1 /* 2 * linux/drivers/clocksource/arm_arch_timer.c 3 * 4 * Copyright (C) 2011 ARM Ltd. 5 * All Rights Reserved 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/device.h> 14 #include <linux/smp.h> 15 #include <linux/cpu.h> 16 #include <linux/cpu_pm.h> 17 #include <linux/clockchips.h> 18 #include <linux/clocksource.h> 19 #include <linux/interrupt.h> 20 #include <linux/of_irq.h> 21 #include <linux/of_address.h> 22 #include <linux/io.h> 23 #include <linux/slab.h> 24 #include <linux/sched_clock.h> 25 #include <linux/acpi.h> 26 27 #include <asm/arch_timer.h> 28 #include <asm/virt.h> 29 30 #include <clocksource/arm_arch_timer.h> 31 32 #define CNTTIDR 0x08 33 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4)) 34 35 #define CNTVCT_LO 0x08 36 #define CNTVCT_HI 0x0c 37 #define CNTFRQ 0x10 38 #define CNTP_TVAL 0x28 39 #define CNTP_CTL 0x2c 40 #define CNTV_TVAL 0x38 41 #define CNTV_CTL 0x3c 42 43 #define ARCH_CP15_TIMER BIT(0) 44 #define ARCH_MEM_TIMER BIT(1) 45 static unsigned arch_timers_present __initdata; 46 47 static void __iomem *arch_counter_base; 48 49 struct arch_timer { 50 void __iomem *base; 51 struct clock_event_device evt; 52 }; 53 54 #define to_arch_timer(e) container_of(e, struct arch_timer, evt) 55 56 static u32 arch_timer_rate; 57 58 enum ppi_nr { 59 PHYS_SECURE_PPI, 60 PHYS_NONSECURE_PPI, 61 VIRT_PPI, 62 HYP_PPI, 63 MAX_TIMER_PPI 64 }; 65 66 static int arch_timer_ppi[MAX_TIMER_PPI]; 67 68 static struct clock_event_device __percpu *arch_timer_evt; 69 70 static bool arch_timer_use_virtual = true; 71 static bool arch_timer_c3stop; 72 static bool arch_timer_mem_use_virtual; 73 74 /* 75 * Architected system timer support. 76 */ 77 78 static __always_inline 79 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val, 80 struct clock_event_device *clk) 81 { 82 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 83 struct arch_timer *timer = to_arch_timer(clk); 84 switch (reg) { 85 case ARCH_TIMER_REG_CTRL: 86 writel_relaxed(val, timer->base + CNTP_CTL); 87 break; 88 case ARCH_TIMER_REG_TVAL: 89 writel_relaxed(val, timer->base + CNTP_TVAL); 90 break; 91 } 92 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 93 struct arch_timer *timer = to_arch_timer(clk); 94 switch (reg) { 95 case ARCH_TIMER_REG_CTRL: 96 writel_relaxed(val, timer->base + CNTV_CTL); 97 break; 98 case ARCH_TIMER_REG_TVAL: 99 writel_relaxed(val, timer->base + CNTV_TVAL); 100 break; 101 } 102 } else { 103 arch_timer_reg_write_cp15(access, reg, val); 104 } 105 } 106 107 static __always_inline 108 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg, 109 struct clock_event_device *clk) 110 { 111 u32 val; 112 113 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 114 struct arch_timer *timer = to_arch_timer(clk); 115 switch (reg) { 116 case ARCH_TIMER_REG_CTRL: 117 val = readl_relaxed(timer->base + CNTP_CTL); 118 break; 119 case ARCH_TIMER_REG_TVAL: 120 val = readl_relaxed(timer->base + CNTP_TVAL); 121 break; 122 } 123 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 124 struct arch_timer *timer = to_arch_timer(clk); 125 switch (reg) { 126 case ARCH_TIMER_REG_CTRL: 127 val = readl_relaxed(timer->base + CNTV_CTL); 128 break; 129 case ARCH_TIMER_REG_TVAL: 130 val = readl_relaxed(timer->base + CNTV_TVAL); 131 break; 132 } 133 } else { 134 val = arch_timer_reg_read_cp15(access, reg); 135 } 136 137 return val; 138 } 139 140 static __always_inline irqreturn_t timer_handler(const int access, 141 struct clock_event_device *evt) 142 { 143 unsigned long ctrl; 144 145 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt); 