1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/clocksource/arm_arch_timer.c 4 * 5 * Copyright (C) 2011 ARM Ltd. 6 * All Rights Reserved 7 */ 8 9 #define pr_fmt(fmt) "arch_timer: " fmt 10 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/device.h> 14 #include <linux/smp.h> 15 #include <linux/cpu.h> 16 #include <linux/cpu_pm.h> 17 #include <linux/clockchips.h> 18 #include <linux/clocksource.h> 19 #include <linux/clocksource_ids.h> 20 #include <linux/interrupt.h> 21 #include <linux/of_irq.h> 22 #include <linux/of_address.h> 23 #include <linux/io.h> 24 #include <linux/slab.h> 25 #include <linux/sched/clock.h> 26 #include <linux/sched_clock.h> 27 #include <linux/acpi.h> 28 #include <linux/arm-smccc.h> 29 #include <linux/ptp_kvm.h> 30 31 #include <asm/arch_timer.h> 32 #include <asm/virt.h> 33 34 #include <clocksource/arm_arch_timer.h> 35 36 #define CNTTIDR 0x08 37 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4)) 38 39 #define CNTACR(n) (0x40 + ((n) * 4)) 40 #define CNTACR_RPCT BIT(0) 41 #define CNTACR_RVCT BIT(1) 42 #define CNTACR_RFRQ BIT(2) 43 #define CNTACR_RVOFF BIT(3) 44 #define CNTACR_RWVT BIT(4) 45 #define CNTACR_RWPT BIT(5) 46 47 #define CNTVCT_LO 0x00 48 #define CNTPCT_LO 0x08 49 #define CNTFRQ 0x10 50 #define CNTP_CVAL_LO 0x20 51 #define CNTP_CTL 0x2c 52 #define CNTV_CVAL_LO 0x30 53 #define CNTV_CTL 0x3c 54 55 /* 56 * The minimum amount of time a generic counter is guaranteed to not roll over 57 * (40 years) 58 */ 59 #define MIN_ROLLOVER_SECS (40ULL * 365 * 24 * 3600) 60 61 static unsigned arch_timers_present __initdata; 62 63 struct arch_timer { 64 void __iomem *base; 65 struct clock_event_device evt; 66 }; 67 68 static struct arch_timer *arch_timer_mem __ro_after_init; 69 70 #define to_arch_timer(e) container_of(e, struct arch_timer, evt) 71 72 static u32 arch_timer_rate __ro_after_init; 73 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init; 74 75 static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = { 76 [ARCH_TIMER_PHYS_SECURE_PPI] = "sec-phys", 77 [ARCH_TIMER_PHYS_NONSECURE_PPI] = "phys", 78 [ARCH_TIMER_VIRT_PPI] = "virt", 79 [ARCH_TIMER_HYP_PPI] = "hyp-phys", 80 [ARCH_TIMER_HYP_VIRT_PPI] = "hyp-virt", 81 }; 82 83 static struct clock_event_device __percpu *arch_timer_evt; 84 85 static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI; 86 static bool arch_timer_c3stop __ro_after_init; 87 static bool arch_timer_mem_use_virtual __ro_after_init; 88 static bool arch_counter_suspend_stop __ro_after_init; 89 #ifdef CONFIG_GENERIC_GETTIMEOFDAY 90 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER; 91 #else 92 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE; 93 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */ 94 95 static cpumask_t evtstrm_available = CPU_MASK_NONE; 96 static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM); 97 98 static int __init early_evtstrm_cfg(char *buf) 99 { 100 return strtobool(buf, &evtstrm_enable); 101 } 102 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg); 103 104 /* 105 * Makes an educated guess at a valid counter width based on the Generic Timer 106 * specification. Of note: 107 * 1) the system counter is at least 56 bits wide 108 * 2) a roll-over time of not less than 40 years 109 * 110 * See 'ARM DDI 0487G.a D11.1.2 ("The system counter")' for more details. 111 */ 112 static int arch_counter_get_width(void) 113 { 114 u64 min_cycles = MIN_ROLLOVER_SECS * arch_timer_rate; 115 116 /* guarantee the returned width is within the valid range */ 117 return clamp_val(ilog2(min_cycles - 1) + 1, 56, 64); 118 } 119 120 /* 121 * Architected system timer support. 122 */ 123 124 static __always_inline 125 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u64 val, 126 struct clock_event_device *clk) 127 { 128 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 129 struct arch_timer *timer = to_arch_timer(clk); 130 switch (reg) { 131 case ARCH_TIMER_REG_CTRL: 132 writel_relaxed((u32)val, timer->base + CNTP_CTL); 133 break; 134 case ARCH_TIMER_REG_CVAL: 135 /* 136 * Not guaranteed to be atomic, so the timer 137 * must be disabled at this point. 138 */ 139 writeq_relaxed(val, timer->base + CNTP_CVAL_LO); 140 break; 141 default: 142 BUILD_BUG(); 143 } 144 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 145 struct arch_timer *timer = to_arch_timer(clk); 146 switch (reg) { 147 case ARCH_TIMER_REG_CTRL: 148 writel_relaxed((u32)val, timer->base + CNTV_CTL); 149 break; 150 case ARCH_TIMER_REG_CVAL: 151 /* Same restriction as above */ 152 writeq_relaxed(val, timer->base + CNTV_CVAL_LO); 153 break; 154 default: 155 BUILD_BUG(); 156 } 157 } else { 158 arch_timer_reg_write_cp15(access, reg, val); 159 } 160 } 161 162 static __always_inline 163 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg, 164 struct clock_event_device *clk) 165 { 166 u32 val; 167 168 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 169 struct arch_timer *timer = to_arch_timer(clk); 170 switch (reg) { 171 case ARCH_TIMER_REG_CTRL: 172 val = readl_relaxed(timer->base + CNTP_CTL); 173 break; 174 default: 175 BUILD_BUG(); 176 } 177 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 178 struct arch_timer *timer = to_arch_timer(clk); 179 switch (reg) { 180 case ARCH_TIMER_REG_CTRL: 181 val = readl_relaxed(timer->base + CNTV_CTL); 182 break; 183 default: 184 BUILD_BUG(); 185 } 186 } else { 187 val = arch_timer_reg_read_cp15(access, reg); 188 } 189 190 return val; 191 } 192 193 static notrace u64 arch_counter_get_cntpct_stable(void) 194 { 195 return __arch_counter_get_cntpct_stable(); 196 } 197 198 static notrace u64 arch_counter_get_cntpct(void) 199 { 200 return __arch_counter_get_cntpct(); 201 } 202 203 static notrace u64 arch_counter_get_cntvct_stable(void) 204 { 205 return __arch_counter_get_cntvct_stable(); 206 } 207 208 static notrace u64 arch_counter_get_cntvct(void) 209 { 210 return __arch_counter_get_cntvct(); 211 } 212 213 /* 214 * Default to cp15 based access because arm64 uses this function for 215 * sched_clock() before DT is probed and the cp15 method is guaranteed 216 * to exist on arm64. arm doesn't use this before DT is probed so even 217 * if we don't have the cp15 accessors we won't have a problem. 