1 /*
2  *  linux/drivers/clocksource/arm_arch_timer.c
3  *
4  *  Copyright (C) 2011 ARM Ltd.
5  *  All Rights Reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #define pr_fmt(fmt)	"arm_arch_timer: " fmt
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/device.h>
17 #include <linux/smp.h>
18 #include <linux/cpu.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/clockchips.h>
21 #include <linux/clocksource.h>
22 #include <linux/interrupt.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_address.h>
25 #include <linux/io.h>
26 #include <linux/slab.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched_clock.h>
29 #include <linux/acpi.h>
30 
31 #include <asm/arch_timer.h>
32 #include <asm/virt.h>
33 
34 #include <clocksource/arm_arch_timer.h>
35 
36 #undef pr_fmt
37 #define pr_fmt(fmt) "arch_timer: " fmt
38 
39 #define CNTTIDR		0x08
40 #define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
41 
42 #define CNTACR(n)	(0x40 + ((n) * 4))
43 #define CNTACR_RPCT	BIT(0)
44 #define CNTACR_RVCT	BIT(1)
45 #define CNTACR_RFRQ	BIT(2)
46 #define CNTACR_RVOFF	BIT(3)
47 #define CNTACR_RWVT	BIT(4)
48 #define CNTACR_RWPT	BIT(5)
49 
50 #define CNTVCT_LO	0x08
51 #define CNTVCT_HI	0x0c
52 #define CNTFRQ		0x10
53 #define CNTP_TVAL	0x28
54 #define CNTP_CTL	0x2c
55 #define CNTV_TVAL	0x38
56 #define CNTV_CTL	0x3c
57 
58 static unsigned arch_timers_present __initdata;
59 
60 static void __iomem *arch_counter_base;
61 
62 struct arch_timer {
63 	void __iomem *base;
64 	struct clock_event_device evt;
65 };
66 
67 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
68 
69 static u32 arch_timer_rate;
70 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
71 
72 static struct clock_event_device __percpu *arch_timer_evt;
73 
74 static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
75 static bool arch_timer_c3stop;
76 static bool arch_timer_mem_use_virtual;
77 static bool arch_counter_suspend_stop;
78 static bool vdso_default = true;
79 
80 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
81 
82 static int __init early_evtstrm_cfg(char *buf)
83 {
84 	return strtobool(buf, &evtstrm_enable);
85 }
86 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
87 
88 /*
89  * Architected system timer support.
90  */
91 
92 static __always_inline
93 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
94 			  struct clock_event_device *clk)
95 {
96 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
97 		struct arch_timer *timer = to_arch_timer(clk);
98 		switch (reg) {
99 		case ARCH_TIMER_REG_CTRL:
100 			writel_relaxed(val, timer->base + CNTP_CTL);
101 			break;
102 		case ARCH_TIMER_REG_TVAL:
103 			writel_relaxed(val, timer->base + CNTP_TVAL);
104 			break;
105 		}
106 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
107 		struct arch_timer *timer = to_arch_timer(clk);
108 		switch (reg) {
109 		case ARCH_TIMER_REG_CTRL:
110 			writel_relaxed(val, timer->base + CNTV_CTL);
111 			break;
112 		case ARCH_TIMER_REG_TVAL:
113 			writel_relaxed(val, timer->base + CNTV_TVAL);
114 			break;
115 		}
116 	} else {
117 		arch_timer_reg_write_cp15(access, reg, val);
118 	}
119 }
120 
121 static __always_inline
122 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
123 			struct clock_event_device *clk)
124 {
125 	u32 val;
126 
127 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
128 		struct arch_timer *timer = to_arch_timer(clk);
129 		switch (reg) {
130 		case ARCH_TIMER_REG_CTRL:
131 			val = readl_relaxed(timer->base + CNTP_CTL);
132 			break;
133 		case ARCH_TIMER_REG_TVAL:
134 			val = readl_relaxed(timer->base + CNTP_TVAL);
135 			break;
136 		}
137 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
138 		struct arch_timer *timer = to_arch_timer(clk);
139 		switch (reg) {
140 		case ARCH_TIMER_REG_CTRL:
141 			val = readl_relaxed(timer->base + CNTV_CTL);
142 			break;
143 		case ARCH_TIMER_REG_TVAL:
144 			val = readl_relaxed(timer->base + CNTV_TVAL);
145 			break;
146 		}
147 	} else {
148 		val = arch_timer_reg_read_cp15(access, reg);
149 	}
150 
151 	return val;
152 }
153 
154 /*
155  * Default to cp15 based access because arm64 uses this function for
156  * sched_clock() before DT is probed and the cp15 method is guaranteed
157  * to exist on arm64. arm doesn't use this before DT is probed so even
158  * if we don't have the cp15 accessors we won't have a problem.
159  */
160 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
161 
162 static u64 arch_counter_read(struct clocksource *cs)
163 {
164 	return arch_timer_read_counter();
165 }
166 
167 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
168 {
169 	return arch_timer_read_counter();
170 }
171 
172 static struct clocksource clocksource_counter = {
173 	.name	= "arch_sys_counter",
174 	.rating	= 400,
175 	.read	= arch_counter_read,
176 	.mask	= CLOCKSOURCE_MASK(56),
177 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
178 };
179 
180 static struct cyclecounter cyclecounter __ro_after_init = {
181 	.read	= arch_counter_read_cc,
182 	.mask	= CLOCKSOURCE_MASK(56),
183 };
184 
185 struct ate_acpi_oem_info {
186 	char oem_id[ACPI_OEM_ID_SIZE + 1];
187 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
188 	u32 oem_revision;
189 };
190 
191 #ifdef CONFIG_FSL_ERRATUM_A008585
192 /*
193  * The number of retries is an arbitrary value well beyond the highest number
194  * of iterations the loop has been observed to take.
