1 /* 2 * linux/drivers/clocksource/arm_arch_timer.c 3 * 4 * Copyright (C) 2011 ARM Ltd. 5 * All Rights Reserved 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #define pr_fmt(fmt) "arm_arch_timer: " fmt 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/device.h> 17 #include <linux/smp.h> 18 #include <linux/cpu.h> 19 #include <linux/cpu_pm.h> 20 #include <linux/clockchips.h> 21 #include <linux/clocksource.h> 22 #include <linux/interrupt.h> 23 #include <linux/of_irq.h> 24 #include <linux/of_address.h> 25 #include <linux/io.h> 26 #include <linux/slab.h> 27 #include <linux/sched_clock.h> 28 #include <linux/acpi.h> 29 30 #include <asm/arch_timer.h> 31 #include <asm/virt.h> 32 33 #include <clocksource/arm_arch_timer.h> 34 35 #define CNTTIDR 0x08 36 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4)) 37 38 #define CNTACR(n) (0x40 + ((n) * 4)) 39 #define CNTACR_RPCT BIT(0) 40 #define CNTACR_RVCT BIT(1) 41 #define CNTACR_RFRQ BIT(2) 42 #define CNTACR_RVOFF BIT(3) 43 #define CNTACR_RWVT BIT(4) 44 #define CNTACR_RWPT BIT(5) 45 46 #define CNTVCT_LO 0x08 47 #define CNTVCT_HI 0x0c 48 #define CNTFRQ 0x10 49 #define CNTP_TVAL 0x28 50 #define CNTP_CTL 0x2c 51 #define CNTV_TVAL 0x38 52 #define CNTV_CTL 0x3c 53 54 #define ARCH_CP15_TIMER BIT(0) 55 #define ARCH_MEM_TIMER BIT(1) 56 static unsigned arch_timers_present __initdata; 57 58 static void __iomem *arch_counter_base; 59 60 struct arch_timer { 61 void __iomem *base; 62 struct clock_event_device evt; 63 }; 64 65 #define to_arch_timer(e) container_of(e, struct arch_timer, evt) 66 67 static u32 arch_timer_rate; 68 69 enum ppi_nr { 70 PHYS_SECURE_PPI, 71 PHYS_NONSECURE_PPI, 72 VIRT_PPI, 73 HYP_PPI, 74 MAX_TIMER_PPI 75 }; 76 77 static int arch_timer_ppi[MAX_TIMER_PPI]; 78 79 static struct clock_event_device __percpu *arch_timer_evt; 80 81 static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI; 82 static bool arch_timer_c3stop; 83 static bool arch_timer_mem_use_virtual; 84 static bool arch_counter_suspend_stop; 85 86 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM); 87 88 static int __init early_evtstrm_cfg(char *buf) 89 { 90 return strtobool(buf, &evtstrm_enable); 91 } 92 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg); 93 94 /* 95 * Architected system timer support. 96 */ 97 98 #ifdef CONFIG_FSL_ERRATUM_A008585 99 /* 100 * The number of retries is an arbitrary value well beyond the highest number 101 * of iterations the loop has been observed to take. 102 */ 103 #define __fsl_a008585_read_reg(reg) ({ \ 104 u64 _old, _new; \ 105 int _retries = 200; \ 106 \ 107 do { \ 108 _old = read_sysreg(reg); \ 109 _new = read_sysreg(reg); \ 110 _retries--; \ 111 } while (unlikely(_old != _new) && _retries); \ 112 \ 113 WARN_ON_ONCE(!_retries); \ 114 _new; \ 115 }) 116 117 static u32 notrace fsl_a008585_read_cntp_tval_el0(void) 118 { 119 return __fsl_a008585_read_reg(cntp_tval_el0); 120 } 121 122 static u32 notrace fsl_a008585_read_cntv_tval_el0(void) 123 { 124 return __fsl_a008585_read_reg(cntv_tval_el0); 125 } 126 127 static u64 notrace fsl_a008585_read_cntvct_el0(void) 128 { 129 return __fsl_a008585_read_reg(cntvct_el0); 130 } 131 #endif 132 133 #ifdef CONFIG_HISILICON_ERRATUM_161010101 134 /* 135 * Verify whether the value of the second read is larger than the first by 136 * less than 32 is the only way to confirm the value is correct, so clear the 137 * lower 5 bits to check whether the difference is greater than 32 or not. 138 * Theoretically the erratum should not occur more than twice in succession 139 * when reading the system counter, but it is possible that some interrupts 140 * may lead to more than twice read errors, triggering the warning, so setting 141 * the number of retries far beyond the number of iterations the loop has been 142 * observed to take. 143 */ 144 #define __hisi_161010101_read_reg(reg) ({ \ 145 u64 _old, _new; \ 146 int _retries = 50; \ 147 \ 148 do { \ 149 _old = read_sysreg(reg); \ 150 _new = read_sysreg(reg); \ 151 _retries--; \ 152 } while (unlikely((_new - _old) >> 5) && _retries); \ 153 \ 154 WARN_ON_ONCE(!