218 */ 219 u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct; 220 EXPORT_SYMBOL_GPL(arch_timer_read_counter); 221 222 static u64 arch_counter_read(struct clocksource *cs) 223 { 224 return arch_timer_read_counter(); 225 } 226 227 static u64 arch_counter_read_cc(const struct cyclecounter *cc) 228 { 229 return arch_timer_read_counter(); 230 } 231 232 static struct clocksource clocksource_counter = { 233 .name = "arch_sys_counter", 234 .id = CSID_ARM_ARCH_COUNTER, 235 .rating = 400, 236 .read = arch_counter_read, 237 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 238 }; 239 240 static struct cyclecounter cyclecounter __ro_after_init = { 241 .read = arch_counter_read_cc, 242 }; 243 244 struct ate_acpi_oem_info { 245 char oem_id[ACPI_OEM_ID_SIZE + 1]; 246 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1]; 247 u32 oem_revision; 248 }; 249 250 #ifdef CONFIG_FSL_ERRATUM_A008585 251 /* 252 * The number of retries is an arbitrary value well beyond the highest number 253 * of iterations the loop has been observed to take. 254 */ 255 #define __fsl_a008585_read_reg(reg) ({ \ 256 u64 _old, _new; \ 257 int _retries = 200; \ 258 \ 259 do { \ 260 _old = read_sysreg(reg); \ 261 _new = read_sysreg(reg); \ 262 _retries--; \ 263 } while (unlikely(_old != _new) && _retries); \ 264 \ 265 WARN_ON_ONCE(!_retries); \ 266 _new; \ 267 }) 268 269 static u64 notrace fsl_a008585_read_cntpct_el0(void) 270 { 271 return __fsl_a008585_read_reg(cntpct_el0); 272 } 273 274 static u64 notrace fsl_a008585_read_cntvct_el0(void) 275 { 276 return __fsl_a008585_read_reg(cntvct_el0); 277 } 278 #endif 279 280 #ifdef CONFIG_HISILICON_ERRATUM_161010101 281 /* 282 * Verify whether the value of the second read is larger than the first by 283 * less than 32 is the only way to confirm the value is correct, so clear the 284 * lower 5 bits to check whether the difference is greater than 32 or not. 285 * Theoretically the erratum should not occur more than twice in succession 286 * when reading the system counter, but it is possible that some interrupts 287 * may lead to more than twice read errors, triggering the warning, so setting 288 * the number of retries far beyond the number of iterations the loop has been 289 * observed to take. 290 */ 291 #define __hisi_161010101_read_reg(reg) ({ \ 292 u64 _old, _new; \ 293 int _retries = 50; \ 294 \ 295 do { \ 296 _old = read_sysreg(reg); \ 297 _new = read_sysreg(reg); \ 298 _retries--; \ 299 } while (unlikely((_new - _old) >> 5) && _retries); \ 300 \ 301 WARN_ON_ONCE(!_retries); \ 302 _new; \ 303 }) 304 305 static u64 notrace hisi_161010101_read_cntpct_el0(void) 306 { 307 return __hisi_161010101_read_reg(cntpct_el0); 308 } 309 310 static u64 notrace hisi_161010101_read_cntvct_el0(void) 311 { 312 return __hisi_161010101_read_reg(cntvct_el0); 313 } 314 315 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = { 316 /* 317 * Note that trailing spaces are required to properly match 318 * the OEM table information. 319 */ 320 { 321 .oem_id = "HISI ", 322 .oem_table_id = "HIP05 ", 323 .oem_revision = 0, 324 }, 325 { 326 .oem_id = "HISI ", 327 .oem_table_id = "HIP06 ", 328 .oem_revision = 0, 329 }, 330 { 331 .oem_id = "HISI ", 332 .oem_table_id = "HIP07 ", 333 .oem_revision = 0, 334 }, 335 { /* Sentinel indicating the end of the OEM array */ }, 336 }; 337 #endif 338 339 #ifdef CONFIG_ARM64_ERRATUM_858921 340 static u64 notrace arm64_858921_read_cntpct_el0(void) 341 { 342 u64 old, new; 343 344 old = read_sysreg(cntpct_el0); 345 new = read_sysreg(cntpct_el0); 346 return (((old ^ new) >> 32) & 1) ? old : new; 347 } 348 349 static u64 notrace arm64_858921_read_cntvct_el0(void) 350 { 351 u64 old, new; 352 353 old = read_sysreg(cntvct_el0); 354 new = read_sysreg(cntvct_el0); 355 return (((old ^ new) >> 32) & 1) ? old : new; 356 } 357 #endif 358 359 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1 360 /* 361 * The low bits of the counter registers are indeterminate while bit 10 or 362 * greater is rolling over. Since the counter value can jump both backward 363 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values 364 * with all ones or all zeros in the low bits. Bound the loop by the maximum 365 * number of CPU cycles in 3 consecutive 24 MHz counter periods. 366 */ 367 #define __sun50i_a64_read_reg(reg) ({ \ 368 u64 _val; \ 369 int _retries = 150; \ 370 \ 371 do { \ 372 _val = read_sysreg(reg); \ 373 _retries--; \ 374 } while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries); \ 375 \ 376 WARN_ON_ONCE(!_retries); \ 377 _val; \ 378 }) 379 380 static u64 notrace sun50i_a64_read_cntpct_el0(void) 381 { 382 return __sun50i_a64_read_reg(cntpct_el0); 383 } 384 385 static u64 notrace sun50i_a64_read_cntvct_el0(void) 386 { 387 return __sun50i_a64_read_reg(cntvct_el0); 388 } 389 #endif 390 391 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND 392 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround); 393 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround); 394 395 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0); 396 397 /* 398 * Force the inlining of this function so that the register accesses 399 * can be themselves correctly inlined. 400 */ 401 static __always_inline 402 void erratum_set_next_event_generic(const int access, unsigned long evt, 403 struct clock_event_device *clk) 404 { 405 unsigned long ctrl; 406 u64 cval; 407 408 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 409 ctrl |= ARCH_TIMER_CTRL_ENABLE; 410 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 411 412 if (access == ARCH_TIMER_PHYS_ACCESS) { 413 cval = evt + arch_counter_get_cntpct_stable(); 414 write_sysreg(cval, cntp_cval_el0); 415 } else { 416 cval = evt + arch_counter_get_cntvct_stable(); 417 write_sysreg(cval, cntv_cval_el0); 418 } 419 420 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 421 } 422 423 static __maybe_unused int erratum_set_next_event_virt(unsigned long evt, 424 struct clock_event_device *clk) 425 { 426 erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk); 427 return 0; 428 } 429 430 static __maybe_unused int erratum_set_next_event_phys(unsigned long evt, 431 struct clock_event_device *clk) 432 { 433 erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk); 434 return 0; 435 } 436 437 static const struct arch_timer_erratum_workaround ool_workarounds[] = { 438 #ifdef CONFIG_FSL_ERRATUM_A008585 439 { 440 .match_type = ate_match_dt, 441 .id = "fsl,erratum-a008585", 442 .desc = "Freescale erratum a005858", 443 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0, 444 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0, 445 .set_next_event_phys = erratum_set_next_event_phys, 446 .set_next_event_virt = erratum_set_next_event_virt, 