1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/clocksource/arm_arch_timer.c 4 * 5 * Copyright (C) 2011 ARM Ltd. 6 * All Rights Reserved 7 */ 8 9 #define pr_fmt(fmt) "arch_timer: " fmt 10 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/device.h> 14 #include <linux/smp.h> 15 #include <linux/cpu.h> 16 #include <linux/cpu_pm.h> 17 #include <linux/clockchips.h> 18 #include <linux/clocksource.h> 19 #include <linux/clocksource_ids.h> 20 #include <linux/interrupt.h> 21 #include <linux/of_irq.h> 22 #include <linux/of_address.h> 23 #include <linux/io.h> 24 #include <linux/slab.h> 25 #include <linux/sched/clock.h> 26 #include <linux/sched_clock.h> 27 #include <linux/acpi.h> 28 #include <linux/arm-smccc.h> 29 #include <linux/ptp_kvm.h> 30 31 #include <asm/arch_timer.h> 32 #include <asm/virt.h> 33 34 #include <clocksource/arm_arch_timer.h> 35 36 #define CNTTIDR 0x08 37 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4)) 38 39 #define CNTACR(n) (0x40 + ((n) * 4)) 40 #define CNTACR_RPCT BIT(0) 41 #define CNTACR_RVCT BIT(1) 42 #define CNTACR_RFRQ BIT(2) 43 #define CNTACR_RVOFF BIT(3) 44 #define CNTACR_RWVT BIT(4) 45 #define CNTACR_RWPT BIT(5) 46 47 #define CNTVCT_LO 0x00 48 #define CNTPCT_LO 0x08 49 #define CNTFRQ 0x10 50 #define CNTP_CVAL_LO 0x20 51 #define CNTP_CTL 0x2c 52 #define CNTV_CVAL_LO 0x30 53 #define CNTV_CTL 0x3c 54 55 /* 56 * The minimum amount of time a generic counter is guaranteed to not roll over 57 * (40 years) 58 */ 59 #define MIN_ROLLOVER_SECS (40ULL * 365 * 24 * 3600) 60 61 static unsigned arch_timers_present __initdata; 62 63 struct arch_timer { 64 void __iomem *base; 65 struct clock_event_device evt; 66 }; 67 68 static struct arch_timer *arch_timer_mem __ro_after_init; 69 70 #define to_arch_timer(e) container_of(e, struct arch_timer, evt) 71 72 static u32 arch_timer_rate __ro_after_init; 73 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init; 74 75 static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = { 76 [ARCH_TIMER_PHYS_SECURE_PPI] = "sec-phys", 77 [ARCH_TIMER_PHYS_NONSECURE_PPI] = "phys", 78 [ARCH_TIMER_VIRT_PPI] = "virt", 79 [ARCH_TIMER_HYP_PPI] = "hyp-phys", 80 [ARCH_TIMER_HYP_VIRT_PPI] = "hyp-virt", 81 }; 82 83 static struct clock_event_device __percpu *arch_timer_evt; 84 85 static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI; 86 static bool arch_timer_c3stop __ro_after_init; 87 static bool arch_timer_mem_use_virtual __ro_after_init; 88 static bool arch_counter_suspend_stop __ro_after_init; 89 #ifdef CONFIG_GENERIC_GETTIMEOFDAY 90 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER; 91 #else 92 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE; 93 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */ 94 95 static cpumask_t evtstrm_available = CPU_MASK_NONE; 96 static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM); 97 98 static int __init early_evtstrm_cfg(char *buf) 99 { 100 return strtobool(buf, &evtstrm_enable); 101 } 102 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg); 103 104 /* 105 * Makes an educated guess at a valid counter width based on the Generic Timer 106 * specification. Of note: 107 * 1) the system counter is at least 56 bits wide 108 * 2) a roll-over time of not less than 40 years 109 * 110 * See 'ARM DDI 0487G.a D11.1.2 ("The system counter")' for more details. 111 */ 112 static int arch_counter_get_width(void) 113 { 114 u64 min_cycles = MIN_ROLLOVER_SECS * arch_timer_rate; 115 116 /* guarantee the returned width is within the valid range */ 117 return clamp_val(ilog2(min_cycles - 1) + 1, 56, 64); 118 } 119 120 /* 121 * Architected system timer support. 122 */ 123 124 static __always_inline 125 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u64 val, 126 struct clock_event_device *clk) 127 { 128 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 129 struct arch_timer *timer = to_arch_timer(clk); 130 switch (reg) { 131 case ARCH_TIMER_REG_CTRL: 132 writel_relaxed((u32)val, timer->base + CNTP_CTL); 133 break; 134 case ARCH_TIMER_REG_CVAL: 135 /* 136 * Not guaranteed to be atomic, so the timer 137 * must be disabled at this point. 138 */ 139 writeq_relaxed(val, timer->base + CNTP_CVAL_LO); 140 break; 141 default: 142 BUILD_BUG(); 143 } 144 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 145 struct arch_timer *timer = to_arch_timer(clk); 146 switch (reg) { 147 case ARCH_TIMER_REG_CTRL: 148 writel_relaxed((u32)val, timer->base + CNTV_CTL); 149 break; 150 case ARCH_TIMER_REG_CVAL: 151 /* Same restriction as above */ 152 writeq_relaxed(val, timer->base + CNTV_CVAL_LO); 153 break; 154 default: 155 BUILD_BUG(); 156 } 157 } else { 158 arch_timer_reg_write_cp15(access, reg, val); 159 } 160 } 161 162 static __always_inline 163 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg, 164 struct clock_event_device *clk) 165 { 166 u32 val; 167 168 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 169 struct arch_timer *timer = to_arch_timer(clk); 170 switch (reg) { 171 case ARCH_TIMER_REG_CTRL: 172 val = readl_relaxed(timer->base + CNTP_CTL); 173 break; 174 default: 175 BUILD_BUG(); 176 } 177 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 178 struct arch_timer *timer = to_arch_timer(clk); 179 switch (reg) { 180 case ARCH_TIMER_REG_CTRL: 181 val = readl_relaxed(timer->base + CNTV_CTL); 182 break; 183 default: 184 BUILD_BUG(); 185 } 186 } else { 187 val = arch_timer_reg_read_cp15(access, reg); 188 } 189 190 return val; 191 } 192 193 static notrace u64 arch_counter_get_cntpct_stable(void) 194 { 195 return __arch_counter_get_cntpct_stable(); 196 } 197 198 static notrace u64 arch_counter_get_cntpct(void) 199 { 200 return __arch_counter_get_cntpct(); 201 } 202 203 static notrace u64 arch_counter_get_cntvct_stable(void) 204 { 205 return __arch_counter_get_cntvct_stable(); 206 } 207 208 static notrace u64 arch_counter_get_cntvct(void) 209 { 210 return __arch_counter_get_cntvct(); 211 } 212 213 /* 214 * Default to cp15 based access because arm64 uses this function for 215 * sched_clock() before DT is probed and the cp15 method is guaranteed 216 * to exist on arm64. arm doesn't use this before DT is probed so even 217 * if we don't have the cp15 accessors we won't have a problem. 