146 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { 147 ctrl |= ARCH_TIMER_CTRL_IT_MASK; 148 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt); 149 evt->event_handler(evt); 150 return IRQ_HANDLED; 151 } 152 153 return IRQ_NONE; 154 } 155 156 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id) 157 { 158 struct clock_event_device *evt = dev_id; 159 160 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt); 161 } 162 163 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id) 164 { 165 struct clock_event_device *evt = dev_id; 166 167 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt); 168 } 169 170 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id) 171 { 172 struct clock_event_device *evt = dev_id; 173 174 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt); 175 } 176 177 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id) 178 { 179 struct clock_event_device *evt = dev_id; 180 181 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt); 182 } 183 184 static __always_inline void timer_set_mode(const int access, int mode, 185 struct clock_event_device *clk) 186 { 187 unsigned long ctrl; 188 switch (mode) { 189 case CLOCK_EVT_MODE_UNUSED: 190 case CLOCK_EVT_MODE_SHUTDOWN: 191 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 192 ctrl &= ~ARCH_TIMER_CTRL_ENABLE; 193 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 194 break; 195 default: 196 break; 197 } 198 } 199 200 static void arch_timer_set_mode_virt(enum clock_event_mode mode, 201 struct clock_event_device *clk) 202 { 203 timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode, clk); 204 } 205 206 static void arch_timer_set_mode_phys(enum clock_event_mode mode, 207 struct clock_event_device *clk) 208 { 209 timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode, clk); 210 } 211 212 static void arch_timer_set_mode_virt_mem(enum clock_event_mode mode, 213 struct clock_event_device *clk) 214 { 215 timer_set_mode(ARCH_TIMER_MEM_VIRT_ACCESS, mode, clk); 216 } 217 218 static void arch_timer_set_mode_phys_mem(enum clock_event_mode mode, 219 struct clock_event_device *clk) 220 { 221 timer_set_mode(ARCH_TIMER_MEM_PHYS_ACCESS, mode, clk); 222 } 223 224 static __always_inline void set_next_event(const int access, unsigned long evt, 225 struct clock_event_device *clk) 226 { 227 unsigned long ctrl; 228 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 229 ctrl |= ARCH_TIMER_CTRL_ENABLE; 230 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 231 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk); 232 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 233 } 234 235 static int arch_timer_set_next_event_virt(unsigned long evt, 236 struct clock_event_device *clk) 237 { 238 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk); 239 return 0; 240 } 241 242 static int arch_timer_set_next_event_phys(unsigned long evt, 243 struct clock_event_device *clk) 244 { 245 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk); 246 return 0; 247 } 248 249 static int arch_timer_set_next_event_virt_mem(unsigned long evt, 250 struct clock_event_device *clk) 251 { 252 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk); 253 return 0; 254 } 255 256 static int arch_timer_set_next_event_phys_mem(unsigned long evt, 257 struct clock_event_device *clk) 258 { 259 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk); 260 return 0; 261 } 262 263 static void __arch_timer_setup(unsigned type, 264 struct clock_event_device *clk) 265 { 266 clk->features = CLOCK_EVT_FEAT_ONESHOT; 267 268 if (type == ARCH_CP15_TIMER) { 269 if (arch_timer_c3stop) 270 clk->features |= CLOCK_EVT_FEAT_C3STOP; 271 clk->name = "arch_sys_timer"; 272 clk->rating = 450; 273 clk->cpumask = cpumask_of(smp_processor_id()); 274 if (arch_timer_use_virtual) { 275 clk->irq = arch_timer_ppi[VIRT_PPI]; 276 clk->set_mode = arch_timer_set_mode_virt; 277 clk->set_next_event = arch_timer_set_next_event_virt; 278 } else { 279 clk->irq = arch_timer_ppi[PHYS_SECURE_PPI]; 280 clk->set_mode = arch_timer_set_mode_phys; 281 clk->set_next_event = arch_timer_set_next_event_phys; 282 } 283 } else { 284 clk->features |= CLOCK_EVT_FEAT_DYNIRQ; 285 clk->name = "arch_mem_timer"; 286 clk->rating = 400; 287 clk->cpumask = cpu_all_mask; 288 if (arch_timer_mem_use_virtual) { 289 clk->set_mode = arch_timer_set_mode_virt_mem; 290 clk->set_next_event = 291 arch_timer_set_next_event_virt_mem; 292 } else { 293 clk->set_mode = arch_timer_set_mode_phys_mem; 294 clk->set_next_event = 295 arch_timer_set_next_event_phys_mem; 296 } 297 } 298 299 clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, clk); 300 301 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff); 302 } 303 304 static void arch_timer_evtstrm_enable(int divider) 305 { 306 u32 cntkctl = arch_timer_get_cntkctl(); 307 308 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK; 309 /* Set the divider and enable virtual event stream */ 310 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT) 311 | ARCH_TIMER_VIRT_EVT_EN; 312 arch_timer_set_cntkctl(cntkctl); 313 elf_hwcap |= HWCAP_EVTSTRM; 314 #ifdef CONFIG_COMPAT 315 compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM; 316 #endif 317 } 318 319 static void arch_timer_configure_evtstream(void) 320 { 321 int evt_stream_div, pos; 322 323 /* Find the closest power of two to the divisor */ 324 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ; 325 pos = fls(evt_stream_div); 326 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2)))) 327 pos--; 328 /* enable event stream */ 329 arch_timer_evtstrm_enable(min(pos, 15)); 330 } 331 332 static void arch_counter_set_user_access(void) 333 { 334 u32 cntkctl = arch_timer_get_cntkctl(); 335 336 /* Disable user access to the timers and the physical counter */ 337 /* Also disable virtual event stream */ 338 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN 339 | ARCH_TIMER_USR_VT_ACCESS_EN 340 | ARCH_TIMER_VIRT_EVT_EN 341 | ARCH_TIMER_USR_PCT_ACCESS_EN); 342 343 /* Enable user access to the virtual counter */ 344 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN; 345 346 arch_timer_set_cntkctl(cntkctl); 347 } 348 349 static int arch_timer_setup(struct clock_event_device *clk) 350 { 351 __arch_timer_setup(ARCH_CP15_TIMER, clk); 352 353 if (arch_timer_use_virtual) 354 enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0); 355 else { 356 enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0); 357 if (arch_timer_ppi[PHYS_NONSECURE_PPI]) 358 enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0); 359 } 360 361 arch_counter_set_user_access(); 362 if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM)) 363 arch_timer_configure_evtstream(); 364 365 return 0; 366 } 367 368 static void 369 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np) 370 { 371 /* Who has more than one independent system counter? */ 372 if (arch_timer_rate) 373 return; 374 375 /* 376 * Try to determine the frequency from the device tree or CNTFRQ, 377 * if ACPI is enabled, get the frequency from CNTFRQ ONLY. 378 */ 379 if (!acpi_disabled || 380 of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) { 