_retries); \ 155 _new; \ 156 }) 157 158 static u32 notrace hisi_161010101_read_cntp_tval_el0(void) 159 { 160 return __hisi_161010101_read_reg(cntp_tval_el0); 161 } 162 163 static u32 notrace hisi_161010101_read_cntv_tval_el0(void) 164 { 165 return __hisi_161010101_read_reg(cntv_tval_el0); 166 } 167 168 static u64 notrace hisi_161010101_read_cntvct_el0(void) 169 { 170 return __hisi_161010101_read_reg(cntvct_el0); 171 } 172 #endif 173 174 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND 175 const struct arch_timer_erratum_workaround *timer_unstable_counter_workaround = NULL; 176 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround); 177 178 DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled); 179 EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled); 180 181 static const struct arch_timer_erratum_workaround ool_workarounds[] = { 182 #ifdef CONFIG_FSL_ERRATUM_A008585 183 { 184 .id = "fsl,erratum-a008585", 185 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0, 186 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0, 187 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0, 188 }, 189 #endif 190 #ifdef CONFIG_HISILICON_ERRATUM_161010101 191 { 192 .id = "hisilicon,erratum-161010101", 193 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0, 194 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0, 195 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, 196 }, 197 #endif 198 }; 199 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */ 200 201 static __always_inline 202 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val, 203 struct clock_event_device *clk) 204 { 205 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 206 struct arch_timer *timer = to_arch_timer(clk); 207 switch (reg) { 208 case ARCH_TIMER_REG_CTRL: 209 writel_relaxed(val, timer->base + CNTP_CTL); 210 break; 211 case ARCH_TIMER_REG_TVAL: 212 writel_relaxed(val, timer->base + CNTP_TVAL); 213 break; 214 } 215 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 216 struct arch_timer *timer = to_arch_timer(clk); 217 switch (reg) { 218 case ARCH_TIMER_REG_CTRL: 219 writel_relaxed(val, timer->base + CNTV_CTL); 220 break; 221 case ARCH_TIMER_REG_TVAL: 222 writel_relaxed(val, timer->base + CNTV_TVAL); 223 break; 224 } 225 } else { 226 arch_timer_reg_write_cp15(access, reg, val); 227 } 228 } 229 230 static __always_inline 231 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg, 232 struct clock_event_device *clk) 233 { 234 u32 val; 235 236 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 237 struct arch_timer *timer = to_arch_timer(clk); 238 switch (reg) { 239 case ARCH_TIMER_REG_CTRL: 240 val = readl_relaxed(timer->base + CNTP_CTL); 241 break; 242 case ARCH_TIMER_REG_TVAL: 243 val = readl_relaxed(timer->base + CNTP_TVAL); 244 break; 245 } 246 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 247 struct arch_timer *timer = to_arch_timer(clk); 248 switch (reg) { 249 case ARCH_TIMER_REG_CTRL: 250 val = readl_relaxed(timer->base + CNTV_CTL); 251 break; 252 case ARCH_TIMER_REG_TVAL: 253 val = readl_relaxed(timer->base + CNTV_TVAL); 254 break; 255 } 256 } else { 257 val = arch_timer_reg_read_cp15(access, reg); 258 } 259 260 return val; 261 } 262 263 static __always_inline irqreturn_t timer_handler(const int access, 264 struct clock_event_device *evt) 265 { 266 unsigned long ctrl; 267 268 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt); 269 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { 270 ctrl |= ARCH_TIMER_CTRL_IT_MASK; 271 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt); 272 evt->event_handler(evt); 273 return IRQ_HANDLED; 274 } 275 276 return IRQ_NONE; 277 } 278 279 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id) 280 { 281 struct clock_event_device *evt = dev_id; 282 283 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt); 284 } 285 286 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id) 287 { 288 struct clock_event_device *evt = dev_id; 289 290 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt); 291 } 292 293 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id) 294 { 295 struct clock_event_device *evt = dev_id; 296 297 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt); 298 } 299 300 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id) 301 { 302 struct clock_event_device *evt = dev_id; 303 304 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt); 305 } 306 307 static __always_inline int timer_shutdown(const int access, 308 struct clock_event_device *clk) 309 { 310 unsigned long ctrl; 311 312 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 313 ctrl &= ~ARCH_TIMER_CTRL_ENABLE; 314 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 315 316 return 0; 317 } 318 319 static int arch_timer_shutdown_virt(struct clock_event_device *clk) 320 { 321 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk); 322 } 323 324 static int arch_timer_shutdown_phys(struct clock_event_device *clk) 325 { 326 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk); 327 } 328 329 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk) 330 { 331 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk); 332 } 333 334 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk) 335 { 336 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk); 337 } 338 339 static __always_inline void set_next_event(const int access, unsigned long evt, 340 struct clock_event_device *clk) 341 { 342 unsigned long ctrl; 343 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 344 ctrl |= ARCH_TIMER_CTRL_ENABLE; 345 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 346 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk); 347 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 348 } 349 350 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND 351 static __always_inline void erratum_set_next_event_generic(const int access, 352 unsigned long evt, struct clock_event_device *clk) 353 { 354 unsigned long ctrl; 355 u64 cval = evt + arch_counter_get_cntvct(); 356 357 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 358 ctrl |= ARCH_TIMER_CTRL_ENABLE; 359 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 360 361 if (access == ARCH_TIMER_PHYS_ACCESS) 362 write_sysreg(cval, cntp_cval_el0); 363 else if (access == ARCH_TIMER_VIRT_ACCESS) 364 write_sysreg(cval, cntv_cval_el0); 365 366 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 367 } 368 369 static int erratum_set_next_event_virt(unsigned long evt, 370 struct clock_event_device *clk) 371 { 372 erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk); 373 return 0; 374 } 375 376 static int erratum_set_next_event_phys(unsigned long evt, 377 struct clock_event_device *clk) 378 { 379 erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk); 380 return 0; 381 } 382 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */ 383 384 static int arch_timer_set_next_event_virt(unsigned long evt, 385 struct clock_event_device *clk) 386 { 387 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk); 388 return 0; 389 } 390 391 static int arch_timer_set_next_event_phys(unsigned long evt, 392 struct clock_event_device *clk) 393 { 394 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk); 395 return 0; 396 } 397 398 static int arch_timer_set_next_event_virt_mem(unsigned long evt, 399 struct clock_event_device *clk) 400 { 401 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk); 402 return 0; 403 } 404 405 static int arch_timer_set_next_event_phys_mem(unsigned long evt, 406 struct clock_event_device *clk) 407 { 408 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk); 409 return 0; 410 } 411 412 static void erratum_workaround_set_sne(struct clock_event_device *clk) 413 { 414 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND 415 if (!static_branch_unlikely(&arch_timer_read_ool_enabled)) 416 return; 417 418 if (arch_timer_uses_ppi == VIRT_PPI) 419 clk->set_next_event = erratum_set_next_event_virt; 420 else 421 clk->set_next_event = erratum_set_next_event_phys; 422 #endif 423 } 424 425 static void __arch_timer_setup(unsigned type, 426 struct clock_event_device *clk) 427 { 428 clk->features = CLOCK_EVT_FEAT_ONESHOT; 429 430 if (type == ARCH_CP15_TIMER) { 431 if (arch_timer_c3stop) 432 clk->features |= CLOCK_EVT_FEAT_C3STOP; 433 clk->name = "arch_sys_timer"; 434 clk->rating = 450; 435 clk->cpumask = cpumask_of(smp_processor_id()); 436 clk->irq = arch_timer_ppi[arch_timer_uses_ppi]; 437 switch (arch_timer_uses_ppi) { 438 case VIRT_PPI: 439 clk->set_state_shutdown = arch_timer_shutdown_virt; 440 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt; 441 clk->set_next_event = arch_timer_set_next_event_virt; 442 break; 443 case PHYS_SECURE_PPI: 444 case PHYS_NONSECURE_PPI: 445 case HYP_PPI: 446 clk->set_state_shutdown = arch_timer_shutdown_phys; 447 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys; 448 clk->set_next_event = arch_timer_set_next_event_phys; 449 break; 450 default: 451 BUG(); 452 } 453 454 erratum_workaround_set_sne(clk); 455 } else { 456 clk->features |= CLOCK_EVT_FEAT_DYNIRQ; 457 clk->name = "arch_mem_timer"; 458 clk->rating = 400; 459 clk->cpumask = cpu_all_mask; 460 if (arch_timer_mem_use_virtual) { 461 clk->set_state_shutdown = arch_timer_shutdown_virt_mem; 462 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem; 463 clk->set_next_event = 464 arch_timer_set_next_event_virt_mem; 465 } else { 466 clk->set_state_shutdown = arch_timer_shutdown_phys_mem; 467 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem; 468 clk->set_next_event = 469 arch_timer_set_next_event_phys_mem; 470 } 471 } 472 473 clk->set_state_shutdown(clk); 474 475 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff); 476 } 477 478 static void arch_timer_evtstrm_enable(int divider) 479 { 480 u32 cntkctl = arch_timer_get_cntkctl(); 481 482 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK; 483 /* Set the divider and enable virtual event stream */ 484 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT) 485 | ARCH_TIMER_VIRT_EVT_EN; 486 arch_timer_set_cntkctl(cntkctl); 487 elf_hwcap |= HWCAP_EVTSTRM; 488 #ifdef CONFIG_COMPAT 489 compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM; 490 #endif 491 } 492 493 static void arch_timer_configure_evtstream(void) 494 { 495 int evt_stream_div, pos; 496 497 /* Find the closest power of two to the divisor */ 498 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ; 499 pos = fls(evt_stream_div); 500 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2)))) 501 pos--; 502 /* enable event stream */ 503 arch_timer_evtstrm_enable(min(pos, 15)); 504 } 505 506 static void arch_counter_set_user_access(void) 507 { 508 u32 cntkctl = arch_timer_get_cntkctl(); 509 510 /* Disable user access to the timers and the physical counter */ 511 /* Also disable virtual event stream */ 512 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN 513 | ARCH_TIMER_USR_VT_ACCESS_EN 514 | ARCH_TIMER_VIRT_EVT_EN 515 | ARCH_TIMER_USR_PCT_ACCESS_EN); 516 517 /* Enable user access to the virtual counter */ 518 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN; 519 520 arch_timer_set_cntkctl(cntkctl); 521 } 522 523 static bool arch_timer_has_nonsecure_ppi(void) 524 { 525 return (arch_timer_uses_ppi == PHYS_SECURE_PPI && 526 arch_timer_ppi[PHYS_NONSECURE_PPI]); 527 } 528 529 static u32 check_ppi_trigger(int irq) 530 { 531 u32 flags = irq_get_trigger_type(irq); 532 533 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) { 534 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq); 535 pr_warn("WARNING: Please fix your firmware\n"); 536 flags = IRQF_TRIGGER_LOW; 537 } 538 539 return flags; 540 } 541 542 static int arch_timer_starting_cpu(unsigned int cpu) 543 { 544 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 545 u32 flags; 546 547 __arch_timer_setup(ARCH_CP15_TIMER, clk); 548 549 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]); 550 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags); 551 552 if (arch_timer_has_nonsecure_ppi()) { 553 flags = check_ppi_trigger(arch_timer_ppi[PHYS_NONSECURE_PPI]); 554 enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], flags); 555 } 556 557 arch_counter_set_user_access(); 558 if (evtstrm_enable) 559 arch_timer_configure_evtstream(); 560 561 return 0; 562 } 563 564 static void 565 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np) 