1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/clocksource/arm_arch_timer.c 4 * 5 * Copyright (C) 2011 ARM Ltd. 6 * All Rights Reserved 7 */ 8 9 #define pr_fmt(fmt) "arch_timer: " fmt 10 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/device.h> 14 #include <linux/smp.h> 15 #include <linux/cpu.h> 16 #include <linux/cpu_pm.h> 17 #include <linux/clockchips.h> 18 #include <linux/clocksource.h> 19 #include <linux/clocksource_ids.h> 20 #include <linux/interrupt.h> 21 #include <linux/of_irq.h> 22 #include <linux/of_address.h> 23 #include <linux/io.h> 24 #include <linux/slab.h> 25 #include <linux/sched/clock.h> 26 #include <linux/sched_clock.h> 27 #include <linux/acpi.h> 28 #include <linux/arm-smccc.h> 29 #include <linux/ptp_kvm.h> 30 31 #include <asm/arch_timer.h> 32 #include <asm/virt.h> 33 34 #include <clocksource/arm_arch_timer.h> 35 36 #define CNTTIDR 0x08 37 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4)) 38 39 #define CNTACR(n) (0x40 + ((n) * 4)) 40 #define CNTACR_RPCT BIT(0) 41 #define CNTACR_RVCT BIT(1) 42 #define CNTACR_RFRQ BIT(2) 43 #define CNTACR_RVOFF BIT(3) 44 #define CNTACR_RWVT BIT(4) 45 #define CNTACR_RWPT BIT(5) 46 47 #define CNTVCT_LO 0x08 48 #define CNTVCT_HI 0x0c 49 #define CNTFRQ 0x10 50 #define CNTP_TVAL 0x28 51 #define CNTP_CTL 0x2c 52 #define CNTV_TVAL 0x38 53 #define CNTV_CTL 0x3c 54 55 static unsigned arch_timers_present __initdata; 56 57 static void __iomem *arch_counter_base __ro_after_init; 58 59 struct arch_timer { 60 void __iomem *base; 61 struct clock_event_device evt; 62 }; 63 64 #define to_arch_timer(e) container_of(e, struct arch_timer, evt) 65 66 static u32 arch_timer_rate __ro_after_init; 67 u32 arch_timer_rate1 __ro_after_init; 68 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init; 69 70 static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = { 71 [ARCH_TIMER_PHYS_SECURE_PPI] = "sec-phys", 72 [ARCH_TIMER_PHYS_NONSECURE_PPI] = "phys", 73 [ARCH_TIMER_VIRT_PPI] = "virt", 74 [ARCH_TIMER_HYP_PPI] = "hyp-phys", 75 [ARCH_TIMER_HYP_VIRT_PPI] = "hyp-virt", 76 }; 77 78 static struct clock_event_device __percpu *arch_timer_evt; 79 80 static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI; 81 static bool arch_timer_c3stop __ro_after_init; 82 static bool arch_timer_mem_use_virtual __ro_after_init; 83 static bool arch_counter_suspend_stop __ro_after_init; 84 #ifdef CONFIG_GENERIC_GETTIMEOFDAY 85 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER; 86 #else 87 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE; 88 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */ 89 90 static cpumask_t evtstrm_available = CPU_MASK_NONE; 91 static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM); 92 93 static int __init early_evtstrm_cfg(char *buf) 94 { 95 return strtobool(buf, &evtstrm_enable); 96 } 97 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg); 98 99 /* 100 * Architected system timer support. 101 */ 102 103 static __always_inline 104 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val, 105 struct clock_event_device *clk) 106 { 107 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 108 struct arch_timer *timer = to_arch_timer(clk); 109 switch (reg) { 110 case ARCH_TIMER_REG_CTRL: 111 writel_relaxed(val, timer->base + CNTP_CTL); 112 break; 113 case ARCH_TIMER_REG_TVAL: 114 writel_relaxed(val, timer->base + CNTP_TVAL); 115 break; 116 } 117 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 118 struct arch_timer *timer = to_arch_timer(clk); 119 switch (reg) { 120 case ARCH_TIMER_REG_CTRL: 121 writel_relaxed(val, timer->base + CNTV_CTL); 122 break; 123 case ARCH_TIMER_REG_TVAL: 124 writel_relaxed(val, timer->base + CNTV_TVAL); 125 break; 126 } 127 } else { 128 arch_timer_reg_write_cp15(access, reg, val); 129 } 130 } 131 132 static __always_inline 133 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg, 134 struct clock_event_device *clk) 135 { 136 u32 val; 137 138 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 139 struct arch_timer *timer = to_arch_timer(clk); 140 switch (reg) { 141 case ARCH_TIMER_REG_CTRL: 142 val = readl_relaxed(timer->base + CNTP_CTL); 143 break; 144 case ARCH_TIMER_REG_TVAL: 145 val = readl_relaxed(timer->base + CNTP_TVAL); 146 break; 147 } 148 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 149 struct arch_timer *timer = to_arch_timer(clk); 150 switch (reg) { 151 case ARCH_TIMER_REG_CTRL: 152 val = readl_relaxed(timer->base + CNTV_CTL); 153 break; 154 case ARCH_TIMER_REG_TVAL: 155 val = readl_relaxed(timer->base + CNTV_TVAL); 156 break; 157 } 158 } else { 159 val = arch_timer_reg_read_cp15(access, reg); 160 } 161 162 return val; 163 } 164 165 static notrace u64 arch_counter_get_cntpct_stable(void) 166 { 167 return __arch_counter_get_cntpct_stable(); 168 } 169 170 static notrace u64 arch_counter_get_cntpct(void) 171 { 172 return __arch_counter_get_cntpct(); 173 } 174 175 static notrace u64 arch_counter_get_cntvct_stable(void) 176 { 177 return __arch_counter_get_cntvct_stable(); 178 } 179 180 static notrace u64 arch_counter_get_cntvct(void) 181 { 182 return __arch_counter_get_cntvct(); 183 } 184 185 /* 186 * Default to cp15 based access because arm64 uses this function for 187 * sched_clock() before DT is probed and the cp15 method is guaranteed 188 * to exist on arm64. arm doesn't use this before DT is probed so even 189 * if we don't have the cp15 accessors we won't have a problem. 190 */ 191 u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct; 192 EXPORT_SYMBOL_GPL(arch_timer_read_counter); 193 194 static u64 arch_counter_read(struct clocksource *cs) 195 { 196 return arch_timer_read_counter(); 197 } 198 199 static u64 arch_counter_read_cc(const struct cyclecounter *cc) 200 { 201 return arch_timer_read_counter(); 202 } 203 204 static struct clocksource clocksource_counter = { 205 .name = "arch_sys_counter", 206 .id = CSID_ARM_ARCH_COUNTER, 207 .rating = 400, 208 .read = arch_counter_read, 209 .mask = CLOCKSOURCE_MASK(56), 210 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 211 }; 212 213 static struct cyclecounter cyclecounter __ro_after_init = { 214 .read = arch_counter_read_cc, 215 .mask = CLOCKSOURCE_MASK(56), 216 }; 217 218 struct ate_acpi_oem_info { 219 char oem_id[ACPI_OEM_ID_SIZE + 1]; 220 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1]; 221 u32 oem_revision; 222 }; 223 224 #ifdef CONFIG_FSL_ERRATUM_A008585 225 /* 226 * The number of retries is an arbitrary value well beyond the highest number 227 * of iterations the loop has been observed to take. 228 */ 229 #define __fsl_a008585_read_reg(reg) ({ \ 230 u64 _old, _new; \ 231 int _retries = 200; \ 232 \ 233 do { \ 234 _old = read_sysreg(reg); \ 235 _new = read_sysreg(reg); \ 236 _retries--; \ 237 } while (unlikely(_old != _new) && _retries); \ 238 \ 239 WARN_ON_ONCE(!