218 */ 219 u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct; 220 EXPORT_SYMBOL_GPL(arch_timer_read_counter); 221 222 static u64 arch_counter_read(struct clocksource *cs) 223 { 224 return arch_timer_read_counter(); 225 } 226 227 static u64 arch_counter_read_cc(const struct cyclecounter *cc) 228 { 229 return arch_timer_read_counter(); 230 } 231 232 static struct clocksource clocksource_counter = { 233 .name = "arch_sys_counter", 234 .id = CSID_ARM_ARCH_COUNTER, 235 .rating = 400, 236 .read = arch_counter_read, 237 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 238 }; 239 240 static struct cyclecounter cyclecounter __ro_after_init = { 241 .read = arch_counter_read_cc, 242 }; 243 244 struct ate_acpi_oem_info { 245 char oem_id[ACPI_OEM_ID_SIZE + 1]; 246 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1]; 247 u32 oem_revision; 248 }; 249 250 #ifdef CONFIG_FSL_ERRATUM_A008585 251 /* 252 * The number of retries is an arbitrary value well beyond the highest number 253 * of iterations the loop has been observed to take. 254 */ 255 #define __fsl_a008585_read_reg(reg) ({ \ 256 u64 _old, _new; \ 257 int _retries = 200; \ 258 \ 259 do { \ 260 _old = read_sysreg(reg); \ 261 _new = read_sysreg(reg); \ 262 _retries--; \ 263 } while (unlikely(_old != _new) && _retries); \ 264 \ 265 WARN_ON_ONCE(!_retries); \ 266 _new; \ 267 }) 268 269 static u64 notrace fsl_a008585_read_cntpct_el0(void) 270 { 271 return __fsl_a008585_read_reg(cntpct_el0); 272 } 273 274 static u64 notrace fsl_a008585_read_cntvct_el0(void) 275 { 276 return __fsl_a008585_read_reg(cntvct_el0); 277 } 278 #endif 279 280 #ifdef CONFIG_HISILICON_ERRATUM_161010101 281 /* 282 * Verify whether the value of the second read is larger than the first by 283 * less than 32 is the only way to confirm the value is correct, so clear the 284 * lower 5 bits to check whether the difference is greater than 32 or not. 285 * Theoretically the erratum should not occur more than twice in succession 286 * when reading the system counter, but it is possible that some interrupts 287 * may lead to more than twice read errors, triggering the warning, so setting 288 * the number of retries far beyond the number of iterations the loop has been 289 * observed to take. 290 */ 291 #define __hisi_161010101_read_reg(reg) ({ \ 292 u64 _old, _new; \ 293 int _retries = 50; \ 294 \ 295 do { \ 296 _old = read_sysreg(reg); \ 297 _new = read_sysreg(reg); \ 298 _retries--; \ 299 } while (unlikely((_new - _old) >> 5) && _retries); \ 300 \ 301 WARN_ON_ONCE(!_retries); \ 302 _new; \ 303 }) 304 305 static u64 notrace hisi_161010101_read_cntpct_el0(void) 306 { 307 return __hisi_161010101_read_reg(cntpct_el0); 308 } 309 310 static u64 notrace hisi_161010101_read_cntvct_el0(void) 311 { 312 return __hisi_161010101_read_reg(cntvct_el0); 313 } 314 315 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = { 316 /* 317 * Note that trailing spaces are required to properly match 318 * the OEM table information. 319 */ 320 { 321 .oem_id = "HISI ", 322 .oem_table_id = "HIP05 ", 323 .oem_revision = 0, 324 }, 325 { 326 .oem_id = "HISI ", 327 .oem_table_id = "HIP06 ", 328 .oem_revision = 0, 329 }, 330 { 331 .oem_id = "HISI ", 332 .oem_table_id = "HIP07 ", 333 .oem_revision = 0, 334 }, 335 { /* Sentinel indicating the end of the OEM array */ }, 336 }; 337 #endif 338 339 #ifdef CONFIG_ARM64_ERRATUM_858921 340 static u64 notrace arm64_858921_read_cntpct_el0(void) 341 { 342 u64 old, new; 343 344 old = read_sysreg(cntpct_el0); 345 new = read_sysreg(cntpct_el0); 346 return (((old ^ new) >> 32) & 1) ? old : new; 347 } 348 349 static u64 notrace arm64_858921_read_cntvct_el0(void) 350 { 351 u64 old, new; 352 353 old = read_sysreg(cntvct_el0); 354 new = read_sysreg(cntvct_el0); 355 return (((old ^ new) >> 32) & 1) ? old : new; 356 } 357 #endif 358 359 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1 360 /* 361 * The low bits of the counter registers are indeterminate while bit 10 or 362 * greater is rolling over. Since the counter value can jump both backward 363 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values 364 * with all ones or all zeros in the low bits. Bound the loop by the maximum 365 * number of CPU cycles in 3 consecutive 24 MHz counter periods. 366 */ 367 #define __sun50i_a64_read_reg(reg) ({ \ 368 u64 _val; \ 369 int _retries = 150; \ 370 \ 371 do { \ 372 _val = read_sysreg(reg); \ 373 _retries--; \ 374 } while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries); \ 375 \ 376 WARN_ON_ONCE(!_retries); \ 377 _val; \ 378 }) 379 380 static u64 notrace sun50i_a64_read_cntpct_el0(void) 381 { 382 return __sun50i_a64_read_reg(cntpct_el0); 383 } 384 385 static u64 notrace sun50i_a64_read_cntvct_el0(void) 386 { 387 return __sun50i_a64_read_reg(cntvct_el0); 388 } 389 #endif 390 391 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND 392 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround); 393 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround); 394 395 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0); 396 397 static void erratum_set_next_event_generic(const int access, unsigned long evt, 398 struct clock_event_device *clk) 399 { 400 unsigned long ctrl; 401 u64 cval; 402 403 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 404 ctrl |= ARCH_TIMER_CTRL_ENABLE; 405 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 406 407 if (access == ARCH_TIMER_PHYS_ACCESS) { 408 cval = evt + arch_counter_get_cntpct_stable(); 409 write_sysreg(cval, cntp_cval_el0); 410 } else { 411 cval = evt + arch_counter_get_cntvct_stable(); 412 write_sysreg(cval, cntv_cval_el0); 413 } 414 415 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 416 } 417 418 static __maybe_unused int erratum_set_next_event_virt(unsigned long evt, 419 struct clock_event_device *clk) 420 { 421 erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk); 422 return 0; 423 } 424 425 static __maybe_unused int erratum_set_next_event_phys(unsigned long evt, 426 struct clock_event_device *clk) 427 { 428 erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk); 429 return 0; 430 } 431 432 static const struct arch_timer_erratum_workaround ool_workarounds[] = { 433 #ifdef CONFIG_FSL_ERRATUM_A008585 434 { 435 .match_type = ate_match_dt, 436 .id = "fsl,erratum-a008585", 437 .desc = "Freescale erratum a005858", 438 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0, 439 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0, 440 .set_next_event_phys = erratum_set_next_event_phys, 441 .set_next_event_virt = erratum_set_next_event_virt, 442 }, 443 #endif 444 #ifdef CONFIG_HISILICON_ERRATUM_161010101 445 { 446 .match_type = ate_match_dt, 447 .id = "hisilicon,erratum-161010101", 448 .desc = "HiSilicon erratum 161010101", 449 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0, 450 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, 451 .set_next_event_phys = erratum_set_next_event_phys, 452 .set_next_event_virt = erratum_set_next_event_virt, 453 }, 454 { 455 .match_type = ate_match_acpi_oem_info, 456 .id = hisi_161010101_oem_info, 457 .desc = "HiSilicon erratum 161010101", 458 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0, 459 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, 460 .set_next_event_phys = erratum_set_next_event_phys, 461 .set_next_event_virt = erratum_set_next_event_virt, 462 }, 463 #endif 464 #ifdef CONFIG_ARM64_ERRATUM_858921 465 { 466 .match_type = ate_match_local_cap_id, 467 .id = (void *)ARM64_WORKAROUND_858921, 468 .desc = "ARM erratum 858921", 469 .read_cntpct_el0 = arm64_858921_read_cntpct_el0, 470 .read_cntvct_el0 = arm64_858921_read_cntvct_el0, 471 }, 472 #endif 473 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1 474 { 475 .match_type = ate_match_dt, 476 .id = "allwinner,erratum-unknown1", 477 .desc = "Allwinner erratum UNKNOWN1", 478 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0, 479 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0, 480 .set_next_event_phys = erratum_set_next_event_phys, 481 .set_next_event_virt = erratum_set_next_event_virt, 482 }, 483 #endif 484 #ifdef CONFIG_ARM64_ERRATUM_1418040 485 { 486 .match_type = ate_match_local_cap_id, 487 .id = (void *)ARM64_WORKAROUND_1418040, 488 .desc = "ARM erratum 1418040", 489 .disable_compat_vdso = true, 490 }, 491 #endif 492 }; 493 494 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *, 495 const void *); 496 497 static 498 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa, 499 const void *arg) 500 { 501 const struct device_node *np = arg; 502 503 return of_property_read_bool(np, wa->id); 504 } 505 506 static 507 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa, 508 const void *arg) 509 { 510 return this_cpu_has_cap((uintptr_t)wa->id); 511 } 512 513 514 static 515 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa, 516 const void *arg) 517 { 518 static const struct ate_acpi_oem_info empty_oem_info = {}; 519 const struct ate_acpi_oem_info *info = wa->id; 520 const struct acpi_table_header *table = arg; 521 522 /* Iterate over the ACPI OEM info array, looking for a match */ 523 while (memcmp(info, &empty_oem_info, sizeof(*info))) { 524 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) && 525 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) && 526 info->oem_revision == table->oem_revision) 527 return true; 528 529 info++; 530 } 531 532 return false; 533 } 534 535 static const struct arch_timer_erratum_workaround * 536 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type, 537 ate_match_fn_t match_fn, 538 void *arg) 539 { 540 int i; 541 542 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) { 543 if (ool_workarounds[i].match_type != type) 544 continue; 545 546 if (match_fn(&ool_workarounds[i], arg)) 547 return &ool_workarounds[i]; 548 } 549 550 return NULL; 551 } 552 553 static 554 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa, 555 bool local) 556 { 557 int i; 558 559 if (local) { 560 __this_cpu_write(timer_unstable_counter_workaround, wa); 561 } else { 562 for_each_possible_cpu(i) 563 per_cpu(timer_unstable_counter_workaround, i) = wa; 564 } 565 566 if (wa->read_cntvct_el0 || wa->read_cntpct_el0) 567 atomic_set(&timer_unstable_counter_workaround_in_use, 1); 568 569 /* 570 * Don't use the vdso fastpath if errata require using the 571 * out-of-line counter accessor. We may change our mind pretty 572 * late in the game (with a per-CPU erratum, for example), so 573 * change both the default value and the vdso itself. 574 */ 575 if (wa->read_cntvct_el0) { 576 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE; 577 vdso_default = VDSO_CLOCKMODE_NONE; 578 } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) { 579 vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT; 580 clocksource_counter.vdso_clock_mode = vdso_default; 581 } 582 } 583 584 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type, 585 void *arg) 586 { 587 const struct arch_timer_erratum_workaround *wa, *__wa; 588 ate_match_fn_t match_fn = NULL; 589 bool local = false; 590 591 switch (type) { 592 case ate_match_dt: 593 match_fn = arch_timer_check_dt_erratum; 594 break; 595 case ate_match_local_cap_id: 596 match_fn = arch_timer_check_local_cap_erratum; 597 local = true; 598 break; 599 case ate_match_acpi_oem_info: 600 match_fn = arch_timer_check_acpi_oem_erratum; 601 break; 602 default: 603 WARN_ON(1); 604 return; 605 } 606 607 wa = arch_timer_iterate_errata(type, match_fn, arg); 608 if (!wa) 609 return; 610 611 __wa = __this_cpu_read(timer_unstable_counter_workaround); 612 if (__wa && wa != __wa) 613 pr_warn("Can't enable workaround for %s (clashes with %s\n)", 614 wa->desc, __wa->desc); 615 616 if (__wa) 617 return; 618 619 arch_timer_enable_workaround(wa, local); 620 pr_info("Enabling %s workaround for %s\n", 621 local ? "local" : "global", wa->desc); 622 } 623 624 static bool arch_timer_this_cpu_has_cntvct_wa(void) 625 { 626 return has_erratum_handler(read_cntvct_el0); 627 } 628 629 static bool arch_timer_counter_has_wa(void) 630 { 631 return atomic_read(&timer_unstable_counter_workaround_in_use); 632 } 633 #else 634 #define arch_timer_check_ool_workaround(t,a) do { } while(0) 635 #define arch_timer_this_cpu_has_cntvct_wa() ({false;}) 636 #define arch_timer_counter_has_wa() ({false;}) 637 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */ 638 639 static __always_inline irqreturn_t timer_handler(const int access, 640 struct clock_event_device *evt) 641 { 642 unsigned long ctrl; 643 644 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt); 645 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { 646 ctrl |= ARCH_TIMER_CTRL_IT_MASK; 647 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt); 648 evt->event_handler(evt); 649 return IRQ_HANDLED; 650 } 651 652 return IRQ_NONE; 653 } 654 655 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id) 656 { 657 struct clock_event_device *evt = dev_id; 658 659 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt); 660 } 661 662 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id) 663 { 664 struct clock_event_device *evt = dev_id; 665 666 