381 if (cntbase) 382 arch_timer_rate = readl_relaxed(cntbase + CNTFRQ); 383 else 384 arch_timer_rate = arch_timer_get_cntfrq(); 385 } 386 387 /* Check the timer frequency. */ 388 if (arch_timer_rate == 0) 389 pr_warn("Architected timer frequency not available\n"); 390 } 391 392 static void arch_timer_banner(unsigned type) 393 { 394 pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n", 395 type & ARCH_CP15_TIMER ? "cp15" : "", 396 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "", 397 type & ARCH_MEM_TIMER ? "mmio" : "", 398 (unsigned long)arch_timer_rate / 1000000, 399 (unsigned long)(arch_timer_rate / 10000) % 100, 400 type & ARCH_CP15_TIMER ? 401 arch_timer_use_virtual ? "virt" : "phys" : 402 "", 403 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "", 404 type & ARCH_MEM_TIMER ? 405 arch_timer_mem_use_virtual ? "virt" : "phys" : 406 ""); 407 } 408 409 u32 arch_timer_get_rate(void) 410 { 411 return arch_timer_rate; 412 } 413 414 static u64 arch_counter_get_cntvct_mem(void) 415 { 416 u32 vct_lo, vct_hi, tmp_hi; 417 418 do { 419 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); 420 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO); 421 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); 422 } while (vct_hi != tmp_hi); 423 424 return ((u64) vct_hi << 32) | vct_lo; 425 } 426 427 /* 428 * Default to cp15 based access because arm64 uses this function for 429 * sched_clock() before DT is probed and the cp15 method is guaranteed 430 * to exist on arm64. arm doesn't use this before DT is probed so even 431 * if we don't have the cp15 accessors we won't have a problem. 432 */ 433 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct; 434 435 static cycle_t arch_counter_read(struct clocksource *cs) 436 { 437 return arch_timer_read_counter(); 438 } 439 440 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc) 441 { 442 return arch_timer_read_counter(); 443 } 444 445 static struct clocksource clocksource_counter = { 446 .name = "arch_sys_counter", 447 .rating = 400, 448 .read = arch_counter_read, 449 .mask = CLOCKSOURCE_MASK(56), 450 .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP, 451 }; 452 453 static struct cyclecounter cyclecounter = { 454 .read = arch_counter_read_cc, 455 .mask = CLOCKSOURCE_MASK(56), 456 }; 457 458 static struct timecounter timecounter; 459 460 struct timecounter *arch_timer_get_timecounter(void) 461 { 462 return &timecounter; 463 } 464 465 static void __init arch_counter_register(unsigned type) 466 { 467 u64 start_count; 468 469 /* Register the CP15 based counter if we have one */ 470 if (type & ARCH_CP15_TIMER) { 471 if (IS_ENABLED(CONFIG_ARM64) || arch_timer_use_virtual) 472 arch_timer_read_counter = arch_counter_get_cntvct; 473 else 474 arch_timer_read_counter = arch_counter_get_cntpct; 475 } else { 476 arch_timer_read_counter = arch_counter_get_cntvct_mem; 477 478 /* If the clocksource name is "arch_sys_counter" the 479 * VDSO will attempt to read the CP15-based counter. 480 * Ensure this does not happen when CP15-based 481 * counter is not available. 