_retries); \ 240 _new; \ 241 }) 242 243 static u32 notrace fsl_a008585_read_cntp_tval_el0(void) 244 { 245 return __fsl_a008585_read_reg(cntp_tval_el0); 246 } 247 248 static u32 notrace fsl_a008585_read_cntv_tval_el0(void) 249 { 250 return __fsl_a008585_read_reg(cntv_tval_el0); 251 } 252 253 static u64 notrace fsl_a008585_read_cntpct_el0(void) 254 { 255 return __fsl_a008585_read_reg(cntpct_el0); 256 } 257 258 static u64 notrace fsl_a008585_read_cntvct_el0(void) 259 { 260 return __fsl_a008585_read_reg(cntvct_el0); 261 } 262 #endif 263 264 #ifdef CONFIG_HISILICON_ERRATUM_161010101 265 /* 266 * Verify whether the value of the second read is larger than the first by 267 * less than 32 is the only way to confirm the value is correct, so clear the 268 * lower 5 bits to check whether the difference is greater than 32 or not. 269 * Theoretically the erratum should not occur more than twice in succession 270 * when reading the system counter, but it is possible that some interrupts 271 * may lead to more than twice read errors, triggering the warning, so setting 272 * the number of retries far beyond the number of iterations the loop has been 273 * observed to take. 274 */ 275 #define __hisi_161010101_read_reg(reg) ({ \ 276 u64 _old, _new; \ 277 int _retries = 50; \ 278 \ 279 do { \ 280 _old = read_sysreg(reg); \ 281 _new = read_sysreg(reg); \ 282 _retries--; \ 283 } while (unlikely((_new - _old) >> 5) && _retries); \ 284 \ 285 WARN_ON_ONCE(!_retries); \ 286 _new; \ 287 }) 288 289 static u32 notrace hisi_161010101_read_cntp_tval_el0(void) 290 { 291 return __hisi_161010101_read_reg(cntp_tval_el0); 292 } 293 294 static u32 notrace hisi_161010101_read_cntv_tval_el0(void) 295 { 296 return __hisi_161010101_read_reg(cntv_tval_el0); 297 } 298 299 static u64 notrace hisi_161010101_read_cntpct_el0(void) 300 { 301 return __hisi_161010101_read_reg(cntpct_el0); 302 } 303 304 static u64 notrace hisi_161010101_read_cntvct_el0(void) 305 { 306 return __hisi_161010101_read_reg(cntvct_el0); 307 } 308 309 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = { 310 /* 311 * Note that trailing spaces are required to properly match 312 * the OEM table information. 313 */ 314 { 315 .oem_id = "HISI ", 316 .oem_table_id = "HIP05 ", 317 .oem_revision = 0, 318 }, 319 { 320 .oem_id = "HISI ", 321 .oem_table_id = "HIP06 ", 322 .oem_revision = 0, 323 }, 324 { 325 .oem_id = "HISI ", 326 .oem_table_id = "HIP07 ", 327 .oem_revision = 0, 328 }, 329 { /* Sentinel indicating the end of the OEM array */ }, 330 }; 331 #endif 332 333 #ifdef CONFIG_ARM64_ERRATUM_858921 334 static u64 notrace arm64_858921_read_cntpct_el0(void) 335 { 336 u64 old, new; 337 338 old = read_sysreg(cntpct_el0); 339 new = read_sysreg(cntpct_el0); 340 return (((old ^ new) >> 32) & 1) ? old : new; 341 } 342 343 static u64 notrace arm64_858921_read_cntvct_el0(void) 344 { 345 u64 old, new; 346 347 old = read_sysreg(cntvct_el0); 348 new = read_sysreg(cntvct_el0); 349 return (((old ^ new) >> 32) & 1) ? old : new; 350 } 351 #endif 352 353 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1 354 /* 355 * The low bits of the counter registers are indeterminate while bit 10 or 356 * greater is rolling over. Since the counter value can jump both backward 357 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values 358 * with all ones or all zeros in the low bits. Bound the loop by the maximum 359 * number of CPU cycles in 3 consecutive 24 MHz counter periods. 360 */ 361 #define __sun50i_a64_read_reg(reg) ({ \ 362 u64 _val; \ 363 int _retries = 150; \ 364 \ 365 do { \ 366 _val = read_sysreg(reg); \ 367 _retries--; \ 368 } while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries); \ 369 \ 370 WARN_ON_ONCE(!_retries); \ 371 _val; \ 372 }) 373 374 static u64 notrace sun50i_a64_read_cntpct_el0(void) 375 { 376 return __sun50i_a64_read_reg(cntpct_el0); 377 } 378 379 static u64 notrace sun50i_a64_read_cntvct_el0(void) 380 { 381 return __sun50i_a64_read_reg(cntvct_el0); 382 } 383 384 static u32 notrace sun50i_a64_read_cntp_tval_el0(void) 385 { 386 return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0(); 387 } 388 389 static u32 notrace sun50i_a64_read_cntv_tval_el0(void) 390 { 391 return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0(); 392 } 393 #endif 394 395 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND 396 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround); 397 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround); 398 399 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0); 400 401 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt, 402 struct clock_event_device *clk) 403 { 404 unsigned long ctrl; 405 u64 cval; 406 407 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 408 ctrl |= ARCH_TIMER_CTRL_ENABLE; 409 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 410 411 if (access == ARCH_TIMER_PHYS_ACCESS) { 412 cval = evt + arch_counter_get_cntpct_stable(); 413 write_sysreg(cval, cntp_cval_el0); 414 } else { 415 cval = evt + arch_counter_get_cntvct_stable(); 416 write_sysreg(cval, cntv_cval_el0); 417 } 418 419 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 420 } 421 422 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt, 423 struct clock_event_device *clk) 424 { 425 erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk); 426 return 0; 427 } 428 429 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt, 430 struct clock_event_device *clk) 431 { 432 erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk); 433 return 0; 434 } 435 436 static const struct arch_timer_erratum_workaround ool_workarounds[] = { 437 #ifdef CONFIG_FSL_ERRATUM_A008585 438 { 439 .match_type = ate_match_dt, 440 .id = "fsl,erratum-a008585", 441 .desc = "Freescale erratum a005858", 442 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0, 443 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0, 444 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0, 445 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0, 446 .set_next_event_phys = erratum_set_next_event_tval_phys, 447 .set_next_event_virt = erratum_set_next_event_tval_virt, 448 }, 449 #endif 450 #ifdef CONFIG_HISILICON_ERRATUM_161010101 451 { 452 .match_type = ate_match_dt, 453 .id = "hisilicon,erratum-161010101", 454 .desc = "HiSilicon erratum 161010101", 455 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0, 456 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0, 457 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0, 458 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, 459 .set_next_event_phys = erratum_set_next_event_tval_phys, 460 .set_next_event_virt = erratum_set_next_event_tval_virt, 461 }, 462 { 463 .match_type = ate_match_acpi_oem_info, 464 .id = hisi_161010101_oem_info, 465 .desc = "HiSilicon erratum 161010101", 466 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0, 467 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0, 468 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0, 469 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, 470 .set_next_event_phys = erratum_set_next_event_tval_phys, 471 .set_next_event_virt = erratum_set_next_event_tval_virt, 472 }, 473 #endif 474 #ifdef CONFIG_ARM64_ERRATUM_858921 475 { 476 .match_type = ate_match_local_cap_id, 477 .id = (void *)ARM64_WORKAROUND_858921, 478 .desc = "ARM erratum 858921", 479 .read_cntpct_el0 = arm64_858921_read_cntpct_el0, 480 .read_cntvct_el0 = arm64_858921_read_cntvct_el0, 481 }, 482 #endif 483 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1 484 { 485 .match_type = ate_match_dt, 486 .id = "allwinner,erratum-unknown1", 487 .desc = "Allwinner erratum UNKNOWN1", 488 .read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0, 489 .read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0, 490 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0, 491 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0, 492 .set_next_event_phys = erratum_set_next_event_tval_phys, 493 .set_next_event_virt = erratum_set_next_event_tval_virt, 494 }, 495 #endif 496 #ifdef CONFIG_ARM64_ERRATUM_1418040 497 { 498 .match_type = ate_match_local_cap_id, 499 .id = (void *)ARM64_WORKAROUND_1418040, 500 .desc = "ARM erratum 1418040", 501 .disable_compat_vdso = true, 502 }, 503 #endif 504 }; 505 506 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *, 507 const void *); 508 509 static 510 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa, 511 const void *arg) 512 { 513 const struct device_node *np = arg; 514 515 return of_property_read_bool(np, wa->id); 516 } 517 518 static 519 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa, 520 const void *arg) 521 { 522 return this_cpu_has_cap((uintptr_t)wa->id); 523 } 524 525 526 static 527 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa, 528 const void *arg) 529 { 530 static const struct ate_acpi_oem_info empty_oem_info = {}; 531 const struct ate_acpi_oem_info *info = wa->id; 532 const struct acpi_table_header *table = arg; 533 534 /* Iterate over the ACPI OEM info array, looking for a match */ 535 while (memcmp(info, &empty_oem_info, sizeof(*info))) { 536 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) && 537 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) && 538 info->oem_revision == table->oem_revision) 539 return true; 540 541 info++; 542 } 543 544 return false; 545 } 546 547 static const struct arch_timer_erratum_workaround * 548 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type, 549 ate_match_fn_t match_fn, 550 void *arg) 551 { 552 int i; 553 554 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) { 555 if (ool_workarounds[i].match_type != type) 556 continue; 557 558 if (match_fn(&ool_workarounds[i], arg)) 559 return &ool_workarounds[i]; 560 } 561 562 return NULL; 563 } 564 565 static 566 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa, 567 bool local) 568 { 569 int i; 570 571 if (local) { 572 __this_cpu_write(timer_unstable_counter_workaround, wa); 573 } else { 574 for_each_possible_cpu(i) 575 per_cpu(timer_unstable_counter_workaround, i) = wa; 576 } 577 578 if (wa->read_cntvct_el0 || wa->read_cntpct_el0) 579 atomic_set(&timer_unstable_counter_workaround_in_use, 1); 580 581 /* 582 * Don't use the vdso fastpath if errata require using the 583 * out-of-line counter accessor. We may change our mind pretty 584 * late in the game (with a per-CPU erratum, for example), so 585 * change both the default value and the vdso itself. 586 */ 587 if (wa->read_cntvct_el0) { 588 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE; 589 vdso_default = VDSO_CLOCKMODE_NONE; 590 } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) { 591 vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT; 592 clocksource_counter.vdso_clock_mode = vdso_default; 593 } 594 } 595 596 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type, 597 void *arg) 598 { 599 const struct arch_timer_erratum_workaround *wa, *__wa; 600 ate_match_fn_t match_fn = NULL; 601 bool local = false; 602 603 switch (type) { 604 case ate_match_dt: 605 match_fn = arch_timer_check_dt_erratum; 606 break; 607 case ate_match_local_cap_id: 608 match_fn = arch_timer_check_local_cap_erratum; 609 local = true; 610 break; 611 case ate_match_acpi_oem_info: 612 match_fn = arch_timer_check_acpi_oem_erratum; 613 break; 614 default: 615 WARN_ON(1); 616 return; 617 } 618 619 wa = arch_timer_iterate_errata(type, match_fn, arg); 620 if (!wa) 621 return; 622 623 __wa = __this_cpu_read(timer_unstable_counter_workaround); 624 if (__wa && wa != __wa) 625 pr_warn("Can't enable workaround for %s (clashes with %s\n)", 626 wa->desc, __wa->desc); 627 628 if (__wa) 629 return; 630 631 arch_timer_enable_workaround(wa, local); 632 pr_info("Enabling %s workaround for %s\n", 633 local ? "local" : "global", wa->desc); 634 } 635 636 static bool arch_timer_this_cpu_has_cntvct_wa(void) 637 { 638 return has_erratum_handler(read_cntvct_el0); 639 } 640 641 static bool arch_timer_counter_has_wa(void) 642 { 643 return