1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/clocksource/arm_arch_timer.c 4 * 5 * Copyright (C) 2011 ARM Ltd. 6 * All Rights Reserved 7 */ 8 9 #define pr_fmt(fmt) "arch_timer: " fmt 10 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/device.h> 14 #include <linux/smp.h> 15 #include <linux/cpu.h> 16 #include <linux/cpu_pm.h> 17 #include <linux/clockchips.h> 18 #include <linux/clocksource.h> 19 #include <linux/interrupt.h> 20 #include <linux/of_irq.h> 21 #include <linux/of_address.h> 22 #include <linux/io.h> 23 #include <linux/slab.h> 24 #include <linux/sched/clock.h> 25 #include <linux/sched_clock.h> 26 #include <linux/acpi.h> 27 28 #include <asm/arch_timer.h> 29 #include <asm/virt.h> 30 31 #include <clocksource/arm_arch_timer.h> 32 33 #define CNTTIDR 0x08 34 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4)) 35 36 #define CNTACR(n) (0x40 + ((n) * 4)) 37 #define CNTACR_RPCT BIT(0) 38 #define CNTACR_RVCT BIT(1) 39 #define CNTACR_RFRQ BIT(2) 40 #define CNTACR_RVOFF BIT(3) 41 #define CNTACR_RWVT BIT(4) 42 #define CNTACR_RWPT BIT(5) 43 44 #define CNTVCT_LO 0x08 45 #define CNTVCT_HI 0x0c 46 #define CNTFRQ 0x10 47 #define CNTP_TVAL 0x28 48 #define CNTP_CTL 0x2c 49 #define CNTV_TVAL 0x38 50 #define CNTV_CTL 0x3c 51 52 static unsigned arch_timers_present __initdata; 53 54 static void __iomem *arch_counter_base; 55 56 struct arch_timer { 57 void __iomem *base; 58 struct clock_event_device evt; 59 }; 60 61 #define to_arch_timer(e) container_of(e, struct arch_timer, evt) 62 63 static u32 arch_timer_rate; 64 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI]; 65 66 static struct clock_event_device __percpu *arch_timer_evt; 67 68 static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI; 69 static bool arch_timer_c3stop; 70 static bool arch_timer_mem_use_virtual; 71 static bool arch_counter_suspend_stop; 72 static bool vdso_default = true; 73 74 static cpumask_t evtstrm_available = CPU_MASK_NONE; 75 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM); 76 77 static int __init early_evtstrm_cfg(char *buf) 78 { 79 return strtobool(buf, &evtstrm_enable); 80 } 81 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg); 82 83 /* 84 * Architected system timer support. 85 */ 86 87 static __always_inline 88 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val, 89 struct clock_event_device *clk) 90 { 91 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 92 struct arch_timer *timer = to_arch_timer(clk); 93 switch (reg) { 94 case ARCH_TIMER_REG_CTRL: 95 writel_relaxed(val, timer->base + CNTP_CTL); 96 break; 97 case ARCH_TIMER_REG_TVAL: 98 writel_relaxed(val, timer->base + CNTP_TVAL); 99 break; 100 } 101 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 102 struct arch_timer *timer = to_arch_timer(clk); 103 switch (reg) { 104 case ARCH_TIMER_REG_CTRL: 105 writel_relaxed(val, timer->base + CNTV_CTL); 106 break; 107 case ARCH_TIMER_REG_TVAL: 108 writel_relaxed(val, timer->base + CNTV_TVAL); 109 break; 110 } 111 } else { 112 arch_timer_reg_write_cp15(access, reg, val); 113 } 114 } 115 116 static __always_inline 117 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg, 118 struct clock_event_device *clk) 119 { 120 u32 val; 121 122 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 123 struct arch_timer *timer = to_arch_timer(clk); 124 switch (reg) { 125 case ARCH_TIMER_REG_CTRL: 126 val = readl_relaxed(timer->base + CNTP_CTL); 127 break; 128 case ARCH_TIMER_REG_TVAL: 129 val = readl_relaxed(timer->base + CNTP_TVAL); 130 break; 131 } 132 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 133 struct arch_timer *timer = to_arch_timer(clk); 134 switch (reg) { 135 case ARCH_TIMER_REG_CTRL: 136 val = readl_relaxed(timer->base + CNTV_CTL); 137 break; 138 case ARCH_TIMER_REG_TVAL: 139 val = readl_relaxed(timer->base + CNTV_TVAL); 140 break; 141 } 142 } else { 143 val = arch_timer_reg_read_cp15(access, reg); 144 } 145 146 return val; 147 } 148 149 static notrace u64 arch_counter_get_cntpct_stable(void) 150 { 151 return __arch_counter_get_cntpct_stable(); 152 } 153 154 static notrace u64 arch_counter_get_cntpct(void) 155 { 156 return __arch_counter_get_cntpct(); 157 } 158 159 static notrace u64 arch_counter_get_cntvct_stable(void) 160 { 161 return __arch_counter_get_cntvct_stable(); 162 } 163 164 static notrace u64 arch_counter_get_cntvct(void) 165 { 166 return __arch_counter_get_cntvct(); 167 } 168 169 /* 170 * Default to cp15 based access because arm64 uses this function for 171 * sched_clock() before DT is probed and the cp15 method is guaranteed 172 * to exist on arm64. arm doesn't use this before DT is probed so even 173 * if we don't have the cp15 accessors we won't have a problem. 174 */ 175 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct; 176 EXPORT_SYMBOL_GPL(arch_timer_read_counter); 177 178 static u64 arch_counter_read(struct clocksource *cs) 179 { 180 return arch_timer_read_counter(); 181 } 182 183 static u64 arch_counter_read_cc(const struct cyclecounter *cc) 184 { 185 return arch_timer_read_counter(); 186 } 187 188 static struct clocksource clocksource_counter = { 189 .name = "arch_sys_counter", 190 .rating = 400, 191 .read = arch_counter_read, 192 .mask = CLOCKSOURCE_MASK(56), 193 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 194 }; 195 196 static struct cyclecounter cyclecounter __ro_after_init = { 197 .read = arch_counter_read_cc, 198 .mask = CLOCKSOURCE_MASK(56), 199 }; 200 201 struct ate_acpi_oem_info { 202 char oem_id[ACPI_OEM_ID_SIZE + 1]; 203 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1]; 204 u32 oem_revision; 205 }; 206 207 #ifdef CONFIG_FSL_ERRATUM_A008585 208 /* 209 * The number of retries is an arbitrary value well beyond the highest number 210 * of iterations the loop has been observed to take. 211 */ 212 #define __fsl_a008585_read_reg(reg) ({ \ 213 u64 _old, _new; \ 214 int _retries = 200; \ 215 \ 216 do { \ 217 _old = read_sysreg(reg); \ 218 _new = read_sysreg(reg); \ 219 _retries--; \ 220 } while (unlikely(_old != _new) && _retries); \ 221 \ 222 WARN_ON_ONCE(!