1 /* 2 * linux/drivers/clocksource/arm_arch_timer.c 3 * 4 * Copyright (C) 2011 ARM Ltd. 5 * All Rights Reserved 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #define pr_fmt(fmt) "arm_arch_timer: " fmt 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/device.h> 17 #include <linux/smp.h> 18 #include <linux/cpu.h> 19 #include <linux/cpu_pm.h> 20 #include <linux/clockchips.h> 21 #include <linux/clocksource.h> 22 #include <linux/interrupt.h> 23 #include <linux/of_irq.h> 24 #include <linux/of_address.h> 25 #include <linux/io.h> 26 #include <linux/slab.h> 27 #include <linux/sched/clock.h> 28 #include <linux/sched_clock.h> 29 #include <linux/acpi.h> 30 31 #include <asm/arch_timer.h> 32 #include <asm/virt.h> 33 34 #include <clocksource/arm_arch_timer.h> 35 36 #undef pr_fmt 37 #define pr_fmt(fmt) "arch_timer: " fmt 38 39 #define CNTTIDR 0x08 40 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4)) 41 42 #define CNTACR(n) (0x40 + ((n) * 4)) 43 #define CNTACR_RPCT BIT(0) 44 #define CNTACR_RVCT BIT(1) 45 #define CNTACR_RFRQ BIT(2) 46 #define CNTACR_RVOFF BIT(3) 47 #define CNTACR_RWVT BIT(4) 48 #define CNTACR_RWPT BIT(5) 49 50 #define CNTVCT_LO 0x08 51 #define CNTVCT_HI 0x0c 52 #define CNTFRQ 0x10 53 #define CNTP_TVAL 0x28 54 #define CNTP_CTL 0x2c 55 #define CNTV_TVAL 0x38 56 #define CNTV_CTL 0x3c 57 58 static unsigned arch_timers_present __initdata; 59 60 static void __iomem *arch_counter_base; 61 62 struct arch_timer { 63 void __iomem *base; 64 struct clock_event_device evt; 65 }; 66 67 #define to_arch_timer(e) container_of(e, struct arch_timer, evt) 68 69 static u32 arch_timer_rate; 70 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI]; 71 72 static struct clock_event_device __percpu *arch_timer_evt; 73 74 static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI; 75 static bool arch_timer_c3stop; 76 static bool arch_timer_mem_use_virtual; 77 static bool arch_counter_suspend_stop; 78 static bool vdso_default = true; 79 80 static cpumask_t evtstrm_available = CPU_MASK_NONE; 81 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM); 82 83 static int __init early_evtstrm_cfg(char *buf) 84 { 85 return strtobool(buf, &evtstrm_enable); 86 } 87 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg); 88 89 /* 90 * Architected system timer support. 91 */ 92 93 static __always_inline 94 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val, 95 struct clock_event_device *clk) 96 { 97 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 98 struct arch_timer *timer = to_arch_timer(clk); 99 switch (reg) { 100 case ARCH_TIMER_REG_CTRL: 101 writel_relaxed(val, timer->base + CNTP_CTL); 102 break; 103 case ARCH_TIMER_REG_TVAL: 104 writel_relaxed(val, timer->base + CNTP_TVAL); 105 break; 106 } 107 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 108 struct arch_timer *timer = to_arch_timer(clk); 109 switch (reg) { 110 case ARCH_TIMER_REG_CTRL: 111 writel_relaxed(val, timer->base + CNTV_CTL); 112 break; 113 case ARCH_TIMER_REG_TVAL: 114 writel_relaxed(val, timer->base + CNTV_TVAL); 115 break; 116 } 117 } else { 118 arch_timer_reg_write_cp15(access, reg, val); 119 } 120 } 121 122 static __always_inline 123 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg, 124 struct clock_event_device *clk) 125 { 126 u32 val; 127 128 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 129 struct arch_timer *timer = to_arch_timer(clk); 130 switch (reg) { 131 case ARCH_TIMER_REG_CTRL: 132 val = readl_relaxed(timer->base + CNTP_CTL); 133 break; 134 case ARCH_TIMER_REG_TVAL: 135 val = readl_relaxed(timer->base + CNTP_TVAL); 136 break; 137 } 138 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 139 struct arch_timer *timer = to_arch_timer(clk); 140 switch (reg) { 141 case ARCH_TIMER_REG_CTRL: 142 val = readl_relaxed(timer->base + CNTV_CTL); 143 break; 144 case ARCH_TIMER_REG_TVAL: 145 val = readl_relaxed(timer->base + CNTV_TVAL); 146 break; 147 } 148 } else { 149 val = arch_timer_reg_read_cp15(access, reg); 150 } 151 152 return val; 153 } 154 155 /* 156 * Default to cp15 based access because arm64 uses this function for 157 * sched_clock() before DT is probed and the cp15 method is guaranteed 158 * to exist on arm64. arm doesn't use this before DT is probed so even 159 * if we don't have the cp15 accessors we won't have a problem. 