482 */ 483 clocksource_counter.name = "arch_mem_counter"; 484 } 485 486 start_count = arch_timer_read_counter(); 487 clocksource_register_hz(&clocksource_counter, arch_timer_rate); 488 cyclecounter.mult = clocksource_counter.mult; 489 cyclecounter.shift = clocksource_counter.shift; 490 timecounter_init(&timecounter, &cyclecounter, start_count); 491 492 /* 56 bits minimum, so we assume worst case rollover */ 493 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate); 494 } 495 496 static void arch_timer_stop(struct clock_event_device *clk) 497 { 498 pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n", 499 clk->irq, smp_processor_id()); 500 501 if (arch_timer_use_virtual) 502 disable_percpu_irq(arch_timer_ppi[VIRT_PPI]); 503 else { 504 disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]); 505 if (arch_timer_ppi[PHYS_NONSECURE_PPI]) 506 disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]); 507 } 508 509 clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk); 510 } 511 512 static int arch_timer_cpu_notify(struct notifier_block *self, 513 unsigned long action, void *hcpu) 514 { 515 /* 516 * Grab cpu pointer in each case to avoid spurious 517 * preemptible warnings 518 */ 519 switch (action & ~CPU_TASKS_FROZEN) { 520 case CPU_STARTING: 521 arch_timer_setup(this_cpu_ptr(arch_timer_evt)); 522 break; 523 case CPU_DYING: 524 arch_timer_stop(this_cpu_ptr(arch_timer_evt)); 525 break; 526 } 527 528 return NOTIFY_OK; 529 } 530 531 static struct notifier_block arch_timer_cpu_nb = { 532 .notifier_call = arch_timer_cpu_notify, 533 }; 534 535 #ifdef CONFIG_CPU_PM 536 static unsigned int saved_cntkctl; 537 static int arch_timer_cpu_pm_notify(struct notifier_block *self, 538 unsigned long action, void *hcpu) 539 { 540 if (action == CPU_PM_ENTER) 541 saved_cntkctl = arch_timer_get_cntkctl(); 542 else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) 543 arch_timer_set_cntkctl(saved_cntkctl); 544 return NOTIFY_OK; 545 } 546 547 static struct notifier_block arch_timer_cpu_pm_notifier = { 548 .notifier_call = arch_timer_cpu_pm_notify, 549 }; 550 551 static int __init arch_timer_cpu_pm_init(void) 552 { 553 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier); 554 } 555 #else 556 static int __init arch_timer_cpu_pm_init(void) 557 { 558 return 0; 559 } 560 #endif 561 562 static int __init arch_timer_register(void) 563 { 564 int err; 565 int ppi; 566 567 arch_timer_evt = alloc_percpu(struct clock_event_device); 568 if (!arch_timer_evt) { 569 err = -ENOMEM; 570 goto out; 571 } 572 573 if (arch_timer_use_virtual) { 574 ppi = arch_timer_ppi[VIRT_PPI]; 575 err = request_percpu_irq(ppi, arch_timer_handler_virt, 576 "arch_timer", arch_timer_evt); 577 } else { 578 ppi = arch_timer_ppi[PHYS_SECURE_PPI]; 579 err = request_percpu_irq(ppi, arch_timer_handler_phys, 580 "arch_timer", arch_timer_evt); 581 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) { 582 ppi = arch_timer_ppi[PHYS_NONSECURE_PPI]; 583 err = request_percpu_irq(ppi, arch_timer_handler_phys, 584 "arch_timer", arch_timer_evt); 585 if (err) 586 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 587 arch_timer_evt); 588 } 589 } 590 591 if (err) { 592 pr_err("arch_timer: can't register interrupt %d (%d)\n", 593 ppi, err); 594 goto out_free; 595 } 596 597 err = register_cpu_notifier(&arch_timer_cpu_nb); 598 if (err) 599 goto out_free_irq; 600 601 err = arch_timer_cpu_pm_init(); 602 if (err) 603 goto out_unreg_notify; 604 605 /* Immediately configure the timer on the boot CPU */ 606 arch_timer_setup(this_cpu_ptr(arch_timer_evt)); 607 608 return 0; 609 610 out_unreg_notify: 611 unregister_cpu_notifier(&arch_timer_cpu_nb); 612 out_free_irq: 613 if (arch_timer_use_virtual) 614 free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt); 615 else { 616 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 617 arch_timer_evt); 618 if (arch_timer_ppi[PHYS_NONSECURE_PPI]) 619 free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 620 arch_timer_evt); 621 } 622 623 out_free: 624 free_percpu(arch_timer_evt); 625 out: 626 