_retries); \ 223 _new; \ 224 }) 225 226 static u32 notrace fsl_a008585_read_cntp_tval_el0(void) 227 { 228 return __fsl_a008585_read_reg(cntp_tval_el0); 229 } 230 231 static u32 notrace fsl_a008585_read_cntv_tval_el0(void) 232 { 233 return __fsl_a008585_read_reg(cntv_tval_el0); 234 } 235 236 static u64 notrace fsl_a008585_read_cntpct_el0(void) 237 { 238 return __fsl_a008585_read_reg(cntpct_el0); 239 } 240 241 static u64 notrace fsl_a008585_read_cntvct_el0(void) 242 { 243 return __fsl_a008585_read_reg(cntvct_el0); 244 } 245 #endif 246 247 #ifdef CONFIG_HISILICON_ERRATUM_161010101 248 /* 249 * Verify whether the value of the second read is larger than the first by 250 * less than 32 is the only way to confirm the value is correct, so clear the 251 * lower 5 bits to check whether the difference is greater than 32 or not. 252 * Theoretically the erratum should not occur more than twice in succession 253 * when reading the system counter, but it is possible that some interrupts 254 * may lead to more than twice read errors, triggering the warning, so setting 255 * the number of retries far beyond the number of iterations the loop has been 256 * observed to take. 257 */ 258 #define __hisi_161010101_read_reg(reg) ({ \ 259 u64 _old, _new; \ 260 int _retries = 50; \ 261 \ 262 do { \ 263 _old = read_sysreg(reg); \ 264 _new = read_sysreg(reg); \ 265 _retries--; \ 266 } while (unlikely((_new - _old) >> 5) && _retries); \ 267 \ 268 WARN_ON_ONCE(!_retries); \ 269 _new; \ 270 }) 271 272 static u32 notrace hisi_161010101_read_cntp_tval_el0(void) 273 { 274 return __hisi_161010101_read_reg(cntp_tval_el0); 275 } 276 277 static u32 notrace hisi_161010101_read_cntv_tval_el0(void) 278 { 279 return __hisi_161010101_read_reg(cntv_tval_el0); 280 } 281 282 static u64 notrace hisi_161010101_read_cntpct_el0(void) 283 { 284 return __hisi_161010101_read_reg(cntpct_el0); 285 } 286 287 static u64 notrace hisi_161010101_read_cntvct_el0(void) 288 { 289 return __hisi_161010101_read_reg(cntvct_el0); 290 } 291 292 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = { 293 /* 294 * Note that trailing spaces are required to properly match 295 * the OEM table information. 296 */ 297 { 298 .oem_id = "HISI ", 299 .oem_table_id = "HIP05 ", 300 .oem_revision = 0, 301 }, 302 { 303 .oem_id = "HISI ", 304 .oem_table_id = "HIP06 ", 305 .oem_revision = 0, 306 }, 307 { 308 .oem_id = "HISI ", 309 .oem_table_id = "HIP07 ", 310 .oem_revision = 0, 311 }, 312 { /* Sentinel indicating the end of the OEM array */ }, 313 }; 314 #endif 315 316 #ifdef CONFIG_ARM64_ERRATUM_858921 317 static u64 notrace arm64_858921_read_cntpct_el0(void) 318 { 319 u64 old, new; 320 321 old = read_sysreg(cntpct_el0); 322 new = read_sysreg(cntpct_el0); 323 return (((old ^ new) >> 32) & 1) ? old : new; 324 } 325 326 static u64 notrace arm64_858921_read_cntvct_el0(void) 327 { 328 u64 old, new; 329 330 old = read_sysreg(cntvct_el0); 331 new = read_sysreg(cntvct_el0); 332 return (((old ^ new) >> 32) & 1) ? old : new; 333 } 334 #endif 335 336 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1 337 /* 338 * The low bits of the counter registers are indeterminate while bit 10 or 339 * greater is rolling over. Since the counter value can jump both backward 340 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values 341 * with all ones or all zeros in the low bits. Bound the loop by the maximum 342 * number of CPU cycles in 3 consecutive 24 MHz counter periods. 343 */ 344 #define __sun50i_a64_read_reg(reg) ({ \ 345 u64 _val; \ 346 int _retries = 150; \ 347 \ 348 do { \ 349 _val = read_sysreg(reg); \ 350 _retries--; \ 351 } while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries); \ 352 \ 353 WARN_ON_ONCE(!_retries); \ 354 _val; \ 355 }) 356 357 static u64 notrace sun50i_a64_read_cntpct_el0(void) 358 { 359 return __sun50i_a64_read_reg(cntpct_el0); 360 } 361 362 static u64 notrace sun50i_a64_read_cntvct_el0(void) 363 { 364 return __sun50i_a64_read_reg(cntvct_el0); 365 } 366 367 static u32 notrace sun50i_a64_read_cntp_tval_el0(void) 368 { 369 return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0(); 370 } 371 372 static u32 notrace sun50i_a64_read_cntv_tval_el0(void) 373 { 374 return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0(); 375 } 376 #endif 377 378 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND 379 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround); 380 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround); 381 382 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0); 383 384 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt, 385 struct clock_event_device *clk) 386 { 387 unsigned long ctrl; 388 u64 cval; 389 390 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 391 ctrl |= ARCH_TIMER_CTRL_ENABLE; 392 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 393 394 if (access == ARCH_TIMER_PHYS_ACCESS) { 395 cval = evt + arch_counter_get_cntpct(); 396 write_sysreg(cval, cntp_cval_el0); 397 } else { 398 cval = evt + arch_counter_get_cntvct(); 399 write_sysreg(cval, cntv_cval_el0); 400 } 401 402 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 403 } 404 405 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt, 406 struct clock_event_device *clk) 407 { 408 erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk); 409 return 0; 410 } 411 412 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt, 413 struct clock_event_device *clk) 414 { 415 erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk); 416 return 0; 417 } 418 419 static const struct arch_timer_erratum_workaround ool_workarounds[] = { 420 #ifdef CONFIG_FSL_ERRATUM_A008585 421 { 422 .match_type = ate_match_dt, 423 .id = "fsl,erratum-a008585", 424 .desc = "Freescale erratum a005858", 425 