atomic_read(&timer_unstable_counter_workaround_in_use); 644 } 645 #else 646 #define arch_timer_check_ool_workaround(t,a) do { } while(0) 647 #define arch_timer_this_cpu_has_cntvct_wa() ({false;}) 648 #define arch_timer_counter_has_wa() ({false;}) 649 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */ 650 651 static __always_inline irqreturn_t timer_handler(const int access, 652 struct clock_event_device *evt) 653 { 654 unsigned long ctrl; 655 656 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt); 657 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { 658 ctrl |= ARCH_TIMER_CTRL_IT_MASK; 659 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt); 660 evt->event_handler(evt); 661 return IRQ_HANDLED; 662 } 663 664 return IRQ_NONE; 665 } 666 667 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id) 668 { 669 struct clock_event_device *evt = dev_id; 670 671 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt); 672 } 673 674 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id) 675 { 676 struct clock_event_device *evt = dev_id; 677 678 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt); 679 } 680 681 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id) 682 { 683 struct clock_event_device *evt = dev_id; 684 685 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt); 686 } 687 688 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id) 689 { 690 struct clock_event_device *evt = dev_id; 691 692 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt); 693 } 694 695 static __always_inline int timer_shutdown(const int access, 696 struct clock_event_device *clk) 697 { 698 unsigned long ctrl; 699 700 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 701 ctrl &= ~ARCH_TIMER_CTRL_ENABLE; 702 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 703 704 return 0; 705 } 706 707 static int arch_timer_shutdown_virt(struct clock_event_device *clk) 708 { 709 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk); 710 } 711 712 static int arch_timer_shutdown_phys(struct clock_event_device *clk) 713 { 714 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk); 715 } 716 717 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk) 718 { 719 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk); 720 } 721 722 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk) 723 { 724 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk); 725 } 726 727 static __always_inline void set_next_event(const int access, unsigned long evt, 728 struct clock_event_device *clk) 729 { 730 unsigned long ctrl; 731 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 732 ctrl |= ARCH_TIMER_CTRL_ENABLE; 733 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 734 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk); 735 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 736 } 737 738 static int arch_timer_set_next_event_virt(unsigned long evt, 739 struct clock_event_device *clk) 740 { 741 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk); 742 return 0; 743 } 744 745 static int arch_timer_set_next_event_phys(unsigned long evt, 746 struct clock_event_device *clk) 747 { 748 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk); 749 return 0; 750 } 751 752 static int arch_timer_set_next_event_virt_mem(unsigned long evt, 753 struct clock_event_device *clk) 754 { 755 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk); 756 return 0; 757 } 758 759 static int arch_timer_set_next_event_phys_mem(unsigned long evt, 760 struct clock_event_device *clk) 761 { 762 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk); 763 return 0; 764 } 765 766 static void __arch_timer_setup(unsigned type, 767 struct clock_event_device *clk) 768 { 769 clk->features = CLOCK_EVT_FEAT_ONESHOT; 770 771 if (type == ARCH_TIMER_TYPE_CP15) { 772 typeof(clk->set_next_event) sne; 773 774 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL); 775 776 if (arch_timer_c3stop) 777 clk->features |= CLOCK_EVT_FEAT_C3STOP; 778 clk->name = "arch_sys_timer"; 779 clk->rating = 450; 780 clk->cpumask = cpumask_of(smp_processor_id()); 781 clk->irq = arch_timer_ppi[arch_timer_uses_ppi]; 782 switch (arch_timer_uses_ppi) { 783 case ARCH_TIMER_VIRT_PPI: 784 clk->set_state_shutdown = arch_timer_shutdown_virt; 785 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt; 786 sne = erratum_handler(set_next_event_virt); 787 break; 788 case ARCH_TIMER_PHYS_SECURE_PPI: 789 case ARCH_TIMER_PHYS_NONSECURE_PPI: 790 case ARCH_TIMER_HYP_PPI: 791 clk->set_state_shutdown = arch_timer_shutdown_phys; 792 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys; 793 sne = erratum_handler(set_next_event_phys); 794 break; 795 default: 796 BUG(); 797 } 798 799 clk->set_next_event = sne; 800 } else { 801 clk->features |= CLOCK_EVT_FEAT_DYNIRQ; 802 clk->name = "arch_mem_timer"; 803 clk->rating = 400; 804 clk->cpumask = cpu_possible_mask; 805 if (arch_timer_mem_use_virtual) { 806 clk->set_state_shutdown = arch_timer_shutdown_virt_mem; 807 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem; 808 clk->set_next_event = 809 arch_timer_set_next_event_virt_mem; 810 } else { 811 clk->set_state_shutdown = arch_timer_shutdown_phys_mem; 812 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem; 813 clk->set_next_event = 814 arch_timer_set_next_event_phys_mem; 815 } 816 } 817 818 clk->set_state_shutdown(clk); 819 820 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff); 821 } 822 823 static void arch_timer_evtstrm_enable(int divider) 824 { 825 u32 cntkctl = arch_timer_get_cntkctl(); 826 827 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK; 828 /* Set the divider and enable virtual event stream */ 829 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT) 830 | ARCH_TIMER_VIRT_EVT_EN; 831 arch_timer_set_cntkctl(cntkctl); 832 arch_timer_set_evtstrm_feature(); 833 cpumask_set_cpu(smp_processor_id(), &evtstrm_available); 834 } 835 836 static void arch_timer_configure_evtstream(void) 837 { 838 int evt_stream_div, lsb; 839 840 /* 841 * As the event stream can at most be generated at half the frequency 842 * of the counter, use half the frequency when computing the divider. 843 */ 844 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2; 845 846 /* 847 * Find the closest power of two to the divisor. If the adjacent bit 848 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1). 