447 }, 448 #endif 449 #ifdef CONFIG_HISILICON_ERRATUM_161010101 450 { 451 .match_type = ate_match_dt, 452 .id = "hisilicon,erratum-161010101", 453 .desc = "HiSilicon erratum 161010101", 454 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0, 455 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, 456 .set_next_event_phys = erratum_set_next_event_phys, 457 .set_next_event_virt = erratum_set_next_event_virt, 458 }, 459 { 460 .match_type = ate_match_acpi_oem_info, 461 .id = hisi_161010101_oem_info, 462 .desc = "HiSilicon erratum 161010101", 463 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0, 464 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, 465 .set_next_event_phys = erratum_set_next_event_phys, 466 .set_next_event_virt = erratum_set_next_event_virt, 467 }, 468 #endif 469 #ifdef CONFIG_ARM64_ERRATUM_858921 470 { 471 .match_type = ate_match_local_cap_id, 472 .id = (void *)ARM64_WORKAROUND_858921, 473 .desc = "ARM erratum 858921", 474 .read_cntpct_el0 = arm64_858921_read_cntpct_el0, 475 .read_cntvct_el0 = arm64_858921_read_cntvct_el0, 476 }, 477 #endif 478 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1 479 { 480 .match_type = ate_match_dt, 481 .id = "allwinner,erratum-unknown1", 482 .desc = "Allwinner erratum UNKNOWN1", 483 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0, 484 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0, 485 .set_next_event_phys = erratum_set_next_event_phys, 486 .set_next_event_virt = erratum_set_next_event_virt, 487 }, 488 #endif 489 #ifdef CONFIG_ARM64_ERRATUM_1418040 490 { 491 .match_type = ate_match_local_cap_id, 492 .id = (void *)ARM64_WORKAROUND_1418040, 493 .desc = "ARM erratum 1418040", 494 .disable_compat_vdso = true, 495 }, 496 #endif 497 }; 498 499 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *, 500 const void *); 501 502 static 503 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa, 504 const void *arg) 505 { 506 const struct device_node *np = arg; 507 508 return of_property_read_bool(np, wa->id); 509 } 510 511 static 512 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa, 513 const void *arg) 514 { 515 return this_cpu_has_cap((uintptr_t)wa->id); 516 } 517 518 519 static 520 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa, 521 const void *arg) 522 { 523 static const struct ate_acpi_oem_info empty_oem_info = {}; 524 const struct ate_acpi_oem_info *info = wa->id; 525 const struct acpi_table_header *table = arg; 526 527 /* Iterate over the ACPI OEM info array, looking for a match */ 528 while (memcmp(info, &empty_oem_info, sizeof(*info))) { 529 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) && 530 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) && 531 info->oem_revision == table->oem_revision) 532 return true; 533 534 info++; 535 } 536 537 return false; 538 } 539 540 static const struct arch_timer_erratum_workaround * 541 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type, 542 ate_match_fn_t match_fn, 543 void *arg) 544 { 545 int i; 546 547 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) { 548 if (ool_workarounds[i].match_type != type) 549 continue; 550 551 if (match_fn(&ool_workarounds[i], arg)) 552 return &ool_workarounds[i]; 553 } 554 555 return NULL; 556 } 557 558 static 559 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa, 560 bool local) 561 { 562 int i; 563 564 if (local) { 565 __this_cpu_write(timer_unstable_counter_workaround, wa); 566 } else { 567 for_each_possible_cpu(i) 568 per_cpu(timer_unstable_counter_workaround, i) = wa; 569 } 570 571 if (wa->read_cntvct_el0 || wa->read_cntpct_el0) 572 atomic_set(&timer_unstable_counter_workaround_in_use, 1); 573 574 /* 575 * Don't use the vdso fastpath if errata require using the 576 * out-of-line counter accessor. We may change our mind pretty 577 * late in the game (with a per-CPU erratum, for example), so 578 * change both the default value and the vdso itself. 579 */ 580 if (wa->read_cntvct_el0) { 581 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE; 582 vdso_default = VDSO_CLOCKMODE_NONE; 583 } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) { 584 vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT; 585 clocksource_counter.vdso_clock_mode = vdso_default; 586 } 587 } 588 589 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type, 590 void *arg) 591 { 592 const struct arch_timer_erratum_workaround *wa, *__wa; 593 ate_match_fn_t match_fn = NULL; 594 bool local = false; 595 596 switch (type) { 597 case ate_match_dt: 598 match_fn = arch_timer_check_dt_erratum; 599 break; 600 case ate_match_local_cap_id: 601 match_fn = arch_timer_check_local_cap_erratum; 602 local = true; 603 break; 604 case ate_match_acpi_oem_info: 605 match_fn = arch_timer_check_acpi_oem_erratum; 606 break; 607 default: 608 WARN_ON(1); 609 return; 610 } 611 612 wa = arch_timer_iterate_errata(type, match_fn, arg); 613 if (!wa) 614 return; 615 616 __wa = __this_cpu_read(timer_unstable_counter_workaround); 617 if (__wa && wa != __wa) 618 pr_warn("Can't enable workaround for %s (clashes with %s\n)", 619 wa->desc, __wa->desc); 620 621 if (__wa) 622 return; 623 624 arch_timer_enable_workaround(wa, local); 625 pr_info("Enabling %s workaround for %s\n", 626 local ? "local" : "global", wa->desc); 627 } 628 629 static bool arch_timer_this_cpu_has_cntvct_wa(void) 630 { 631 return has_erratum_handler(read_cntvct_el0); 632 } 633 634 static bool arch_timer_counter_has_wa(void) 635 { 636 return atomic_read(&timer_unstable_counter_workaround_in_use); 637 } 638 #else 639 #define arch_timer_check_ool_workaround(t,a) do { } while(0) 640 #define arch_timer_this_cpu_has_cntvct_wa() ({false;}) 641 #define arch_timer_counter_has_wa() ({false;}) 642 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */ 643 644 static __always_inline irqreturn_t timer_handler(const int access, 645 struct clock_event_device *evt) 646 { 647 unsigned long ctrl; 648 649 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt); 650 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { 651 ctrl |= ARCH_TIMER_CTRL_IT_MASK; 652 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt); 653 evt->event_handler(evt); 654 return IRQ_HANDLED; 655 } 656 657 return IRQ_NONE; 658 } 659 660 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id) 661 { 662 struct clock_event_device *evt = dev_id; 663 664 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt); 665 } 666 667 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id) 