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0, 426 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0, 427 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0, 428 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0, 429 .set_next_event_phys = erratum_set_next_event_tval_phys, 430 .set_next_event_virt = erratum_set_next_event_tval_virt, 431 }, 432 #endif 433 #ifdef CONFIG_HISILICON_ERRATUM_161010101 434 { 435 .match_type = ate_match_dt, 436 .id = "hisilicon,erratum-161010101", 437 .desc = "HiSilicon erratum 161010101", 438 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0, 439 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0, 440 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0, 441 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, 442 .set_next_event_phys = erratum_set_next_event_tval_phys, 443 .set_next_event_virt = erratum_set_next_event_tval_virt, 444 }, 445 { 446 .match_type = ate_match_acpi_oem_info, 447 .id = hisi_161010101_oem_info, 448 .desc = "HiSilicon erratum 161010101", 449 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0, 450 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0, 451 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0, 452 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, 453 .set_next_event_phys = erratum_set_next_event_tval_phys, 454 .set_next_event_virt = erratum_set_next_event_tval_virt, 455 }, 456 #endif 457 #ifdef CONFIG_ARM64_ERRATUM_858921 458 { 459 .match_type = ate_match_local_cap_id, 460 .id = (void *)ARM64_WORKAROUND_858921, 461 .desc = "ARM erratum 858921", 462 .read_cntpct_el0 = arm64_858921_read_cntpct_el0, 463 .read_cntvct_el0 = arm64_858921_read_cntvct_el0, 464 }, 465 #endif 466 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1 467 { 468 .match_type = ate_match_dt, 469 .id = "allwinner,erratum-unknown1", 470 .desc = "Allwinner erratum UNKNOWN1", 471 .read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0, 472 .read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0, 473 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0, 474 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0, 475 .set_next_event_phys = erratum_set_next_event_tval_phys, 476 .set_next_event_virt = erratum_set_next_event_tval_virt, 477 }, 478 #endif 479 }; 480 481 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *, 482 const void *); 483 484 static 485 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa, 486 const void *arg) 487 { 488 const struct device_node *np = arg; 489 490 return of_property_read_bool(np, wa->id); 491 } 492 493 static 494 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa, 495 const void *arg) 496 { 497 return this_cpu_has_cap((uintptr_t)wa->id); 498 } 499 500 501 static 502 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa, 503 const void *arg) 504 { 505 static const struct ate_acpi_oem_info empty_oem_info = {}; 506 const struct ate_acpi_oem_info *info = wa->id; 507 const struct acpi_table_header *table = arg; 508 509 /* Iterate over the ACPI OEM info array, looking for a match */ 510 while (memcmp(info, &empty_oem_info, sizeof(*info))) { 511 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) && 512 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) && 513 info->oem_revision == table->oem_revision) 514 return true; 515 516 info++; 517 } 518 519 return false; 520 } 521 522 static const struct arch_timer_erratum_workaround * 523 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type, 524 ate_match_fn_t match_fn, 525 void *arg) 526 { 527 int i; 528 529 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) { 530 if (ool_workarounds[i].match_type != type) 531 continue; 532 533 if (match_fn(&ool_workarounds[i], arg)) 534 return &ool_workarounds[i]; 535 } 536 537 return NULL; 538 } 539 540 static 541 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa, 542 bool local) 543 { 544 int i; 545 546 if (local) { 547 __this_cpu_write(timer_unstable_counter_workaround, wa); 548 } else { 549 for_each_possible_cpu(i) 550 per_cpu(timer_unstable_counter_workaround, i) = wa; 551 } 552 553 if (wa->read_cntvct_el0 || wa->read_cntpct_el0) 554 atomic_set(&timer_unstable_counter_workaround_in_use, 1); 555 556 /* 557 * Don't use the vdso fastpath if errata require using the 558 * out-of-line counter accessor. We may change our mind pretty 559 * late in the game (with a per-CPU erratum, for example), so 560 * change both the default value and the vdso itself. 561 */ 562 if (wa->read_cntvct_el0) { 563 clocksource_counter.archdata.vdso_direct = false; 564 vdso_default = false; 565 } 566 } 567 568 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type, 569 void *arg) 570 { 571 const struct arch_timer_erratum_workaround *wa, *__wa; 572 ate_match_fn_t match_fn = NULL; 573 bool local = false; 574 575 switch (type) { 576 case ate_match_dt: 577 match_fn = arch_timer_check_dt_erratum; 578 break; 579 case ate_match_local_cap_id: 580 match_fn = arch_timer_check_local_cap_erratum; 581 local = true; 582 break; 583 case ate_match_acpi_oem_info: 584 match_fn = arch_timer_check_acpi_oem_erratum; 585 break; 586 default: 587 WARN_ON(1); 588 return; 589 } 590 591 wa = arch_timer_iterate_errata(type, match_fn, arg); 592 if (!wa) 593 return; 594 595 __wa = __this_cpu_read(timer_unstable_counter_workaround); 596 if (__wa && wa != __wa) 597 pr_warn("Can't enable workaround for %s (clashes with %s\n)", 598 wa->desc, __wa->desc); 599 600 if (__wa) 601 return; 602 603 arch_timer_enable_workaround(wa, local); 604 pr_info("Enabling %s workaround for %s\n", 605 local ? "local" : "global", wa->desc); 606 } 607 608 static bool arch_timer_this_cpu_has_cntvct_wa(void) 609 { 610 return has_erratum_handler(read_cntvct_el0); 611 } 612 613 static bool arch_timer_counter_has_wa(void) 614 { 615 return atomic_read(&timer_unstable_counter_workaround_in_use); 616 } 617 #else 618 #define arch_timer_check_ool_workaround(t,a) do { } while(0) 