. arm doesn't use this before DT is probed so even
627  * if we don't have the cp15 accessors we won't have a problem.
628  */
629 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
630 
631 static u64 arch_counter_read(struct clocksource *cs)
632 {
633 	return arch_timer_read_counter();
634 }
635 
636 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
637 {
638 	return arch_timer_read_counter();
639 }
640 
641 static struct clocksource clocksource_counter = {
642 	.name	= "arch_sys_counter",
643 	.rating	= 400,
644 	.read	= arch_counter_read,
645 	.mask	= CLOCKSOURCE_MASK(56),
646 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
647 };
648 
649 static struct cyclecounter cyclecounter __ro_after_init = {
650 	.read	= arch_counter_read_cc,
651 	.mask	= CLOCKSOURCE_MASK(56),
652 };
653 
654 static struct arch_timer_kvm_info arch_timer_kvm_info;
655 
656 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
657 {
658 	return &arch_timer_kvm_info;
659 }
660 
661 static void __init arch_counter_register(unsigned type)
662 {
663 	u64 start_count;
664 
665 	/* Register the CP15 based counter if we have one */
666 	if (type & ARCH_CP15_TIMER) {
667 		if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI)
668 			arch_timer_read_counter = arch_counter_get_cntvct;
669 		else
670 			arch_timer_read_counter = arch_counter_get_cntpct;
671 
672 		clocksource_counter.archdata.vdso_direct = true;
673 
674 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
675 		/*
676 		 * Don't use the vdso fastpath if errata require using
677 		 * the out-of-line counter accessor.
678 		 */
679 		if (static_branch_unlikely(&arch_timer_read_ool_enabled))
680 			clocksource_counter.archdata.vdso_direct = false;
681 #endif
682 	} else {
683 		arch_timer_read_counter = arch_counter_get_cntvct_mem;
684 	}
685 
686 	if (!arch_counter_suspend_stop)
687 		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
688 	start_count = arch_timer_read_counter();
689 	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
690 	cyclecounter.mult = clocksource_counter.mult;
691 	cyclecounter.shift = clocksource_counter.shift;
692 	timecounter_init(&arch_timer_kvm_info.timecounter,
693 			 &cyclecounter, start_count);
694 
695 	/* 56 bits minimum, so we assume worst case rollover */
696 	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
697 }
698 
699 static void arch_timer_stop(struct clock_event_device *clk)
700 {
701 	pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
702 		 clk->irq, smp_processor_id());
703 
704 	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
705 	if (arch_timer_has_nonsecure_ppi())
706 		disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
707 
708 	clk->set_state_shutdown(clk);
709 }
710 
711 static int arch_timer_dying_cpu(unsigned int cpu)
712 {
713 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
714 
715 	arch_timer_stop(clk);
716 	return 0;
717 }
718 
719 #ifdef CONFIG_CPU_PM
720 static unsigned int saved_cntkctl;
721 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
722 				    unsigned long action, void *hcpu)
723 {
724 	if (action == CPU_PM_ENTER)
725 		saved_cntkctl = arch_timer_get_cntkctl();
726 	else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
727 		arch_timer_set_cntkctl(saved_cntkctl);
728 	return NOTIFY_OK;
729 }
730 
731 static struct notifier_block arch_timer_cpu_pm_notifier = {
732 	.notifier_call = arch_timer_cpu_pm_notify,
733 };
734 
735 static int __init arch_timer_cpu_pm_init(void)
736 {
737 	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
738 }
739 
740 static void __init arch_timer_cpu_pm_deinit(void)
741 {
742 	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
743 }
744 
745 #else
746 static int __init arch_timer_cpu_pm_init(void)
747 {
748 	return 0;
749 }
750 
751 static void __init arch_timer_cpu_pm_deinit(void)
752 {
753 }
754 #endif
755 
756 static int __init arch_timer_register(void)
757 {
758 	int err;
759 	int ppi;
760 
761 	arch_timer_evt = alloc_percpu(struct clock_event_device);