195  */
196 #define __fsl_a008585_read_reg(reg) ({			\
197 	u64 _old, _new;					\
198 	int _retries = 200;				\
199 							\
200 	do {						\
201 		_old = read_sysreg(reg);		\
202 		_new = read_sysreg(reg);		\
203 		_retries--;				\
204 	} while (unlikely(_old != _new) && _retries);	\
205 							\
206 	WARN_ON_ONCE(!_retries);			\
207 	_new;						\
208 })
209 
210 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
211 {
212 	return __fsl_a008585_read_reg(cntp_tval_el0);
213 }
214 
215 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
216 {
217 	return __fsl_a008585_read_reg(cntv_tval_el0);
218 }
219 
220 static u64 notrace fsl_a008585_read_cntvct_el0(void)
221 {
222 	return __fsl_a008585_read_reg(cntvct_el0);
223 }
224 #endif
225 
226 #ifdef CONFIG_HISILICON_ERRATUM_161010101
227 /*
228  * Verify whether the value of the second read is larger than the first by
229  * less than 32 is the only way to confirm the value is correct, so clear the
230  * lower 5 bits to check whether the difference is greater than 32 or not.
231  * Theoretically the erratum should not occur more than twice in succession
232  * when reading the system counter, but it is possible that some interrupts
233  * may lead to more than twice read errors, triggering the warning, so setting
234  * the number of retries far beyond the number of iterations the loop has been
235  * observed to take.
236  */
237 #define __hisi_161010101_read_reg(reg) ({				\
238 	u64 _old, _new;						\
239 	int _retries = 50;					\
240 								\
241 	do {							\
242 		_old = read_sysreg(reg);			\
243 		_new = read_sysreg(reg);			\
244 		_retries--;					\
245 	} while (unlikely((_new - _old) >> 5) && _retries);	\
246 								\
247 	WARN_ON_ONCE(!_retries);				\
248 	_new;							\
249 })
250 
251 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
252 {
253 	return __hisi_161010101_read_reg(cntp_tval_el0);
254 }
255 
256 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
257 {
258 	return __hisi_161010101_read_reg(cntv_tval_el0);
259 }
260 
261 static u64 notrace hisi_161010101_read_cntvct_el0(void)
262 {
263 	return __hisi_161010101_read_reg(cntvct_el0);
264 }
265 
266 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
267 	/*
268 	 * Note that trailing spaces are required to properly match
269 	 * the OEM table information.
270 	 */
271 	{
272 		.oem_id		= "HISI  ",
273 		.oem_table_id	= "HIP05   ",
274 		.oem_revision	= 0,
275 	},
276 	{
277 		.oem_id		= "HISI  ",
278 		.oem_table_id	= "HIP06   ",
279 		.oem_revision	= 0,
280 	},
281 	{
282 		.oem_id		= "HISI  ",
283 		.oem_table_id	= "HIP07   ",
284 		.oem_revision	= 0,
285 	},
286 	{ /* Sentinel indicating the end of the OEM array */ },
287 };
288 #endif
289 
290 #ifdef CONFIG_ARM64_ERRATUM_858921
291 static u64 notrace arm64_858921_read_cntvct_el0(void)
292 {
293 	u64 old, new;
294 
295 	old = read_sysreg(cntvct_el0);
296 	new = read_sysreg(cntvct_el0);
297 	return (((old ^ new) >> 32) & 1) ? old : new;
298 }
299 #endif
300 
301 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
302 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *,
303 	       timer_unstable_counter_workaround);
304 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
305 
306 DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
307 EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);
308 
309 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
310 						struct clock_event_device *clk)
311 {
312 	unsigned long ctrl;
313 	u64 cval = evt + arch_counter_get_cntvct();
314 
315 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
316 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
317 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
318 
319 	if (access == ARCH_TIMER_PHYS_ACCESS)
320 		write_sysreg(cval, cntp_cval_el0);
321 	else
322 		write_sysreg(cval, cntv_cval_el0);
323 
324 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
325 }
326 
327 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
328 					    struct clock_event_device *clk)
329 {
330 	erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
331 	return 0;
332 }
333 
334 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
335 					    struct clock_event_device *clk)
336 {
337 	erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
338 	return 0;
339 }
340 
341 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
342 #ifdef CONFIG_FSL_ERRATUM_A008585
343 	{
344 		.match_type = ate_match_dt,
345 		.id = "fsl,erratum-a008585",
346 		.desc = "Freescale erratum a005858",
347 		.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
348 		.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
349 		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
350 		.set_next_event_phys = erratum_set_next_event_tval_phys,
351 		.set_next_event_virt = erratum_set_next_event_tval_virt,
352 	},
353 #endif
354 #ifdef CONFIG_HISILICON_ERRATUM_161010101
355 	{
356 		.match_type = ate_match_dt,
357 		.id = "hisilicon,erratum-161010101",
358 		.desc = "HiSilicon erratum 161010101",
359 		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
360 		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
361 		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
362 		.set_next_event_phys = erratum_set_next_event_tval_phys,
363 		.set_next_event_virt = erratum_set_next_event_tval_virt,
364 	},
365 	{
366 		.match_type = ate_match_acpi_oem_info,
367 		.id = hisi_161010101_oem_info,
368 		.desc = "HiSilicon erratum 161010101",
369 		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
370 		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
371 		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
372 		.set_next_event_phys = erratum_set_next_event_tval_phys,
373 		.set_next_event_virt = erratum_set_next_event_tval_virt,
374 	},
375 #endif
376 #ifdef CONFIG_ARM64_ERRATUM_858921
377 	{
378 		.match_type = ate_match_local_cap_id,
379 		.id = (void *)ARM64_WORKAROUND_858921,