619 #define arch_timer_this_cpu_has_cntvct_wa() ({false;}) 620 #define arch_timer_counter_has_wa() ({false;}) 621 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */ 622 623 static __always_inline irqreturn_t timer_handler(const int access, 624 struct clock_event_device *evt) 625 { 626 unsigned long ctrl; 627 628 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt); 629 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { 630 ctrl |= ARCH_TIMER_CTRL_IT_MASK; 631 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt); 632 evt->event_handler(evt); 633 return IRQ_HANDLED; 634 } 635 636 return IRQ_NONE; 637 } 638 639 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id) 640 { 641 struct clock_event_device *evt = dev_id; 642 643 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt); 644 } 645 646 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id) 647 { 648 struct clock_event_device *evt = dev_id; 649 650 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt); 651 } 652 653 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id) 654 { 655 struct clock_event_device *evt = dev_id; 656 657 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt); 658 } 659 660 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id) 661 { 662 struct clock_event_device *evt = dev_id; 663 664 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt); 665 } 666 667 static __always_inline int timer_shutdown(const int access, 668 struct clock_event_device *clk) 669 { 670 unsigned long ctrl; 671 672 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 673 ctrl &= ~ARCH_TIMER_CTRL_ENABLE; 674 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 675 676 return 0; 677 } 678 679 static int arch_timer_shutdown_virt(struct clock_event_device *clk) 680 { 681 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk); 682 } 683 684 static int arch_timer_shutdown_phys(struct clock_event_device *clk) 685 { 686 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk); 687 } 688 689 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk) 690 { 691 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk); 692 } 693 694 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk) 695 { 696 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk); 697 } 698 699 static __always_inline void set_next_event(const int access, unsigned long evt, 700 struct clock_event_device *clk) 701 { 702 unsigned long ctrl; 703 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 704 ctrl |= ARCH_TIMER_CTRL_ENABLE; 705 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 706 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk); 707 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 708 } 709 710 static int arch_timer_set_next_event_virt(unsigned long evt, 711 struct clock_event_device *clk) 712 { 713 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk); 714 return 0; 715 } 716 717 static int arch_timer_set_next_event_phys(unsigned long evt, 718 struct clock_event_device *clk) 719 { 720 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk); 721 return 0; 722 } 723 724 static int arch_timer_set_next_event_virt_mem(unsigned long evt, 725 struct clock_event_device *clk) 726 { 727 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk); 728 return 0; 729 } 730 731 static int arch_timer_set_next_event_phys_mem(unsigned long evt, 732 struct clock_event_device *clk) 733 { 734 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk); 735 return 0; 736 } 737 738 static void __arch_timer_setup(unsigned type, 739 struct clock_event_device *clk) 740 { 741 clk->features = CLOCK_EVT_FEAT_ONESHOT; 742 743 if (type == ARCH_TIMER_TYPE_CP15) { 744 typeof(clk->set_next_event) sne; 745 746 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL); 747 748 if (arch_timer_c3stop) 749 clk->features |= CLOCK_EVT_FEAT_C3STOP; 750 clk->name = "arch_sys_timer"; 751 clk->rating = 450; 752 clk->cpumask = cpumask_of(smp_processor_id()); 753 clk->irq = arch_timer_ppi[arch_timer_uses_ppi]; 754 switch (arch_timer_uses_ppi) { 755 case ARCH_TIMER_VIRT_PPI: 756 clk->set_state_shutdown = arch_timer_shutdown_virt; 757 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt; 758 sne = erratum_handler(set_next_event_virt); 759 break; 760 case ARCH_TIMER_PHYS_SECURE_PPI: 761 case ARCH_TIMER_PHYS_NONSECURE_PPI: 762 case ARCH_TIMER_HYP_PPI: 763 clk->set_state_shutdown = arch_timer_shutdown_phys; 764 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys; 765 sne = erratum_handler(set_next_event_phys); 766 break; 767 default: 768 BUG(); 769 } 770 771 clk->set_next_event = sne; 772 } else { 773 clk->features |= CLOCK_EVT_FEAT_DYNIRQ; 774 clk->name = "arch_mem_timer"; 775 clk->rating = 400; 776 clk->cpumask = cpu_possible_mask; 777 if (arch_timer_mem_use_virtual) { 778 clk->set_state_shutdown = arch_timer_shutdown_virt_mem; 779 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem; 780 clk->set_next_event = 781 arch_timer_set_next_event_virt_mem; 782 } else { 783 clk->set_state_shutdown = arch_timer_shutdown_phys_mem; 784 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem; 785 clk->set_next_event = 786 arch_timer_set_next_event_phys_mem; 787 } 788 } 789 790 clk->set_state_shutdown(clk); 791 792 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff); 793 } 794 795 static void arch_timer_evtstrm_enable(int divider) 796 { 797 u32 cntkctl = arch_timer_get_cntkctl(); 798 799 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK; 800 /* Set the divider and enable virtual event stream */ 801 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT) 802 | ARCH_TIMER_VIRT_EVT_EN; 803 arch_timer_set_cntkctl(cntkctl); 804 arch_timer_set_evtstrm_feature(); 805 cpumask_set_cpu(smp_processor_id(), &evtstrm_available); 806 } 807 808 static void arch_timer_configure_evtstream(void) 809 { 810 int evt_stream_div, pos; 811 812 /* Find the closest power of two to the divisor */ 813 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ; 814 pos = fls(evt_stream_div); 815 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2)))) 816 pos--; 817 /* enable event stream */ 818 arch_timer_evtstrm_enable(min(pos, 15)); 819 } 820 821 static void arch_counter_set_user_access(void) 822 { 823 u32 cntkctl = arch_timer_get_cntkctl(); 824 825 /* Disable user access to the timers and both counters */ 826 /* Also disable virtual event stream */ 827 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN 828 | ARCH_TIMER_USR_VT_ACCESS_EN 829 | ARCH_TIMER_USR_VCT_ACCESS_EN 830 | ARCH_TIMER_VIRT_EVT_EN 831 | ARCH_TIMER_USR_PCT_ACCESS_EN); 832 833 /* 834 * Enable user access to the virtual counter if it doesn't 835 * need to be workaround. The vdso may have been already 836 * disabled though. 