160 */ 161 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct; 162 EXPORT_SYMBOL_GPL(arch_timer_read_counter); 163 164 static u64 arch_counter_read(struct clocksource *cs) 165 { 166 return arch_timer_read_counter(); 167 } 168 169 static u64 arch_counter_read_cc(const struct cyclecounter *cc) 170 { 171 return arch_timer_read_counter(); 172 } 173 174 static struct clocksource clocksource_counter = { 175 .name = "arch_sys_counter", 176 .rating = 400, 177 .read = arch_counter_read, 178 .mask = CLOCKSOURCE_MASK(56), 179 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 180 }; 181 182 static struct cyclecounter cyclecounter __ro_after_init = { 183 .read = arch_counter_read_cc, 184 .mask = CLOCKSOURCE_MASK(56), 185 }; 186 187 struct ate_acpi_oem_info { 188 char oem_id[ACPI_OEM_ID_SIZE + 1]; 189 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1]; 190 u32 oem_revision; 191 }; 192 193 #ifdef CONFIG_FSL_ERRATUM_A008585 194 /* 195 * The number of retries is an arbitrary value well beyond the highest number 196 * of iterations the loop has been observed to take. 197 */ 198 #define __fsl_a008585_read_reg(reg) ({ \ 199 u64 _old, _new; \ 200 int _retries = 200; \ 201 \ 202 do { \ 203 _old = read_sysreg(reg); \ 204 _new = read_sysreg(reg); \ 205 _retries--; \ 206 } while (unlikely(_old != _new) && _retries); \ 207 \ 208 WARN_ON_ONCE(!_retries); \ 209 _new; \ 210 }) 211 212 static u32 notrace fsl_a008585_read_cntp_tval_el0(void) 213 { 214 return __fsl_a008585_read_reg(cntp_tval_el0); 215 } 216 217 static u32 notrace fsl_a008585_read_cntv_tval_el0(void) 218 { 219 return __fsl_a008585_read_reg(cntv_tval_el0); 220 } 221 222 static u64 notrace fsl_a008585_read_cntpct_el0(void) 223 { 224 return __fsl_a008585_read_reg(cntpct_el0); 225 } 226 227 static u64 notrace fsl_a008585_read_cntvct_el0(void) 228 { 229 return __fsl_a008585_read_reg(cntvct_el0); 230 } 231 #endif 232 233 #ifdef CONFIG_HISILICON_ERRATUM_161010101 234 /* 235 * Verify whether the value of the second read is larger than the first by 236 * less than 32 is the only way to confirm the value is correct, so clear the 237 * lower 5 bits to check whether the difference is greater than 32 or not. 238 * Theoretically the erratum should not occur more than twice in succession 239 * when reading the system counter, but it is possible that some interrupts 240 * may lead to more than twice read errors, triggering the warning, so setting 241 * the number of retries far beyond the number of iterations the loop has been 242 * observed to take. 243 */ 244 #define __hisi_161010101_read_reg(reg) ({ \ 245 u64 _old, _new; \ 246 int _retries = 50; \ 247 \ 248 do { \ 249 _old = read_sysreg(reg); \ 250 _new = read_sysreg(reg); \ 251 _retries--; \ 252 } while (unlikely((_new - _old) >> 5) && _retries); \ 253 \ 254 WARN_ON_ONCE(!_retries); \ 255 _new; \ 256 }) 257 258 static u32 notrace hisi_161010101_read_cntp_tval_el0(void) 259 { 260 return __hisi_161010101_read_reg(cntp_tval_el0); 261 } 262 263 static u32 notrace hisi_161010101_read_cntv_tval_el0(void) 264 { 265 return __hisi_161010101_read_reg(cntv_tval_el0); 266 } 267 268 static u64 notrace hisi_161010101_read_cntpct_el0(void) 269 { 270 return __hisi_161010101_read_reg(cntpct_el0); 271 } 272 273 static u64 notrace hisi_161010101_read_cntvct_el0(void) 274 { 275 return __hisi_161010101_read_reg(cntvct_el0); 276 } 277 278 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = { 279 /* 280 * Note that trailing spaces are required to properly match 281 * the OEM table information. 282 */ 283 { 284 .oem_id = "HISI ", 285 .oem_table_id = "HIP05 ", 286 .oem_revision = 0, 287 }, 288 { 289 .oem_id = "HISI ", 290 .oem_table_id = "HIP06 ", 291 .oem_revision = 0, 292 }, 293 { 294 .oem_id = "HISI ", 295 .oem_table_id = "HIP07 ", 296 .oem_revision = 0, 297 }, 298 { /* Sentinel indicating the end of the OEM array */ }, 299 }; 300 #endif 301 302 #ifdef CONFIG_ARM64_ERRATUM_858921 303 static u64 notrace arm64_858921_read_cntpct_el0(void) 304 { 305 u64 old, new; 306 307 old = read_sysreg(cntpct_el0); 308 new = read_sysreg(cntpct_el0); 309 return (((old ^ new) >> 32) & 1) ? old : new; 310 } 311 312 static u64 notrace arm64_858921_read_cntvct_el0(void) 313 { 314 u64 old, new; 315 316 old = read_sysreg(cntvct_el0); 317 new = read_sysreg(cntvct_el0); 318 return (((old ^ new) >> 32) & 1) ? old : new; 319 } 320 #endif 321 322 #ifdef CONFIG_ARM64_ERRATUM_1188873 