566 { 567 /* Who has more than one independent system counter? */ 568 if (arch_timer_rate) 569 return; 570 571 /* 572 * Try to determine the frequency from the device tree or CNTFRQ, 573 * if ACPI is enabled, get the frequency from CNTFRQ ONLY. 574 */ 575 if (!acpi_disabled || 576 of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) { 577 if (cntbase) 578 arch_timer_rate = readl_relaxed(cntbase + CNTFRQ); 579 else 580 arch_timer_rate = arch_timer_get_cntfrq(); 581 } 582 583 /* Check the timer frequency. */ 584 if (arch_timer_rate == 0) 585 pr_warn("Architected timer frequency not available\n"); 586 } 587 588 static void arch_timer_banner(unsigned type) 589 { 590 pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n", 591 type & ARCH_CP15_TIMER ? "cp15" : "", 592 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "", 593 type & ARCH_MEM_TIMER ? "mmio" : "", 594 (unsigned long)arch_timer_rate / 1000000, 595 (unsigned long)(arch_timer_rate / 10000) % 100, 596 type & ARCH_CP15_TIMER ? 597 (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" : 598 "", 599 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "", 600 type & ARCH_MEM_TIMER ? 601 arch_timer_mem_use_virtual ? "virt" : "phys" : 602 ""); 603 } 604 605 u32 arch_timer_get_rate(void) 606 { 607 return arch_timer_rate; 608 } 609 610 static u64 arch_counter_get_cntvct_mem(void) 611 { 612 u32 vct_lo, vct_hi, tmp_hi; 613 614 do { 615 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); 616 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO); 617 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); 618 } while (vct_hi != tmp_hi); 619 620 return ((u64) vct_hi << 32) | vct_lo; 621 } 622 623 /* 624 * Default to cp15 based access because arm64 uses this function for 625 * sched_clock() before DT is probed and the cp15 method is guaranteed 626 * to exist on arm64. arm doesn't use this before DT is probed so even 627 * if we don't have the cp15 accessors we won't have a problem. 628 */ 629 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct; 630 631 static u64 arch_counter_read(struct clocksource *cs) 632 { 633 return arch_timer_read_counter(); 634 } 635 636 static u64 arch_counter_read_cc(const struct cyclecounter *cc) 637 { 638 return arch_timer_read_counter(); 639 } 640 641 static struct clocksource clocksource_counter = { 642 .name = "arch_sys_counter", 643 .rating = 400, 644 .read = arch_counter_read, 645 .mask = CLOCKSOURCE_MASK(56), 646 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 647 }; 648 649 static struct cyclecounter cyclecounter __ro_after_init = { 650 .read = arch_counter_read_cc, 651 .mask = CLOCKSOURCE_MASK(56), 652 }; 653 654 static struct arch_timer_kvm_info arch_timer_kvm_info; 655 656 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void) 657 { 658 return &arch_timer_kvm_info; 659 } 660 661 static void __init arch_counter_register(unsigned type) 662 { 663 u64 start_count; 664 665 /* Register the CP15 based counter if we have one */ 666 if (type & ARCH_CP15_TIMER) { 667 if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI) 668 arch_timer_read_counter = arch_counter_get_cntvct; 669 else 670 arch_timer_read_counter = arch_counter_get_cntpct; 671 672 clocksource_counter.archdata.vdso_direct = true; 673 674 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND 675 /* 676 * Don't use the vdso fastpath if errata require using 677 * the out-of-line counter accessor. 678 */ 679 if (static_branch_unlikely(&arch_timer_read_ool_enabled)) 680 clocksource_counter.archdata.vdso_direct = false; 681 #endif 682 } else { 683 arch_timer_read_counter = arch_counter_get_cntvct_mem; 684 } 685 686 if (!arch_counter_suspend_stop) 687 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; 688 start_count = arch_timer_read_counter(); 689 clocksource_register_hz(&clocksource_counter, arch_timer_rate); 690 cyclecounter.mult = clocksource_counter.mult; 691 cyclecounter.shift = clocksource_counter.shift; 692 timecounter_init(&arch_timer_kvm_info.timecounter, 693 &cyclecounter, start_count); 694 695 /* 56 bits minimum, so we assume worst case rollover */ 