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt); 667 } 668 669 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id) 670 { 671 struct clock_event_device *evt = dev_id; 672 673 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt); 674 } 675 676 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id) 677 { 678 struct clock_event_device *evt = dev_id; 679 680 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt); 681 } 682 683 static __always_inline int timer_shutdown(const int access, 684 struct clock_event_device *clk) 685 { 686 unsigned long ctrl; 687 688 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 689 ctrl &= ~ARCH_TIMER_CTRL_ENABLE; 690 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 691 692 return 0; 693 } 694 695 static int arch_timer_shutdown_virt(struct clock_event_device *clk) 696 { 697 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk); 698 } 699 700 static int arch_timer_shutdown_phys(struct clock_event_device *clk) 701 { 702 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk); 703 } 704 705 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk) 706 { 707 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk); 708 } 709 710 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk) 711 { 712 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk); 713 } 714 715 static __always_inline void set_next_event(const int access, unsigned long evt, 716 struct clock_event_device *clk) 717 { 718 unsigned long ctrl; 719 u64 cnt; 720 721 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 722 ctrl |= ARCH_TIMER_CTRL_ENABLE; 723 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 724 725 if (access == ARCH_TIMER_PHYS_ACCESS) 726 cnt = __arch_counter_get_cntpct(); 727 else 728 cnt = __arch_counter_get_cntvct(); 729 730 arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk); 731 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 732 } 733 734 static int arch_timer_set_next_event_virt(unsigned long evt, 735 struct clock_event_device *clk) 736 { 737 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk); 738 return 0; 739 } 740 741 static int arch_timer_set_next_event_phys(unsigned long evt, 742 struct clock_event_device *clk) 743 { 744 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk); 745 return 0; 746 } 747 748 static u64 arch_counter_get_cnt_mem(struct arch_timer *t, int offset_lo) 749 { 750 u32 cnt_lo, cnt_hi, tmp_hi; 751 752 do { 753 cnt_hi = readl_relaxed(t->base + offset_lo + 4); 754 cnt_lo = readl_relaxed(t->base + offset_lo); 755 tmp_hi = readl_relaxed(t->base + offset_lo + 4); 756 } while (cnt_hi != tmp_hi); 757 758 return ((u64) cnt_hi << 32) | cnt_lo; 759 } 760 761 static __always_inline void set_next_event_mem(const int access, unsigned long evt, 762 struct clock_event_device *clk) 763 { 764 struct arch_timer *timer = to_arch_timer(clk); 765 unsigned long ctrl; 766 u64 cnt; 767 768 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 769 ctrl |= ARCH_TIMER_CTRL_ENABLE; 770 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 771 772 if (access == ARCH_TIMER_MEM_VIRT_ACCESS) 773 cnt = arch_counter_get_cnt_mem(timer, CNTVCT_LO); 774 else 775 cnt = arch_counter_get_cnt_mem(timer, CNTPCT_LO); 776 777 arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk); 778 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 779 } 780 781 static int arch_timer_set_next_event_virt_mem(unsigned long evt, 782 struct clock_event_device *clk) 783 { 784 set_next_event_mem(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk); 785 return 0; 786 } 787 788 static int arch_timer_set_next_event_phys_mem(unsigned long evt, 789 struct clock_event_device *clk) 790 { 791 set_next_event_mem(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk); 792 return 0; 793 } 794 795 static u64 __arch_timer_check_delta(void) 796 { 797 #ifdef CONFIG_ARM64 798 const struct midr_range broken_cval_midrs[] = { 799 /* 800 * XGene-1 implements CVAL in terms of TVAL, meaning 801 * that the maximum timer range is 32bit. Shame on them. 802 */ 803 MIDR_ALL_VERSIONS(MIDR_CPU_MODEL(ARM_CPU_IMP_APM, 804 APM_CPU_PART_POTENZA)), 805 {}, 806 }; 807 808 if (is_midr_in_range_list(read_cpuid_id(), broken_cval_midrs)) { 809 pr_warn_once("Broken CNTx_CVAL_EL1, limiting width to 32bits"); 810 return CLOCKSOURCE_MASK(32); 811 } 812 #endif 813 return CLOCKSOURCE_MASK(arch_counter_get_width()); 814 } 815 816 static void __arch_timer_setup(unsigned type, 817 struct clock_event_device *clk) 818 { 819 u64 max_delta; 820 821 clk->features = CLOCK_EVT_FEAT_ONESHOT; 822 823 if (type == ARCH_TIMER_TYPE_CP15) { 824 typeof(clk->set_next_event) sne; 825 826 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL); 827 828 if (arch_timer_c3stop) 829 clk->features |= CLOCK_EVT_FEAT_C3STOP; 830 clk->name = "arch_sys_timer"; 831 clk->rating = 450; 832 clk->cpumask = cpumask_of(smp_processor_id()); 833 clk->irq = arch_timer_ppi[arch_timer_uses_ppi]; 834 switch (arch_timer_uses_ppi) { 835 case ARCH_TIMER_VIRT_PPI: 836 clk->set_state_shutdown = arch_timer_shutdown_virt; 837 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt; 838 sne = erratum_handler(set_next_event_virt); 839 break; 840 case ARCH_TIMER_PHYS_SECURE_PPI: 841 case ARCH_TIMER_PHYS_NONSECURE_PPI: 842 case ARCH_TIMER_HYP_PPI: 843 clk->set_state_shutdown = arch_timer_shutdown_phys; 844 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys; 845 sne = erratum_handler(set_next_event_phys); 846 break; 847 default: 848 BUG(); 849 } 850 851 clk->set_next_event = sne; 852 max_delta = __arch_timer_check_delta(); 853 } else { 854 clk->features |= CLOCK_EVT_FEAT_DYNIRQ; 855 clk->name = "arch_mem_timer"; 856 clk->rating = 400; 857 clk->cpumask = cpu_possible_mask; 858 if (arch_timer_mem_use_virtual) { 859 clk->set_state_shutdown = arch_timer_shutdown_virt_mem; 860 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem; 861 clk->set_next_event = 862 arch_timer_set_next_event_virt_mem; 863 } else { 864 clk->set_state_shutdown = arch_timer_shutdown_phys_mem; 865 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem; 866 clk->set_next_event = 867 arch_timer_set_next_event_phys_mem; 868 } 869 870 max_delta = CLOCKSOURCE_MASK(56); 871 } 872 873 clk->set_state_shutdown(clk); 874 875 clockevents_config_and_register(clk, arch_timer_rate, 0xf, max_delta); 876 } 877 878 static void arch_timer_evtstrm_enable(int divider) 879 { 880 u32 cntkctl = arch_timer_get_cntkctl(); 881 882 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK; 883 /* Set the divider and enable virtual event stream */ 884 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT) 885 | ARCH_TIMER_VIRT_EVT_EN; 886 arch_timer_set_cntkctl(cntkctl); 887 arch_timer_set_evtstrm_feature(); 888 cpumask_set_cpu(smp_processor_id(), &evtstrm_available); 889 } 890 891 static void arch_timer_configure_evtstream(void) 892 { 893 int evt_stream_div, lsb; 894 895 /* 896 * As the event stream can at most be generated at half the frequency 897 * of the counter, use half the frequency when computing the divider. 