837 */ 838 if (arch_timer_this_cpu_has_cntvct_wa()) 839 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id()); 840 else 841 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN; 842 843 arch_timer_set_cntkctl(cntkctl); 844 } 845 846 static bool arch_timer_has_nonsecure_ppi(void) 847 { 848 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI && 849 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 850 } 851 852 static u32 check_ppi_trigger(int irq) 853 { 854 u32 flags = irq_get_trigger_type(irq); 855 856 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) { 857 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq); 858 pr_warn("WARNING: Please fix your firmware\n"); 859 flags = IRQF_TRIGGER_LOW; 860 } 861 862 return flags; 863 } 864 865 static int arch_timer_starting_cpu(unsigned int cpu) 866 { 867 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 868 u32 flags; 869 870 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk); 871 872 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]); 873 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags); 874 875 if (arch_timer_has_nonsecure_ppi()) { 876 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 877 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], 878 flags); 879 } 880 881 arch_counter_set_user_access(); 882 if (evtstrm_enable) 883 arch_timer_configure_evtstream(); 884 885 return 0; 886 } 887 888 /* 889 * For historical reasons, when probing with DT we use whichever (non-zero) 890 * rate was probed first, and don't verify that others match. If the first node 891 * probed has a clock-frequency property, this overrides the HW register. 892 */ 893 static void arch_timer_of_configure_rate(u32 rate, struct device_node *np) 894 { 895 /* Who has more than one independent system counter? */ 896 if (arch_timer_rate) 897 return; 898 899 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) 900 arch_timer_rate = rate; 901 902 /* Check the timer frequency. */ 903 if (arch_timer_rate == 0) 904 pr_warn("frequency not available\n"); 905 } 906 907 static void arch_timer_banner(unsigned type) 908 { 909 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n", 910 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "", 911 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? 912 " and " : "", 913 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "", 914 (unsigned long)arch_timer_rate / 1000000, 915 (unsigned long)(arch_timer_rate / 10000) % 100, 916 type & ARCH_TIMER_TYPE_CP15 ? 917 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" : 918 "", 919 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "", 920 type & ARCH_TIMER_TYPE_MEM ? 921 arch_timer_mem_use_virtual ? "virt" : "phys" : 922 ""); 923 } 924 925 u32 arch_timer_get_rate(void) 926 { 927 return arch_timer_rate; 928 } 929 930 bool arch_timer_evtstrm_available(void) 931 { 932 /* 933 * We might get called from a preemptible context. This is fine 934 * because availability of the event stream should be always the same 935 * for a preemptible context and context where we might resume a task. 936 */ 937 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available); 938 } 939 940 static u64 arch_counter_get_cntvct_mem(void) 941 { 942 u32 vct_lo, vct_hi, tmp_hi; 943 944 do { 945 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); 946 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO); 947 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); 948 } while (vct_hi != tmp_hi); 949 950 return ((u64) vct_hi << 32) | vct_lo; 951 } 952 953 static struct arch_timer_kvm_info arch_timer_kvm_info; 954 955 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void) 956 { 957 return &arch_timer_kvm_info; 958 } 959 960 static void __init arch_counter_register(unsigned type) 961 { 962 u64 start_count; 963 964 /* Register the CP15 based counter if we have one */ 965 if (type & ARCH_TIMER_TYPE_CP15) { 966 u64 (*rd)(void); 967 968 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) || 969 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) { 970 if (arch_timer_counter_has_wa()) 971 rd = arch_counter_get_cntvct_stable; 972 else 973 rd = arch_counter_get_cntvct; 974 } else { 975 if (arch_timer_counter_has_wa()) 976 rd = arch_counter_get_cntpct_stable; 977 else 978 rd = arch_counter_get_cntpct; 979 } 980 981 arch_timer_read_counter = rd; 982 clocksource_counter.archdata.vdso_direct = vdso_default; 983 } else { 984 arch_timer_read_counter = arch_counter_get_cntvct_mem; 985 } 986 987 if (!arch_counter_suspend_stop) 988 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; 989 start_count = arch_timer_read_counter(); 990 clocksource_register_hz(&clocksource_counter, arch_timer_rate); 991 cyclecounter.mult = clocksource_counter.mult; 992 cyclecounter.shift = clocksource_counter.shift; 993 timecounter_init(&arch_timer_kvm_info.timecounter, 994 &cyclecounter, start_count); 995 996 /* 56 bits minimum, so we assume worst case rollover */ 997 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate); 998 } 999 1000 static void arch_timer_stop(struct clock_event_device *clk) 1001 { 1002 