1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/clocksource/arm_arch_timer.c
4  *
5  *  Copyright (C) 2011 ARM Ltd.
6  *  All Rights Reserved
7  */
8 
9 #define pr_fmt(fmt) 	"arch_timer: " fmt
10 
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/clocksource_ids.h>
20 #include <linux/interrupt.h>
21 #include <linux/kstrtox.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_address.h>
24 #include <linux/io.h>
25 #include <linux/slab.h>
26 #include <linux/sched/clock.h>
27 #include <linux/sched_clock.h>
28 #include <linux/acpi.h>
29 #include <linux/arm-smccc.h>
30 #include <linux/ptp_kvm.h>
31 
32 #include <asm/arch_timer.h>
33 #include <asm/virt.h>
34 
35 #include <clocksource/arm_arch_timer.h>
36 
37 #define CNTTIDR		0x08
38 #define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
39 
40 #define CNTACR(n)	(0x40 + ((n) * 4))
41 #define CNTACR_RPCT	BIT(0)
42 #define CNTACR_RVCT	BIT(1)
43 #define CNTACR_RFRQ	BIT(2)
44 #define CNTACR_RVOFF	BIT(3)
45 #define CNTACR_RWVT	BIT(4)
46 #define CNTACR_RWPT	BIT(5)
47 
48 #define CNTPCT_LO	0x00
49 #define CNTVCT_LO	0x08
50 #define CNTFRQ		0x10
51 #define CNTP_CVAL_LO	0x20
52 #define CNTP_CTL	0x2c
53 #define CNTV_CVAL_LO	0x30
54 #define CNTV_CTL	0x3c
55 
56 /*
57  * The minimum amount of time a generic counter is guaranteed to not roll over
58  * (40 years)
59  */
60 #define MIN_ROLLOVER_SECS	(40ULL * 365 * 24 * 3600)
61 
62 static unsigned arch_timers_present __initdata;
63 
64 struct arch_timer {
65 	void __iomem *base;
66 	struct clock_event_device evt;
67 };
68 
69 static struct arch_timer *arch_timer_mem __ro_after_init;
70 
71 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
72 
73 static u32 arch_timer_rate __ro_after_init;
74 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
75 
76 static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
77 	[ARCH_TIMER_PHYS_SECURE_PPI]	= "sec-phys",
78 	[ARCH_TIMER_PHYS_NONSECURE_PPI]	= "phys",
79 	[ARCH_TIMER_VIRT_PPI]		= "virt",
80 	[ARCH_TIMER_HYP_PPI]		= "hyp-phys",
81 	[ARCH_TIMER_HYP_VIRT_PPI]	= "hyp-virt",
82 };
83 
84 static struct clock_event_device __percpu *arch_timer_evt;
85 
86 static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
87 static bool arch_timer_c3stop __ro_after_init;
88 static bool arch_timer_mem_use_virtual __ro_after_init;
89 static bool arch_counter_suspend_stop __ro_after_init;
90 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
91 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
92 #else
93 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
94 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
95 
96 static cpumask_t evtstrm_available = CPU_MASK_NONE;
97 static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
98 
99 static int __init early_evtstrm_cfg(char *buf)
100 {
101 	return kstrtobool(buf, &evtstrm_enable);
102 }
103 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
104 
105 /*
106  * Makes an educated guess at a valid counter width based on the Generic Timer
107  * specification. Of note:
108  *   1) the system counter is at least 56 bits wide
109  *   2) a roll-over time of not less than 40 years
110  *
111  * See 'ARM DDI 0487G.a D11.1.2 ("The system counter")' for more details.
112  */
113 static int arch_counter_get_width(void)
114 {
115 	u64 min_cycles = MIN_ROLLOVER_SECS * arch_timer_rate;
116 
117 	/* guarantee the returned width is within the valid range */
118 	return clamp_val(ilog2(min_cycles - 1) + 1, 56, 64);
119 }
120 
121 /*
122  * Architected system timer support.
123  */
124 
125 static __always_inline
126 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u64 val,
127 			  struct clock_event_device *clk)
128 {
129 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
130 		struct arch_timer *timer = to_arch_timer(clk);
131 		switch (reg) {
132 		case ARCH_TIMER_REG_CTRL:
133 			writel_relaxed((u32)val, timer->base + CNTP_CTL);
134 			break;
135 		case ARCH_TIMER_REG_CVAL:
136 			/*
137 			 * Not guaranteed to be atomic, so the timer
138 			 * must be disabled at this point.
139 			 */
140 			writeq_relaxed(val, timer->base + CNTP_CVAL_LO);
141 			break;
142 		default:
143 			BUILD_BUG();
144 		}
145 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
146 		struct arch_timer *timer = to_arch_timer(clk);
147 		switch (reg) {
148 		case ARCH_TIMER_REG_CTRL:
149 			writel_relaxed((u32)val, timer->base + CNTV_CTL);
150 			break;
151 		case ARCH_TIMER_REG_CVAL:
152 			/* Same restriction as above */
153 			writeq_relaxed(val, timer->base + CNTV_CVAL_LO);
154 			break;
155 		default:
156 			BUILD_BUG();
157 		}
158 	} else {
159 		arch_timer_reg_write_cp15(access, reg, val);
160 	}
161 }
162 
163 static __always_inline
164 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
165 			struct clock_event_device *clk)
166 {
167 	u32 val;
168 
169 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
170 		struct arch_timer *timer = to_arch_timer(clk);
171 		switch (reg) {
172 		case ARCH_TIMER_REG_CTRL:
173 			val = readl_relaxed(timer->base + CNTP_CTL);
174 			break;
175 		default:
176 			BUILD_BUG();
177 		}
178 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
179 		struct arch_timer *timer = to_arch_timer(clk);
180 		switch (reg) {
181 		case ARCH_TIMER_REG_CTRL:
182 			val = readl_relaxed(timer->base + CNTV_CTL);
183 			break;
184 		default:
185 			BUILD_BUG();
186 		}
187 	} else {
188 		val = arch_timer_reg_read_cp15(access, reg);
189 	}
190 
191 	return val;
192 }
193 
194 static noinstr u64 raw_counter_get_cntpct_stable(void)
195 {
196 	return __arch_counter_get_cntpct_stable();
197 }
198 
199 static notrace u64 arch_counter_get_cntpct_stable(void)
200 {
201 	u64 val;
202 	preempt_disable_notrace();
203 	val = __arch_counter_get_cntpct_stable();
204 	preempt_enable_notrace();
205 	return val;
206 }
207 
208 static noinstr u64 arch_counter_get_cntpct(void)
209 {
210 	return __arch_counter_get_cntpct();
211 }
212 
213 static noinstr u64 raw_counter_get_cntvct_stable(void)
214 {
215 	return __arch_counter_get_cntvct_stable();
216 }
217 
218 static notrace u64 arch_counter_get_cntvct_stable(void)
219 {
220 	u64 val;
221 	preempt_disable_notrace();
222 	val = __arch_counter_get_cntvct_stable();
223 	preempt_enable_notrace();
224 	return val;
225 }
226 
227 static noinstr u64 arch_counter_get_cntvct(void)
228 {
229 	return __arch_counter_get_cntvct();
230 }
231 
232 /*
233  * Default to cp15 based access because arm64 uses this function for
234  * sched_clock() before DT is probed and the cp15 method is guaranteed
235  * to exist on arm64. arm doesn't use this before DT is probed so even
236  * if we don't have the cp15 accessors we won't have a problem.