return err; 627 } 628 629 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq) 630 { 631 int ret; 632 irq_handler_t func; 633 struct arch_timer *t; 634 635 t = kzalloc(sizeof(*t), GFP_KERNEL); 636 if (!t) 637 return -ENOMEM; 638 639 t->base = base; 640 t->evt.irq = irq; 641 __arch_timer_setup(ARCH_MEM_TIMER, &t->evt); 642 643 if (arch_timer_mem_use_virtual) 644 func = arch_timer_handler_virt_mem; 645 else 646 func = arch_timer_handler_phys_mem; 647 648 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt); 649 if (ret) { 650 pr_err("arch_timer: Failed to request mem timer irq\n"); 651 kfree(t); 652 } 653 654 return ret; 655 } 656 657 static const struct of_device_id arch_timer_of_match[] __initconst = { 658 { .compatible = "arm,armv7-timer", }, 659 { .compatible = "arm,armv8-timer", }, 660 {}, 661 }; 662 663 static const struct of_device_id arch_timer_mem_of_match[] __initconst = { 664 { .compatible = "arm,armv7-timer-mem", }, 665 {}, 666 }; 667 668 static bool __init 669 arch_timer_needs_probing(int type, const struct of_device_id *matches) 670 { 671 struct device_node *dn; 672 bool needs_probing = false; 673 674 dn = of_find_matching_node(NULL, matches); 675 if (dn && of_device_is_available(dn) && !(arch_timers_present & type)) 676 needs_probing = true; 677 of_node_put(dn); 678 679 return needs_probing; 680 } 681 682 static void __init arch_timer_common_init(void) 683 { 684 unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER; 685 686 /* Wait until both nodes are probed if we have two timers */ 687 if ((arch_timers_present & mask) != mask) { 688 if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match)) 689 return; 690 if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match)) 691 return; 692 } 693 694 arch_timer_banner(arch_timers_present); 695 arch_counter_register(arch_timers_present); 696 arch_timer_arch_init(); 697 } 698 699 static void __init arch_timer_init(void) 700 { 701 /* 702 * If HYP mode is available, we know that the physical timer 703 * has been configured to be accessible from PL1. Use it, so 704 * that a guest can use the virtual timer instead. 705 * 706 * If no interrupt provided for virtual timer, we'll have to 707 * stick to the physical timer. It'd better be accessible... 708 */ 709 if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) { 710 arch_timer_use_virtual = false; 711 712 if (!arch_timer_ppi[PHYS_SECURE_PPI] || 713 !arch_timer_ppi[PHYS_NONSECURE_PPI]) { 714 pr_warn("arch_timer: No interrupt available, giving up\n"); 715 return; 716 } 717 } 718 719 arch_timer_register(); 720 arch_timer_common_init(); 721 } 722 723 static void __init arch_timer_of_init(struct device_node *np) 724 { 725 int i; 726 727 if (arch_timers_present & ARCH_CP15_TIMER) { 728 pr_warn("arch_timer: multiple nodes in dt, skipping\n"); 729 return; 730 } 731 732 arch_timers_present |= ARCH_CP15_TIMER; 733 for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++) 734 arch_timer_ppi[i] = irq_of_parse_and_map(np, i); 735 736 arch_timer_detect_rate(NULL, np); 737 738 arch_timer_c3stop = !of_property_read_bool(np, "always-on"); 739 740 /* 741 * If we cannot rely on firmware initializing the timer registers then 742 * we should use the physical timers instead. 