898 */ 899 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2; 900 901 /* 902 * Find the closest power of two to the divisor. If the adjacent bit 903 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1). 904 */ 905 lsb = fls(evt_stream_div) - 1; 906 if (lsb > 0 && (evt_stream_div & BIT(lsb - 1))) 907 lsb++; 908 909 /* enable event stream */ 910 arch_timer_evtstrm_enable(max(0, min(lsb, 15))); 911 } 912 913 static void arch_counter_set_user_access(void) 914 { 915 u32 cntkctl = arch_timer_get_cntkctl(); 916 917 /* Disable user access to the timers and both counters */ 918 /* Also disable virtual event stream */ 919 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN 920 | ARCH_TIMER_USR_VT_ACCESS_EN 921 | ARCH_TIMER_USR_VCT_ACCESS_EN 922 | ARCH_TIMER_VIRT_EVT_EN 923 | ARCH_TIMER_USR_PCT_ACCESS_EN); 924 925 /* 926 * Enable user access to the virtual counter if it doesn't 927 * need to be workaround. The vdso may have been already 928 * disabled though. 929 */ 930 if (arch_timer_this_cpu_has_cntvct_wa()) 931 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id()); 932 else 933 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN; 934 935 arch_timer_set_cntkctl(cntkctl); 936 } 937 938 static bool arch_timer_has_nonsecure_ppi(void) 939 { 940 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI && 941 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 942 } 943 944 static u32 check_ppi_trigger(int irq) 945 { 946 u32 flags = irq_get_trigger_type(irq); 947 948 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) { 949 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq); 950 pr_warn("WARNING: Please fix your firmware\n"); 951 flags = IRQF_TRIGGER_LOW; 952 } 953 954 return flags; 955 } 956 957 static int arch_timer_starting_cpu(unsigned int cpu) 958 { 959 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 960 u32 flags; 961 962 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk); 963 964 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]); 965 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags); 966 967 if (arch_timer_has_nonsecure_ppi()) { 968 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 969 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], 970 flags); 971 } 972 973 arch_counter_set_user_access(); 974 if (evtstrm_enable) 975 arch_timer_configure_evtstream(); 976 977 return 0; 978 } 979 980 static int validate_timer_rate(void) 981 { 982 if (!arch_timer_rate) 983 return -EINVAL; 984 985 /* Arch timer frequency < 1MHz can cause trouble */ 986 WARN_ON(arch_timer_rate < 1000000); 987 988 return 0; 989 } 990 991 /* 992 * For historical reasons, when probing with DT we use whichever (non-zero) 993 * rate was probed first, and don't verify that others match. If the first node 994 * probed has a clock-frequency property, this overrides the HW register. 995 */ 996 static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np) 997 { 998 /* Who has more than one independent system counter? */ 999 if (arch_timer_rate) 1000 return; 1001 1002 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) 1003 arch_timer_rate = rate; 1004 1005 /* Check the timer frequency. */ 1006 if (validate_timer_rate()) 1007 pr_warn("frequency not available\n"); 1008 } 1009 1010 static void __init arch_timer_banner(unsigned type) 1011 { 1012 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n", 1013 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "", 1014 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? 1015 " and " : "", 1016 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "", 1017 (unsigned long)arch_timer_rate / 1000000, 1018 (unsigned long)(arch_timer_rate / 10000) % 100, 1019 type & ARCH_TIMER_TYPE_CP15 ? 1020 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" : 1021 "", 1022 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "", 1023 type & ARCH_TIMER_TYPE_MEM ? 1024 arch_timer_mem_use_virtual ? "virt" : "phys" : 1025 ""); 1026 } 1027 1028 u32 arch_timer_get_rate(void) 1029 { 1030 return arch_timer_rate; 1031 } 1032 1033 bool arch_timer_evtstrm_available(void) 1034 { 1035 /* 1036 * We might get called from a preemptible context. This is fine 1037 * because availability of the event stream should be always the same 1038 * for a preemptible context and context where we might resume a task. 1039 */ 1040 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available); 1041 } 1042 1043 static u64 arch_counter_get_cntvct_mem(void) 1044 { 1045 return arch_counter_get_cnt_mem(arch_timer_mem, CNTVCT_LO); 1046 } 1047 1048 static struct arch_timer_kvm_info arch_timer_kvm_info; 1049 1050 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void) 1051 { 1052 return &arch_timer_kvm_info; 1053 } 1054 1055 static void __init arch_counter_register(unsigned type) 1056 { 1057 u64 start_count; 1058 int width; 1059 1060 /* Register the CP15 based counter if we have one */ 1061 if (type & ARCH_TIMER_TYPE_CP15) { 1062 u64 (*rd)(void); 1063 1064 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) || 1065 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) { 1066 if (arch_timer_counter_has_wa()) 1067 rd = arch_counter_get_cntvct_stable; 1068 else 1069 rd = arch_counter_get_cntvct; 1070 } else { 1071 if (arch_timer_counter_has_wa()) 1072 rd = arch_counter_get_cntpct_stable; 1073 else 1074 rd = arch_counter_get_cntpct; 1075 } 1076 1077 arch_timer_read_counter = rd; 1078 clocksource_counter.vdso_clock_mode = vdso_default; 1079 } else { 1080 arch_timer_read_counter = arch_counter_get_cntvct_mem; 1081 } 1082 1083 width = arch_counter_get_width(); 1084 clocksource_counter.mask = CLOCKSOURCE_MASK(width); 1085 cyclecounter.mask = CLOCKSOURCE_MASK(width); 1086 1087 if (!arch_counter_suspend_stop) 1088 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; 1089 start_count = arch_timer_read_counter(); 1090 