849 */ 850 lsb = fls(evt_stream_div) - 1; 851 if (lsb > 0 && (evt_stream_div & BIT(lsb - 1))) 852 lsb++; 853 854 /* enable event stream */ 855 arch_timer_evtstrm_enable(max(0, min(lsb, 15))); 856 } 857 858 static void arch_counter_set_user_access(void) 859 { 860 u32 cntkctl = arch_timer_get_cntkctl(); 861 862 /* Disable user access to the timers and both counters */ 863 /* Also disable virtual event stream */ 864 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN 865 | ARCH_TIMER_USR_VT_ACCESS_EN 866 | ARCH_TIMER_USR_VCT_ACCESS_EN 867 | ARCH_TIMER_VIRT_EVT_EN 868 | ARCH_TIMER_USR_PCT_ACCESS_EN); 869 870 /* 871 * Enable user access to the virtual counter if it doesn't 872 * need to be workaround. The vdso may have been already 873 * disabled though. 874 */ 875 if (arch_timer_this_cpu_has_cntvct_wa()) 876 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id()); 877 else 878 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN; 879 880 arch_timer_set_cntkctl(cntkctl); 881 } 882 883 static bool arch_timer_has_nonsecure_ppi(void) 884 { 885 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI && 886 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 887 } 888 889 static u32 check_ppi_trigger(int irq) 890 { 891 u32 flags = irq_get_trigger_type(irq); 892 893 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) { 894 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq); 895 pr_warn("WARNING: Please fix your firmware\n"); 896 flags = IRQF_TRIGGER_LOW; 897 } 898 899 return flags; 900 } 901 902 static int arch_timer_starting_cpu(unsigned int cpu) 903 { 904 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 905 u32 flags; 906 907 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk); 908 909 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]); 910 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags); 911 912 if (arch_timer_has_nonsecure_ppi()) { 913 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 914 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], 915 flags); 916 } 917 918 arch_counter_set_user_access(); 919 if (evtstrm_enable) 920 arch_timer_configure_evtstream(); 921 922 return 0; 923 } 924 925 static int validate_timer_rate(void) 926 { 927 if (!arch_timer_rate) 928 return -EINVAL; 929 930 /* Arch timer frequency < 1MHz can cause trouble */ 931 WARN_ON(arch_timer_rate < 1000000); 932 933 return 0; 934 } 935 936 /* 937 * For historical reasons, when probing with DT we use whichever (non-zero) 938 * rate was probed first, and don't verify that others match. If the first node 939 * probed has a clock-frequency property, this overrides the HW register. 940 */ 941 static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np) 942 { 943 /* Who has more than one independent system counter? */ 944 if (arch_timer_rate) 945 return; 946 947 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) 948 arch_timer_rate = rate; 949 950 /* Check the timer frequency. */ 951 if (validate_timer_rate()) 952 pr_warn("frequency not available\n"); 953 } 954 955 static void __init arch_timer_banner(unsigned type) 956 { 957 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n", 958 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "", 959 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? 960 " and " : "", 961 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "", 962 (unsigned long)arch_timer_rate / 1000000, 963 (unsigned long)(arch_timer_rate / 10000) % 100, 964 type & ARCH_TIMER_TYPE_CP15 ? 965 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" : 966 "", 967 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "", 968 type & ARCH_TIMER_TYPE_MEM ? 969 arch_timer_mem_use_virtual ? "virt" : "phys" : 970 ""); 971 } 972 973 u32 arch_timer_get_rate(void) 974 { 975 return arch_timer_rate; 976 } 977 978 bool arch_timer_evtstrm_available(void) 979 { 980 /* 981 * We might get called from a preemptible context. This is fine 982 * because availability of the event stream should be always the same 983 * for a preemptible context and context where we might resume a task. 984 */ 985 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available); 986 } 987 988 static u64 arch_counter_get_cntvct_mem(void) 989 { 990 u32 vct_lo, vct_hi, tmp_hi; 991 992 do { 993 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); 994 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO); 995 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); 996 } while (vct_hi != tmp_hi); 997 998 return ((u64) vct_hi << 32) | vct_lo; 999 } 1000 1001 static struct arch_timer_kvm_info arch_timer_kvm_info; 1002 1003 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void) 1004 { 1005 return &arch_timer_kvm_info; 1006 } 1007 1008 static void __init arch_counter_register(unsigned type) 1009 { 1010 u64 start_count; 1011 1012 /* Register the CP15 based counter if we have one */ 1013 if (type & ARCH_TIMER_TYPE_CP15) { 1014 u64 (*rd)(void); 1015 1016 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) || 1017 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) { 1018 if (arch_timer_counter_has_wa()) 1019 rd = arch_counter_get_cntvct_stable; 1020 else 1021 rd = arch_counter_get_cntvct; 1022 } else { 1023 if (arch_timer_counter_has_wa()) 1024 rd = arch_counter_get_cntpct_stable; 1025 else 1026 rd = arch_counter_get_cntpct; 1027 } 1028 1029 arch_timer_read_counter = rd; 1030 clocksource_counter.vdso_clock_mode = vdso_default; 1031 } else { 1032 arch_timer_read_counter = arch_counter_get_cntvct_mem; 1033 } 1034 1035 if (!arch_counter_suspend_stop) 1036 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; 1037 start_count = arch_timer_read_counter(); 1038 clocksource_register_hz(&clocksource_counter, arch_timer_rate); 1039 cyclecounter.mult = clocksource_counter.mult; 1040 cyclecounter.shift = clocksource_counter.shift; 1041 timecounter_init(&arch_timer_kvm_info.timecounter, 1042 &cyclecounter, start_count); 1043 1044 /* 56 bits minimum, so we assume worst case rollover */ 1045 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate); 1046 } 1047 1048 static void arch_timer_stop(struct clock_event_device *clk) 1049 { 1050 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id()); 