696 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate); 697 } 698 699 static void arch_timer_stop(struct clock_event_device *clk) 700 { 701 pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n", 702 clk->irq, smp_processor_id()); 703 704 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]); 705 if (arch_timer_has_nonsecure_ppi()) 706 disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]); 707 708 clk->set_state_shutdown(clk); 709 } 710 711 static int arch_timer_dying_cpu(unsigned int cpu) 712 { 713 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 714 715 arch_timer_stop(clk); 716 return 0; 717 } 718 719 #ifdef CONFIG_CPU_PM 720 static unsigned int saved_cntkctl; 721 static int arch_timer_cpu_pm_notify(struct notifier_block *self, 722 unsigned long action, void *hcpu) 723 { 724 if (action == CPU_PM_ENTER) 725 saved_cntkctl = arch_timer_get_cntkctl(); 726 else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) 727 arch_timer_set_cntkctl(saved_cntkctl); 728 return NOTIFY_OK; 729 } 730 731 static struct notifier_block arch_timer_cpu_pm_notifier = { 732 .notifier_call = arch_timer_cpu_pm_notify, 733 }; 734 735 static int __init arch_timer_cpu_pm_init(void) 736 { 737 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier); 738 } 739 740 static void __init arch_timer_cpu_pm_deinit(void) 741 { 742 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier)); 743 } 744 745 #else 746 static int __init arch_timer_cpu_pm_init(void) 747 { 748 return 0; 749 } 750 751 static void __init arch_timer_cpu_pm_deinit(void) 752 { 753 } 754 #endif 755 756 static int __init arch_timer_register(void) 757 { 758 int err; 759 int ppi; 760 761 arch_timer_evt = alloc_percpu(struct clock_event_device); 762 if (!arch_timer_evt) { 763 err = -ENOMEM; 764 goto out; 765 } 766 767 ppi = arch_timer_ppi[arch_timer_uses_ppi]; 768 switch (arch_timer_uses_ppi) { 769 case VIRT_PPI: 770 err = request_percpu_irq(ppi, arch_timer_handler_virt, 771 "arch_timer", arch_timer_evt); 772 break; 773 case PHYS_SECURE_PPI: 774 case PHYS_NONSECURE_PPI: 775 err = request_percpu_irq(ppi, arch_timer_handler_phys, 776 "arch_timer", arch_timer_evt); 777 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) { 778 ppi = arch_timer_ppi[PHYS_NONSECURE_PPI]; 779 err = request_percpu_irq(ppi, arch_timer_handler_phys, 780 "arch_timer", arch_timer_evt); 781 if (err) 782 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 783 arch_timer_evt); 784 } 785 break; 786 case HYP_PPI: 787 err = request_percpu_irq(ppi, arch_timer_handler_phys, 788 "arch_timer", arch_timer_evt); 789 break; 790 default: 791 BUG(); 792 } 793 794 if (err) { 795 pr_err("arch_timer: can't register interrupt %d (%d)\n", 796 ppi, err); 797 goto out_free; 798 } 799 800 err = arch_timer_cpu_pm_init(); 801 if (err) 802 goto out_unreg_notify; 803 804 805 /* Register and immediately configure the timer on the boot CPU */ 806 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING, 807 "clockevents/arm/arch_timer:starting", 808 arch_timer_starting_cpu, arch_timer_dying_cpu); 809 if (err) 810 goto out_unreg_cpupm; 811 return 0; 812 813 out_unreg_cpupm: 814 arch_timer_cpu_pm_deinit(); 815 816 out_unreg_notify: 817 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt); 818 if (arch_timer_has_nonsecure_ppi()) 819 free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 820 arch_timer_evt); 821 822 out_free: 823 free_percpu(arch_timer_evt); 824 out: 825 return err; 826 } 827 828 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq) 829 { 830 int ret; 831 irq_handler_t func; 832 struct arch_timer *t; 833 834 t = kzalloc(sizeof(*t), GFP_KERNEL); 835 if (!t) 836 return -ENOMEM; 837 838 t->base = base; 839 t->evt.irq = irq; 840 __arch_timer_setup(ARCH_MEM_TIMER, &t->evt); 841 842 if (arch_timer_mem_use_virtual) 843 func = arch_timer_handler_virt_mem; 844 else 845 func = arch_timer_handler_phys_mem; 846 847 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt); 848 if (ret) { 849 pr_err("arch_timer: Failed to request mem timer irq\n"); 850 kfree(t); 851 } 852 853 return ret; 854 } 855 856 static const struct of_device_id arch_timer_of_match[] __initconst = { 857 { .compatible = "arm,armv7-timer", }, 858 { .compatible = "arm,armv8-timer", }, 859 {}, 860 }; 861 862 static const struct of_device_id arch_timer_mem_of_match[] __initconst = { 863 { .compatible = "arm,armv7-timer-mem", }, 864 {}, 865 }; 866 867 static bool __init 868 arch_timer_needs_probing(int type, const struct of_device_id *matches) 869 { 870 struct device_node *dn; 871 bool needs_probing = false; 872 873 dn = of_find_matching_node(NULL, matches); 874 if (dn && of_device_is_available(dn) && !