clocksource_register_hz(&clocksource_counter, arch_timer_rate); 1091 cyclecounter.mult = clocksource_counter.mult; 1092 cyclecounter.shift = clocksource_counter.shift; 1093 timecounter_init(&arch_timer_kvm_info.timecounter, 1094 &cyclecounter, start_count); 1095 1096 sched_clock_register(arch_timer_read_counter, width, arch_timer_rate); 1097 } 1098 1099 static void arch_timer_stop(struct clock_event_device *clk) 1100 { 1101 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id()); 1102 1103 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]); 1104 if (arch_timer_has_nonsecure_ppi()) 1105 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 1106 1107 clk->set_state_shutdown(clk); 1108 } 1109 1110 static int arch_timer_dying_cpu(unsigned int cpu) 1111 { 1112 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 1113 1114 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available); 1115 1116 arch_timer_stop(clk); 1117 return 0; 1118 } 1119 1120 #ifdef CONFIG_CPU_PM 1121 static DEFINE_PER_CPU(unsigned long, saved_cntkctl); 1122 static int arch_timer_cpu_pm_notify(struct notifier_block *self, 1123 unsigned long action, void *hcpu) 1124 { 1125 if (action == CPU_PM_ENTER) { 1126 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl()); 1127 1128 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available); 1129 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) { 1130 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl)); 1131 1132 if (arch_timer_have_evtstrm_feature()) 1133 cpumask_set_cpu(smp_processor_id(), &evtstrm_available); 1134 } 1135 return NOTIFY_OK; 1136 } 1137 1138 static struct notifier_block arch_timer_cpu_pm_notifier = { 1139 .notifier_call = arch_timer_cpu_pm_notify, 1140 }; 1141 1142 static int __init arch_timer_cpu_pm_init(void) 1143 { 1144 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier); 1145 } 1146 1147 static void __init arch_timer_cpu_pm_deinit(void) 1148 { 1149 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier)); 1150 } 1151 1152 #else 1153 static int __init arch_timer_cpu_pm_init(void) 1154 { 1155 return 0; 1156 } 1157 1158 static void __init arch_timer_cpu_pm_deinit(void) 1159 { 1160 } 1161 #endif 1162 1163 static int __init arch_timer_register(void) 1164 { 1165 int err; 1166 int ppi; 1167 1168 arch_timer_evt = alloc_percpu(struct clock_event_device); 1169 if (!arch_timer_evt) { 1170 err = -ENOMEM; 1171 goto out; 1172 } 1173 1174 ppi = arch_timer_ppi[arch_timer_uses_ppi]; 1175 switch (arch_timer_uses_ppi) { 1176 case ARCH_TIMER_VIRT_PPI: 1177 err = request_percpu_irq(ppi, arch_timer_handler_virt, 1178 "arch_timer", arch_timer_evt); 1179 break; 1180 case ARCH_TIMER_PHYS_SECURE_PPI: 1181 case ARCH_TIMER_PHYS_NONSECURE_PPI: 1182 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1183 "arch_timer", arch_timer_evt); 1184 if (!err && arch_timer_has_nonsecure_ppi()) { 1185 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]; 1186 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1187 "arch_timer", arch_timer_evt); 1188 if (err) 1189 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI], 1190 arch_timer_evt); 1191 } 1192 break; 1193 case ARCH_TIMER_HYP_PPI: 1194 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1195 "arch_timer", arch_timer_evt); 1196 break; 1197 default: 1198 BUG(); 1199 } 1200 1201 if (err) { 1202 pr_err("can't register interrupt %d (%d)\n", ppi, err); 1203 goto out_free; 1204 } 1205 1206 err = arch_timer_cpu_pm_init(); 1207 if (err) 1208 goto out_unreg_notify; 1209 1210 /* Register and immediately configure the timer on the boot CPU */ 1211 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING, 1212 "clockevents/arm/arch_timer:starting", 1213 arch_timer_starting_cpu, arch_timer_dying_cpu); 1214 if (err) 1215 goto out_unreg_cpupm; 1216 return 0; 1217 1218 out_unreg_cpupm: 1219 arch_timer_cpu_pm_deinit(); 1220 1221 out_unreg_notify: 1222 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt); 1223 if (arch_timer_has_nonsecure_ppi()) 1224 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], 1225 arch_timer_evt); 1226 1227 out_free: 1228 free_percpu(arch_timer_evt); 1229 out: 1230 return err; 1231 } 1232 1233 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq) 1234 { 1235 int ret; 1236 irq_handler_t func; 1237 1238 arch_timer_mem = kzalloc(sizeof(*arch_timer_mem), GFP_KERNEL); 1239 if (!arch_timer_mem) 1240 return -ENOMEM; 1241 1242 arch_timer_mem->base = base; 1243 arch_timer_mem->evt.irq = irq; 1244 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &arch_timer_mem->evt); 1245 1246 if (arch_timer_mem_use_virtual) 1247 func = arch_timer_handler_virt_mem; 1248 else 1249 func = arch_timer_handler_phys_mem; 1250 1251 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &arch_timer_mem->evt); 1252 if (ret) { 1253 pr_err("Failed to request mem timer irq\n"); 1254 kfree(arch_timer_mem); 1255 arch_timer_mem = NULL; 1256 } 1257 1258 return ret; 1259 } 1260 1261 static const struct of_device_id arch_timer_of_match[] __initconst = { 1262 { .compatible = "arm,armv7-timer", }, 1263 { .compatible = "arm,armv8-timer", }, 1264 {}, 1265 }; 1266 1267 static const struct of_device_id arch_timer_mem_of_match[] __initconst = { 1268 { .compatible = "arm,armv7-timer-mem", }, 1269 {}, 1270 }; 1271 1272 static bool __init arch_timer_needs_of_probing(void) 1273 { 1274 struct device_node *dn; 1275 bool needs_probing = false; 1276 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM; 1277 1278 /* We have two timers, and both device-tree nodes are probed. */ 1279 if ((arch_timers_present & mask) == mask) 1280 return false; 1281 1282 /* 1283 * Only one type of timer is probed, 1284 * check if we have another type of timer node in device-tree. 1285 */ 1286 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) 1287 dn = of_find_matching_node(NULL, arch_timer_mem_of_match); 1288 else 1289 dn = of_find_matching_node(NULL, arch_timer_of_match); 1290 1291 if (dn && of_device_is_available(dn)) 1292 needs_probing = true; 1293 1294 of_node_put(dn); 1295 1296 return needs_probing; 1297 } 1298 1299 static int __init arch_timer_common_init(void) 1300 { 1301 arch_timer_banner(arch_timers_present); 1302 arch_counter_register(arch_timers_present); 1303 return arch_timer_arch_init(); 1304 } 1305 1306 /** 1307 * arch_timer_select_ppi() - Select suitable PPI for the current system. 1308 * 1309 * If HYP mode is available, we know that the physical timer 1310 * has been configured to be accessible from PL1. Use it, so 1311 * that a guest can use the virtual timer instead. 