237  */
238 u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
239 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
240 
241 static u64 arch_counter_read(struct clocksource *cs)
242 {
243 	return arch_timer_read_counter();
244 }
245 
246 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
247 {
248 	return arch_timer_read_counter();
249 }
250 
251 static struct clocksource clocksource_counter = {
252 	.name	= "arch_sys_counter",
253 	.id	= CSID_ARM_ARCH_COUNTER,
254 	.rating	= 400,
255 	.read	= arch_counter_read,
256 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
257 };
258 
259 static struct cyclecounter cyclecounter __ro_after_init = {
260 	.read	= arch_counter_read_cc,
261 };
262 
263 struct ate_acpi_oem_info {
264 	char oem_id[ACPI_OEM_ID_SIZE + 1];
265 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
266 	u32 oem_revision;
267 };
268 
269 #ifdef CONFIG_FSL_ERRATUM_A008585
270 /*
271  * The number of retries is an arbitrary value well beyond the highest number
272  * of iterations the loop has been observed to take.
273  */
274 #define __fsl_a008585_read_reg(reg) ({			\
275 	u64 _old, _new;					\
276 	int _retries = 200;				\
277 							\
278 	do {						\
279 		_old = read_sysreg(reg);		\
280 		_new = read_sysreg(reg);		\
281 		_retries--;				\
282 	} while (unlikely(_old != _new) && _retries);	\
283 							\
284 	WARN_ON_ONCE(!_retries);			\
285 	_new;						\
286 })
287 
288 static u64 notrace fsl_a008585_read_cntpct_el0(void)
289 {
290 	return __fsl_a008585_read_reg(cntpct_el0);
291 }
292 
293 static u64 notrace fsl_a008585_read_cntvct_el0(void)
294 {
295 	return __fsl_a008585_read_reg(cntvct_el0);
296 }
297 #endif
298 
299 #ifdef CONFIG_HISILICON_ERRATUM_161010101
300 /*
301  * Verify whether the value of the second read is larger than the first by
302  * less than 32 is the only way to confirm the value is correct, so clear the
303  * lower 5 bits to check whether the difference is greater than 32 or not.
304  * Theoretically the erratum should not occur more than twice in succession
305  * when reading the system counter, but it is possible that some interrupts
306  * may lead to more than twice read errors, triggering the warning, so setting
307  * the number of retries far beyond the number of iterations the loop has been
308  * observed to take.
309  */
310 #define __hisi_161010101_read_reg(reg) ({				\
311 	u64 _old, _new;						\
312 	int _retries = 50;					\
313 								\
314 	do {							\
315 		_old = read_sysreg(reg);			\
316 		_new = read_sysreg(reg);			\
317 		_retries--;					\
318 	} while (unlikely((_new - _old) >> 5) && _retries);	\
319 								\
320 	WARN_ON_ONCE(!_retries);				\
321 	_new;							\
322 })
323 
324 static u64 notrace hisi_161010101_read_cntpct_el0(void)
325 {
326 	return __hisi_161010101_read_reg(cntpct_el0);
327 }
328 
329 static u64 notrace hisi_161010101_read_cntvct_el0(void)
330 {
331 	return __hisi_161010101_read_reg(cntvct_el0);
332 }
333 
334 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
335 	/*
336 	 * Note that trailing spaces are required to properly match
337 	 * the OEM table information.
338 	 */
339 	{
340 		.oem_id		= "HISI  ",
341 		.oem_table_id	= "HIP05   ",
342 		.oem_revision	= 0,
343 	},
344 	{
345 		.oem_id		= "HISI  ",
346 		.oem_table_id	= "HIP06   ",
347 		.oem_revision	= 0,
348 	},
349 	{
350 		.oem_id		= "HISI  ",
351 		.oem_table_id	= "HIP07   ",
352 		.oem_revision	= 0,
353 	},
354 	{ /* Sentinel indicating the end of the OEM array */ },
355 };
356 #endif
357 
358 #ifdef CONFIG_ARM64_ERRATUM_858921
359 static u64 notrace arm64_858921_read_cntpct_el0(void)
360 {
361 	u64 old, new;
362 
363 	old = read_sysreg(cntpct_el0);
364 	new = read_sysreg(cntpct_el0);
365 	return (((old ^ new) >> 32) & 1) ? old : new;
366 }
367 
368 static u64 notrace arm64_858921_read_cntvct_el0(void)
369 {
370 	u64 old, new;
371 
372 	old = read_sysreg(cntvct_el0);
373 	new = read_sysreg(cntvct_el0);
374 	return (((old ^ new) >> 32) & 1) ? old : new;
375 }
376 #endif
377 
378 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
379 /*
380  * The low bits of the counter registers are indeterminate while bit 10 or
381  * greater is rolling over. Since the counter value can jump both backward
382  * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
383  * with all ones or all zeros in the low bits. Bound the loop by the maximum
384  * number of CPU cycles in 3 consecutive 24 MHz counter periods.
385  */
386 #define __sun50i_a64_read_reg(reg) ({					\
387 	u64 _val;							\
388 	int _retries = 150;						\
389 									\
390 	do {								\
391 		_val = read_sysreg(reg);				\
392 		_retries--;						\
393 	} while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries);	\
394 									\
395 	WARN_ON_ONCE(!_retries);					\
396 	_val;								\
397 })
398 
399 static u64 notrace sun50i_a64_read_cntpct_el0(void)
400 {
401 	return __sun50i_a64_read_reg(cntpct_el0);
402 }
403 
404 static u64 notrace sun50i_a64_read_cntvct_el0(void)
405 {
406 	return __sun50i_a64_read_reg(cntvct_el0);
407 }
408 #endif
409 
410 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
411 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
412 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
413 
414 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
415 
416 /*
417  * Force the inlining of this function so that the register accesses
418  * can be themselves correctly inlined.