(arch_timers_present & type)) 875 needs_probing = true; 876 of_node_put(dn); 877 878 return needs_probing; 879 } 880 881 static int __init arch_timer_common_init(void) 882 { 883 unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER; 884 885 /* Wait until both nodes are probed if we have two timers */ 886 if ((arch_timers_present & mask) != mask) { 887 if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match)) 888 return 0; 889 if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match)) 890 return 0; 891 } 892 893 arch_timer_banner(arch_timers_present); 894 arch_counter_register(arch_timers_present); 895 return arch_timer_arch_init(); 896 } 897 898 static int __init arch_timer_init(void) 899 { 900 int ret; 901 /* 902 * If HYP mode is available, we know that the physical timer 903 * has been configured to be accessible from PL1. Use it, so 904 * that a guest can use the virtual timer instead. 905 * 906 * If no interrupt provided for virtual timer, we'll have to 907 * stick to the physical timer. It'd better be accessible... 908 * 909 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE 910 * accesses to CNTP_*_EL1 registers are silently redirected to 911 * their CNTHP_*_EL2 counterparts, and use a different PPI 912 * number. 913 */ 914 if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) { 915 bool has_ppi; 916 917 if (is_kernel_in_hyp_mode()) { 918 arch_timer_uses_ppi = HYP_PPI; 919 has_ppi = !!arch_timer_ppi[HYP_PPI]; 920 } else { 921 arch_timer_uses_ppi = PHYS_SECURE_PPI; 922 has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] || 923 !!arch_timer_ppi[PHYS_NONSECURE_PPI]); 924 } 925 926 if (!has_ppi) { 927 pr_warn("arch_timer: No interrupt available, giving up\n"); 928 return -EINVAL; 929 } 930 } 931 932 ret = arch_timer_register(); 933 if (ret) 934 return ret; 935 936 ret = arch_timer_common_init(); 937 if (ret) 938 return ret; 939 940 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[VIRT_PPI]; 941 942 return 0; 943 } 944 945 static int __init arch_timer_of_init(struct device_node *np) 946 { 947 int i; 948 949 if (arch_timers_present & ARCH_CP15_TIMER) { 950 pr_warn("arch_timer: multiple nodes in dt, skipping\n"); 951 return 0; 952 } 953 954 arch_timers_present |= ARCH_CP15_TIMER; 955 for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++) 956 arch_timer_ppi[i] = irq_of_parse_and_map(np, i); 957 958 arch_timer_detect_rate(NULL, np); 959 960 arch_timer_c3stop = !of_property_read_bool(np, "always-on"); 961 962 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND 963 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) { 964 if (of_property_read_bool(np, ool_workarounds[i].id)) { 965 timer_unstable_counter_workaround = &ool_workarounds[i]; 966 static_branch_enable(&arch_timer_read_ool_enabled); 967 pr_info("arch_timer: Enabling workaround for %s\n", 968 timer_unstable_counter_workaround->id); 969 break; 970 } 971 } 972 #endif 973 974 /* 975 * If we cannot rely on firmware initializing the timer registers then 976 * we should use the physical timers instead. 