668 { 669 struct clock_event_device *evt = dev_id; 670 671 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt); 672 } 673 674 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id) 675 { 676 struct clock_event_device *evt = dev_id; 677 678 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt); 679 } 680 681 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id) 682 { 683 struct clock_event_device *evt = dev_id; 684 685 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt); 686 } 687 688 static __always_inline int timer_shutdown(const int access, 689 struct clock_event_device *clk) 690 { 691 unsigned long ctrl; 692 693 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 694 ctrl &= ~ARCH_TIMER_CTRL_ENABLE; 695 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 696 697 return 0; 698 } 699 700 static int arch_timer_shutdown_virt(struct clock_event_device *clk) 701 { 702 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk); 703 } 704 705 static int arch_timer_shutdown_phys(struct clock_event_device *clk) 706 { 707 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk); 708 } 709 710 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk) 711 { 712 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk); 713 } 714 715 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk) 716 { 717 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk); 718 } 719 720 static __always_inline void set_next_event(const int access, unsigned long evt, 721 struct clock_event_device *clk) 722 { 723 unsigned long ctrl; 724 u64 cnt; 725 726 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 727 ctrl |= ARCH_TIMER_CTRL_ENABLE; 728 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 729 730 if (access == ARCH_TIMER_PHYS_ACCESS) 731 cnt = __arch_counter_get_cntpct(); 732 else 733 cnt = __arch_counter_get_cntvct(); 734 735 arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk); 736 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 737 } 738 739 static int arch_timer_set_next_event_virt(unsigned long evt, 740 struct clock_event_device *clk) 741 { 742 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk); 743 return 0; 744 } 745 746 static int arch_timer_set_next_event_phys(unsigned long evt, 747 struct clock_event_device *clk) 748 { 749 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk); 750 return 0; 751 } 752 753 static u64 arch_counter_get_cnt_mem(struct arch_timer *t, int offset_lo) 754 { 755 u32 cnt_lo, cnt_hi, tmp_hi; 756 757 do { 758 cnt_hi = readl_relaxed(t->base + offset_lo + 4); 759 cnt_lo = readl_relaxed(t->base + offset_lo); 760 tmp_hi = readl_relaxed(t->base + offset_lo + 4); 761 } while (cnt_hi != tmp_hi); 762 763 return ((u64) cnt_hi << 32) | cnt_lo; 764 } 765 766 static __always_inline void set_next_event_mem(const int access, unsigned long evt, 767 struct clock_event_device *clk) 768 { 769 struct arch_timer *timer = to_arch_timer(clk); 770 unsigned long ctrl; 771 u64 cnt; 772 773 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 774 ctrl |= ARCH_TIMER_CTRL_ENABLE; 775 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 776 777 if (access == ARCH_TIMER_MEM_VIRT_ACCESS) 778 cnt = arch_counter_get_cnt_mem(timer, CNTVCT_LO); 779 else 780 cnt = arch_counter_get_cnt_mem(timer, CNTPCT_LO); 781 782 arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk); 783 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 784 } 785 786 static int arch_timer_set_next_event_virt_mem(unsigned long evt, 787 struct clock_event_device *clk) 788 { 789 set_next_event_mem(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk); 790 return 0; 791 } 792 793 static int arch_timer_set_next_event_phys_mem(unsigned long evt, 794 struct clock_event_device *clk) 795 { 796 set_next_event_mem(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk); 797 return 0; 798 } 799 800 static u64 __arch_timer_check_delta(void) 801 { 802 #ifdef CONFIG_ARM64 803 const struct midr_range broken_cval_midrs[] = { 804 /* 805 * XGene-1 implements CVAL in terms of TVAL, meaning 806 * that the maximum timer range is 32bit. Shame on them. 807 */ 808 MIDR_ALL_VERSIONS(MIDR_CPU_MODEL(ARM_CPU_IMP_APM, 809 APM_CPU_PART_POTENZA)), 810 {}, 811 }; 812 813 if (is_midr_in_range_list(read_cpuid_id(), broken_cval_midrs)) { 814 pr_warn_once("Broken CNTx_CVAL_EL1, limiting width to 32bits"); 815 return CLOCKSOURCE_MASK(32); 816 } 817 #endif 818 return CLOCKSOURCE_MASK(arch_counter_get_width()); 819 } 820 821 static void __arch_timer_setup(unsigned type, 822 struct clock_event_device *clk) 823 { 824 u64 max_delta; 825 826 clk->features = CLOCK_EVT_FEAT_ONESHOT; 827 828 if (type == ARCH_TIMER_TYPE_CP15) { 829 typeof(clk->set_next_event) sne; 830 831 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL); 832 833 if (arch_timer_c3stop) 834 clk->features |= CLOCK_EVT_FEAT_C3STOP; 835 clk->name = "arch_sys_timer"; 836 clk->rating = 450; 837 clk->cpumask = cpumask_of(smp_processor_id()); 838 clk->irq = arch_timer_ppi[arch_timer_uses_ppi]; 839 switch (arch_timer_uses_ppi) { 840 case ARCH_TIMER_VIRT_PPI: 841 clk->set_state_shutdown = arch_timer_shutdown_virt; 842 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt; 843 sne = erratum_handler(set_next_event_virt); 844 break; 845 case ARCH_TIMER_PHYS_SECURE_PPI: 846 case ARCH_TIMER_PHYS_NONSECURE_PPI: 847 case ARCH_TIMER_HYP_PPI: 848 clk->set_state_shutdown = arch_timer_shutdown_phys; 849 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys; 850 sne = erratum_handler(set_next_event_phys); 851 break; 852 default: 853 BUG(); 854 } 855 856 clk->set_next_event = sne; 857 max_delta = __arch_timer_check_delta(); 858 } else { 859 clk->features |= CLOCK_EVT_FEAT_DYNIRQ; 860 clk->name = "arch_mem_timer"; 861 clk->rating = 400; 862 clk->cpumask = cpu_possible_mask; 863 if (arch_timer_mem_use_virtual) { 864 clk->set_state_shutdown = arch_timer_shutdown_virt_mem; 865 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem; 866 clk->set_next_event = 867 arch_timer_set_next_event_virt_mem; 868 } else { 869 clk->set_state_shutdown = arch_timer_shutdown_phys_mem; 870 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem; 871 clk->set_next_event = 872 arch_timer_set_next_event_phys_mem; 873 } 874 875 max_delta = CLOCKSOURCE_MASK(56); 876 } 877 878 clk->set_state_shutdown(clk); 879 880 clockevents_config_and_register(clk, arch_timer_rate, 0xf, max_delta); 881 } 882 883 static void arch_timer_evtstrm_enable(int divider) 884 { 885 u32 cntkctl = arch_timer_get_cntkctl(); 886 887 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK; 888 /* Set the divider and enable virtual event stream */ 889 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT) 890 | ARCH_TIMER_VIRT_EVT_EN; 891 arch_timer_set_cntkctl(cntkctl); 892 arch_timer_set_evtstrm_feature(); 893 cpumask_set_cpu(smp_processor_id(), &evtstrm_available); 894 } 895 896 static void arch_timer_configure_evtstream(void) 897 { 898 int evt_stream_div, lsb; 899 900 /* 901 * As the event stream can at most be generated at half the frequency 902 * of the counter, use half the frequency when computing the divider. 