419  */
420 static __always_inline
421 void erratum_set_next_event_generic(const int access, unsigned long evt,
422 				    struct clock_event_device *clk)
423 {
424 	unsigned long ctrl;
425 	u64 cval;
426 
427 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
428 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
429 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
430 
431 	if (access == ARCH_TIMER_PHYS_ACCESS) {
432 		cval = evt + arch_counter_get_cntpct_stable();
433 		write_sysreg(cval, cntp_cval_el0);
434 	} else {
435 		cval = evt + arch_counter_get_cntvct_stable();
436 		write_sysreg(cval, cntv_cval_el0);
437 	}
438 
439 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
440 }
441 
442 static __maybe_unused int erratum_set_next_event_virt(unsigned long evt,
443 					    struct clock_event_device *clk)
444 {
445 	erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
446 	return 0;
447 }
448 
449 static __maybe_unused int erratum_set_next_event_phys(unsigned long evt,
450 					    struct clock_event_device *clk)
451 {
452 	erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
453 	return 0;
454 }
455 
456 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
457 #ifdef CONFIG_FSL_ERRATUM_A008585
458 	{
459 		.match_type = ate_match_dt,
460 		.id = "fsl,erratum-a008585",
461 		.desc = "Freescale erratum a005858",
462 		.read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
463 		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
464 		.set_next_event_phys = erratum_set_next_event_phys,
465 		.set_next_event_virt = erratum_set_next_event_virt,
466 	},
467 #endif
468 #ifdef CONFIG_HISILICON_ERRATUM_161010101
469 	{
470 		.match_type = ate_match_dt,
471 		.id = "hisilicon,erratum-161010101",
472 		.desc = "HiSilicon erratum 161010101",
473 		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
474 		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
475 		.set_next_event_phys = erratum_set_next_event_phys,
476 		.set_next_event_virt = erratum_set_next_event_virt,
477 	},
478 	{
479 		.match_type = ate_match_acpi_oem_info,
480 		.id = hisi_161010101_oem_info,
481 		.desc = "HiSilicon erratum 161010101",
482 		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
483 		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
484 		.set_next_event_phys = erratum_set_next_event_phys,
485 		.set_next_event_virt = erratum_set_next_event_virt,
486 	},
487 #endif
488 #ifdef CONFIG_ARM64_ERRATUM_858921
489 	{
490 		.match_type = ate_match_local_cap_id,
491 		.id = (void *)ARM64_WORKAROUND_858921,
492 		.desc = "ARM erratum 858921",
493 		.read_cntpct_el0 = arm64_858921_read_cntpct_el0,
494 		.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
495 		.set_next_event_phys = erratum_set_next_event_phys,
496 		.set_next_event_virt = erratum_set_next_event_virt,
497 	},
498 #endif
499 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
500 	{
501 		.match_type = ate_match_dt,
502 		.id = "allwinner,erratum-unknown1",
503 		.desc = "Allwinner erratum UNKNOWN1",
504 		.read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
505 		.read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
506 		.set_next_event_phys = erratum_set_next_event_phys,
507 		.set_next_event_virt = erratum_set_next_event_virt,
508 	},
509 #endif
510 #ifdef CONFIG_ARM64_ERRATUM_1418040
511 	{
512 		.match_type = ate_match_local_cap_id,
513 		.id = (void *)ARM64_WORKAROUND_1418040,
514 		.desc = "ARM erratum 1418040",
515 		.disable_compat_vdso = true,
516 	},
517 #endif
518 };
519 
520 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
521 			       const void *);
522 
523 static
524 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
525 				 const void *arg)
526 {
527 	const struct device_node *np = arg;
528 
529 	return of_property_read_bool(np, wa->id);
530 }
531 
532 static
533 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
534 					const void *arg)
535 {
536 	return this_cpu_has_cap((uintptr_t)wa->id);
537 }
538 
539 
540 static
541 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
542 				       const void *arg)
543 {
544 	static const struct ate_acpi_oem_info empty_oem_info = {};
545 	const struct ate_acpi_oem_info *info = wa->id;
546 	const struct acpi_table_header *table = arg;
547 
548 	/* Iterate over the ACPI OEM info array, looking for a match */
549 	while (memcmp(info, &empty_oem_info, sizeof(*info))) {
550 		if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
551 		    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
552 		    info->oem_revision == table->oem_revision)
553 			return true;
554 
555 		info++;
556 	}
557 
558 	return false;
559 }
560 
561 static const struct arch_timer_erratum_workaround *
562 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
563 			  ate_match_fn_t match_fn,
564 			  void *arg)
565 {
566 	int i;
567 
568 	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
569 		if (ool_workarounds[i].match_type != type)
570 			continue;
571 
572 		if (match_fn(&ool_workarounds[i], arg))
573 			return &ool_workarounds[i];
574 	}
575 
576 	return NULL;
577 }
578 
579 static
580 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
581 				  bool local)
582 {
583 	int i;
584 
585 	if (local) {
586 		__this_cpu_write(timer_unstable_counter_workaround, wa);
587 	} else {
588 		for_each_possible_cpu(i)
589 			per_cpu(timer_unstable_counter_workaround, i) = wa;
590 	}
591 
592 	if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
593 		atomic_set(&timer_unstable_counter_workaround_in_use, 1);
594 
595 	/*
596 	 * Don't use the vdso fastpath if errata require using the
597 	 * out-of-line counter accessor. We may change our mind pretty
598 	 * late in the game (with a per-CPU erratum, for example), so
599 	 * change both the default value and the vdso itself.
600 	 */
601 	if (wa->read_cntvct_el0) {
602 		clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
603 		vdso_default = VDSO_CLOCKMODE_NONE;
604 	} else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
605 		vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
606 		clocksource_counter.vdso_clock_mode = vdso_default;
607 	}
608 }
609 
610 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
611 					    void *arg)
612 {
613 	const struct arch_timer_erratum_workaround *wa, *__wa;
614 	ate_match_fn_t match_fn = NULL;
615 	bool local = false;
616 
617 	switch (type) {
618 	case ate_match_dt:
619 		match_fn = arch_timer_check_dt_erratum;
620 		break;
621 	case ate_match_local_cap_id:
622 		match_fn = arch_timer_check_local_cap_erratum;
623 		local = true;
624 		break;
625 	case ate_match_acpi_oem_info:
626 		match_fn = arch_timer_check_acpi_oem_erratum;
627 		break;
628 	default:
629 		WARN_ON(1);
630 		return;
631 	}
632 
633 	wa = arch_timer_iterate_errata(type, match_fn, arg);
634 	if (!wa)
635 		return;
636 
637 	__wa = __this_cpu_read(timer_unstable_counter_workaround);
638 	if (__wa && wa != __wa)
639 		pr_warn("Can't enable workaround for %s (clashes with %s\n)",
640 			wa->desc, __wa->desc);
641 
642 	if (__wa)
643 		return;
644 
645 	arch_timer_enable_workaround(wa, local);
646 	pr_info("Enabling %s workaround for %s\n",
647 		local ? "local" : "global", wa->desc);
648 }
649 
650 static bool arch_timer_this_cpu_has_cntvct_wa(void)
651 {
652 	return has_erratum_handler(read_cntvct_el0);
653 }
654 
655 static bool arch_timer_counter_has_wa(void)
656 {
657 	return atomic_read(&timer_unstable_counter_workaround_in_use);
658 }
659 #else
660 #define arch_timer_check_ool_workaround(t,a)		do { } while(0)
661 #define arch_timer_this_cpu_has_cntvct_wa()		({false;})
662 #define arch_timer_counter_has_wa()			({false;})
663 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
664 
665 static __always_inline irqreturn_t timer_handler(const int access,
666 					struct clock_event_device *evt)
667 {
668 	unsigned long ctrl;
669 
670 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
671 	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
672 		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
673 		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
674 		evt->event_handler(evt);
675 		return IRQ_HANDLED;
676 	}
677 