380 		.desc = "ARM erratum 858921",
381 		.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
382 	},
383 #endif
384 };
385 
386 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
387 			       const void *);
388 
389 static
390 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
391 				 const void *arg)
392 {
393 	const struct device_node *np = arg;
394 
395 	return of_property_read_bool(np, wa->id);
396 }
397 
398 static
399 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
400 					const void *arg)
401 {
402 	return this_cpu_has_cap((uintptr_t)wa->id);
403 }
404 
405 
406 static
407 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
408 				       const void *arg)
409 {
410 	static const struct ate_acpi_oem_info empty_oem_info = {};
411 	const struct ate_acpi_oem_info *info = wa->id;
412 	const struct acpi_table_header *table = arg;
413 
414 	/* Iterate over the ACPI OEM info array, looking for a match */
415 	while (memcmp(info, &empty_oem_info, sizeof(*info))) {
416 		if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
417 		    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
418 		    info->oem_revision == table->oem_revision)
419 			return true;
420 
421 		info++;
422 	}
423 
424 	return false;
425 }
426 
427 static const struct arch_timer_erratum_workaround *
428 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
429 			  ate_match_fn_t match_fn,
430 			  void *arg)
431 {
432 	int i;
433 
434 	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
435 		if (ool_workarounds[i].match_type != type)
436 			continue;
437 
438 		if (match_fn(&ool_workarounds[i], arg))
439 			return &ool_workarounds[i];
440 	}
441 
442 	return NULL;
443 }
444 
445 static
446 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
447 				  bool local)
448 {
449 	int i;
450 
451 	if (local) {
452 		__this_cpu_write(timer_unstable_counter_workaround, wa);
453 	} else {
454 		for_each_possible_cpu(i)
455 			per_cpu(timer_unstable_counter_workaround, i) = wa;
456 	}
457 
458 	/*
459 	 * Use the locked version, as we're called from the CPU
460 	 * hotplug framework. Otherwise, we end-up in deadlock-land.
461 	 */
462 	static_branch_enable_cpuslocked(&arch_timer_read_ool_enabled);
463 
464 	/*
465 	 * Don't use the vdso fastpath if errata require using the
466 	 * out-of-line counter accessor. We may change our mind pretty
467 	 * late in the game (with a per-CPU erratum, for example), so
468 	 * change both the default value and the vdso itself.
469 	 */
470 	if (wa->read_cntvct_el0) {
471 		clocksource_counter.archdata.vdso_direct = false;
472 		vdso_default = false;
473 	}
474 }
475 
476 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
477 					    void *arg)
478 {
479 	const struct arch_timer_erratum_workaround *wa;
480 	ate_match_fn_t match_fn = NULL;
481 	bool local = false;
482 
483 	switch (type) {
484 	case ate_match_dt:
485 		match_fn = arch_timer_check_dt_erratum;
486 		break;
487 	case ate_match_local_cap_id:
488 		match_fn = arch_timer_check_local_cap_erratum;
489 		local = true;
490 		break;
491 	case ate_match_acpi_oem_info:
492 		match_fn = arch_timer_check_acpi_oem_erratum;
493 		break;
494 	default:
495 		WARN_ON(1);
496 		return;
497 	}
498 
499 	wa = arch_timer_iterate_errata(type, match_fn, arg);
500 	if (!wa)
501 		return;
502 
503 	if (needs_unstable_timer_counter_workaround()) {
504 		const struct arch_timer_erratum_workaround *__wa;
505 		__wa = __this_cpu_read(timer_unstable_counter_workaround);
506 		if (__wa && wa != __wa)
507 			pr_warn("Can't enable workaround for %s (clashes with %s\n)",
508 				wa->desc, __wa->desc);
509 
510 		if (__wa)
511 			return;
512 	}
513 
514 	arch_timer_enable_workaround(wa, local);
515 	pr_info("Enabling %s workaround for %s\n",
516 		local ? "local" : "global", wa->desc);
517 }
518 
519 #define erratum_handler(fn, r, ...)					\
520 ({									\
521 	bool __val;							\
522 	if (needs_unstable_timer_counter_workaround()) {		\
523 		const struct arch_timer_erratum_workaround *__wa;	\
524 		__wa = __this_cpu_read(timer_unstable_counter_workaround); \
525 		if (__wa && __wa->fn) {					\
526 			r = __wa->fn(__VA_ARGS__);			\
527 			__val = true;					\
528 		} else {						\
529 			__val = false;					\
530 		}							\
531 	} else {							\
532 		__val = false;						\
533 	}								\
534 	__val;								\
535 })
536 
537 static bool arch_timer_this_cpu_has_cntvct_wa(void)
538 {
539 	const struct arch_timer_erratum_workaround *wa;
540 
541 	wa = __this_cpu_read(timer_unstable_counter_workaround);
542 	return wa && wa->read_cntvct_el0;
543 }
544 #else
545 #define arch_timer_check_ool_workaround(t,a)		do { } while(0)
546 #define erratum_set_next_event_tval_virt(...)		({BUG(); 0;})
547 #define erratum_set_next_event_tval_phys(...)		({BUG(); 0;})
548 #define erratum_handler(fn, r, ...)			({false;})
549 #define arch_timer_this_cpu_has_cntvct_wa()		({false;})
550 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
551 
552 static __always_inline irqreturn_t timer_handler(const int access,
553 					struct clock_event_device *evt)
554 {
555 	unsigned long ctrl;
556 
557 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
558 	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
559 		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
560 		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
561 		evt->event_handler(evt);
562 		return IRQ_HANDLED;
563 	}
564 
565 	return IRQ_NONE;
566 }
567 
568 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
569 {
570 	struct clock_event_device *evt = dev_id;
571 
572 	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
573 }
574 
575 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
576 {
577 	struct clock_event_device *evt = dev_id;
578 
579 	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
580 }
581 
582 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
583 {
584 	struct clock_event_device *evt = dev_id;
585 