977 */ 978 if (IS_ENABLED(CONFIG_ARM) && 979 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured")) 980 arch_timer_uses_ppi = PHYS_SECURE_PPI; 981 982 /* On some systems, the counter stops ticking when in suspend. */ 983 arch_counter_suspend_stop = of_property_read_bool(np, 984 "arm,no-tick-in-suspend"); 985 986 return arch_timer_init(); 987 } 988 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init); 989 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init); 990 991 static int __init arch_timer_mem_init(struct device_node *np) 992 { 993 struct device_node *frame, *best_frame = NULL; 994 void __iomem *cntctlbase, *base; 995 unsigned int irq, ret = -EINVAL; 996 u32 cnttidr; 997 998 arch_timers_present |= ARCH_MEM_TIMER; 999 cntctlbase = of_iomap(np, 0); 1000 if (!cntctlbase) { 1001 pr_err("arch_timer: Can't find CNTCTLBase\n"); 1002 return -ENXIO; 1003 } 1004 1005 cnttidr = readl_relaxed(cntctlbase + CNTTIDR); 1006 1007 /* 1008 * Try to find a virtual capable frame. Otherwise fall back to a 1009 * physical capable frame. 1010 */ 1011 for_each_available_child_of_node(np, frame) { 1012 int n; 1013 u32 cntacr; 1014 1015 if (of_property_read_u32(frame, "frame-number", &n)) { 1016 pr_err("arch_timer: Missing frame-number\n"); 1017 of_node_put(frame); 1018 goto out; 1019 } 1020 1021 /* Try enabling everything, and see what sticks */ 1022 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT | 1023 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT; 1024 writel_relaxed(cntacr, cntctlbase + CNTACR(n)); 1025 cntacr = readl_relaxed(cntctlbase + CNTACR(n)); 1026 1027 if ((cnttidr & CNTTIDR_VIRT(n)) && 1028 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) { 1029 of_node_put(best_frame); 1030 best_frame = frame; 1031 arch_timer_mem_use_virtual = true; 1032 break; 1033 } 1034 1035 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT)) 1036 continue; 1037 1038 of_node_put(best_frame); 1039 best_frame = of_node_get(frame); 1040 } 1041 1042 ret= -ENXIO; 1043 base = arch_counter_base = of_io_request_and_map(best_frame, 0, 1044 "arch_mem_timer"); 1045 if (IS_ERR(base)) { 1046 pr_err("arch_timer: Can't map frame's registers\n"); 1047 goto out; 1048 } 1049 1050 if (arch_timer_mem_use_virtual) 1051 irq = irq_of_parse_and_map(best_frame, 1); 1052 else 1053 irq = irq_of_parse_and_map(best_frame, 0); 1054 1055 ret = -EINVAL; 1056 if (!irq) { 1057 pr_err("arch_timer: Frame missing %s irq", 1058 arch_timer_mem_use_virtual ? "virt" : "phys"); 1059 goto out; 1060 } 1061 1062 arch_timer_detect_rate(base, np); 1063 ret = arch_timer_mem_register(base, irq); 1064 if (ret) 1065 goto out; 1066 1067 return arch_timer_common_init(); 1068 out: 1069 iounmap(cntctlbase); 1070 of_node_put(best_frame); 1071 return ret; 1072 } 1073 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem", 1074 arch_timer_mem_init); 1075 1076 #ifdef CONFIG_ACPI 1077 static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags) 1078 { 1079 int trigger, polarity; 1080 1081 if (!interrupt) 1082 return 0; 1083 1084 trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE 1085 : ACPI_LEVEL_SENSITIVE; 1086 1087 polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW 1088 : ACPI_ACTIVE_HIGH; 1089 1090 return acpi_register_gsi(NULL, interrupt, trigger, polarity); 1091 } 1092 1093 /* Initialize per-processor generic timer */ 1094 static int __init arch_timer_acpi_init(struct acpi_table_header *table) 1095 { 1096 struct acpi_table_gtdt *gtdt; 1097 1098 if (arch_timers_present & ARCH_CP15_TIMER) { 1099 pr_warn("arch_timer: already initialized, skipping\n"); 1100 return -EINVAL; 1101 } 1102 1103 gtdt = container_of(table, struct acpi_table_gtdt, header); 1104 1105 arch_timers_present |= ARCH_CP15_TIMER; 1106 1107 arch_timer_ppi[PHYS_SECURE_PPI] = 1108 map_generic_timer_interrupt(gtdt->secure_el1_interrupt, 1109 gtdt->secure_el1_flags); 1110 1111 arch_timer_ppi[PHYS_NONSECURE_PPI] = 1112 map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt, 1113 gtdt->non_secure_el1_flags); 1114 1115 arch_timer_ppi[VIRT_PPI] = 1116 map_generic_timer_interrupt(gtdt->virtual_timer_interrupt, 1117 gtdt->virtual_timer_flags); 1118 1119 arch_timer_ppi[HYP_PPI] = 1120 map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt, 1121 gtdt->non_secure_el2_flags); 1122 1123 /* Get the frequency from CNTFRQ */ 1124 arch_timer_detect_rate(NULL, NULL); 1125 1126 /* Always-on capability */ 1127 arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON); 1128 1129 arch_timer_init(); 1130 return 0; 1131 } 1132 CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init); 1133 #endif 1134