1051 1052 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]); 1053 if (arch_timer_has_nonsecure_ppi()) 1054 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 1055 1056 clk->set_state_shutdown(clk); 1057 } 1058 1059 static int arch_timer_dying_cpu(unsigned int cpu) 1060 { 1061 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 1062 1063 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available); 1064 1065 arch_timer_stop(clk); 1066 return 0; 1067 } 1068 1069 #ifdef CONFIG_CPU_PM 1070 static DEFINE_PER_CPU(unsigned long, saved_cntkctl); 1071 static int arch_timer_cpu_pm_notify(struct notifier_block *self, 1072 unsigned long action, void *hcpu) 1073 { 1074 if (action == CPU_PM_ENTER) { 1075 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl()); 1076 1077 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available); 1078 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) { 1079 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl)); 1080 1081 if (arch_timer_have_evtstrm_feature()) 1082 cpumask_set_cpu(smp_processor_id(), &evtstrm_available); 1083 } 1084 return NOTIFY_OK; 1085 } 1086 1087 static struct notifier_block arch_timer_cpu_pm_notifier = { 1088 .notifier_call = arch_timer_cpu_pm_notify, 1089 }; 1090 1091 static int __init arch_timer_cpu_pm_init(void) 1092 { 1093 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier); 1094 } 1095 1096 static void __init arch_timer_cpu_pm_deinit(void) 1097 { 1098 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier)); 1099 } 1100 1101 #else 1102 static int __init arch_timer_cpu_pm_init(void) 1103 { 1104 return 0; 1105 } 1106 1107 static void __init arch_timer_cpu_pm_deinit(void) 1108 { 1109 } 1110 #endif 1111 1112 static int __init arch_timer_register(void) 1113 { 1114 int err; 1115 int ppi; 1116 1117 arch_timer_evt = alloc_percpu(struct clock_event_device); 1118 if (!arch_timer_evt) { 1119 err = -ENOMEM; 1120 goto out; 1121 } 1122 1123 ppi = arch_timer_ppi[arch_timer_uses_ppi]; 1124 switch (arch_timer_uses_ppi) { 1125 case ARCH_TIMER_VIRT_PPI: 1126 err = request_percpu_irq(ppi, arch_timer_handler_virt, 1127 "arch_timer", arch_timer_evt); 1128 break; 1129 case ARCH_TIMER_PHYS_SECURE_PPI: 1130 case ARCH_TIMER_PHYS_NONSECURE_PPI: 1131 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1132 "arch_timer", arch_timer_evt); 1133 if (!err && arch_timer_has_nonsecure_ppi()) { 1134 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]; 1135 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1136 "arch_timer", arch_timer_evt); 1137 if (err) 1138 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI], 1139 arch_timer_evt); 1140 } 1141 break; 1142 case ARCH_TIMER_HYP_PPI: 1143 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1144 "arch_timer", arch_timer_evt); 1145 break; 1146 default: 1147 BUG(); 1148 } 1149 1150 if (err) { 1151 pr_err("can't register interrupt %d (%d)\n", ppi, err); 1152 goto out_free; 1153 } 1154 1155 err = arch_timer_cpu_pm_init(); 1156 if (err) 1157 goto out_unreg_notify; 1158 1159 /* Register and immediately configure the timer on the boot CPU */ 1160 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING, 1161 "clockevents/arm/arch_timer:starting", 1162 arch_timer_starting_cpu, arch_timer_dying_cpu); 1163 if (err) 1164 goto out_unreg_cpupm; 1165 return 0; 1166 1167 out_unreg_cpupm: 1168 arch_timer_cpu_pm_deinit(); 1169 1170 out_unreg_notify: 1171 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt); 1172 if (arch_timer_has_nonsecure_ppi()) 1173 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], 1174 arch_timer_evt); 1175 1176 out_free: 1177 free_percpu(arch_timer_evt); 1178 out: 1179 return err; 1180 } 1181 1182 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq) 1183 { 1184 int ret; 1185 irq_handler_t func; 1186 struct arch_timer *t; 1187 1188 t = kzalloc(sizeof(*t), GFP_KERNEL); 1189 if (!t) 1190 return -ENOMEM; 1191 1192 t->base = base; 1193 t->evt.irq = irq; 1194 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt); 1195 1196 if (arch_timer_mem_use_virtual) 1197 func = arch_timer_handler_virt_mem; 1198 else 1199 func = arch_timer_handler_phys_mem; 1200 1201 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt); 1202 if (ret) { 1203 pr_err("Failed to request mem timer irq\n"); 1204 kfree(t); 1205 } 1206 1207 return ret; 1208 } 1209 1210 static const struct of_device_id arch_timer_of_match[] __initconst = { 1211 { .compatible = "arm,armv7-timer", }, 1212 { .compatible = "arm,armv8-timer", }, 1213 {}, 1214 }; 1215 1216 static const struct of_device_id arch_timer_mem_of_match[] __initconst = { 1217 { .compatible = "arm,armv7-timer-mem", }, 1218 {}, 1219 }; 1220 1221 static bool __init arch_timer_needs_of_probing(void) 1222 { 1223 struct device_node *dn; 1224 bool needs_probing = false; 1225 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM; 1226 1227 /* We have two timers, and both device-tree nodes are probed. */ 1228 if ((arch_timers_present & mask) == mask) 1229 return false; 1230 1231 /* 1232 * Only one type of timer is probed, 1233 * check if we have another type of timer node in device-tree. 1234 */ 1235 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) 1236 dn = of_find_matching_node(NULL, arch_timer_mem_of_match); 1237 else 1238 dn = of_find_matching_node(NULL, arch_timer_of_match); 1239 1240 if (dn && of_device_is_available(dn)) 1241 needs_probing = true; 1242 1243 of_node_put(dn); 1244 1245 return needs_probing; 1246 } 1247 1248 static int __init arch_timer_common_init(void) 1249 { 1250 arch_timer_banner(arch_timers_present); 1251 arch_counter_register(arch_timers_present); 1252 return arch_timer_arch_init(); 1253 } 1254 1255 /** 1256 * arch_timer_select_ppi() - Select suitable PPI for the current system. 1257 * 1258 * If HYP mode is available, we know that the physical timer 1259 * has been configured to be accessible from PL1. Use it, so 1260 * that a guest can use the virtual timer instead. 1261 * 1262 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE 1263 * accesses to CNTP_*_EL1 registers are silently redirected to 1264 * their CNTHP_*_EL2 counterparts, and use a different PPI 1265 * number. 1266 * 1267 * If no interrupt provided for virtual timer, we'll have to 1268 * stick to the physical timer. It'd better be accessible... 