762 	if (!arch_timer_evt) {
763 		err = -ENOMEM;
764 		goto out;
765 	}
766 
767 	ppi = arch_timer_ppi[arch_timer_uses_ppi];
768 	switch (arch_timer_uses_ppi) {
769 	case VIRT_PPI:
770 		err = request_percpu_irq(ppi, arch_timer_handler_virt,
771 					 "arch_timer", arch_timer_evt);
772 		break;
773 	case PHYS_SECURE_PPI:
774 	case PHYS_NONSECURE_PPI:
775 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
776 					 "arch_timer", arch_timer_evt);
777 		if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
778 			ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
779 			err = request_percpu_irq(ppi, arch_timer_handler_phys,
780 						 "arch_timer", arch_timer_evt);
781 			if (err)
782 				free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
783 						arch_timer_evt);
784 		}
785 		break;
786 	case HYP_PPI:
787 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
788 					 "arch_timer", arch_timer_evt);
789 		break;
790 	default:
791 		BUG();
792 	}
793 
794 	if (err) {
795 		pr_err("arch_timer: can't register interrupt %d (%d)\n",
796 		       ppi, err);
797 		goto out_free;
798 	}
799 
800 	err = arch_timer_cpu_pm_init();
801 	if (err)
802 		goto out_unreg_notify;
803 
804 
805 	/* Register and immediately configure the timer on the boot CPU */
806 	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
807 				"clockevents/arm/arch_timer:starting",
808 				arch_timer_starting_cpu, arch_timer_dying_cpu);
809 	if (err)
810 		goto out_unreg_cpupm;
811 	return 0;
812 
813 out_unreg_cpupm:
814 	arch_timer_cpu_pm_deinit();
815 
816 out_unreg_notify:
817 	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
818 	if (arch_timer_has_nonsecure_ppi())
819 		free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
820 				arch_timer_evt);
821 
822 out_free:
823 	free_percpu(arch_timer_evt);
824 out:
825 	return err;
826 }
827 
828 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
829 {
830 	int ret;
831 	irq_handler_t func;
832 	struct arch_timer *t;
833 
834 	t = kzalloc(sizeof(*t), GFP_KERNEL);
835 	if (!t)
836 		return -ENOMEM;
837 
838 	t->base = base;
839 	t->evt.irq = irq;
840 	__arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
841 
842 	if (arch_timer_mem_use_virtual)
843 		func = arch_timer_handler_virt_mem;
844 	else
845 		func = arch_timer_handler_phys_mem;
846 
847 	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
848 	if (ret) {
849 		pr_err("arch_timer: Failed to request mem timer irq\n");
850 		kfree(t);
851 	}
852 
853 	return ret;
854 }
855 
856 static const struct of_device_id arch_timer_of_match[] __initconst = {
857 	{ .compatible   = "arm,armv7-timer",    },
858 	{ .compatible   = "arm,armv8-timer",    },
859 	{},
860 };
861 
862 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
863 	{ .compatible   = "arm,armv7-timer-mem", },
864 	{},
865 };
866 
867 static bool __init
868 arch_timer_needs_probing(int type, const struct of_device_id *matches)
869 {
870 	struct device_node *dn;
871 	bool needs_probing = false;
872 
873 	dn = of_find_matching_node(NULL, matches);
874 	if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
875 		needs_probing = true;
876 	of_node_put(dn);
877 
878 	return needs_probing;
879 }
880 
881 static int __init arch_timer_common_init(void)
882 {
883 	unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
884 
885 	/* Wait until both nodes are probed if we have two timers */
886 	if ((arch_timers_present & mask) != mask) {
887 		if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
888 			return 0;
889 		if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
890 			return 0;
891 	}
892 
893 	arch_timer_banner(arch_timers_present);
894 	arch_counter_register(arch_timers_present);
895 	return arch_timer_arch_init();
896 }
897 
898 static int __init arch_timer_init(void)
899 {
900 	int ret;
901 	/*
902 	 * If HYP mode is available, we know that the physical timer
903 	 * has been configured to be accessible from PL1. Use it, so
904 	 * that a guest can use the virtual timer instead.