586 	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
587 }
588 
589 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
590 {
591 	struct clock_event_device *evt = dev_id;
592 
593 	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
594 }
595 
596 static __always_inline int timer_shutdown(const int access,
597 					  struct clock_event_device *clk)
598 {
599 	unsigned long ctrl;
600 
601 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
602 	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
603 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
604 
605 	return 0;
606 }
607 
608 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
609 {
610 	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
611 }
612 
613 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
614 {
615 	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
616 }
617 
618 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
619 {
620 	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
621 }
622 
623 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
624 {
625 	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
626 }
627 
628 static __always_inline void set_next_event(const int access, unsigned long evt,
629 					   struct clock_event_device *clk)
630 {
631 	unsigned long ctrl;
632 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
633 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
634 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
635 	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
636 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
637 }
638 
639 static int arch_timer_set_next_event_virt(unsigned long evt,
640 					  struct clock_event_device *clk)
641 {
642 	int ret;
643 
644 	if (erratum_handler(set_next_event_virt, ret, evt, clk))
645 		return ret;
646 
647 	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
648 	return 0;
649 }
650 
651 static int arch_timer_set_next_event_phys(unsigned long evt,
652 					  struct clock_event_device *clk)
653 {
654 	int ret;
655 
656 	if (erratum_handler(set_next_event_phys, ret, evt, clk))
657 		return ret;
658 
659 	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
660 	return 0;
661 }
662 
663 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
664 					      struct clock_event_device *clk)
665 {
666 	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
667 	return 0;
668 }
669 
670 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
671 					      struct clock_event_device *clk)
672 {
673 	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
674 	return 0;
675 }
676 
677 static void __arch_timer_setup(unsigned type,
678 			       struct clock_event_device *clk)
679 {
680 	clk->features = CLOCK_EVT_FEAT_ONESHOT;
681 
682 	if (type == ARCH_TIMER_TYPE_CP15) {
683 		if (arch_timer_c3stop)
684 			clk->features |= CLOCK_EVT_FEAT_C3STOP;
685 		clk->name = "arch_sys_timer";
686 		clk->rating = 450;
687 		clk->cpumask = cpumask_of(smp_processor_id());
688 		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
689 		switch (arch_timer_uses_ppi) {
690 		case ARCH_TIMER_VIRT_PPI:
691 			clk->set_state_shutdown = arch_timer_shutdown_virt;
692 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
693 			clk->set_next_event = arch_timer_set_next_event_virt;
694 			break;
695 		case ARCH_TIMER_PHYS_SECURE_PPI:
696 		case ARCH_TIMER_PHYS_NONSECURE_PPI:
697 		case ARCH_TIMER_HYP_PPI:
698 			clk->set_state_shutdown = arch_timer_shutdown_phys;
699 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
700 			clk->set_next_event = arch_timer_set_next_event_phys;
701 			break;
702 		default:
703 			BUG();
704 		}
705 
706 		arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
707 	} else {
708 		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
709 		clk->name = "arch_mem_timer";
710 		clk->rating = 400;
711 		clk->cpumask = cpu_all_mask;
712 		if (arch_timer_mem_use_virtual) {
713 			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
714 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
715 			clk->set_next_event =
716 				arch_timer_set_next_event_virt_mem;
717 		} else {
718 			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
719 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
720 			clk->set_next_event =
721 				arch_timer_set_next_event_phys_mem;
722 		}
723 	}
724 
725 	clk->set_state_shutdown(clk);
726 
727 	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
728 }
729 
730 static void arch_timer_evtstrm_enable(int divider)
731 {
732 	u32 cntkctl = arch_timer_get_cntkctl();
733 
734 	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
735 	/* Set the divider and enable virtual event stream */
736 	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
737 			| ARCH_TIMER_VIRT_EVT_EN;
738 	arch_timer_set_cntkctl(cntkctl);
739 	elf_hwcap |= HWCAP_EVTSTRM;
740 #ifdef CONFIG_COMPAT
741 	compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
742 #endif
743 }
744 
745 static void arch_timer_configure_evtstream(void)
746 {
747 	int evt_stream_div, pos;
748 
749 	/* Find the closest power of two to the divisor */
750 	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
751 	pos = fls(evt_stream_div);
752 	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
753 		pos--;
754 	/* enable event stream */
755 	arch_timer_evtstrm_enable(min(pos, 15));
756 }
757 
758 static void arch_counter_set_user_access(void)
759 {
760 	u32 cntkctl = arch_timer_get_cntkctl();
761 
762 	/* Disable user access to the timers and both counters */
763 	/* Also disable virtual event stream */
764 	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
765 			| ARCH_TIMER_USR_VT_ACCESS_EN
766 		        | ARCH_TIMER_USR_VCT_ACCESS_EN
767 			| ARCH_TIMER_VIRT_EVT_EN
768 			| ARCH_TIMER_USR_PCT_ACCESS_EN);
769 
770 	/*
771 	 * Enable user access to the virtual counter if it doesn't
772 	 * need to be workaround. The vdso may have been already
773 	 * disabled though.