678 	return IRQ_NONE;
679 }
680 
681 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
682 {
683 	struct clock_event_device *evt = dev_id;
684 
685 	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
686 }
687 
688 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
689 {
690 	struct clock_event_device *evt = dev_id;
691 
692 	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
693 }
694 
695 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
696 {
697 	struct clock_event_device *evt = dev_id;
698 
699 	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
700 }
701 
702 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
703 {
704 	struct clock_event_device *evt = dev_id;
705 
706 	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
707 }
708 
709 static __always_inline int arch_timer_shutdown(const int access,
710 					       struct clock_event_device *clk)
711 {
712 	unsigned long ctrl;
713 
714 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
715 	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
716 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
717 
718 	return 0;
719 }
720 
721 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
722 {
723 	return arch_timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
724 }
725 
726 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
727 {
728 	return arch_timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
729 }
730 
731 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
732 {
733 	return arch_timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
734 }
735 
736 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
737 {
738 	return arch_timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
739 }
740 
741 static __always_inline void set_next_event(const int access, unsigned long evt,
742 					   struct clock_event_device *clk)
743 {
744 	unsigned long ctrl;
745 	u64 cnt;
746 
747 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
748 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
749 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
750 
751 	if (access == ARCH_TIMER_PHYS_ACCESS)
752 		cnt = __arch_counter_get_cntpct();
753 	else
754 		cnt = __arch_counter_get_cntvct();
755 
756 	arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
757 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
758 }
759 
760 static int arch_timer_set_next_event_virt(unsigned long evt,
761 					  struct clock_event_device *clk)
762 {
763 	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
764 	return 0;
765 }
766 
767 static int arch_timer_set_next_event_phys(unsigned long evt,
768 					  struct clock_event_device *clk)
769 {
770 	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
771 	return 0;
772 }
773 
774 static noinstr u64 arch_counter_get_cnt_mem(struct arch_timer *t, int offset_lo)
775 {
776 	u32 cnt_lo, cnt_hi, tmp_hi;
777 
778 	do {
779 		cnt_hi = __le32_to_cpu((__le32 __force)__raw_readl(t->base + offset_lo + 4));
780 		cnt_lo = __le32_to_cpu((__le32 __force)__raw_readl(t->base + offset_lo));
781 		tmp_hi = __le32_to_cpu((__le32 __force)__raw_readl(t->base + offset_lo + 4));
782 	} while (cnt_hi != tmp_hi);
783 
784 	return ((u64) cnt_hi << 32) | cnt_lo;
785 }
786 
787 static __always_inline void set_next_event_mem(const int access, unsigned long evt,
788 					   struct clock_event_device *clk)
789 {
790 	struct arch_timer *timer = to_arch_timer(clk);
791 	unsigned long ctrl;
792 	u64 cnt;
793 
794 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
795 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
796 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
797 
798 	if (access ==  ARCH_TIMER_MEM_VIRT_ACCESS)
799 		cnt = arch_counter_get_cnt_mem(timer, CNTVCT_LO);
800 	else
801 		cnt = arch_counter_get_cnt_mem(timer, CNTPCT_LO);
802 
803 	arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
804 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
805 }
806 
807 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
808 					      struct clock_event_device *clk)
809 {
810 	set_next_event_mem(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
811 	return 0;
812 }
813 
814 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
815 					      struct clock_event_device *clk)
816 {
817 	set_next_event_mem(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
818 	return 0;
819 }
820 
821 static u64 __arch_timer_check_delta(void)
822 {
823 #ifdef CONFIG_ARM64
824 	const struct midr_range broken_cval_midrs[] = {
825 		/*
826 		 * XGene-1 implements CVAL in terms of TVAL, meaning
827 		 * that the maximum timer range is 32bit. Shame on them.
828 		 *
829 		 * Note that TVAL is signed, thus has only 31 of its
830 		 * 32 bits to express magnitude.
831 		 */
832 		MIDR_ALL_VERSIONS(MIDR_CPU_MODEL(ARM_CPU_IMP_APM,
833 						 APM_CPU_PART_POTENZA)),
834 		{},
835 	};
836 
837 	if (is_midr_in_range_list(read_cpuid_id(), broken_cval_midrs)) {
838 		pr_warn_once("Broken CNTx_CVAL_EL1, using 31 bit TVAL instead.\n");
839 		return CLOCKSOURCE_MASK(31);
840 	}
841 #endif
842 	return CLOCKSOURCE_MASK(arch_counter_get_width());
843 }
844 
845 static void __arch_timer_setup(unsigned type,
846 			       struct clock_event_device *clk)
847 {
848 	u64 max_delta;
849 
850 	clk->features = CLOCK_EVT_FEAT_ONESHOT;
851 
852 	if (type == ARCH_TIMER_TYPE_CP15) {
853 		typeof(clk->set_next_event) sne;
854 
855 		arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
856 
857 		if (arch_timer_c3stop)
858 			clk->features |= CLOCK_EVT_FEAT_C3STOP;
859 		clk->name = "arch_sys_timer";
860 		clk->rating = 450;
861 		clk->cpumask = cpumask_of(smp_processor_id());
862 		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
863 		switch (arch_timer_uses_ppi) {
864 		case ARCH_TIMER_VIRT_PPI:
865 			clk->set_state_shutdown = arch_timer_shutdown_virt;
866 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
867 			sne = erratum_handler(set_next_event_virt);
868 			break;
869 		case ARCH_TIMER_PHYS_SECURE_PPI:
870 		case ARCH_TIMER_PHYS_NONSECURE_PPI:
871 		case ARCH_TIMER_HYP_PPI:
872 			clk->set_state_shutdown = arch_timer_shutdown_phys;
873 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
874 			sne = erratum_handler(set_next_event_phys);
875 			break;
876 		default:
877 			BUG();
878 		}
879 
880 		clk->set_next_event = sne;
881 		max_delta = __arch_timer_check_delta();
882 	} else {
883 		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
884 		clk->name = "arch_mem_timer";
885 		clk->rating = 400;
886 		clk->cpumask = cpu_possible_mask;
887 		if (arch_timer_mem_use_virtual) {
888 			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
889 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
890 			clk->set_next_event =
891 				arch_timer_set_next_event_virt_mem;
892 		} else {
893 			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
894 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
895 			clk->set_next_event =
896 				arch_timer_set_next_event_phys_mem;
897 		}
898 
899 		max_delta = CLOCKSOURCE_MASK(56);
900 	}
901 
902 	clk->set_state_shutdown(clk);
903 
904 	clockevents_config_and_register(clk, arch_timer_rate, 0xf, max_delta);
905 }
906 
907 static void arch_timer_evtstrm_enable(unsigned int divider)
908 {
909 	u32 cntkctl = arch_timer_get_cntkctl();
910 
911 #ifdef CONFIG_ARM64
912 	/* ECV is likely to require a large divider. Use the EVNTIS flag. */
913 	if (cpus_have_const_cap(ARM64_HAS_ECV) && divider > 15) {
914 		cntkctl |= ARCH_TIMER_EVT_INTERVAL_SCALE;
915 		divider -= 8;
916 	}
917 #endif
918 
919 	divider = min(divider, 15U);
920 	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
921 	/* Set the divider and enable virtual event stream */
922 	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
923 			| ARCH_TIMER_VIRT_EVT_EN;
924 	arch_timer_set_cntkctl(cntkctl);
925 	arch_timer_set_evtstrm_feature();
926 	cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
927 }
928 
929 static void arch_timer_configure_evtstream(void)
930 {
931 	int evt_stream_div, lsb;
932 
933 	/*
934 	 * As the event stream can at most be generated at half the frequency
935 	 * of the counter, use half the frequency when computing the divider.