905 	 *
906 	 * If no interrupt provided for virtual timer, we'll have to
907 	 * stick to the physical timer. It'd better be accessible...
908 	 *
909 	 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
910 	 * accesses to CNTP_*_EL1 registers are silently redirected to
911 	 * their CNTHP_*_EL2 counterparts, and use a different PPI
912 	 * number.
913 	 */
914 	if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
915 		bool has_ppi;
916 
917 		if (is_kernel_in_hyp_mode()) {
918 			arch_timer_uses_ppi = HYP_PPI;
919 			has_ppi = !!arch_timer_ppi[HYP_PPI];
920 		} else {
921 			arch_timer_uses_ppi = PHYS_SECURE_PPI;
922 			has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] ||
923 				   !!arch_timer_ppi[PHYS_NONSECURE_PPI]);
924 		}
925 
926 		if (!has_ppi) {
927 			pr_warn("arch_timer: No interrupt available, giving up\n");
928 			return -EINVAL;
929 		}
930 	}
931 
932 	ret = arch_timer_register();
933 	if (ret)
934 		return ret;
935 
936 	ret = arch_timer_common_init();
937 	if (ret)
938 		return ret;
939 
940 	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[VIRT_PPI];
941 
942 	return 0;
943 }
944 
945 static int __init arch_timer_of_init(struct device_node *np)
946 {
947 	int i;
948 
949 	if (arch_timers_present & ARCH_CP15_TIMER) {
950 		pr_warn("arch_timer: multiple nodes in dt, skipping\n");
951 		return 0;
952 	}
953 
954 	arch_timers_present |= ARCH_CP15_TIMER;
955 	for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
956 		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
957 
958 	arch_timer_detect_rate(NULL, np);
959 
960 	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
961 
962 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
963 	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
964 		if (of_property_read_bool(np, ool_workarounds[i].id)) {
965 			timer_unstable_counter_workaround = &ool_workarounds[i];
966 			static_branch_enable(&arch_timer_read_ool_enabled);
967 			pr_info("arch_timer: Enabling workaround for %s\n",
968 				timer_unstable_counter_workaround->id);
969 			break;
970 		}
971 	}
972 #endif
973 
974 	/*
975 	 * If we cannot rely on firmware initializing the timer registers then
976 	 * we should use the physical timers instead.
977 	 */
978 	if (IS_ENABLED(CONFIG_ARM) &&
979 	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
980 		arch_timer_uses_ppi = PHYS_SECURE_PPI;
981 
982 	/* On some systems, the counter stops ticking when in suspend. */
983 	arch_counter_suspend_stop = of_property_read_bool(np,
984 							 "arm,no-tick-in-suspend");
985 
986 	return arch_timer_init();
987 }
988 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
989 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
990 
991 static int __init arch_timer_mem_init(struct device_node *np)
992 {
993 	struct device_node *frame, *best_frame = NULL;
994 	void __iomem *cntctlbase, *base;
995 	unsigned int irq, ret = -EINVAL;
996 	u32 cnttidr;
997 
998 	arch_timers_present |= ARCH_MEM_TIMER;
999 	cntctlbase = of_iomap(np, 0);
1000 	if (!cntctlbase) {
1001 		pr_err("arch_timer: Can't find CNTCTLBase\n");
1002 		return -ENXIO;
1003 	}
1004 
1005 	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1006 
1007 	/*
1008 	 * Try to find a virtual capable frame. Otherwise fall back to a
1009 	 * physical capable frame.