1269 * For arm64 we never use the secure interrupt. 1270 * 1271 * Return: a suitable PPI type for the current system. 1272 */ 1273 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void) 1274 { 1275 if (is_kernel_in_hyp_mode()) 1276 return ARCH_TIMER_HYP_PPI; 1277 1278 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI]) 1279 return ARCH_TIMER_VIRT_PPI; 1280 1281 if (IS_ENABLED(CONFIG_ARM64)) 1282 return ARCH_TIMER_PHYS_NONSECURE_PPI; 1283 1284 return ARCH_TIMER_PHYS_SECURE_PPI; 1285 } 1286 1287 static void __init arch_timer_populate_kvm_info(void) 1288 { 1289 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI]; 1290 if (is_kernel_in_hyp_mode()) 1291 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]; 1292 } 1293 1294 static int __init arch_timer_of_init(struct device_node *np) 1295 { 1296 int i, irq, ret; 1297 u32 rate; 1298 bool has_names; 1299 1300 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { 1301 pr_warn("multiple nodes in dt, skipping\n"); 1302 return 0; 1303 } 1304 1305 arch_timers_present |= ARCH_TIMER_TYPE_CP15; 1306 1307 has_names = of_property_read_bool(np, "interrupt-names"); 1308 1309 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) { 1310 if (has_names) 1311 irq = of_irq_get_byname(np, arch_timer_ppi_names[i]); 1312 else 1313 irq = of_irq_get(np, i); 1314 if (irq > 0) 1315 arch_timer_ppi[i] = irq; 1316 } 1317 1318 arch_timer_populate_kvm_info(); 1319 1320 rate = arch_timer_get_cntfrq(); 1321 arch_timer_of_configure_rate(rate, np); 1322 1323 arch_timer_c3stop = !of_property_read_bool(np, "always-on"); 1324 1325 /* Check for globally applicable workarounds */ 1326 arch_timer_check_ool_workaround(ate_match_dt, np); 1327 1328 /* 1329 * If we cannot rely on firmware initializing the timer registers then 1330 * we should use the physical timers instead. 1331 */ 1332 if (IS_ENABLED(CONFIG_ARM) && 1333 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured")) 1334 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI; 1335 else 1336 arch_timer_uses_ppi = arch_timer_select_ppi(); 1337 1338 if (!arch_timer_ppi[arch_timer_uses_ppi]) { 1339 pr_err("No interrupt available, giving up\n"); 1340 return -EINVAL; 1341 } 1342 1343 /* On some systems, the counter stops ticking when in suspend. */ 1344 arch_counter_suspend_stop = of_property_read_bool(np, 1345 "arm,no-tick-in-suspend"); 1346 1347 ret = arch_timer_register(); 1348 if (ret) 1349 return ret; 1350 1351 if (arch_timer_needs_of_probing()) 1352 return 0; 1353 1354 return arch_timer_common_init(); 1355 } 1356 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init); 1357 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init); 1358 1359 static u32 __init 1360 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame) 1361 { 1362 void __iomem *base; 1363 u32 rate; 1364 1365 base = ioremap(frame->cntbase, frame->size); 1366 if (!base) { 1367 pr_err("Unable to map frame @ %pa\n", &frame->cntbase); 1368 return 0; 1369 } 1370 1371 rate = readl_relaxed(base + CNTFRQ); 1372 1373 iounmap(base); 1374 1375 return rate; 1376 } 1377 1378 static struct arch_timer_mem_frame * __init 1379 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem) 1380 { 1381 struct arch_timer_mem_frame *frame, *best_frame = NULL; 1382 void __iomem *cntctlbase; 1383 u32 cnttidr; 1384 int i; 1385 1386 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size); 1387 if (!cntctlbase) { 1388 pr_err("Can't map CNTCTLBase @ %pa\n", 1389 &timer_mem->cntctlbase); 1390 return NULL; 1391 } 1392 1393 cnttidr = readl_relaxed(cntctlbase + CNTTIDR); 1394 1395 /* 1396 * Try to find a virtual capable frame. Otherwise fall back to a 1397 * physical capable frame. 1398 */ 1399 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) { 1400 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT | 1401 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT; 1402 1403 frame = &timer_mem->frame[i]; 1404 if (!frame->valid) 1405 continue; 1406 1407 /* Try enabling everything, and see what sticks */ 1408 writel_relaxed(cntacr, cntctlbase + CNTACR(i)); 1409 cntacr = readl_relaxed(cntctlbase + CNTACR(i)); 1410 1411 if ((cnttidr & CNTTIDR_VIRT(i)) && 1412 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) { 1413 best_frame = frame; 1414 arch_timer_mem_use_virtual = true; 1415 break; 1416 } 1417 1418 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT)) 1419 continue; 1420 1421 best_frame = frame; 1422 } 1423 1424 iounmap(cntctlbase); 1425 1426 return best_frame; 1427 } 1428 1429 static int __init 1430 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame) 1431 { 1432 void __iomem *base; 1433 int ret, irq = 0; 1434 1435 if (arch_timer_mem_use_virtual) 1436 irq = frame->virt_irq; 1437 else 1438 irq = frame->phys_irq; 1439 1440 if (!irq) { 1441 pr_err("Frame missing %s irq.\n", 1442 arch_timer_mem_use_virtual ? "virt" : "phys"); 1443 return -EINVAL; 1444 } 1445 1446 if (!request_mem_region(frame->cntbase, frame->size, 1447 "arch_mem_timer")) 1448 return -EBUSY; 1449 1450 base = ioremap(frame->cntbase, frame->size); 1451 if (!base) { 1452 pr_err("Can't map frame's registers\n"); 1453 return -ENXIO; 1454 } 1455 1456 ret = arch_timer_mem_register(base, irq); 1457 if (ret) { 1458 iounmap(base); 1459 return ret; 1460 } 1461 1462 arch_counter_base = base; 1463 arch_timers_present |= ARCH_TIMER_TYPE_MEM; 1464 1465 return 0; 1466 } 1467 1468 static int __init arch_timer_mem_of_init(struct device_node *np) 1469 { 1470 struct arch_timer_mem *timer_mem; 1471 struct arch_timer_mem_frame *frame; 1472 struct device_node *frame_node; 1473 struct resource res; 1474 int ret = -EINVAL; 1475 u32 rate; 1476 1477 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL); 1478 if (!timer_mem) 1479 return -ENOMEM; 1480 1481 if (of_address_to_resource(np, 0, &res)) 1482 goto out; 1483 timer_mem->cntctlbase = res.start; 1484 timer_mem->size = resource_size(&res); 1485 1486 for_each_available_child_of_node(np, frame_node) { 1487 u32 n; 1488 struct arch_timer_mem_frame *frame; 1489 1490 if (of_property_read_u32(frame_node, "frame-number", &n)) { 1491 pr_err(FW_BUG "Missing frame-number.