936 	 */
937 	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
938 
939 	/*
940 	 * Find the closest power of two to the divisor. If the adjacent bit
941 	 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
942 	 */
943 	lsb = fls(evt_stream_div) - 1;
944 	if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
945 		lsb++;
946 
947 	/* enable event stream */
948 	arch_timer_evtstrm_enable(max(0, lsb));
949 }
950 
951 static void arch_counter_set_user_access(void)
952 {
953 	u32 cntkctl = arch_timer_get_cntkctl();
954 
955 	/* Disable user access to the timers and both counters */
956 	/* Also disable virtual event stream */
957 	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
958 			| ARCH_TIMER_USR_VT_ACCESS_EN
959 		        | ARCH_TIMER_USR_VCT_ACCESS_EN
960 			| ARCH_TIMER_VIRT_EVT_EN
961 			| ARCH_TIMER_USR_PCT_ACCESS_EN);
962 
963 	/*
964 	 * Enable user access to the virtual counter if it doesn't
965 	 * need to be workaround. The vdso may have been already
966 	 * disabled though.
967 	 */
968 	if (arch_timer_this_cpu_has_cntvct_wa())
969 		pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
970 	else
971 		cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
972 
973 	arch_timer_set_cntkctl(cntkctl);
974 }
975 
976 static bool arch_timer_has_nonsecure_ppi(void)
977 {
978 	return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
979 		arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
980 }
981 
982 static u32 check_ppi_trigger(int irq)
983 {
984 	u32 flags = irq_get_trigger_type(irq);
985 
986 	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
987 		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
988 		pr_warn("WARNING: Please fix your firmware\n");
989 		flags = IRQF_TRIGGER_LOW;
990 	}
991 
992 	return flags;
993 }
994 
995 static int arch_timer_starting_cpu(unsigned int cpu)
996 {
997 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
998 	u32 flags;
999 
1000 	__arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
1001 
1002 	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
1003 	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
1004 
1005 	if (arch_timer_has_nonsecure_ppi()) {
1006 		flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1007 		enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1008 				  flags);
1009 	}
1010 
1011 	arch_counter_set_user_access();
1012 	if (evtstrm_enable)
1013 		arch_timer_configure_evtstream();
1014 
1015 	return 0;
1016 }
1017 
1018 static int validate_timer_rate(void)
1019 {
1020 	if (!arch_timer_rate)
1021 		return -EINVAL;
1022 
1023 	/* Arch timer frequency < 1MHz can cause trouble */
1024 	WARN_ON(arch_timer_rate < 1000000);
1025 
1026 	return 0;
1027 }
1028 
1029 /*
1030  * For historical reasons, when probing with DT we use whichever (non-zero)
1031  * rate was probed first, and don't verify that others match. If the first node
1032  * probed has a clock-frequency property, this overrides the HW register.
1033  */
1034 static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
1035 {
1036 	/* Who has more than one independent system counter? */
1037 	if (arch_timer_rate)
1038 		return;
1039 
1040 	if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
1041 		arch_timer_rate = rate;
1042 
1043 	/* Check the timer frequency. */
1044 	if (validate_timer_rate())
1045 		pr_warn("frequency not available\n");
1046 }
1047 
1048 static void __init arch_timer_banner(unsigned type)
1049 {
1050 	pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
1051 		type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
1052 		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
1053 			" and " : "",
1054 		type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
1055 		(unsigned long)arch_timer_rate / 1000000,
1056 		(unsigned long)(arch_timer_rate / 10000) % 100,
1057 		type & ARCH_TIMER_TYPE_CP15 ?
1058 			(arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
1059 			"",
1060 		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
1061 		type & ARCH_TIMER_TYPE_MEM ?
1062 			arch_timer_mem_use_virtual ? "virt" : "phys" :
1063 			"");
1064 }
1065 
1066 u32 arch_timer_get_rate(void)
1067 {
1068 	return arch_timer_rate;
1069 }
1070 
1071 bool arch_timer_evtstrm_available(void)
1072 {
1073 	/*
1074 	 * We might get called from a preemptible context. This is fine
1075 	 * because availability of the event stream should be always the same
1076 	 * for a preemptible context and context where we might resume a task.