903 */ 904 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2; 905 906 /* 907 * Find the closest power of two to the divisor. If the adjacent bit 908 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1). 909 */ 910 lsb = fls(evt_stream_div) - 1; 911 if (lsb > 0 && (evt_stream_div & BIT(lsb - 1))) 912 lsb++; 913 914 /* enable event stream */ 915 arch_timer_evtstrm_enable(max(0, min(lsb, 15))); 916 } 917 918 static void arch_counter_set_user_access(void) 919 { 920 u32 cntkctl = arch_timer_get_cntkctl(); 921 922 /* Disable user access to the timers and both counters */ 923 /* Also disable virtual event stream */ 924 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN 925 | ARCH_TIMER_USR_VT_ACCESS_EN 926 | ARCH_TIMER_USR_VCT_ACCESS_EN 927 | ARCH_TIMER_VIRT_EVT_EN 928 | ARCH_TIMER_USR_PCT_ACCESS_EN); 929 930 /* 931 * Enable user access to the virtual counter if it doesn't 932 * need to be workaround. The vdso may have been already 933 * disabled though. 934 */ 935 if (arch_timer_this_cpu_has_cntvct_wa()) 936 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id()); 937 else 938 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN; 939 940 arch_timer_set_cntkctl(cntkctl); 941 } 942 943 static bool arch_timer_has_nonsecure_ppi(void) 944 { 945 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI && 946 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 947 } 948 949 static u32 check_ppi_trigger(int irq) 950 { 951 u32 flags = irq_get_trigger_type(irq); 952 953 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) { 954 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq); 955 pr_warn("WARNING: Please fix your firmware\n"); 956 flags = IRQF_TRIGGER_LOW; 957 } 958 959 return flags; 960 } 961 962 static int arch_timer_starting_cpu(unsigned int cpu) 963 { 964 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 965 u32 flags; 966 967 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk); 968 969 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]); 970 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags); 971 972 if (arch_timer_has_nonsecure_ppi()) { 973 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 974 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], 975 flags); 976 } 977 978 arch_counter_set_user_access(); 979 if (evtstrm_enable) 980 arch_timer_configure_evtstream(); 981 982 return 0; 983 } 984 985 static int validate_timer_rate(void) 986 { 987 if (!arch_timer_rate) 988 return -EINVAL; 989 990 /* Arch timer frequency < 1MHz can cause trouble */ 991 WARN_ON(arch_timer_rate < 1000000); 992 993 return 0; 994 } 995 996 /* 997 * For historical reasons, when probing with DT we use whichever (non-zero) 998 * rate was probed first, and don't verify that others match. If the first node 999 * probed has a clock-frequency property, this overrides the HW register. 1000 */ 1001 static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np) 1002 { 1003 /* Who has more than one independent system counter? */ 1004 if (arch_timer_rate) 1005 return; 1006 1007 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) 1008 arch_timer_rate = rate; 1009 1010 /* Check the timer frequency. */ 1011 if (validate_timer_rate()) 1012 pr_warn("frequency not available\n"); 1013 } 1014 1015 static void __init arch_timer_banner(unsigned type) 1016 { 1017 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n", 1018 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "", 1019 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? 1020 " and " : "", 1021 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "", 1022 (unsigned long)arch_timer_rate / 1000000, 1023 (unsigned long)(arch_timer_rate / 10000) % 100, 1024 type & ARCH_TIMER_TYPE_CP15 ? 1025 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" : 1026 "", 1027 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "", 1028 type & ARCH_TIMER_TYPE_MEM ? 1029 arch_timer_mem_use_virtual ? "virt" : "phys" : 1030 ""); 1031 } 1032 1033 u32 arch_timer_get_rate(void) 1034 { 1035 return arch_timer_rate; 1036 } 1037 1038 bool arch_timer_evtstrm_available(void) 1039 { 1040 /* 1041 * We might get called from a preemptible context. This is fine 1042 * because availability of the event stream should be always the same 1043 * for a preemptible context and context where we might resume a task. 1044 */ 1045 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available); 1046 } 1047 1048 static u64 arch_counter_get_cntvct_mem(void) 1049 { 1050 return arch_counter_get_cnt_mem(arch_timer_mem, CNTVCT_LO); 1051 } 1052 1053 static struct arch_timer_kvm_info arch_timer_kvm_info; 1054 1055 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void) 1056 { 1057 return &arch_timer_kvm_info; 1058 } 1059 1060 static void __init arch_counter_register(unsigned type) 1061 { 1062 u64 start_count; 1063 int width; 1064 1065 /* Register the CP15 based counter if we have one */ 1066 if (type & ARCH_TIMER_TYPE_CP15) { 1067 u64 (*rd)(void); 1068 1069 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) || 1070 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) { 1071 if (arch_timer_counter_has_wa()) 1072 rd = arch_counter_get_cntvct_stable; 1073 else 1074 rd = arch_counter_get_cntvct; 1075 } else { 1076 if (arch_timer_counter_has_wa()) 1077 rd = arch_counter_get_cntpct_stable; 1078 else 1079 rd = arch_counter_get_cntpct; 1080 } 1081 1082 arch_timer_read_counter = rd; 1083 clocksource_counter.vdso_clock_mode = vdso_default; 1084 } else { 1085 arch_timer_read_counter = arch_counter_get_cntvct_mem; 1086 } 1087 1088 width = arch_counter_get_width(); 1089 clocksource_counter.mask = CLOCKSOURCE_MASK(width); 1090 cyclecounter.mask = CLOCKSOURCE_MASK(width); 1091 1092 if (!arch_counter_suspend_stop) 1093 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; 1094 start_count = arch_timer_read_counter(); 1095 clocksource_register_hz(&clocksource_counter, arch_timer_rate); 1096 cyclecounter.mult = clocksource_counter.mult; 1097 cyclecounter.shift = clocksource_counter.shift; 1098 timecounter_init(&arch_timer_kvm_info.timecounter, 1099 &cyclecounter, start_count); 1100 1101 sched_clock_register(arch_timer_read_counter, width, arch_timer_rate); 1102 } 1103 1104 static void arch_timer_stop(struct clock_event_device *clk) 1105 { 1106 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id()); 1107 1108 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]); 1109 if (arch_timer_has_nonsecure_ppi()) 1110 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 1111 1112 clk->set_state_shutdown(clk); 1113 } 1114 1115 static int arch_timer_dying_cpu(unsigned int cpu) 1116 { 1117 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 1118 1119 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available); 1120 1121 arch_timer_stop(clk); 1122 return 0; 1123 } 1124 1125 #ifdef CONFIG_CPU_PM 1126 static DEFINE_PER_CPU(unsigned long, saved_cntkctl); 1127 static int arch_timer_cpu_pm_notify(struct notifier_block *self, 1128 unsigned long action, void *hcpu) 1129 { 1130 if (action == CPU_PM_ENTER) { 1131 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl()); 1132 1133 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available); 1134 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) { 1135 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl)); 1136 1137 if (arch_timer_have_evtstrm_feature()) 1138 cpumask_set_cpu(smp_processor_id(), &evtstrm_available); 1139 } 1140 return NOTIFY_OK; 1141 } 1142 1143 static struct notifier_block arch_timer_cpu_pm_notifier = { 1144 .notifier_call = arch_timer_cpu_pm_notify, 1145 }; 1146 1147 static int __init arch_timer_cpu_pm_init(void) 1148 { 1149 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier); 1150 } 1151 1152 static void __init arch_timer_cpu_pm_deinit(void) 1153 { 1154 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier)); 1155 } 1156 1157 #else 1158 static int __init arch_timer_cpu_pm_init(void) 1159 { 1160 return 0; 1161 } 1162 1163 static void __init arch_timer_cpu_pm_deinit(void) 1164 { 1165 } 1166 #endif 1167 1168 static int __init arch_timer_register(void) 1169 { 1170 int err; 1171 int ppi; 1172 1173 arch_timer_evt = alloc_percpu(struct clock_event_device); 1174 if (!arch_timer_evt) { 1175 err = -ENOMEM; 1176 goto out; 1177 } 1178 1179 ppi = arch_timer_ppi[arch_timer_uses_ppi]; 1180 switch (arch_timer_uses_ppi) { 1181 case ARCH_TIMER_VIRT_PPI: 1182 err = request_percpu_irq(ppi, arch_timer_handler_virt, 1183 "arch_timer", arch_timer_evt); 1184 break; 1185 case ARCH_TIMER_PHYS_SECURE_PPI: 1186 case ARCH_TIMER_PHYS_NONSECURE_PPI: 1187 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1188 "arch_timer", arch_timer_evt); 1189 if (!err && arch_timer_has_nonsecure_ppi()) { 1190 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]; 1191 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1192 "arch_timer", arch_timer_evt); 1193 if (err) 1194 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI], 1195 arch_timer_evt); 1196 } 1197 break; 1198 case ARCH_TIMER_HYP_PPI: 1199 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1200 "arch_timer", arch_timer_evt); 1201 break; 1202 default: 1203 BUG(); 1204 } 1205 1206 if (err) { 1207 pr_err("can't register interrupt %d (%d)\n", ppi, err); 1208 goto out_free; 1209 } 1210 1211 err = arch_timer_cpu_pm_init(); 1212 if (err) 1213 goto out_unreg_notify; 1214 1215 /* Register and immediately configure the timer on the boot CPU */ 1216 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING, 1217 "clockevents/arm/arch_timer:starting", 1218 arch_timer_starting_cpu, arch_timer_dying_cpu); 1219 if (err) 1220 goto out_unreg_cpupm; 1221 return 0; 1222 1223 out_unreg_cpupm: 1224 arch_timer_cpu_pm_deinit(); 1225 1226 out_unreg_notify: 1227 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt); 1228 if (arch_timer_has_nonsecure_ppi()) 1229 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], 1230 arch_timer_evt); 1231 1232 out_free: 1233 free_percpu(arch_timer_evt); 1234 out: 1235 return err; 1236 } 1237 1238 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq) 1239 { 1240 int ret; 1241 irq_handler_t func; 1242 1243 arch_timer_mem = kzalloc(sizeof(*arch_timer_mem), GFP_KERNEL); 1244 if (!arch_timer_mem) 1245 return -ENOMEM; 1246 1247 arch_timer_mem->base = base; 1248 arch_timer_mem->evt.irq = irq; 1249 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &arch_timer_mem->evt); 1250 1251 if (arch_timer_mem_use_virtual) 1252 func = arch_timer_handler_virt_mem; 1253 else 1254 func = arch_timer_handler_phys_mem; 1255 1256 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &arch_timer_mem->evt); 1257 if (ret) { 1258 pr_err("Failed to request mem timer irq\n"); 1259 kfree(arch_timer_mem); 1260 arch_timer_mem = NULL; 1261 } 1262 1263 return ret; 1264 } 1265 1266 static const struct of_device_id arch_timer_of_match[] __initconst = { 1267 { .compatible = "arm,armv7-timer", }, 1268 { .compatible = "arm,armv8-timer", }, 1269 {}, 1270 }; 1271 1272 static const struct of_device_id arch_timer_mem_of_match[] __initconst = { 1273 { .compatible = "arm,armv7-timer-mem", }, 1274 {}, 1275 }; 1276 1277 static bool __init arch_timer_needs_of_probing(void) 1278 { 1279 struct device_node *dn; 1280 bool needs_probing = false; 1281 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM; 1282 1283 /* We have two timers, and both device-tree nodes are probed. */ 1284 if ((arch_timers_present & mask) == mask) 1285 return false; 1286 1287 /* 1288 * Only one type of timer is probed, 1289 * check if we have another type of timer node in device-tree. 1290 */ 1291 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) 1292 dn = of_find_matching_node(NULL, arch_timer_mem_of_match); 1293 else 1294 dn = of_find_matching_node(NULL, arch_timer_of_match); 1295 1296 if (dn && of_device_is_available(dn)) 1297 needs_probing = true; 1298 1299 of_node_put(dn); 1300 1301 return needs_probing; 1302 } 1303 1304 static int __init arch_timer_common_init(void) 1305 { 1306 arch_timer_banner(arch_timers_present); 1307 arch_counter_register(arch_timers_present); 1308 return arch_timer_arch_init(); 1309 } 1310 1311 /** 1312 * arch_timer_select_ppi() - Select suitable PPI for the current system. 