1312 * 1313 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE 1314 * accesses to CNTP_*_EL1 registers are silently redirected to 1315 * their CNTHP_*_EL2 counterparts, and use a different PPI 1316 * number. 1317 * 1318 * If no interrupt provided for virtual timer, we'll have to 1319 * stick to the physical timer. It'd better be accessible... 1320 * For arm64 we never use the secure interrupt. 1321 * 1322 * Return: a suitable PPI type for the current system. 1323 */ 1324 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void) 1325 { 1326 if (is_kernel_in_hyp_mode()) 1327 return ARCH_TIMER_HYP_PPI; 1328 1329 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI]) 1330 return ARCH_TIMER_VIRT_PPI; 1331 1332 if (IS_ENABLED(CONFIG_ARM64)) 1333 return ARCH_TIMER_PHYS_NONSECURE_PPI; 1334 1335 return ARCH_TIMER_PHYS_SECURE_PPI; 1336 } 1337 1338 static void __init arch_timer_populate_kvm_info(void) 1339 { 1340 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI]; 1341 if (is_kernel_in_hyp_mode()) 1342 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]; 1343 } 1344 1345 static int __init arch_timer_of_init(struct device_node *np) 1346 { 1347 int i, irq, ret; 1348 u32 rate; 1349 bool has_names; 1350 1351 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { 1352 pr_warn("multiple nodes in dt, skipping\n"); 1353 return 0; 1354 } 1355 1356 arch_timers_present |= ARCH_TIMER_TYPE_CP15; 1357 1358 has_names = of_property_read_bool(np, "interrupt-names"); 1359 1360 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) { 1361 if (has_names) 1362 irq = of_irq_get_byname(np, arch_timer_ppi_names[i]); 1363 else 1364 irq = of_irq_get(np, i); 1365 if (irq > 0) 1366 arch_timer_ppi[i] = irq; 1367 } 1368 1369 arch_timer_populate_kvm_info(); 1370 1371 rate = arch_timer_get_cntfrq(); 1372 arch_timer_of_configure_rate(rate, np); 1373 1374 arch_timer_c3stop = !of_property_read_bool(np, "always-on"); 1375 1376 /* Check for globally applicable workarounds */ 1377 arch_timer_check_ool_workaround(ate_match_dt, np); 1378 1379 /* 1380 * If we cannot rely on firmware initializing the timer registers then 1381 * we should use the physical timers instead. 1382 */ 1383 if (IS_ENABLED(CONFIG_ARM) && 1384 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured")) 1385 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI; 1386 else 1387 arch_timer_uses_ppi = arch_timer_select_ppi(); 1388 1389 if (!arch_timer_ppi[arch_timer_uses_ppi]) { 1390 pr_err("No interrupt available, giving up\n"); 1391 return -EINVAL; 1392 } 1393 1394 /* On some systems, the counter stops ticking when in suspend. */ 1395 arch_counter_suspend_stop = of_property_read_bool(np, 1396 "arm,no-tick-in-suspend"); 1397 1398 ret = arch_timer_register(); 1399 if (ret) 1400 return ret; 1401 1402 if (arch_timer_needs_of_probing()) 1403 return 0; 1404 1405 return arch_timer_common_init(); 1406 } 1407 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init); 1408 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init); 1409 1410 static u32 __init 1411 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame) 1412 { 1413 void __iomem *base; 1414 u32 rate; 1415 1416 base = ioremap(frame->cntbase, frame->size); 1417 if (!base) { 1418 pr_err("Unable to map frame @ %pa\n", &frame->cntbase); 1419 return 0; 1420 } 1421 1422 rate = readl_relaxed(base + CNTFRQ); 1423 1424 iounmap(base); 1425 1426 return rate; 1427 } 1428 1429 static struct arch_timer_mem_frame * __init 1430 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem) 1431 { 1432 struct arch_timer_mem_frame *frame, *best_frame = NULL; 1433 void __iomem *cntctlbase; 1434 u32 cnttidr; 1435 int i; 1436 1437 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size); 1438 if (!cntctlbase) { 1439 pr_err("Can't map CNTCTLBase @ %pa\n", 1440 &timer_mem->cntctlbase); 1441 return NULL; 1442 } 1443 1444 cnttidr = readl_relaxed(cntctlbase + CNTTIDR); 1445 1446 /* 1447 * Try to find a virtual capable frame. Otherwise fall back to a 1448 * physical capable frame. 1449 */ 1450 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) { 1451 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT | 1452 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT; 1453 1454 frame = &timer_mem->frame[i]; 1455 if (!frame->valid) 1456 continue; 1457 1458 /* Try enabling everything, and see what sticks */ 1459 writel_relaxed(cntacr, cntctlbase + CNTACR(i)); 1460 cntacr = readl_relaxed(cntctlbase + CNTACR(i)); 1461 1462 if ((cnttidr & CNTTIDR_VIRT(i)) && 1463 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) { 1464 best_frame = frame; 1465 arch_timer_mem_use_virtual = true; 1466 break; 1467 } 1468 1469 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT)) 1470 continue; 1471 1472 best_frame = frame; 1473 } 1474 1475 iounmap(cntctlbase); 1476 1477 return best_frame; 1478 } 1479 1480 static int __init 1481 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame) 1482 { 1483 void __iomem *base; 1484 int ret, irq = 0; 1485 1486 if (arch_timer_mem_use_virtual) 1487 irq = frame->virt_irq; 1488 else 1489 irq = frame->phys_irq; 1490 1491 if (!irq) { 1492 pr_err("Frame missing %s irq.\n", 1493 arch_timer_mem_use_virtual ? "virt" : "phys"); 1494 return -EINVAL; 1495 } 1496 1497 if (!request_mem_region(frame->cntbase, frame->size, 1498 "arch_mem_timer")) 1499 return -EBUSY; 1500 1501 base = ioremap(frame->cntbase, frame->size); 1502 if (!base) { 1503 pr_err("Can't map frame's registers\n"); 1504 return -ENXIO; 1505 } 1506 1507 ret = arch_timer_mem_register(base, irq); 1508 if (ret) { 1509 iounmap(base); 1510 return ret; 1511 } 1512 1513 arch_timers_present |= ARCH_TIMER_TYPE_MEM; 1514 1515 return 0; 1516 } 1517 1518 static int __init arch_timer_mem_of_init(struct device_node *np) 1519 { 1520 struct arch_timer_mem *timer_mem; 1521 struct arch_timer_mem_frame *frame; 1522 struct device_node *frame_node; 1523 struct resource res; 1524 int ret = -EINVAL; 1525 u32 rate; 1526 1527 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL); 1528 if (!timer_mem) 1529 return -ENOMEM; 1530 1531 if (of_address_to_resource(np, 0, &res)) 1532 goto out; 1533 timer_mem->cntctlbase = res.start; 1534 timer_mem->size = resource_size(&res); 1535 1536 for_each_available_child_of_node(np, frame_node) { 1537 u32 n; 1538 struct arch_timer_mem_frame *frame; 1539 1540 if (of_property_read_u32(frame_node, "frame-number", &n)) { 1541 pr_err(FW_BUG "Missing frame-number.