1077 	 */
1078 	return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
1079 }
1080 
1081 static noinstr u64 arch_counter_get_cntvct_mem(void)
1082 {
1083 	return arch_counter_get_cnt_mem(arch_timer_mem, CNTVCT_LO);
1084 }
1085 
1086 static struct arch_timer_kvm_info arch_timer_kvm_info;
1087 
1088 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
1089 {
1090 	return &arch_timer_kvm_info;
1091 }
1092 
1093 static void __init arch_counter_register(unsigned type)
1094 {
1095 	u64 (*scr)(void);
1096 	u64 start_count;
1097 	int width;
1098 
1099 	/* Register the CP15 based counter if we have one */
1100 	if (type & ARCH_TIMER_TYPE_CP15) {
1101 		u64 (*rd)(void);
1102 
1103 		if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1104 		    arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1105 			if (arch_timer_counter_has_wa()) {
1106 				rd = arch_counter_get_cntvct_stable;
1107 				scr = raw_counter_get_cntvct_stable;
1108 			} else {
1109 				rd = arch_counter_get_cntvct;
1110 				scr = arch_counter_get_cntvct;
1111 			}
1112 		} else {
1113 			if (arch_timer_counter_has_wa()) {
1114 				rd = arch_counter_get_cntpct_stable;
1115 				scr = raw_counter_get_cntpct_stable;
1116 			} else {
1117 				rd = arch_counter_get_cntpct;
1118 				scr = arch_counter_get_cntpct;
1119 			}
1120 		}
1121 
1122 		arch_timer_read_counter = rd;
1123 		clocksource_counter.vdso_clock_mode = vdso_default;
1124 	} else {
1125 		arch_timer_read_counter = arch_counter_get_cntvct_mem;
1126 		scr = arch_counter_get_cntvct_mem;
1127 	}
1128 
1129 	width = arch_counter_get_width();
1130 	clocksource_counter.mask = CLOCKSOURCE_MASK(width);
1131 	cyclecounter.mask = CLOCKSOURCE_MASK(width);
1132 
1133 	if (!arch_counter_suspend_stop)
1134 		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1135 	start_count = arch_timer_read_counter();
1136 	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1137 	cyclecounter.mult = clocksource_counter.mult;
1138 	cyclecounter.shift = clocksource_counter.shift;
1139 	timecounter_init(&arch_timer_kvm_info.timecounter,
1140 			 &cyclecounter, start_count);
1141 
1142 	sched_clock_register(scr, width, arch_timer_rate);
1143 }
1144 
1145 static void arch_timer_stop(struct clock_event_device *clk)
1146 {
1147 	pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1148 
1149 	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1150 	if (arch_timer_has_nonsecure_ppi())
1151 		disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1152 
1153 	clk->set_state_shutdown(clk);
1154 }
1155 
1156 static int arch_timer_dying_cpu(unsigned int cpu)
1157 {
1158 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1159 
1160 	cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1161 
1162 	arch_timer_stop(clk);
1163 	return 0;
1164 }
1165 
1166 #ifdef CONFIG_CPU_PM
1167 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1168 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1169 				    unsigned long action, void *hcpu)
1170 {
1171 	if (action == CPU_PM_ENTER) {
1172 		__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1173 
1174 		cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1175 	} else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1176 		arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1177 
1178 		if (arch_timer_have_evtstrm_feature())
1179 			cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1180 	}
1181 	return NOTIFY_OK;
1182 }
1183 
1184 static struct notifier_block arch_timer_cpu_pm_notifier = {
1185 	.notifier_call = arch_timer_cpu_pm_notify,
1186 };
1187 
1188 static int __init arch_timer_cpu_pm_init(void)
1189 {
1190 	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1191 }
1192 
1193 static void __init arch_timer_cpu_pm_deinit(void)
1194 {
1195 	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1196 }
1197 
1198 #else
1199 static int __init arch_timer_cpu_pm_init(void)
1200 {
1201 	return 0;
1202 }
1203 
1204 static void __init arch_timer_cpu_pm_deinit(void)
1205 {
1206 }
1207 #endif
1208 
1209 static int __init arch_timer_register(void)
1210 {
1211 	int err;
1212 	int ppi;
1213 
1214 	arch_timer_evt = alloc_percpu(struct clock_event_device);
1215 	if (!arch_timer_evt) {
1216 		err = -ENOMEM;
1217 		goto out;
1218 	}
1219 
1220 	ppi = arch_timer_ppi[arch_timer_uses_ppi];
1221 	switch (arch_timer_uses_ppi) {
1222 	case ARCH_TIMER_VIRT_PPI:
1223 		err = request_percpu_irq(ppi, arch_timer_handler_virt,
1224 					 "arch_timer", arch_timer_evt);
1225 		break;
1226 	case ARCH_TIMER_PHYS_SECURE_PPI:
1227 	case ARCH_TIMER_PHYS_NONSECURE_PPI:
1228 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1229 					 "arch_timer", arch_timer_evt);
1230 		if (!err && arch_timer_has_nonsecure_ppi()) {
1231 			ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1232 			err = request_percpu_irq(ppi, arch_timer_handler_phys,
1233 						 "arch_timer", arch_timer_evt);
1234 			if (err)
1235 				free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1236 						arch_timer_evt);
1237 		}
1238 		break;
1239 	case ARCH_TIMER_HYP_PPI:
1240 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1241 					 "arch_timer", arch_timer_evt);
1242 		break;
1243 	default:
1244 		BUG();
1245 	}
1246 
1247 	if (err) {
1248 		pr_err("can't register interrupt %d (%d)\n", ppi, err);
1249 		goto out_free;
1250 	}
1251 
1252 	err = arch_timer_cpu_pm_init();
1253 	if (err)
1254 		goto out_unreg_notify;
1255 
1256 	/* Register and immediately configure the timer on the boot CPU */
1257 	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1258 				"clockevents/arm/arch_timer:starting",
1259 				arch_timer_starting_cpu, arch_timer_dying_cpu);
1260 	if (err)
1261 		goto out_unreg_cpupm;
1262 	return 0;
1263 
1264 out_unreg_cpupm:
1265 	arch_timer_cpu_pm_deinit();
1266 
1267 out_unreg_notify:
1268 	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1269 	if (arch_timer_has_nonsecure_ppi())
1270 		free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1271 				arch_timer_evt);
1272 
1273 out_free:
1274 	free_percpu(arch_timer_evt);
1275 out:
1276 	return err;
1277 }
1278 
1279 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1280 {
1281 	int ret;
1282 	irq_handler_t func;
1283 
1284 	arch_timer_mem = kzalloc(sizeof(*arch_timer_mem), GFP_KERNEL);
1285 	if (!arch_timer_mem)
1286 		return -ENOMEM;
1287 
1288 	arch_timer_mem->base = base;
1289 	arch_timer_mem->evt.irq = irq;
1290 	__arch_timer_setup(ARCH_TIMER_TYPE_MEM, &arch_timer_mem->evt);
1291 
1292 	if (arch_timer_mem_use_virtual)
1293 		func = arch_timer_handler_virt_mem;
1294 	else
1295 		func = arch_timer_handler_phys_mem;
1296 
1297 	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &arch_timer_mem->evt);
1298 	if (ret) {
1299 		pr_err("Failed to request mem timer irq\n");
1300 		kfree(arch_timer_mem);
1301 		arch_timer_mem = NULL;
1302 	}
1303 
1304 	return ret;
1305 }
1306 
1307 static const struct of_device_id arch_timer_of_match[] __initconst = {
1308 	{ .compatible   = "arm,armv7-timer",    },
1309 	{ .compatible   = "arm,armv8-timer",    },
1310 	{},
1311 };
1312 
1313 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1314 	{ .compatible   = "arm,armv7-timer-mem", },
1315 	{},
1316 };
1317 
1318 static bool __init arch_timer_needs_of_probing(void)
1319 {
1320 	struct device_node *dn;
1321 	bool needs_probing = false;
1322 	unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1323 
1324 	/* We have two timers, and both device-tree nodes are probed. */
1325 	if ((arch_timers_present & mask) == mask)
1326 		return false;
1327 
1328 	/*
1329 	 * Only one type of timer is probed,
1330 	 * check if we have another type of timer node in device-tree.
1331 	 */
1332 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1333 		dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1334 	else
1335 		dn = of_find_matching_node(NULL, arch_timer_of_match);
1336 
1337 	if (dn && of_device_is_available(dn))
1338 		needs_probing = true;
1339 
1340 	of_node_put(dn);
1341 
1342 	return needs_probing;
1343 }
1344 
1345 static int __init arch_timer_common_init(void)
1346 {
1347 	arch_timer_banner(arch_timers_present);
1348 	arch_counter_register(arch_timers_present);
1349 	return arch_timer_arch_init();
1350 }
1351 
1352 /**
1353  * arch_timer_select_ppi() - Select suitable PPI for the current system.