1313 * 1314 * If HYP mode is available, we know that the physical timer 1315 * has been configured to be accessible from PL1. Use it, so 1316 * that a guest can use the virtual timer instead. 1317 * 1318 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE 1319 * accesses to CNTP_*_EL1 registers are silently redirected to 1320 * their CNTHP_*_EL2 counterparts, and use a different PPI 1321 * number. 1322 * 1323 * If no interrupt provided for virtual timer, we'll have to 1324 * stick to the physical timer. It'd better be accessible... 1325 * For arm64 we never use the secure interrupt. 1326 * 1327 * Return: a suitable PPI type for the current system. 1328 */ 1329 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void) 1330 { 1331 if (is_kernel_in_hyp_mode()) 1332 return ARCH_TIMER_HYP_PPI; 1333 1334 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI]) 1335 return ARCH_TIMER_VIRT_PPI; 1336 1337 if (IS_ENABLED(CONFIG_ARM64)) 1338 return ARCH_TIMER_PHYS_NONSECURE_PPI; 1339 1340 return ARCH_TIMER_PHYS_SECURE_PPI; 1341 } 1342 1343 static void __init arch_timer_populate_kvm_info(void) 1344 { 1345 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI]; 1346 if (is_kernel_in_hyp_mode()) 1347 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]; 1348 } 1349 1350 static int __init arch_timer_of_init(struct device_node *np) 1351 { 1352 int i, irq, ret; 1353 u32 rate; 1354 bool has_names; 1355 1356 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { 1357 pr_warn("multiple nodes in dt, skipping\n"); 1358 return 0; 1359 } 1360 1361 arch_timers_present |= ARCH_TIMER_TYPE_CP15; 1362 1363 has_names = of_property_read_bool(np, "interrupt-names"); 1364 1365 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) { 1366 if (has_names) 1367 irq = of_irq_get_byname(np, arch_timer_ppi_names[i]); 1368 else 1369 irq = of_irq_get(np, i); 1370 if (irq > 0) 1371 arch_timer_ppi[i] = irq; 1372 } 1373 1374 arch_timer_populate_kvm_info(); 1375 1376 rate = arch_timer_get_cntfrq(); 1377 arch_timer_of_configure_rate(rate, np); 1378 1379 arch_timer_c3stop = !of_property_read_bool(np, "always-on"); 1380 1381 /* Check for globally applicable workarounds */ 1382 arch_timer_check_ool_workaround(ate_match_dt, np); 1383 1384 /* 1385 * If we cannot rely on firmware initializing the timer registers then 1386 * we should use the physical timers instead. 1387 */ 1388 if (IS_ENABLED(CONFIG_ARM) && 1389 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured")) 1390 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI; 1391 else 1392 arch_timer_uses_ppi = arch_timer_select_ppi(); 1393 1394 if (!arch_timer_ppi[arch_timer_uses_ppi]) { 1395 pr_err("No interrupt available, giving up\n"); 1396 return -EINVAL; 1397 } 1398 1399 /* On some systems, the counter stops ticking when in suspend. */ 1400 arch_counter_suspend_stop = of_property_read_bool(np, 1401 "arm,no-tick-in-suspend"); 1402 1403 ret = arch_timer_register(); 1404 if (ret) 1405 return ret; 1406 1407 if (arch_timer_needs_of_probing()) 1408 return 0; 1409 1410 return arch_timer_common_init(); 1411 } 1412 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init); 1413 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init); 1414 1415 static u32 __init 1416 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame) 1417 { 1418 void __iomem *base; 1419 u32 rate; 1420 1421 base = ioremap(frame->cntbase, frame->size); 1422 if (!base) { 1423 pr_err("Unable to map frame @ %pa\n", &frame->cntbase); 1424 return 0; 1425 } 1426 1427 rate = readl_relaxed(base + CNTFRQ); 1428 1429 iounmap(base); 1430 1431 return rate; 1432 } 1433 1434 static struct arch_timer_mem_frame * __init 1435 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem) 1436 { 1437 struct arch_timer_mem_frame *frame, *best_frame = NULL; 1438 void __iomem *cntctlbase; 1439 u32 cnttidr; 1440 int i; 1441 1442 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size); 1443 if (!cntctlbase) { 1444 pr_err("Can't map CNTCTLBase @ %pa\n", 1445 &timer_mem->cntctlbase); 1446 return NULL; 1447 } 1448 1449 cnttidr = readl_relaxed(cntctlbase + CNTTIDR); 1450 1451 /* 1452 * Try to find a virtual capable frame. Otherwise fall back to a 1453 * physical capable frame. 1454 */ 1455 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) { 1456 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT | 1457 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT; 1458 1459 frame = &timer_mem->frame[i]; 1460 if (!frame->valid) 1461 continue; 1462 1463 /* Try enabling everything, and see what sticks */ 1464 writel_relaxed(cntacr, cntctlbase + CNTACR(i)); 1465 cntacr = readl_relaxed(cntctlbase + CNTACR(i)); 1466 1467 if ((cnttidr & CNTTIDR_VIRT(i)) && 1468 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) { 1469 best_frame = frame; 1470 arch_timer_mem_use_virtual = true; 1471 break; 1472 } 1473 1474 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT)) 1475 continue; 1476 1477 best_frame = frame; 1478 } 1479 1480 iounmap(cntctlbase); 1481 1482 return best_frame; 1483 } 1484 1485 static int __init 1486 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame) 1487 { 1488 void __iomem *base; 1489 int ret, irq = 0; 1490 1491 if (arch_timer_mem_use_virtual) 1492 irq = frame->virt_irq; 1493 else 1494 irq = frame->phys_irq; 1495 1496 if (!irq) { 1497 pr_err("Frame missing %s irq.\n", 1498 arch_timer_mem_use_virtual ? "virt" : "phys"); 1499 return -EINVAL; 1500 } 1501 1502 if (!request_mem_region(frame->cntbase, frame->size, 1503 "arch_mem_timer")) 1504 return -EBUSY; 1505 1506 base = ioremap(frame->cntbase, frame->size); 1507 if (!base) { 1508 pr_err("Can't map frame's registers\n"); 1509 return -ENXIO; 1510 } 1511 1512 ret = arch_timer_mem_register(base, irq); 1513 if (ret) { 1514 iounmap(base); 1515 return ret; 1516 } 1517 1518 arch_timers_present |= ARCH_TIMER_TYPE_MEM; 1519 1520 return 0; 1521 } 1522 1523 static int __init arch_timer_mem_of_init(struct device_node *np) 1524 { 1525 struct arch_timer_mem *timer_mem; 1526 struct arch_timer_mem_frame *frame; 1527 struct device_node *frame_node; 1528 struct resource res; 1529 int ret = -EINVAL; 1530 u32 rate; 1531 1532 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL); 1533 if (!timer_mem) 1534 return -ENOMEM; 1535 1536 if (of_address_to_resource(np, 0, &res)) 1537 goto out; 1538 timer_mem->cntctlbase = res.start; 1539 timer_mem->size = resource_size(&res); 1540 1541 for_each_available_child_of_node(np, frame_node) { 1542 u32 n; 1543 struct arch_timer_mem_frame *frame; 1544 1545 if (of_property_read_u32(frame_node, "frame-number", &n)) { 1546 pr_err(FW_BUG "Missing frame-number.