774 	 */
775 	if (arch_timer_this_cpu_has_cntvct_wa())
776 		pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
777 	else
778 		cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
779 
780 	arch_timer_set_cntkctl(cntkctl);
781 }
782 
783 static bool arch_timer_has_nonsecure_ppi(void)
784 {
785 	return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
786 		arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
787 }
788 
789 static u32 check_ppi_trigger(int irq)
790 {
791 	u32 flags = irq_get_trigger_type(irq);
792 
793 	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
794 		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
795 		pr_warn("WARNING: Please fix your firmware\n");
796 		flags = IRQF_TRIGGER_LOW;
797 	}
798 
799 	return flags;
800 }
801 
802 static int arch_timer_starting_cpu(unsigned int cpu)
803 {
804 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
805 	u32 flags;
806 
807 	__arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
808 
809 	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
810 	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
811 
812 	if (arch_timer_has_nonsecure_ppi()) {
813 		flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
814 		enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
815 				  flags);
816 	}
817 
818 	arch_counter_set_user_access();
819 	if (evtstrm_enable)
820 		arch_timer_configure_evtstream();
821 
822 	return 0;
823 }
824 
825 /*
826  * For historical reasons, when probing with DT we use whichever (non-zero)
827  * rate was probed first, and don't verify that others match. If the first node
828  * probed has a clock-frequency property, this overrides the HW register.
829  */
830 static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
831 {
832 	/* Who has more than one independent system counter? */
833 	if (arch_timer_rate)
834 		return;
835 
836 	if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
837 		arch_timer_rate = rate;
838 
839 	/* Check the timer frequency. */
840 	if (arch_timer_rate == 0)
841 		pr_warn("frequency not available\n");
842 }
843 
844 static void arch_timer_banner(unsigned type)
845 {
846 	pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
847 		type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
848 		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
849 			" and " : "",
850 		type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
851 		(unsigned long)arch_timer_rate / 1000000,
852 		(unsigned long)(arch_timer_rate / 10000) % 100,
853 		type & ARCH_TIMER_TYPE_CP15 ?
854 			(arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
855 			"",
856 		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
857 		type & ARCH_TIMER_TYPE_MEM ?
858 			arch_timer_mem_use_virtual ? "virt" : "phys" :
859 			"");
860 }
861 
862 u32 arch_timer_get_rate(void)
863 {
864 	return arch_timer_rate;
865 }
866 
867 static u64 arch_counter_get_cntvct_mem(void)
868 {
869 	u32 vct_lo, vct_hi, tmp_hi;
870 
871 	do {
872 		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
873 		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
874 		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
875 	} while (vct_hi != tmp_hi);
876 
877 	return ((u64) vct_hi << 32) | vct_lo;
878 }
879 
880 static struct arch_timer_kvm_info arch_timer_kvm_info;
881 
882 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
883 {
884 	return &arch_timer_kvm_info;
885 }
886 
887 static void __init arch_counter_register(unsigned type)
888 {
889 	u64 start_count;
890 
891 	/* Register the CP15 based counter if we have one */
892 	if (type & ARCH_TIMER_TYPE_CP15) {
893 		if (IS_ENABLED(CONFIG_ARM64) ||
894 		    arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
895 			arch_timer_read_counter = arch_counter_get_cntvct;
896 		else
897 			arch_timer_read_counter = arch_counter_get_cntpct;
898 
899 		clocksource_counter.archdata.vdso_direct = vdso_default;
900 	} else {
901 		arch_timer_read_counter = arch_counter_get_cntvct_mem;
902 	}
903 
904 	if (!arch_counter_suspend_stop)
905 		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
906 	start_count = arch_timer_read_counter();
907 	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
908 	cyclecounter.mult = clocksource_counter.mult;
909 	cyclecounter.shift = clocksource_counter.shift;
910 	timecounter_init(&arch_timer_kvm_info.timecounter,
911 			 &cyclecounter, start_count);
912 
913 	/* 56 bits minimum, so we assume worst case rollover */
914 	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
915 }
916 
917 static void arch_timer_stop(struct clock_event_device *clk)
918 {
919 	pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
920 
921 	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
922 	if (arch_timer_has_nonsecure_ppi())
923 		disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
924 
925 	clk->set_state_shutdown(clk);
926 }
927 
928 static int arch_timer_dying_cpu(unsigned int cpu)
929 {
930 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
931 
932 	arch_timer_stop(clk);
933 	return 0;
934 }
935 
936 #ifdef CONFIG_CPU_PM
937 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
938 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
939 				    unsigned long action, void *hcpu)
940 {
941 	if (action == CPU_PM_ENTER)
942 		__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
943 	else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
944 		arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