1354  *
1355  * If HYP mode is available, we know that the physical timer
1356  * has been configured to be accessible from PL1. Use it, so
1357  * that a guest can use the virtual timer instead.
1358  *
1359  * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1360  * accesses to CNTP_*_EL1 registers are silently redirected to
1361  * their CNTHP_*_EL2 counterparts, and use a different PPI
1362  * number.
1363  *
1364  * If no interrupt provided for virtual timer, we'll have to
1365  * stick to the physical timer. It'd better be accessible...
1366  * For arm64 we never use the secure interrupt.
1367  *
1368  * Return: a suitable PPI type for the current system.
1369  */
1370 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1371 {
1372 	if (is_kernel_in_hyp_mode())
1373 		return ARCH_TIMER_HYP_PPI;
1374 
1375 	if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1376 		return ARCH_TIMER_VIRT_PPI;
1377 
1378 	if (IS_ENABLED(CONFIG_ARM64))
1379 		return ARCH_TIMER_PHYS_NONSECURE_PPI;
1380 
1381 	return ARCH_TIMER_PHYS_SECURE_PPI;
1382 }
1383 
1384 static void __init arch_timer_populate_kvm_info(void)
1385 {
1386 	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1387 	if (is_kernel_in_hyp_mode())
1388 		arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1389 }
1390 
1391 static int __init arch_timer_of_init(struct device_node *np)
1392 {
1393 	int i, irq, ret;
1394 	u32 rate;
1395 	bool has_names;
1396 
1397 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1398 		pr_warn("multiple nodes in dt, skipping\n");
1399 		return 0;
1400 	}
1401 
1402 	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1403 
1404 	has_names = of_property_read_bool(np, "interrupt-names");
1405 
1406 	for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1407 		if (has_names)
1408 			irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1409 		else
1410 			irq = of_irq_get(np, i);
1411 		if (irq > 0)
1412 			arch_timer_ppi[i] = irq;
1413 	}
1414 
1415 	arch_timer_populate_kvm_info();
1416 
1417 	rate = arch_timer_get_cntfrq();
1418 	arch_timer_of_configure_rate(rate, np);
1419 
1420 	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1421 
1422 	/* Check for globally applicable workarounds */
1423 	arch_timer_check_ool_workaround(ate_match_dt, np);
1424 
1425 	/*
1426 	 * If we cannot rely on firmware initializing the timer registers then
1427 	 * we should use the physical timers instead.
1428 	 */
1429 	if (IS_ENABLED(CONFIG_ARM) &&
1430 	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1431 		arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1432 	else
1433 		arch_timer_uses_ppi = arch_timer_select_ppi();
1434 
1435 	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1436 		pr_err("No interrupt available, giving up\n");
1437 		return -EINVAL;
1438 	}
1439 
1440 	/* On some systems, the counter stops ticking when in suspend. */
1441 	arch_counter_suspend_stop = of_property_read_bool(np,
1442 							 "arm,no-tick-in-suspend");
1443 
1444 	ret = arch_timer_register();
1445 	if (ret)
1446 		return ret;
1447 
1448 	if (arch_timer_needs_of_probing())
1449 		return 0;
1450 
1451 	return arch_timer_common_init();
1452 }
1453 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1454 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1455 
1456 static u32 __init
1457 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1458 {
1459 	void __iomem *base;
1460 	u32 rate;
1461 
1462 	base = ioremap(frame->cntbase, frame->size);
1463 	if (!base) {
1464 		pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1465 		return 0;
1466 	}
1467 
1468 	rate = readl_relaxed(base + CNTFRQ);
1469 
1470 	iounmap(base);
1471 
1472 	return rate;
1473 }
1474 
1475 static struct arch_timer_mem_frame * __init
1476 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1477 {
1478 	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1479 	void __iomem *cntctlbase;
1480 	u32 cnttidr;
1481 	int i;
1482 
1483 	cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1484 	if (!cntctlbase) {
1485 		pr_err("Can't map CNTCTLBase @ %pa\n",
1486 			&timer_mem->cntctlbase);
1487 		return NULL;
1488 	}
1489 
1490 	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1491 
1492 	/*
1493 	 * Try to find a virtual capable frame. Otherwise fall back to a
1494 	 * physical capable frame.
1495 	 */
1496 	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1497 		u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1498 			     CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1499 
1500 		frame = &timer_mem->frame[i];
1501 		if (!frame->valid)
1502 			continue;
1503 
1504 		/* Try enabling everything, and see what sticks */
1505 		writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1506 		cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1507 
1508 		if ((cnttidr & CNTTIDR_VIRT(i)) &&
1509 		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1510 			best_frame = frame;
1511 			arch_timer_mem_use_virtual = true;
1512 			break;
1513 		}
1514 
1515 		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1516 			continue;
1517 
1518 		best_frame = frame;
1519 	}
1520 
1521 	iounmap(cntctlbase);
1522 
1523 	return best_frame;
1524 }
1525 
1526 static int __init
1527 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1528 {
1529 	void __iomem *base;
1530 	int ret, irq = 0;
1531 
1532 	if (arch_timer_mem_use_virtual)
1533 		irq = frame->virt_irq;
1534 	else
1535 		irq = frame->phys_irq;
1536 
1537 	if (!irq) {
1538 		pr_err("Frame missing %s irq.\n",
1539 		       arch_timer_mem_use_virtual ? "virt" : "phys");
1540 		return -EINVAL;
1541 	}
1542 
1543 	if (!request_mem_region(frame->cntbase, frame->size,
1544 				"arch_mem_timer"))
1545 		return -EBUSY;
1546 
1547 	base = ioremap(frame->cntbase, frame->size);
1548 	if (!base) {
1549 		pr_err("Can't map frame's registers\n");
1550 		return -ENXIO;
1551 	}
1552 
1553 	ret = arch_timer_mem_register(base, irq);
1554 	if (ret) {
1555 		iounmap(base);
1556 		return ret;
1557 	}
1558 
1559 	arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1560 
1561 	return 0;
1562 }
1563 
1564 static int __init arch_timer_mem_of_init(struct device_node *np)
1565 {
1566 	struct arch_timer_mem *timer_mem;
1567 	struct arch_timer_mem_frame *frame;
1568 	struct device_node *frame_node;
1569 	struct resource res;
1570 	int ret = -EINVAL;
1571 	u32 rate;
1572 
1573 	timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1574 	if (!timer_mem)
1575 		return -ENOMEM;
1576 
1577 	if (of_address_to_resource(np, 0, &res))
1578 		goto out;
1579 	timer_mem->cntctlbase = res.start;
1580 	timer_mem->size = resource_size(&res);
1581 
1582 	for_each_available_child_of_node(np, frame_node) {
1583 		u32 n;
1584 		struct arch_timer_mem_frame *frame;