743 */ 744 if (IS_ENABLED(CONFIG_ARM) && 745 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured")) 746 arch_timer_use_virtual = false; 747 748 arch_timer_init(); 749 } 750 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init); 751 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init); 752 753 static void __init arch_timer_mem_init(struct device_node *np) 754 { 755 struct device_node *frame, *best_frame = NULL; 756 void __iomem *cntctlbase, *base; 757 unsigned int irq; 758 u32 cnttidr; 759 760 arch_timers_present |= ARCH_MEM_TIMER; 761 cntctlbase = of_iomap(np, 0); 762 if (!cntctlbase) { 763 pr_err("arch_timer: Can't find CNTCTLBase\n"); 764 return; 765 } 766 767 cnttidr = readl_relaxed(cntctlbase + CNTTIDR); 768 iounmap(cntctlbase); 769 770 /* 771 * Try to find a virtual capable frame. Otherwise fall back to a 772 * physical capable frame. 773 */ 774 for_each_available_child_of_node(np, frame) { 775 int n; 776 777 if (of_property_read_u32(frame, "frame-number", &n)) { 778 pr_err("arch_timer: Missing frame-number\n"); 779 of_node_put(best_frame); 780 of_node_put(frame); 781 return; 782 } 783 784 if (cnttidr & CNTTIDR_VIRT(n)) { 785 of_node_put(best_frame); 786 best_frame = frame; 787 arch_timer_mem_use_virtual = true; 788 break; 789 } 790 of_node_put(best_frame); 791 best_frame = of_node_get(frame); 792 } 793 794 base = arch_counter_base = of_iomap(best_frame, 0); 795 if (!base) { 796 pr_err("arch_timer: Can't map frame's registers\n"); 797 of_node_put(best_frame); 798 return; 799 } 800 801 if (arch_timer_mem_use_virtual) 802 irq = irq_of_parse_and_map(best_frame, 1); 803 else 804 irq = irq_of_parse_and_map(best_frame, 0); 805 of_node_put(best_frame); 806 if (!irq) { 807 pr_err("arch_timer: Frame missing %s irq", 808 arch_timer_mem_use_virtual ? "virt" : "phys"); 809 return; 810 } 811 812 arch_timer_detect_rate(base, np); 813 arch_timer_mem_register(base, irq); 814 arch_timer_common_init(); 815 } 816 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem", 817 arch_timer_mem_init); 818 819 #ifdef CONFIG_ACPI 820 static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags) 821 { 822 int trigger, polarity; 823 824 if (!interrupt) 825 return 0; 826 827 trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE 828 : ACPI_LEVEL_SENSITIVE; 829 830 polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW 831 : ACPI_ACTIVE_HIGH; 832 833 return acpi_register_gsi(NULL, interrupt, trigger, polarity); 834 } 835 836 /* Initialize per-processor generic timer */ 837 static int __init arch_timer_acpi_init(struct acpi_table_header *table) 838 { 839 struct acpi_table_gtdt *gtdt; 840 841 if (arch_timers_present & ARCH_CP15_TIMER) { 842 pr_warn("arch_timer: already initialized, skipping\n"); 843 return -EINVAL; 844 } 845 846 gtdt = container_of(table, struct acpi_table_gtdt, header); 847 848 arch_timers_present |= ARCH_CP15_TIMER; 849 850 arch_timer_ppi[PHYS_SECURE_PPI] = 851 map_generic_timer_interrupt(gtdt->secure_el1_interrupt, 852 gtdt->secure_el1_flags); 853 854 arch_timer_ppi[PHYS_NONSECURE_PPI] = 855 map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt, 856 gtdt->non_secure_el1_flags); 857 858 arch_timer_ppi[VIRT_PPI] = 859 map_generic_timer_interrupt(gtdt->virtual_timer_interrupt, 860 gtdt->virtual_timer_flags); 861 862 arch_timer_ppi[HYP_PPI] = 863 map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt, 864 gtdt->non_secure_el2_flags); 865 866 /* Get the frequency from CNTFRQ */ 867 arch_timer_detect_rate(NULL, NULL); 868 869 /* Always-on capability */ 870 arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON); 871 872 arch_timer_init(); 873 return 0; 874 } 875 876 /* Initialize all the generic timers presented in GTDT */ 877 void __init acpi_generic_timer_init(void) 878 { 879 if (acpi_disabled) 880 return; 881 882 acpi_table_parse(ACPI_SIG_GTDT, arch_timer_acpi_init); 883 } 884 #endif 885