\n"); 1492 of_node_put(frame_node); 1493 goto out; 1494 } 1495 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) { 1496 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n", 1497 ARCH_TIMER_MEM_MAX_FRAMES - 1); 1498 of_node_put(frame_node); 1499 goto out; 1500 } 1501 frame = &timer_mem->frame[n]; 1502 1503 if (frame->valid) { 1504 pr_err(FW_BUG "Duplicated frame-number.\n"); 1505 of_node_put(frame_node); 1506 goto out; 1507 } 1508 1509 if (of_address_to_resource(frame_node, 0, &res)) { 1510 of_node_put(frame_node); 1511 goto out; 1512 } 1513 frame->cntbase = res.start; 1514 frame->size = resource_size(&res); 1515 1516 frame->virt_irq = irq_of_parse_and_map(frame_node, 1517 ARCH_TIMER_VIRT_SPI); 1518 frame->phys_irq = irq_of_parse_and_map(frame_node, 1519 ARCH_TIMER_PHYS_SPI); 1520 1521 frame->valid = true; 1522 } 1523 1524 frame = arch_timer_mem_find_best_frame(timer_mem); 1525 if (!frame) { 1526 pr_err("Unable to find a suitable frame in timer @ %pa\n", 1527 &timer_mem->cntctlbase); 1528 ret = -EINVAL; 1529 goto out; 1530 } 1531 1532 rate = arch_timer_mem_frame_get_cntfrq(frame); 1533 arch_timer_of_configure_rate(rate, np); 1534 1535 ret = arch_timer_mem_frame_register(frame); 1536 if (!ret && !arch_timer_needs_of_probing()) 1537 ret = arch_timer_common_init(); 1538 out: 1539 kfree(timer_mem); 1540 return ret; 1541 } 1542 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem", 1543 arch_timer_mem_of_init); 1544 1545 #ifdef CONFIG_ACPI_GTDT 1546 static int __init 1547 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem) 1548 { 1549 struct arch_timer_mem_frame *frame; 1550 u32 rate; 1551 int i; 1552 1553 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) { 1554 frame = &timer_mem->frame[i]; 1555 1556 if (!frame->valid) 1557 continue; 1558 1559 rate = arch_timer_mem_frame_get_cntfrq(frame); 1560 if (rate == arch_timer_rate) 1561 continue; 1562 1563 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n", 1564 &frame->cntbase, 1565 (unsigned long)rate, (unsigned long)arch_timer_rate); 1566 1567 return -EINVAL; 1568 } 1569 1570 return 0; 1571 } 1572 1573 static int __init arch_timer_mem_acpi_init(int platform_timer_count) 1574 { 1575 struct arch_timer_mem *timers, *timer; 1576 struct arch_timer_mem_frame *frame, *best_frame = NULL; 1577 int timer_count, i, ret = 0; 1578 1579 timers = kcalloc(platform_timer_count, sizeof(*timers), 1580 GFP_KERNEL); 1581 if (!timers) 1582 return -ENOMEM; 1583 1584 ret = acpi_arch_timer_mem_init(timers, &timer_count); 1585 if (ret || !timer_count) 1586 goto out; 1587 1588 /* 1589 * While unlikely, it's theoretically possible that none of the frames 1590 * in a timer expose the combination of feature we want. 1591 */ 1592 for (i = 0; i < timer_count; i++) { 1593 timer = &timers[i]; 1594 1595 frame = arch_timer_mem_find_best_frame(timer); 1596 if (!best_frame) 1597 best_frame = frame; 1598 1599 ret = arch_timer_mem_verify_cntfrq(timer); 1600 if (ret) { 1601 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n"); 1602 goto out; 1603 } 1604 1605 if (!best_frame) /* implies !frame */ 1606 /* 1607 * Only complain about missing suitable frames if we 1608 * haven't already found one in a previous iteration. 1609 */ 1610 pr_err("Unable to find a suitable frame in timer @ %pa\n", 1611 &timer->cntctlbase); 1612 } 1613 1614 if (best_frame) 1615 ret = arch_timer_mem_frame_register(best_frame); 1616 out: 1617 kfree(timers); 1618 return ret; 1619 } 1620 1621 /* Initialize per-processor generic timer and memory-mapped timer(if present) */ 1622 static int __init arch_timer_acpi_init(struct acpi_table_header *table) 1623 { 1624 int ret, platform_timer_count; 1625 1626 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { 1627 pr_warn("already initialized, skipping\n"); 1628 return -EINVAL; 1629 } 1630 1631 arch_timers_present |= ARCH_TIMER_TYPE_CP15; 1632 1633 ret = acpi_gtdt_init(table, &platform_timer_count); 1634 if (ret) 1635 return ret; 1636 1637 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] = 1638 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI); 1639 1640 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] = 1641 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI); 1642 1643 arch_timer_ppi[ARCH_TIMER_HYP_PPI] = 1644 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI); 1645 1646 arch_timer_populate_kvm_info(); 1647 1648 /* 1649 * When probing via ACPI, we have no mechanism to override the sysreg 1650 * CNTFRQ value. This *must* be correct. 1651 */ 1652 arch_timer_rate = arch_timer_get_cntfrq(); 1653 ret = validate_timer_rate(); 1654 if (ret) { 1655 pr_err(FW_BUG "frequency not available.\n"); 1656 return ret; 1657 } 1658 1659 arch_timer_uses_ppi = arch_timer_select_ppi(); 1660 if (!arch_timer_ppi[arch_timer_uses_ppi]) { 1661 pr_err("No interrupt available, giving up\n"); 1662 return -EINVAL; 1663 } 1664 1665 /* Always-on capability */ 1666 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi); 1667 1668 /* Check for globally applicable workarounds */ 1669 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table); 1670 1671 ret = arch_timer_register(); 1672 if (ret) 1673 return ret; 1674 1675 if (platform_timer_count && 1676 arch_timer_mem_acpi_init(platform_timer_count)) 1677 pr_err("Failed to initialize memory-mapped timer.\n"); 1678 1679 return arch_timer_common_init(); 1680 } 1681 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init); 1682 #endif 1683 1684 int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts, 1685 struct clocksource **cs) 1686 { 1687 struct arm_smccc_res hvc_res; 1688 u32 ptp_counter; 1689 ktime_t ktime; 1690 1691 if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY)) 1692 return -EOPNOTSUPP; 1693 1694 if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) 1695 ptp_counter = KVM_PTP_VIRT_COUNTER; 1696 else 1697 ptp_counter = KVM_PTP_PHYS_COUNTER; 1698 1699 arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID, 1700 ptp_counter, &hvc_res); 1701 1702 if ((int)(hvc_res.a0) < 0) 1703 return -EOPNOTSUPP; 1704 1705 ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1; 1706 *ts = ktime_to_timespec64(ktime); 1707 if (cycle) 1708 *cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3; 1709 if (cs) 1710 *cs = &clocksource_counter; 1711 1712 return 0; 1713 } 1714 EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp); 1715