1585 
1586 		if (of_property_read_u32(frame_node, "frame-number", &n)) {
1587 			pr_err(FW_BUG "Missing frame-number.\n");
1588 			of_node_put(frame_node);
1589 			goto out;
1590 		}
1591 		if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1592 			pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1593 			       ARCH_TIMER_MEM_MAX_FRAMES - 1);
1594 			of_node_put(frame_node);
1595 			goto out;
1596 		}
1597 		frame = &timer_mem->frame[n];
1598 
1599 		if (frame->valid) {
1600 			pr_err(FW_BUG "Duplicated frame-number.\n");
1601 			of_node_put(frame_node);
1602 			goto out;
1603 		}
1604 
1605 		if (of_address_to_resource(frame_node, 0, &res)) {
1606 			of_node_put(frame_node);
1607 			goto out;
1608 		}
1609 		frame->cntbase = res.start;
1610 		frame->size = resource_size(&res);
1611 
1612 		frame->virt_irq = irq_of_parse_and_map(frame_node,
1613 						       ARCH_TIMER_VIRT_SPI);
1614 		frame->phys_irq = irq_of_parse_and_map(frame_node,
1615 						       ARCH_TIMER_PHYS_SPI);
1616 
1617 		frame->valid = true;
1618 	}
1619 
1620 	frame = arch_timer_mem_find_best_frame(timer_mem);
1621 	if (!frame) {
1622 		pr_err("Unable to find a suitable frame in timer @ %pa\n",
1623 			&timer_mem->cntctlbase);
1624 		ret = -EINVAL;
1625 		goto out;
1626 	}
1627 
1628 	rate = arch_timer_mem_frame_get_cntfrq(frame);
1629 	arch_timer_of_configure_rate(rate, np);
1630 
1631 	ret = arch_timer_mem_frame_register(frame);
1632 	if (!ret && !arch_timer_needs_of_probing())
1633 		ret = arch_timer_common_init();
1634 out:
1635 	kfree(timer_mem);
1636 	return ret;
1637 }
1638 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1639 		       arch_timer_mem_of_init);
1640 
1641 #ifdef CONFIG_ACPI_GTDT
1642 static int __init
1643 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1644 {
1645 	struct arch_timer_mem_frame *frame;
1646 	u32 rate;
1647 	int i;
1648 
1649 	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1650 		frame = &timer_mem->frame[i];
1651 
1652 		if (!frame->valid)
1653 			continue;
1654 
1655 		rate = arch_timer_mem_frame_get_cntfrq(frame);
1656 		if (rate == arch_timer_rate)
1657 			continue;
1658 
1659 		pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1660 			&frame->cntbase,
1661 			(unsigned long)rate, (unsigned long)arch_timer_rate);
1662 
1663 		return -EINVAL;
1664 	}
1665 
1666 	return 0;
1667 }
1668 
1669 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1670 {
1671 	struct arch_timer_mem *timers, *timer;
1672 	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1673 	int timer_count, i, ret = 0;
1674 
1675 	timers = kcalloc(platform_timer_count, sizeof(*timers),
1676 			    GFP_KERNEL);
1677 	if (!timers)
1678 		return -ENOMEM;
1679 
1680 	ret = acpi_arch_timer_mem_init(timers, &timer_count);
1681 	if (ret || !timer_count)
1682 		goto out;
1683 
1684 	/*
1685 	 * While unlikely, it's theoretically possible that none of the frames
1686 	 * in a timer expose the combination of feature we want.
1687 	 */
1688 	for (i = 0; i < timer_count; i++) {
1689 		timer = &timers[i];
1690 
1691 		frame = arch_timer_mem_find_best_frame(timer);
1692 		if (!best_frame)
1693 			best_frame = frame;
1694 
1695 		ret = arch_timer_mem_verify_cntfrq(timer);
1696 		if (ret) {
1697 			pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1698 			goto out;
1699 		}
1700 
1701 		if (!best_frame) /* implies !frame */
1702 			/*
1703 			 * Only complain about missing suitable frames if we
1704 			 * haven't already found one in a previous iteration.
1705 			 */
1706 			pr_err("Unable to find a suitable frame in timer @ %pa\n",
1707 				&timer->cntctlbase);
1708 	}
1709 
1710 	if (best_frame)
1711 		ret = arch_timer_mem_frame_register(best_frame);
1712 out:
1713 	kfree(timers);
1714 	return ret;
1715 }
1716 
1717 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1718 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1719 {
1720 	int ret, platform_timer_count;
1721 
1722 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1723 		pr_warn("already initialized, skipping\n");
1724 		return -EINVAL;
1725 	}
1726 
1727 	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1728 
1729 	ret = acpi_gtdt_init(table, &platform_timer_count);
1730 	if (ret)
1731 		return ret;
1732 
1733 	arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1734 		acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1735 
1736 	arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1737 		acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1738 
1739 	arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1740 		acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1741 
1742 	arch_timer_populate_kvm_info();
1743 
1744 	/*
1745 	 * When probing via ACPI, we have no mechanism to override the sysreg
1746 	 * CNTFRQ value. This *must* be correct.
1747 	 */
1748 	arch_timer_rate = arch_timer_get_cntfrq();
1749 	ret = validate_timer_rate();
1750 	if (ret) {
1751 		pr_err(FW_BUG "frequency not available.\n");
1752 		return ret;
1753 	}
1754 
1755 	arch_timer_uses_ppi = arch_timer_select_ppi();
1756 	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1757 		pr_err("No interrupt available, giving up\n");
1758 		return -EINVAL;
1759 	}
1760 
1761 	/* Always-on capability */
1762 	arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1763 
1764 	/* Check for globally applicable workarounds */
1765 	arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1766 
1767 	ret = arch_timer_register();
1768 	if (ret)
1769 		return ret;
1770 
1771 	if (platform_timer_count &&
1772 	    arch_timer_mem_acpi_init(platform_timer_count))
1773 		pr_err("Failed to initialize memory-mapped timer.\n");
1774 
1775 	return arch_timer_common_init();
1776 }
1777 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1778 #endif
1779 
1780 int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
1781 				 struct clocksource **cs)
1782 {
1783 	struct arm_smccc_res hvc_res;
1784 	u32 ptp_counter;
1785 	ktime_t ktime;
1786 
1787 	if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
1788 		return -EOPNOTSUPP;
1789 
1790 	if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1791 		ptp_counter = KVM_PTP_VIRT_COUNTER;
1792 	else
1793 		ptp_counter = KVM_PTP_PHYS_COUNTER;
1794 
1795 	arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
1796 			     ptp_counter, &hvc_res);
1797 
1798 	if ((int)(hvc_res.a0) < 0)
1799 		return -EOPNOTSUPP;
1800 
1801 	ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
1802 	*ts = ktime_to_timespec64(ktime);
1803 	if (cycle)
1804 		*cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
1805 	if (cs)
1806 		*cs = &clocksource_counter;
1807 
1808 	return 0;
1809 }
1810 EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);
1811