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id()); 1003 1004 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]); 1005 if (arch_timer_has_nonsecure_ppi()) 1006 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 1007 1008 clk->set_state_shutdown(clk); 1009 } 1010 1011 static int arch_timer_dying_cpu(unsigned int cpu) 1012 { 1013 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 1014 1015 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available); 1016 1017 arch_timer_stop(clk); 1018 return 0; 1019 } 1020 1021 #ifdef CONFIG_CPU_PM 1022 static DEFINE_PER_CPU(unsigned long, saved_cntkctl); 1023 static int arch_timer_cpu_pm_notify(struct notifier_block *self, 1024 unsigned long action, void *hcpu) 1025 { 1026 if (action == CPU_PM_ENTER) { 1027 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl()); 1028 1029 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available); 1030 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) { 1031 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl)); 1032 1033 if (arch_timer_have_evtstrm_feature()) 1034 cpumask_set_cpu(smp_processor_id(), &evtstrm_available); 1035 } 1036 return NOTIFY_OK; 1037 } 1038 1039 static struct notifier_block arch_timer_cpu_pm_notifier = { 1040 .notifier_call = arch_timer_cpu_pm_notify, 1041 }; 1042 1043 static int __init arch_timer_cpu_pm_init(void) 1044 { 1045 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier); 1046 } 1047 1048 static void __init arch_timer_cpu_pm_deinit(void) 1049 { 1050 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier)); 1051 } 1052 1053 #else 1054 static int __init arch_timer_cpu_pm_init(void) 1055 { 1056 return 0; 1057 } 1058 1059 static void __init arch_timer_cpu_pm_deinit(void) 1060 { 1061 } 1062 #endif 1063 1064 static int __init arch_timer_register(void) 1065 { 1066 int err; 1067 int ppi; 1068 1069 arch_timer_evt = alloc_percpu(struct clock_event_device); 1070 if (!arch_timer_evt) { 1071 err = -ENOMEM; 1072 goto out; 1073 } 1074 1075 ppi = arch_timer_ppi[arch_timer_uses_ppi]; 1076 switch (arch_timer_uses_ppi) { 1077 case ARCH_TIMER_VIRT_PPI: 1078 err = request_percpu_irq(ppi, arch_timer_handler_virt, 1079 "arch_timer", arch_timer_evt); 1080 break; 1081 case ARCH_TIMER_PHYS_SECURE_PPI: 1082 case ARCH_TIMER_PHYS_NONSECURE_PPI: 1083 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1084 "arch_timer", arch_timer_evt); 1085 if (!err && arch_timer_has_nonsecure_ppi()) { 1086 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]; 1087 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1088 "arch_timer", arch_timer_evt); 1089 if (err) 1090 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI], 1091 arch_timer_evt); 1092 } 1093 break; 1094 case ARCH_TIMER_HYP_PPI: 1095 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1096 "arch_timer", arch_timer_evt); 1097 break; 1098 default: 1099 BUG(); 1100 } 1101 1102 if (err) { 1103 pr_err("can't register interrupt %d (%d)\n", ppi, err); 1104 goto out_free; 1105 } 1106 1107 err = arch_timer_cpu_pm_init(); 1108 if (err) 1109 goto out_unreg_notify; 1110 1111 /* Register and immediately configure the timer on the boot CPU */ 1112 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING, 1113 "clockevents/arm/arch_timer:starting", 1114 arch_timer_starting_cpu, arch_timer_dying_cpu); 1115 if (err) 1116 goto out_unreg_cpupm; 1117 return 0; 1118 1119 out_unreg_cpupm: 1120 arch_timer_cpu_pm_deinit(); 1121 1122 out_unreg_notify: 1123 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt); 1124 if (arch_timer_has_nonsecure_ppi()) 1125 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], 1126 arch_timer_evt); 1127 1128 out_free: 1129 free_percpu(arch_timer_evt); 1130 out: 1131 return err; 1132 } 1133 1134 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq) 1135 { 1136 int ret; 1137 irq_handler_t func; 1138 struct arch_timer *t; 1139 1140 t = kzalloc(sizeof(*t), GFP_KERNEL); 1141 if (!t) 1142 return -ENOMEM; 1143 1144 t->base = base; 1145 t->evt.irq = irq; 1146 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt); 1147 1148 if (arch_timer_mem_use_virtual) 1149 func = arch_timer_handler_virt_mem; 1150 else 1151 func = arch_timer_handler_phys_mem; 1152 1153 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt); 1154 if (ret) { 1155 pr_err("Failed to request mem timer irq\n"); 1156 kfree(t); 1157 } 1158 1159 return ret; 1160 } 1161 1162 static const struct of_device_id arch_timer_of_match[] __initconst = { 1163 { .compatible = "arm,armv7-timer", }, 1164 { .compatible = "arm,armv8-timer", }, 1165 {}, 1166 }; 1167 1168 static const struct of_device_id arch_timer_mem_of_match[] __initconst = { 1169 { .compatible = "arm,armv7-timer-mem", }, 1170 {}, 1171 }; 1172 1173 static bool __init arch_timer_needs_of_probing(void) 1174 { 1175 struct device_node *dn; 1176 bool needs_probing = false; 1177 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM; 1178 1179 /* We have two timers, and both device-tree nodes are probed. */ 1180 if ((arch_timers_present & mask) == mask) 1181 return false; 1182 1183 /* 1184 * Only one type of timer is probed, 1185 * check if we have another type of timer node in device-tree. 1186 */ 1187 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) 1188 dn = of_find_matching_node(NULL, arch_timer_mem_of_match); 1189 else 1190 dn = of_find_matching_node(NULL, arch_timer_of_match); 1191 1192 if (dn && of_device_is_available(dn)) 1193 needs_probing = true; 1194 1195 of_node_put(dn); 1196 1197 return needs_probing; 1198 } 1199 1200 static int __init arch_timer_common_init(void) 1201 { 1202 arch_timer_banner(arch_timers_present); 1203 arch_counter_register(arch_timers_present); 1204 return arch_timer_arch_init(); 1205 } 1206 1207 /** 1208 * arch_timer_select_ppi() - Select suitable PPI for the current system. 