323 static u64 notrace arm64_1188873_read_cntvct_el0(void) 324 { 325 return read_sysreg(cntvct_el0); 326 } 327 #endif 328 329 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND 330 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround); 331 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround); 332 333 DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled); 334 EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled); 335 336 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt, 337 struct clock_event_device *clk) 338 { 339 unsigned long ctrl; 340 u64 cval; 341 342 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 343 ctrl |= ARCH_TIMER_CTRL_ENABLE; 344 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 345 346 if (access == ARCH_TIMER_PHYS_ACCESS) { 347 cval = evt + arch_counter_get_cntpct(); 348 write_sysreg(cval, cntp_cval_el0); 349 } else { 350 cval = evt + arch_counter_get_cntvct(); 351 write_sysreg(cval, cntv_cval_el0); 352 } 353 354 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 355 } 356 357 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt, 358 struct clock_event_device *clk) 359 { 360 erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk); 361 return 0; 362 } 363 364 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt, 365 struct clock_event_device *clk) 366 { 367 erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk); 368 return 0; 369 } 370 371 static const struct arch_timer_erratum_workaround ool_workarounds[] = { 372 #ifdef CONFIG_FSL_ERRATUM_A008585 373 { 374 .match_type = ate_match_dt, 375 .id = "fsl,erratum-a008585", 376 .desc = "Freescale erratum a005858", 377 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0, 378 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0, 379 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0, 380 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0, 381 .set_next_event_phys = erratum_set_next_event_tval_phys, 382 .set_next_event_virt = erratum_set_next_event_tval_virt, 383 }, 384 #endif 385 #ifdef CONFIG_HISILICON_ERRATUM_161010101 386 { 387 .match_type = ate_match_dt, 388 .id = "hisilicon,erratum-161010101", 389 .desc = "HiSilicon erratum 161010101", 390 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0, 391 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0, 392 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0, 393 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, 394 .set_next_event_phys = erratum_set_next_event_tval_phys, 395 .set_next_event_virt = erratum_set_next_event_tval_virt, 396 }, 397 { 398 .match_type = ate_match_acpi_oem_info, 399 .id = hisi_161010101_oem_info, 400 .desc = "HiSilicon erratum 161010101", 401 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0, 402 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0, 403 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0, 404 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, 405 .set_next_event_phys = erratum_set_next_event_tval_phys, 406 .set_next_event_virt = erratum_set_next_event_tval_virt, 407 }, 408 #endif 409 #ifdef CONFIG_ARM64_ERRATUM_858921 410 { 411 .match_type = ate_match_local_cap_id, 412 .id = (void *)ARM64_WORKAROUND_858921, 413 .desc = "ARM erratum 858921", 414 .read_cntpct_el0 = arm64_858921_read_cntpct_el0, 415 .read_cntvct_el0 = arm64_858921_read_cntvct_el0, 416 }, 417 #endif 418 #ifdef CONFIG_ARM64_ERRATUM_1188873 419 { 420 .match_type = ate_match_local_cap_id, 421 .id = (void *)ARM64_WORKAROUND_1188873, 422 .desc = "ARM erratum 1188873", 423 .read_cntvct_el0 = arm64_1188873_read_cntvct_el0, 424 }, 425 #endif 426 }; 427 428 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *, 429 const void *); 430 431 static 432 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa, 433 const void *arg) 434 { 435 const struct device_node *np = arg; 436 437 return of_property_read_bool(np, wa->id); 438 } 439 440 static 441 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa, 442 const void *arg) 443 { 444 return this_cpu_has_cap((uintptr_t)wa->id); 445 } 446 447 448 static 449 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa, 450 const void *arg) 451 { 452 static const struct ate_acpi_oem_info empty_oem_info = {}; 453 const struct ate_acpi_oem_info *info = wa->id; 454 const struct acpi_table_header *table = arg; 455 456 /* Iterate over the ACPI