1010 	 */
1011 	for_each_available_child_of_node(np, frame) {
1012 		int n;
1013 		u32 cntacr;
1014 
1015 		if (of_property_read_u32(frame, "frame-number", &n)) {
1016 			pr_err("arch_timer: Missing frame-number\n");
1017 			of_node_put(frame);
1018 			goto out;
1019 		}
1020 
1021 		/* Try enabling everything, and see what sticks */
1022 		cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1023 			 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1024 		writel_relaxed(cntacr, cntctlbase + CNTACR(n));
1025 		cntacr = readl_relaxed(cntctlbase + CNTACR(n));
1026 
1027 		if ((cnttidr & CNTTIDR_VIRT(n)) &&
1028 		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1029 			of_node_put(best_frame);
1030 			best_frame = frame;
1031 			arch_timer_mem_use_virtual = true;
1032 			break;
1033 		}
1034 
1035 		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1036 			continue;
1037 
1038 		of_node_put(best_frame);
1039 		best_frame = of_node_get(frame);
1040 	}
1041 
1042 	ret= -ENXIO;
1043 	base = arch_counter_base = of_io_request_and_map(best_frame, 0,
1044 							 "arch_mem_timer");
1045 	if (IS_ERR(base)) {
1046 		pr_err("arch_timer: Can't map frame's registers\n");
1047 		goto out;
1048 	}
1049 
1050 	if (arch_timer_mem_use_virtual)
1051 		irq = irq_of_parse_and_map(best_frame, 1);
1052 	else
1053 		irq = irq_of_parse_and_map(best_frame, 0);
1054 
1055 	ret = -EINVAL;
1056 	if (!irq) {
1057 		pr_err("arch_timer: Frame missing %s irq",
1058 		       arch_timer_mem_use_virtual ? "virt" : "phys");
1059 		goto out;
1060 	}
1061 
1062 	arch_timer_detect_rate(base, np);
1063 	ret = arch_timer_mem_register(base, irq);
1064 	if (ret)
1065 		goto out;
1066 
1067 	return arch_timer_common_init();
1068 out:
1069 	iounmap(cntctlbase);
1070 	of_node_put(best_frame);
1071 	return ret;
1072 }
1073 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1074 		       arch_timer_mem_init);
1075 
1076 #ifdef CONFIG_ACPI
1077 static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
1078 {
1079 	int trigger, polarity;
1080 
1081 	if (!interrupt)
1082 		return 0;
1083 
1084 	trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
1085 			: ACPI_LEVEL_SENSITIVE;
1086 
1087 	polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
1088 			: ACPI_ACTIVE_HIGH;
1089 
1090 	return acpi_register_gsi(NULL, interrupt, trigger, polarity);
1091 }
1092 
1093 /* Initialize per-processor generic timer */
1094 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1095 {
1096 	struct acpi_table_gtdt *gtdt;
1097 
1098 	if (arch_timers_present & ARCH_CP15_TIMER) {
1099 		pr_warn("arch_timer: already initialized, skipping\n");
1100 		return -EINVAL;
1101 	}
1102 
1103 	gtdt = container_of(table, struct acpi_table_gtdt, header);
1104 
1105 	arch_timers_present |= ARCH_CP15_TIMER;
1106 
1107 	arch_timer_ppi[PHYS_SECURE_PPI] =
1108 		map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
1109 		gtdt->secure_el1_flags);
1110 
1111 	arch_timer_ppi[PHYS_NONSECURE_PPI] =
1112 		map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
1113 		gtdt->non_secure_el1_flags);
1114 
1115 	arch_timer_ppi[VIRT_PPI] =
1116 		map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
1117 		gtdt->virtual_timer_flags);
1118 
1119 	arch_timer_ppi[HYP_PPI] =
1120 		map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
1121 		gtdt->non_secure_el2_flags);
1122 
1123 	/* Get the frequency from CNTFRQ */
1124 	arch_timer_detect_rate(NULL, NULL);
1125 
1126 	/* Always-on capability */
1127 	arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
1128 
1129 	arch_timer_init();
1130 	return 0;
1131 }
1132 CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1133 #endif
1134