\n"); 1547 of_node_put(frame_node); 1548 goto out; 1549 } 1550 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) { 1551 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n", 1552 ARCH_TIMER_MEM_MAX_FRAMES - 1); 1553 of_node_put(frame_node); 1554 goto out; 1555 } 1556 frame = &timer_mem->frame[n]; 1557 1558 if (frame->valid) { 1559 pr_err(FW_BUG "Duplicated frame-number.\n"); 1560 of_node_put(frame_node); 1561 goto out; 1562 } 1563 1564 if (of_address_to_resource(frame_node, 0, &res)) { 1565 of_node_put(frame_node); 1566 goto out; 1567 } 1568 frame->cntbase = res.start; 1569 frame->size = resource_size(&res); 1570 1571 frame->virt_irq = irq_of_parse_and_map(frame_node, 1572 ARCH_TIMER_VIRT_SPI); 1573 frame->phys_irq = irq_of_parse_and_map(frame_node, 1574 ARCH_TIMER_PHYS_SPI); 1575 1576 frame->valid = true; 1577 } 1578 1579 frame = arch_timer_mem_find_best_frame(timer_mem); 1580 if (!frame) { 1581 pr_err("Unable to find a suitable frame in timer @ %pa\n", 1582 &timer_mem->cntctlbase); 1583 ret = -EINVAL; 1584 goto out; 1585 } 1586 1587 rate = arch_timer_mem_frame_get_cntfrq(frame); 1588 arch_timer_of_configure_rate(rate, np); 1589 1590 ret = arch_timer_mem_frame_register(frame); 1591 if (!ret && !arch_timer_needs_of_probing()) 1592 ret = arch_timer_common_init(); 1593 out: 1594 kfree(timer_mem); 1595 return ret; 1596 } 1597 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem", 1598 arch_timer_mem_of_init); 1599 1600 #ifdef CONFIG_ACPI_GTDT 1601 static int __init 1602 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem) 1603 { 1604 struct arch_timer_mem_frame *frame; 1605 u32 rate; 1606 int i; 1607 1608 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) { 1609 frame = &timer_mem->frame[i]; 1610 1611 if (!frame->valid) 1612 continue; 1613 1614 rate = arch_timer_mem_frame_get_cntfrq(frame); 1615 if (rate == arch_timer_rate) 1616 continue; 1617 1618 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n", 1619 &frame->cntbase, 1620 (unsigned long)rate, (unsigned long)arch_timer_rate); 1621 1622 return -EINVAL; 1623 } 1624 1625 return 0; 1626 } 1627 1628 static int __init arch_timer_mem_acpi_init(int platform_timer_count) 1629 { 1630 struct arch_timer_mem *timers, *timer; 1631 struct arch_timer_mem_frame *frame, *best_frame = NULL; 1632 int timer_count, i, ret = 0; 1633 1634 timers = kcalloc(platform_timer_count, sizeof(*timers), 1635 GFP_KERNEL); 1636 if (!timers) 1637 return -ENOMEM; 1638 1639 ret = acpi_arch_timer_mem_init(timers, &timer_count); 1640 if (ret || !timer_count) 1641 goto out; 1642 1643 /* 1644 * While unlikely, it's theoretically possible that none of the frames 1645 * in a timer expose the combination of feature we want. 1646 */ 1647 for (i = 0; i < timer_count; i++) { 1648 timer = &timers[i]; 1649 1650 frame = arch_timer_mem_find_best_frame(timer); 1651 if (!best_frame) 1652 best_frame = frame; 1653 1654 ret = arch_timer_mem_verify_cntfrq(timer); 1655 if (ret) { 1656 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n"); 1657 goto out; 1658 } 1659 1660 if (!best_frame) /* implies !frame */ 1661 /* 1662 * Only complain about missing suitable frames if we 1663 * haven't already found one in a previous iteration. 1664 */ 1665 pr_err("Unable to find a suitable frame in timer @ %pa\n", 1666 &timer->cntctlbase); 1667 } 1668 1669 if (best_frame) 1670 ret = arch_timer_mem_frame_register(best_frame); 1671 out: 1672 kfree(timers); 1673 return ret; 1674 } 1675 1676 /* Initialize per-processor generic timer and memory-mapped timer(if present) */ 1677 static int __init arch_timer_acpi_init(struct acpi_table_header *table) 1678 { 1679 int ret, platform_timer_count; 1680 1681 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { 1682 pr_warn("already initialized, skipping\n"); 1683 return -EINVAL; 1684 } 1685 1686 arch_timers_present |= ARCH_TIMER_TYPE_CP15; 1687 1688 ret = acpi_gtdt_init(table, &platform_timer_count); 1689 if (ret) 1690 return ret; 1691 1692 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] = 1693 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI); 1694 1695 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] = 1696 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI); 1697 1698 arch_timer_ppi[ARCH_TIMER_HYP_PPI] = 1699 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI); 1700 1701 arch_timer_populate_kvm_info(); 1702 1703 /* 1704 * When probing via ACPI, we have no mechanism to override the sysreg 1705 * CNTFRQ value. This *must* be correct. 1706 */ 1707 arch_timer_rate = arch_timer_get_cntfrq(); 1708 ret = validate_timer_rate(); 1709 if (ret) { 1710 pr_err(FW_BUG "frequency not available.\n"); 1711 return ret; 1712 } 1713 1714 arch_timer_uses_ppi = arch_timer_select_ppi(); 1715 if (!arch_timer_ppi[arch_timer_uses_ppi]) { 1716 pr_err("No interrupt available, giving up\n"); 1717 return -EINVAL; 1718 } 1719 1720 /* Always-on capability */ 1721 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi); 1722 1723 /* Check for globally applicable workarounds */ 1724 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table); 1725 1726 ret = arch_timer_register(); 1727 if (ret) 1728 return ret; 1729 1730 if (platform_timer_count && 1731 arch_timer_mem_acpi_init(platform_timer_count)) 1732 pr_err("Failed to initialize memory-mapped timer.\n"); 1733 1734 return arch_timer_common_init(); 1735 } 1736 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init); 1737 #endif 1738 1739 int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts, 1740 struct clocksource **cs) 1741 { 1742 struct arm_smccc_res hvc_res; 1743 u32 ptp_counter; 1744 ktime_t ktime; 1745 1746 if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY)) 1747 return -EOPNOTSUPP; 1748 1749 if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) 1750 ptp_counter = KVM_PTP_VIRT_COUNTER; 1751 else 1752 ptp_counter = KVM_PTP_PHYS_COUNTER; 1753 1754 arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID, 1755 ptp_counter, &hvc_res); 1756 1757 if ((int)(hvc_res.a0) < 0) 1758 return -EOPNOTSUPP; 1759 1760 ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1; 1761 *ts = ktime_to_timespec64(ktime); 1762 if (cycle) 1763 *cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3; 1764 if (cs) 1765 *cs = &clocksource_counter; 1766 1767 return 0; 1768 } 1769 EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp); 1770