945 	return NOTIFY_OK;
946 }
947 
948 static struct notifier_block arch_timer_cpu_pm_notifier = {
949 	.notifier_call = arch_timer_cpu_pm_notify,
950 };
951 
952 static int __init arch_timer_cpu_pm_init(void)
953 {
954 	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
955 }
956 
957 static void __init arch_timer_cpu_pm_deinit(void)
958 {
959 	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
960 }
961 
962 #else
963 static int __init arch_timer_cpu_pm_init(void)
964 {
965 	return 0;
966 }
967 
968 static void __init arch_timer_cpu_pm_deinit(void)
969 {
970 }
971 #endif
972 
973 static int __init arch_timer_register(void)
974 {
975 	int err;
976 	int ppi;
977 
978 	arch_timer_evt = alloc_percpu(struct clock_event_device);
979 	if (!arch_timer_evt) {
980 		err = -ENOMEM;
981 		goto out;
982 	}
983 
984 	ppi = arch_timer_ppi[arch_timer_uses_ppi];
985 	switch (arch_timer_uses_ppi) {
986 	case ARCH_TIMER_VIRT_PPI:
987 		err = request_percpu_irq(ppi, arch_timer_handler_virt,
988 					 "arch_timer", arch_timer_evt);
989 		break;
990 	case ARCH_TIMER_PHYS_SECURE_PPI:
991 	case ARCH_TIMER_PHYS_NONSECURE_PPI:
992 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
993 					 "arch_timer", arch_timer_evt);
994 		if (!err && arch_timer_has_nonsecure_ppi()) {
995 			ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
996 			err = request_percpu_irq(ppi, arch_timer_handler_phys,
997 						 "arch_timer", arch_timer_evt);
998 			if (err)
999 				free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1000 						arch_timer_evt);
1001 		}
1002 		break;
1003 	case ARCH_TIMER_HYP_PPI:
1004 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1005 					 "arch_timer", arch_timer_evt);
1006 		break;
1007 	default:
1008 		BUG();
1009 	}
1010 
1011 	if (err) {
1012 		pr_err("can't register interrupt %d (%d)\n", ppi, err);
1013 		goto out_free;
1014 	}
1015 
1016 	err = arch_timer_cpu_pm_init();
1017 	if (err)
1018 		goto out_unreg_notify;
1019 
1020 
1021 	/* Register and immediately configure the timer on the boot CPU */
1022 	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1023 				"clockevents/arm/arch_timer:starting",
1024 				arch_timer_starting_cpu, arch_timer_dying_cpu);
1025 	if (err)
1026 		goto out_unreg_cpupm;
1027 	return 0;
1028 
1029 out_unreg_cpupm:
1030 	arch_timer_cpu_pm_deinit();
1031 
1032 out_unreg_notify:
1033 	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1034 	if (arch_timer_has_nonsecure_ppi())
1035 		free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1036 				arch_timer_evt);
1037 
1038 out_free:
1039 	free_percpu(arch_timer_evt);
1040 out:
1041 	return err;
1042 }
1043 
1044 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1045 {
1046 	int ret;
1047 	irq_handler_t func;
1048 	struct arch_timer *t;
1049 
1050 	t = kzalloc(sizeof(*t), GFP_KERNEL);
1051 	if (!t)
1052 		return -ENOMEM;
1053 
1054 	t->base = base;
1055 	t->evt.irq = irq;
1056 	__arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1057 
1058 	if (arch_timer_mem_use_virtual)
1059 		func = arch_timer_handler_virt_mem;
1060 	else
1061 		func = arch_timer_handler_phys_mem;
1062 
1063 	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1064 	if (ret) {
1065 		pr_err("Failed to request mem timer irq\n");
1066 		kfree(t);
1067 	}
1068 
1069 	return ret;
1070 }
1071 
1072 static const struct of_device_id arch_timer_of_match[] __initconst = {
1073 	{ .compatible   = "arm,armv7-timer",    },
1074 	{ .compatible   = "arm,armv8-timer",    },
1075 	{},
1076 };
1077 
1078 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1079 	{ .compatible   = "arm,armv7-timer-mem", },
1080 	{},
1081 };
1082 
1083 static bool __init arch_timer_needs_of_probing(void)
1084 {
1085 	struct device_node *dn;
1086 	bool needs_probing = false;
1087 	unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1088 
1089 	/* We have two timers, and both device-tree nodes are probed. */
1090 	if ((arch_timers_present & mask) == mask)
1091 		return false;
1092 
1093 	/*
1094 	 * Only one type of timer is probed,
1095 	 * check if we have another type of timer node in device-tree.
1096 	 */
1097 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1098 		dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1099 	else
1100 		dn = of_find_matching_node(NULL, arch_timer_of_match);
1101 
1102 	if (dn && of_device_is_available(dn))
1103 		needs_probing = true;
1104 
1105 	of_node_put(dn);
1106 
1107 	return needs_probing;
1108 }
1109 
1110 static int __init arch_timer_common_init(void)
1111 {
1112 	arch_timer_banner(arch_timers_present);
1113 	arch_counter_register(arch_timers_present);
1114 	return arch_timer_arch_init();
1115 }
1116 
1117 /**
1118  * arch_timer_select_ppi() - Select suitable PPI for the current system.
1119  *
1120  * If HYP mode is available, we know that the physical timer
1121  * has been configured to be accessible from PL1. Use it, so
1122  * that a guest can use the virtual timer instead.
1123  *
1124  * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1125  * accesses to CNTP_*_EL1 registers are silently redirected to
1126  * their CNTHP_*_EL2 counterparts, and use a different PPI
1127  * number.
1128  *
1129  * If no interrupt provided for virtual timer, we'll have to
1130  * stick to the physical timer. It'd better be accessible...
1131  * For arm64 we never use the secure interrupt.
1132  *
1133  * Return: a suitable PPI type for the current system.