OEM info array, looking for a match */ 457 while (memcmp(info, &empty_oem_info, sizeof(*info))) { 458 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) && 459 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) && 460 info->oem_revision == table->oem_revision) 461 return true; 462 463 info++; 464 } 465 466 return false; 467 } 468 469 static const struct arch_timer_erratum_workaround * 470 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type, 471 ate_match_fn_t match_fn, 472 void *arg) 473 { 474 int i; 475 476 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) { 477 if (ool_workarounds[i].match_type != type) 478 continue; 479 480 if (match_fn(&ool_workarounds[i], arg)) 481 return &ool_workarounds[i]; 482 } 483 484 return NULL; 485 } 486 487 static 488 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa, 489 bool local) 490 { 491 int i; 492 493 if (local) { 494 __this_cpu_write(timer_unstable_counter_workaround, wa); 495 } else { 496 for_each_possible_cpu(i) 497 per_cpu(timer_unstable_counter_workaround, i) = wa; 498 } 499 500 /* 501 * Use the locked version, as we're called from the CPU 502 * hotplug framework. Otherwise, we end-up in deadlock-land. 503 */ 504 static_branch_enable_cpuslocked(&arch_timer_read_ool_enabled); 505 506 /* 507 * Don't use the vdso fastpath if errata require using the 508 * out-of-line counter accessor. We may change our mind pretty 509 * late in the game (with a per-CPU erratum, for example), so 510 * change both the default value and the vdso itself. 511 */ 512 if (wa->read_cntvct_el0) { 513 clocksource_counter.archdata.vdso_direct = false; 514 vdso_default = false; 515 } 516 } 517 518 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type, 519 void *arg) 520 { 521 const struct arch_timer_erratum_workaround *wa; 522 ate_match_fn_t match_fn = NULL; 523 bool local = false; 524 525 switch (type) { 526 case ate_match_dt: 527 match_fn = arch_timer_check_dt_erratum; 528 break; 529 case ate_match_local_cap_id: 530 match_fn = arch_timer_check_local_cap_erratum; 531 local = true; 532 break; 533 case ate_match_acpi_oem_info: 534 match_fn = arch_timer_check_acpi_oem_erratum; 535 break; 536 default: 537 WARN_ON(1); 538 return; 539 } 540 541 wa = arch_timer_iterate_errata(type, match_fn, arg); 542 if (!wa) 543 return; 544 545 if (needs_unstable_timer_counter_workaround()) { 546 const struct arch_timer_erratum_workaround *__wa; 547 __wa = __this_cpu_read(timer_unstable_counter_workaround); 548 if (__wa && wa != __wa) 549 pr_warn("Can't enable workaround for %s (clashes with %s\n)", 550 wa->desc, __wa->desc); 551 552 if (__wa) 553 return; 554 } 555 556 arch_timer_enable_workaround(wa, local); 557 pr_info("Enabling %s workaround for %s\n", 558 local ? "local" : "global", wa->desc); 559 } 560 561 #define erratum_handler(fn, r, ...) \ 562 ({ \ 563 bool __val; \ 564 if (needs_unstable_timer_counter_workaround()) { \ 565 const struct arch_timer_erratum_workaround *__wa; \ 566 __wa = __this_cpu_read(timer_unstable_counter_workaround); \ 567 if (__wa && __wa->fn) { \ 568 r = __wa->fn(__VA_ARGS__); \ 569 __val = true; \ 570 } else { \ 571 __val = false; \ 572 } \ 573 } else { \ 574 __val = false; \ 575 } \ 576 __val; \ 577 }) 578 579 static bool arch_timer_this_cpu_has_cntvct_wa(void) 580 { 581 const struct arch_timer_erratum_workaround *wa; 582 583 wa = __this_cpu_read(timer_unstable_counter_workaround); 584 return wa && wa->read_cntvct_el0; 585 } 586 #else 587 #define arch_timer_check_ool_workaround(t,a) do { } while(0) 588 #define erratum_set_next_event_tval_virt(...) ({BUG(); 0;}) 589 #define erratum_set_next_event_tval_phys(...) ({BUG(); 0;}) 590 #define erratum_handler(fn, r, ...) ({false;}) 591 #define arch_timer_this_cpu_has_cntvct_wa() ({false;}) 592 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */ 593 594 static __always_inline irqreturn_t timer_handler(const int access, 595 struct clock_event_device *evt) 596 { 597 unsigned long ctrl; 598 599 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt); 600 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { 601 ctrl |= ARCH_TIMER_CTRL_IT_MASK; 602 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt); 603 evt->event_handler(evt); 604 return IRQ_HANDLED; 605 } 606 607 return IRQ_NONE; 608 } 609 610 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id) 611 { 612 struct