1209 * 1210 * If HYP mode is available, we know that the physical timer 1211 * has been configured to be accessible from PL1. Use it, so 1212 * that a guest can use the virtual timer instead. 1213 * 1214 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE 1215 * accesses to CNTP_*_EL1 registers are silently redirected to 1216 * their CNTHP_*_EL2 counterparts, and use a different PPI 1217 * number. 1218 * 1219 * If no interrupt provided for virtual timer, we'll have to 1220 * stick to the physical timer. It'd better be accessible... 1221 * For arm64 we never use the secure interrupt. 1222 * 1223 * Return: a suitable PPI type for the current system. 1224 */ 1225 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void) 1226 { 1227 if (is_kernel_in_hyp_mode()) 1228 return ARCH_TIMER_HYP_PPI; 1229 1230 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI]) 1231 return ARCH_TIMER_VIRT_PPI; 1232 1233 if (IS_ENABLED(CONFIG_ARM64)) 1234 return ARCH_TIMER_PHYS_NONSECURE_PPI; 1235 1236 return ARCH_TIMER_PHYS_SECURE_PPI; 1237 } 1238 1239 static void __init arch_timer_populate_kvm_info(void) 1240 { 1241 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI]; 1242 if (is_kernel_in_hyp_mode()) 1243 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]; 1244 } 1245 1246 static int __init arch_timer_of_init(struct device_node *np) 1247 { 1248 int i, ret; 1249 u32 rate; 1250 1251 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { 1252 pr_warn("multiple nodes in dt, skipping\n"); 1253 return 0; 1254 } 1255 1256 arch_timers_present |= ARCH_TIMER_TYPE_CP15; 1257 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) 1258 arch_timer_ppi[i] = irq_of_parse_and_map(np, i); 1259 1260 arch_timer_populate_kvm_info(); 1261 1262 rate = arch_timer_get_cntfrq(); 1263 arch_timer_of_configure_rate(rate, np); 1264 1265 arch_timer_c3stop = !of_property_read_bool(np, "always-on"); 1266 1267 /* Check for globally applicable workarounds */ 1268 arch_timer_check_ool_workaround(ate_match_dt, np); 1269 1270 /* 1271 * If we cannot rely on firmware initializing the timer registers then 1272 * we should use the physical timers instead. 1273 */ 1274 if (IS_ENABLED(CONFIG_ARM) && 1275 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured")) 1276 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI; 1277 else 1278 arch_timer_uses_ppi = arch_timer_select_ppi(); 1279 1280 if (!arch_timer_ppi[arch_timer_uses_ppi]) { 1281 pr_err("No interrupt available, giving up\n"); 1282 return -EINVAL; 1283 } 1284 1285 /* On some systems, the counter stops ticking when in suspend. */ 1286 arch_counter_suspend_stop = of_property_read_bool(np, 1287 "arm,no-tick-in-suspend"); 1288 1289 ret = arch_timer_register(); 1290 if (ret) 1291 return ret; 1292 1293 if (arch_timer_needs_of_probing()) 1294 return 0; 1295 1296 return arch_timer_common_init(); 1297 } 1298 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init); 1299 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init); 1300 1301 static u32 __init 1302 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame) 1303 { 1304 void __iomem *base; 1305 u32 rate; 1306 1307 base = ioremap(frame->cntbase, frame->size); 1308 if (!base) { 1309 pr_err("Unable to map frame @ %pa\n", &frame->cntbase); 1310 return 0; 1311 } 1312 1313 rate = readl_relaxed(base + CNTFRQ); 1314 1315 iounmap(base); 1316 1317 return rate; 1318 } 1319 1320 static struct arch_timer_mem_frame * __init 1321 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem) 1322 { 1323 struct arch_timer_mem_frame *frame, *best_frame = NULL; 1324 void __iomem *cntctlbase; 1325 u32 cnttidr; 1326 int i; 1327 1328 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size); 1329 if (!cntctlbase) { 1330 pr_err("Can't map CNTCTLBase @ %pa\n", 1331 &timer_mem->cntctlbase); 1332 return NULL; 1333 } 1334 1335 cnttidr = readl_relaxed(cntctlbase + CNTTIDR); 1336 1337 /* 1338 * Try to find a virtual capable frame. Otherwise fall back to a 1339 * physical capable frame. 1340 */ 1341 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) { 1342 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT | 1343 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT; 1344 1345 frame = &timer_mem->frame[i]; 1346 if (!frame->valid) 1347 continue; 1348 1349 /* Try enabling everything, and see what sticks */ 1350 writel_relaxed(cntacr, cntctlbase + CNTACR(i)); 1351 cntacr = readl_relaxed(cntctlbase + CNTACR(i)); 1352 1353 if ((cnttidr & CNTTIDR_VIRT(i)) && 1354 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) { 1355 best_frame = frame; 1356 arch_timer_mem_use_virtual = true; 1357 break; 1358 } 1359 1360 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT)) 1361 continue; 1362 1363 best_frame = frame; 1364 } 1365 1366 iounmap(cntctlbase); 1367 1368 return best_frame; 1369 } 1370 1371 static int __init 1372 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame) 1373 { 1374 void __iomem *base; 1375 int ret, irq = 0; 1376 1377 if (arch_timer_mem_use_virtual) 1378 irq = frame->virt_irq; 1379 else 1380 irq = frame->phys_irq; 1381 1382 if (!irq) { 1383 pr_err("Frame missing %s irq.\n", 1384 arch_timer_mem_use_virtual ? "virt" : "phys"); 1385 return -EINVAL; 1386 } 1387 1388 if (!request_mem_region(frame->cntbase, frame->size, 1389 "arch_mem_timer")) 1390 return -EBUSY; 1391 1392 base = ioremap(frame->cntbase, frame->size); 1393 if (!base) { 1394 pr_err("Can't map frame's registers\n"); 1395 return -ENXIO; 1396 } 1397 1398 ret = arch_timer_mem_register(base, irq); 1399 if (ret) { 1400 iounmap(base); 1401 return ret; 1402 } 1403 1404 arch_counter_base = base; 1405 arch_timers_present |= ARCH_TIMER_TYPE_MEM; 1406 1407 return 0; 1408 } 1409 1410 static int __init arch_timer_mem_of_init(struct device_node *np) 1411 { 1412 struct arch_timer_mem *timer_mem; 1413 struct arch_timer_mem_frame *frame; 1414 struct device_node *frame_node; 1415 struct resource res; 1416 int ret = -EINVAL; 1417 u32 rate; 1418 1419 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL); 1420 if (!timer_mem) 1421 return -ENOMEM; 1422 1423 if (of_address_to_resource(np, 0, &res)) 1424 goto out; 1425 timer_mem->cntctlbase = res.start; 1426 timer_mem->size = resource_size(&res); 1427 1428 for_each_available_child_of_node(np, frame_node) { 1429 u32 n; 1430 struct arch_timer_mem_frame *frame; 1431 1432 if (of_property_read_u32(frame_node, "frame-number", &n)) { 1433 pr_err(FW_BUG "Missing frame-number.