1134  */
1135 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1136 {
1137 	if (is_kernel_in_hyp_mode())
1138 		return ARCH_TIMER_HYP_PPI;
1139 
1140 	if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1141 		return ARCH_TIMER_VIRT_PPI;
1142 
1143 	if (IS_ENABLED(CONFIG_ARM64))
1144 		return ARCH_TIMER_PHYS_NONSECURE_PPI;
1145 
1146 	return ARCH_TIMER_PHYS_SECURE_PPI;
1147 }
1148 
1149 static int __init arch_timer_of_init(struct device_node *np)
1150 {
1151 	int i, ret;
1152 	u32 rate;
1153 
1154 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1155 		pr_warn("multiple nodes in dt, skipping\n");
1156 		return 0;
1157 	}
1158 
1159 	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1160 	for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1161 		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
1162 
1163 	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1164 
1165 	rate = arch_timer_get_cntfrq();
1166 	arch_timer_of_configure_rate(rate, np);
1167 
1168 	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1169 
1170 	/* Check for globally applicable workarounds */
1171 	arch_timer_check_ool_workaround(ate_match_dt, np);
1172 
1173 	/*
1174 	 * If we cannot rely on firmware initializing the timer registers then
1175 	 * we should use the physical timers instead.
1176 	 */
1177 	if (IS_ENABLED(CONFIG_ARM) &&
1178 	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1179 		arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1180 	else
1181 		arch_timer_uses_ppi = arch_timer_select_ppi();
1182 
1183 	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1184 		pr_err("No interrupt available, giving up\n");
1185 		return -EINVAL;
1186 	}
1187 
1188 	/* On some systems, the counter stops ticking when in suspend. */
1189 	arch_counter_suspend_stop = of_property_read_bool(np,
1190 							 "arm,no-tick-in-suspend");
1191 
1192 	ret = arch_timer_register();
1193 	if (ret)
1194 		return ret;
1195 
1196 	if (arch_timer_needs_of_probing())
1197 		return 0;
1198 
1199 	return arch_timer_common_init();
1200 }
1201 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1202 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1203 
1204 static u32 __init
1205 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1206 {
1207 	void __iomem *base;
1208 	u32 rate;
1209 
1210 	base = ioremap(frame->cntbase, frame->size);
1211 	if (!base) {
1212 		pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1213 		return 0;
1214 	}
1215 
1216 	rate = readl_relaxed(base + CNTFRQ);
1217 
1218 	iounmap(base);
1219 
1220 	return rate;
1221 }
1222 
1223 static struct arch_timer_mem_frame * __init
1224 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1225 {
1226 	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1227 	void __iomem *cntctlbase;
1228 	u32 cnttidr;
1229 	int i;
1230 
1231 	cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1232 	if (!cntctlbase) {
1233 		pr_err("Can't map CNTCTLBase @ %pa\n",
1234 			&timer_mem->cntctlbase);
1235 		return NULL;
1236 	}
1237 
1238 	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1239 
1240 	/*
1241 	 * Try to find a virtual capable frame. Otherwise fall back to a
1242 	 * physical capable frame.
1243 	 */
1244 	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1245 		u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1246 			     CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1247 
1248 		frame = &timer_mem->frame[i];
1249 		if (!frame->valid)
1250 			continue;
1251 
1252 		/* Try enabling everything, and see what sticks */
1253 		writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1254 		cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1255 
1256 		if ((cnttidr & CNTTIDR_VIRT(i)) &&
1257 		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1258 			best_frame = frame;
1259 			arch_timer_mem_use_virtual = true;
1260 			break;
1261 		}
1262 
1263 		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1264 			continue;
1265 
1266 		best_frame = frame;
1267 	}
1268 
1269 	iounmap(cntctlbase);
1270 
1271 	if (!best_frame)
1272 		pr_err("Unable to find a suitable frame in timer @ %pa\n",
1273 			&timer_mem->cntctlbase);
1274 
1275 	return best_frame;
1276 }
1277 
1278 static int __init
1279 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1280 {
1281 	void __iomem *base;
1282 	int ret, irq = 0;
1283 
1284 	if (arch_timer_mem_use_virtual)
1285 		irq = frame->virt_irq;
1286 	else
1287 		irq = frame->phys_irq;
1288 
1289 	if (!irq) {
1290 		pr_err("Frame missing %s irq.\n",
1291 		       arch_timer_mem_use_virtual ? "virt" : "phys");
1292 		return -EINVAL;
1293 	}
1294 
1295 	if (!request_mem_region(frame->cntbase, frame->size,
1296 				"arch_mem_timer"))
1297 		return -EBUSY;
1298 
1299 	base = ioremap(frame->cntbase, frame->size);
1300 	if (!base) {
1301 		pr_err("Can't map frame's registers\n");
1302 		return -ENXIO;
1303 	}
1304 
1305 	ret = arch_timer_mem_register(base, irq);
1306 	if (ret) {
1307 		iounmap(base);
1308 		return ret;
1309 	}
1310 
1311 	arch_counter_base = base;
1312 	arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1313 
1314 	return 0;
1315 }
1316 
1317 static int __init arch_timer_mem_of_init(struct device_node *np)
1318 {
1319 	struct arch_timer_mem *timer_mem;
1320 	struct arch_timer_mem_frame *frame;
1321 	struct device_node *frame_node;
1322 	struct resource res;
1323 	int ret = -EINVAL;
1324 	u32 rate;
1325 
1326 	timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1327 	if (!timer_mem)
1328 		return -ENOMEM;
1329 
1330 	if (of_address_to_resource(np, 0, &res))
1331 		goto out;
1332 	timer_mem->cntctlbase = res.start;