\n"); 1542 of_node_put(frame_node); 1543 goto out; 1544 } 1545 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) { 1546 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n", 1547 ARCH_TIMER_MEM_MAX_FRAMES - 1); 1548 of_node_put(frame_node); 1549 goto out; 1550 } 1551 frame = &timer_mem->frame[n]; 1552 1553 if (frame->valid) { 1554 pr_err(FW_BUG "Duplicated frame-number.\n"); 1555 of_node_put(frame_node); 1556 goto out; 1557 } 1558 1559 if (of_address_to_resource(frame_node, 0, &res)) { 1560 of_node_put(frame_node); 1561 goto out; 1562 } 1563 frame->cntbase = res.start; 1564 frame->size = resource_size(&res); 1565 1566 frame->virt_irq = irq_of_parse_and_map(frame_node, 1567 ARCH_TIMER_VIRT_SPI); 1568 frame->phys_irq = irq_of_parse_and_map(frame_node, 1569 ARCH_TIMER_PHYS_SPI); 1570 1571 frame->valid = true; 1572 } 1573 1574 frame = arch_timer_mem_find_best_frame(timer_mem); 1575 if (!frame) { 1576 pr_err("Unable to find a suitable frame in timer @ %pa\n", 1577 &timer_mem->cntctlbase); 1578 ret = -EINVAL; 1579 goto out; 1580 } 1581 1582 rate = arch_timer_mem_frame_get_cntfrq(frame); 1583 arch_timer_of_configure_rate(rate, np); 1584 1585 ret = arch_timer_mem_frame_register(frame); 1586 if (!ret && !arch_timer_needs_of_probing()) 1587 ret = arch_timer_common_init(); 1588 out: 1589 kfree(timer_mem); 1590 return ret; 1591 } 1592 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem", 1593 arch_timer_mem_of_init); 1594 1595 #ifdef CONFIG_ACPI_GTDT 1596 static int __init 1597 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem) 1598 { 1599 struct arch_timer_mem_frame *frame; 1600 u32 rate; 1601 int i; 1602 1603 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) { 1604 frame = &timer_mem->frame[i]; 1605 1606 if (!frame->valid) 1607 continue; 1608 1609 rate = arch_timer_mem_frame_get_cntfrq(frame); 1610 if (rate == arch_timer_rate) 1611 continue; 1612 1613 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n", 1614 &frame->cntbase, 1615 (unsigned long)rate, (unsigned long)arch_timer_rate); 1616 1617 return -EINVAL; 1618 } 1619 1620 return 0; 1621 } 1622 1623 static int __init arch_timer_mem_acpi_init(int platform_timer_count) 1624 { 1625 struct arch_timer_mem *timers, *timer; 1626 struct arch_timer_mem_frame *frame, *best_frame = NULL; 1627 int timer_count, i, ret = 0; 1628 1629 timers = kcalloc(platform_timer_count, sizeof(*timers), 1630 GFP_KERNEL); 1631 if (!timers) 1632 return -ENOMEM; 1633 1634 ret = acpi_arch_timer_mem_init(timers, &timer_count); 1635 if (ret || !timer_count) 1636 goto out; 1637 1638 /* 1639 * While unlikely, it's theoretically possible that none of the frames 1640 * in a timer expose the combination of feature we want. 1641 */ 1642 for (i = 0; i < timer_count; i++) { 1643 timer = &timers[i]; 1644 1645 frame = arch_timer_mem_find_best_frame(timer); 1646 if (!best_frame) 1647 best_frame = frame; 1648 1649 ret = arch_timer_mem_verify_cntfrq(timer); 1650 if (ret) { 1651 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n"); 1652 goto out; 1653 } 1654 1655 if (!best_frame) /* implies !frame */ 1656 /* 1657 * Only complain about missing suitable frames if we 1658 * haven't already found one in a previous iteration. 1659 */ 1660 pr_err("Unable to find a suitable frame in timer @ %pa\n", 1661 &timer->cntctlbase); 1662 } 1663 1664 if (best_frame) 1665 ret = arch_timer_mem_frame_register(best_frame); 1666 out: 1667 kfree(timers); 1668 return ret; 1669 } 1670 1671 /* Initialize per-processor generic timer and memory-mapped timer(if present) */ 1672 static int __init arch_timer_acpi_init(struct acpi_table_header *table) 1673 { 1674 int ret, platform_timer_count; 1675 1676 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { 1677 pr_warn("already initialized, skipping\n"); 1678 return -EINVAL; 1679 } 1680 1681 arch_timers_present |= ARCH_TIMER_TYPE_CP15; 1682 1683 ret = acpi_gtdt_init(table, &platform_timer_count); 1684 if (ret) 1685 return ret; 1686 1687 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] = 1688 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI); 1689 1690 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] = 1691 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI); 1692 1693 arch_timer_ppi[ARCH_TIMER_HYP_PPI] = 1694 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI); 1695 1696 arch_timer_populate_kvm_info(); 1697 1698 /* 1699 * When probing via ACPI, we have no mechanism to override the sysreg 1700 * CNTFRQ value. This *must* be correct. 1701 */ 1702 arch_timer_rate = arch_timer_get_cntfrq(); 1703 ret = validate_timer_rate(); 1704 if (ret) { 1705 pr_err(FW_BUG "frequency not available.\n"); 1706 return ret; 1707 } 1708 1709 arch_timer_uses_ppi = arch_timer_select_ppi(); 1710 if (!arch_timer_ppi[arch_timer_uses_ppi]) { 1711 pr_err("No interrupt available, giving up\n"); 1712 return -EINVAL; 1713 } 1714 1715 /* Always-on capability */ 1716 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi); 1717 1718 /* Check for globally applicable workarounds */ 1719 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table); 1720 1721 ret = arch_timer_register(); 1722 if (ret) 1723 return ret; 1724 1725 if (platform_timer_count && 1726 arch_timer_mem_acpi_init(platform_timer_count)) 1727 pr_err("Failed to initialize memory-mapped timer.\n"); 1728 1729 return arch_timer_common_init(); 1730 } 1731 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init); 1732 #endif 1733 1734 int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts, 1735 struct clocksource **cs) 1736 { 1737 struct arm_smccc_res hvc_res; 1738 u32 ptp_counter; 1739 ktime_t ktime; 1740 1741 if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY)) 1742 return -EOPNOTSUPP; 1743 1744 if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) 1745 ptp_counter = KVM_PTP_VIRT_COUNTER; 1746 else 1747 ptp_counter = KVM_PTP_PHYS_COUNTER; 1748 1749 arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID, 1750 ptp_counter, &hvc_res); 1751 1752 if ((int)(hvc_res.a0) < 0) 1753 return -EOPNOTSUPP; 1754 1755 ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1; 1756 *ts = ktime_to_timespec64(ktime); 1757 if (cycle) 1758 *cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3; 1759 if (cs) 1760 *cs = &clocksource_counter; 1761 1762 return 0; 1763 } 1764 EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp); 1765