\n"); 1434 of_node_put(frame_node); 1435 goto out; 1436 } 1437 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) { 1438 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n", 1439 ARCH_TIMER_MEM_MAX_FRAMES - 1); 1440 of_node_put(frame_node); 1441 goto out; 1442 } 1443 frame = &timer_mem->frame[n]; 1444 1445 if (frame->valid) { 1446 pr_err(FW_BUG "Duplicated frame-number.\n"); 1447 of_node_put(frame_node); 1448 goto out; 1449 } 1450 1451 if (of_address_to_resource(frame_node, 0, &res)) { 1452 of_node_put(frame_node); 1453 goto out; 1454 } 1455 frame->cntbase = res.start; 1456 frame->size = resource_size(&res); 1457 1458 frame->virt_irq = irq_of_parse_and_map(frame_node, 1459 ARCH_TIMER_VIRT_SPI); 1460 frame->phys_irq = irq_of_parse_and_map(frame_node, 1461 ARCH_TIMER_PHYS_SPI); 1462 1463 frame->valid = true; 1464 } 1465 1466 frame = arch_timer_mem_find_best_frame(timer_mem); 1467 if (!frame) { 1468 pr_err("Unable to find a suitable frame in timer @ %pa\n", 1469 &timer_mem->cntctlbase); 1470 ret = -EINVAL; 1471 goto out; 1472 } 1473 1474 rate = arch_timer_mem_frame_get_cntfrq(frame); 1475 arch_timer_of_configure_rate(rate, np); 1476 1477 ret = arch_timer_mem_frame_register(frame); 1478 if (!ret && !arch_timer_needs_of_probing()) 1479 ret = arch_timer_common_init(); 1480 out: 1481 kfree(timer_mem); 1482 return ret; 1483 } 1484 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem", 1485 arch_timer_mem_of_init); 1486 1487 #ifdef CONFIG_ACPI_GTDT 1488 static int __init 1489 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem) 1490 { 1491 struct arch_timer_mem_frame *frame; 1492 u32 rate; 1493 int i; 1494 1495 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) { 1496 frame = &timer_mem->frame[i]; 1497 1498 if (!frame->valid) 1499 continue; 1500 1501 rate = arch_timer_mem_frame_get_cntfrq(frame); 1502 if (rate == arch_timer_rate) 1503 continue; 1504 1505 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n", 1506 &frame->cntbase, 1507 (unsigned long)rate, (unsigned long)arch_timer_rate); 1508 1509 return -EINVAL; 1510 } 1511 1512 return 0; 1513 } 1514 1515 static int __init arch_timer_mem_acpi_init(int platform_timer_count) 1516 { 1517 struct arch_timer_mem *timers, *timer; 1518 struct arch_timer_mem_frame *frame, *best_frame = NULL; 1519 int timer_count, i, ret = 0; 1520 1521 timers = kcalloc(platform_timer_count, sizeof(*timers), 1522 GFP_KERNEL); 1523 if (!timers) 1524 return -ENOMEM; 1525 1526 ret = acpi_arch_timer_mem_init(timers, &timer_count); 1527 if (ret || !timer_count) 1528 goto out; 1529 1530 /* 1531 * While unlikely, it's theoretically possible that none of the frames 1532 * in a timer expose the combination of feature we want. 1533 */ 1534 for (i = 0; i < timer_count; i++) { 1535 timer = &timers[i]; 1536 1537 frame = arch_timer_mem_find_best_frame(timer); 1538 if (!best_frame) 1539 best_frame = frame; 1540 1541 ret = arch_timer_mem_verify_cntfrq(timer); 1542 if (ret) { 1543 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n"); 1544 goto out; 1545 } 1546 1547 if (!best_frame) /* implies !frame */ 1548 /* 1549 * Only complain about missing suitable frames if we 1550 * haven't already found one in a previous iteration. 1551 */ 1552 pr_err("Unable to find a suitable frame in timer @ %pa\n", 1553 &timer->cntctlbase); 1554 } 1555 1556 if (best_frame) 1557 ret = arch_timer_mem_frame_register(best_frame); 1558 out: 1559 kfree(timers); 1560 return ret; 1561 } 1562 1563 /* Initialize per-processor generic timer and memory-mapped timer(if present) */ 1564 static int __init arch_timer_acpi_init(struct acpi_table_header *table) 1565 { 1566 int ret, platform_timer_count; 1567 1568 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { 1569 pr_warn("already initialized, skipping\n"); 1570 return -EINVAL; 1571 } 1572 1573 arch_timers_present |= ARCH_TIMER_TYPE_CP15; 1574 1575 ret = acpi_gtdt_init(table, &platform_timer_count); 1576 if (ret) { 1577 pr_err("Failed to init GTDT table.\n"); 1578 return ret; 1579 } 1580 1581 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] = 1582 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI); 1583 1584 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] = 1585 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI); 1586 1587 arch_timer_ppi[ARCH_TIMER_HYP_PPI] = 1588 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI); 1589 1590 arch_timer_populate_kvm_info(); 1591 1592 /* 1593 * When probing via ACPI, we have no mechanism to override the sysreg 1594 * CNTFRQ value. This *must* be correct. 1595 */ 1596 arch_timer_rate = arch_timer_get_cntfrq(); 1597 if (!arch_timer_rate) { 1598 pr_err(FW_BUG "frequency not available.\n"); 1599 return -EINVAL; 1600 } 1601 1602 arch_timer_uses_ppi = arch_timer_select_ppi(); 1603 if (!arch_timer_ppi[arch_timer_uses_ppi]) { 1604 pr_err("No interrupt available, giving up\n"); 1605 return -EINVAL; 1606 } 1607 1608 /* Always-on capability */ 1609 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi); 1610 1611 /* Check for globally applicable workarounds */ 1612 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table); 1613 1614 ret = arch_timer_register(); 1615 if (ret) 1616 return ret; 1617 1618 if (platform_timer_count && 1619 arch_timer_mem_acpi_init(platform_timer_count)) 1620 pr_err("Failed to initialize memory-mapped timer.\n"); 1621 1622 return arch_timer_common_init(); 1623 } 1624 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init); 1625 #endif 1626