1333 	timer_mem->size = resource_size(&res);
1334 
1335 	for_each_available_child_of_node(np, frame_node) {
1336 		u32 n;
1337 		struct arch_timer_mem_frame *frame;
1338 
1339 		if (of_property_read_u32(frame_node, "frame-number", &n)) {
1340 			pr_err(FW_BUG "Missing frame-number.\n");
1341 			of_node_put(frame_node);
1342 			goto out;
1343 		}
1344 		if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1345 			pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1346 			       ARCH_TIMER_MEM_MAX_FRAMES - 1);
1347 			of_node_put(frame_node);
1348 			goto out;
1349 		}
1350 		frame = &timer_mem->frame[n];
1351 
1352 		if (frame->valid) {
1353 			pr_err(FW_BUG "Duplicated frame-number.\n");
1354 			of_node_put(frame_node);
1355 			goto out;
1356 		}
1357 
1358 		if (of_address_to_resource(frame_node, 0, &res)) {
1359 			of_node_put(frame_node);
1360 			goto out;
1361 		}
1362 		frame->cntbase = res.start;
1363 		frame->size = resource_size(&res);
1364 
1365 		frame->virt_irq = irq_of_parse_and_map(frame_node,
1366 						       ARCH_TIMER_VIRT_SPI);
1367 		frame->phys_irq = irq_of_parse_and_map(frame_node,
1368 						       ARCH_TIMER_PHYS_SPI);
1369 
1370 		frame->valid = true;
1371 	}
1372 
1373 	frame = arch_timer_mem_find_best_frame(timer_mem);
1374 	if (!frame) {
1375 		ret = -EINVAL;
1376 		goto out;
1377 	}
1378 
1379 	rate = arch_timer_mem_frame_get_cntfrq(frame);
1380 	arch_timer_of_configure_rate(rate, np);
1381 
1382 	ret = arch_timer_mem_frame_register(frame);
1383 	if (!ret && !arch_timer_needs_of_probing())
1384 		ret = arch_timer_common_init();
1385 out:
1386 	kfree(timer_mem);
1387 	return ret;
1388 }
1389 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1390 		       arch_timer_mem_of_init);
1391 
1392 #ifdef CONFIG_ACPI_GTDT
1393 static int __init
1394 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1395 {
1396 	struct arch_timer_mem_frame *frame;
1397 	u32 rate;
1398 	int i;
1399 
1400 	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1401 		frame = &timer_mem->frame[i];
1402 
1403 		if (!frame->valid)
1404 			continue;
1405 
1406 		rate = arch_timer_mem_frame_get_cntfrq(frame);
1407 		if (rate == arch_timer_rate)
1408 			continue;
1409 
1410 		pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1411 			&frame->cntbase,
1412 			(unsigned long)rate, (unsigned long)arch_timer_rate);
1413 
1414 		return -EINVAL;
1415 	}
1416 
1417 	return 0;
1418 }
1419 
1420 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1421 {
1422 	struct arch_timer_mem *timers, *timer;
1423 	struct arch_timer_mem_frame *frame;
1424 	int timer_count, i, ret = 0;
1425 
1426 	timers = kcalloc(platform_timer_count, sizeof(*timers),
1427 			    GFP_KERNEL);
1428 	if (!timers)
1429 		return -ENOMEM;
1430 
1431 	ret = acpi_arch_timer_mem_init(timers, &timer_count);
1432 	if (ret || !timer_count)
1433 		goto out;
1434 
1435 	for (i = 0; i < timer_count; i++) {
1436 		ret = arch_timer_mem_verify_cntfrq(&timers[i]);
1437 		if (ret) {
1438 			pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1439 			goto out;
1440 		}
1441 	}
1442 
1443 	/*
1444 	 * While unlikely, it's theoretically possible that none of the frames
1445 	 * in a timer expose the combination of feature we want.
1446 	 */
1447 	for (i = 0; i < timer_count; i++) {
1448 		timer = &timers[i];
1449 
1450 		frame = arch_timer_mem_find_best_frame(timer);
1451 		if (frame)
1452 			break;
1453 	}
1454 
1455 	if (frame)
1456 		ret = arch_timer_mem_frame_register(frame);
1457 out:
1458 	kfree(timers);
1459 	return ret;
1460 }
1461 
1462 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1463 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1464 {
1465 	int ret, platform_timer_count;
1466 
1467 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1468 		pr_warn("already initialized, skipping\n");
1469 		return -EINVAL;
1470 	}
1471 
1472 	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1473 
1474 	ret = acpi_gtdt_init(table, &platform_timer_count);
1475 	if (ret) {
1476 		pr_err("Failed to init GTDT table.\n");
1477 		return ret;
1478 	}
1479 
1480 	arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1481 		acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1482 
1483 	arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1484 		acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1485 
1486 	arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1487 		acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1488 
1489 	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1490 
1491 	/*
1492 	 * When probing via ACPI, we have no mechanism to override the sysreg
1493 	 * CNTFRQ value. This *must* be correct.
1494 	 */
1495 	arch_timer_rate = arch_timer_get_cntfrq();
1496 	if (!arch_timer_rate) {
1497 		pr_err(FW_BUG "frequency not available.\n");
1498 		return -EINVAL;
1499 	}
1500 
1501 	arch_timer_uses_ppi = arch_timer_select_ppi();
1502 	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1503 		pr_err("No interrupt available, giving up\n");
1504 		return -EINVAL;
1505 	}
1506 
1507 	/* Always-on capability */
1508 	arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1509 
1510 	/* Check for globally applicable workarounds */
1511 	arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1512 
1513 	ret = arch_timer_register();
1514 	if (ret)
1515 		return ret;
1516 
1517 	if (platform_timer_count &&
1518 	    arch_timer_mem_acpi_init(platform_timer_count))
1519 		pr_err("Failed to initialize memory-mapped timer.\n");
1520 
1521 	return arch_timer_common_init();
1522 }
1523 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1524 #endif
1525