clock_event_device *evt = dev_id; 613 614 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt); 615 } 616 617 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id) 618 { 619 struct clock_event_device *evt = dev_id; 620 621 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt); 622 } 623 624 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id) 625 { 626 struct clock_event_device *evt = dev_id; 627 628 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt); 629 } 630 631 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id) 632 { 633 struct clock_event_device *evt = dev_id; 634 635 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt); 636 } 637 638 static __always_inline int timer_shutdown(const int access, 639 struct clock_event_device *clk) 640 { 641 unsigned long ctrl; 642 643 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 644 ctrl &= ~ARCH_TIMER_CTRL_ENABLE; 645 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 646 647 return 0; 648 } 649 650 static int arch_timer_shutdown_virt(struct clock_event_device *clk) 651 { 652 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk); 653 } 654 655 static int arch_timer_shutdown_phys(struct clock_event_device *clk) 656 { 657 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk); 658 } 659 660 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk) 661 { 662 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk); 663 } 664 665 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk) 666 { 667 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk); 668 } 669 670 static __always_inline void set_next_event(const int access, unsigned long evt, 671 struct clock_event_device *clk) 672 { 673 unsigned long ctrl; 674 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 675 ctrl |= ARCH_TIMER_CTRL_ENABLE; 676 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 677 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk); 678 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 679 } 680 681 static int arch_timer_set_next_event_virt(unsigned long evt, 682 struct clock_event_device *clk) 683 { 684 int ret; 685 686 if (erratum_handler(set_next_event_virt, ret, evt, clk)) 687 return ret; 688 689 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk); 690 return 0; 691 } 692 693 static int arch_timer_set_next_event_phys(unsigned long evt, 694 struct clock_event_device *clk) 695 { 696 int ret; 697 698 if (erratum_handler(set_next_event_phys, ret, evt, clk)) 699 return ret; 700 701 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk); 702 return 0; 703 } 704 705 static int arch_timer_set_next_event_virt_mem(unsigned long evt, 706 struct clock_event_device *clk) 707 { 708 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk); 709 return 0; 710 } 711 712 static int arch_timer_set_next_event_phys_mem(unsigned long evt, 713 struct clock_event_device *clk) 714 { 715 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk); 716 return 0; 717 } 718 719 static void __arch_timer_setup(unsigned type, 720 struct clock_event_device *clk) 721 { 722 clk->features = CLOCK_EVT_FEAT_ONESHOT; 723 724 if (type == ARCH_TIMER_TYPE_CP15) { 725 if (arch_timer_c3stop) 726 clk->features |= CLOCK_EVT_FEAT_C3STOP; 727 clk->name = "arch_sys_timer"; 728 clk->rating = 450; 729 clk->cpumask = cpumask_of(smp_processor_id()); 730 clk->irq = arch_timer_ppi[arch_timer_uses_ppi]; 731 switch (arch_timer_uses_ppi) { 732 case ARCH_TIMER_VIRT_PPI: 733 clk->set_state_shutdown = arch_timer_shutdown_virt; 734 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt; 735 clk->set_next_event = arch_timer_set_next_event_virt; 736 break; 737 case ARCH_TIMER_PHYS_SECURE_PPI: 738 case ARCH_TIMER_PHYS_NONSECURE_PPI: 739 case ARCH_TIMER_HYP_PPI: 740 clk->set_state_shutdown = arch_timer_shutdown_phys; 741 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys; 742 clk->set_next_event = arch_timer_set_next_event_phys; 743 break; 744 default: 745 BUG(); 746 } 747 748 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL); 749 } else { 750 clk->features |= CLOCK_EVT_FEAT_DYNIRQ; 751 clk->name = "arch_mem_timer"; 752 clk->rating = 400; 753 clk->cpumask = cpu_possible_mask; 754 if (arch_timer_mem_use_virtual) { 755 clk->set_state_shutdown = arch_timer_shutdown_virt_mem; 756 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem; 757 clk->set_next_event = 758 arch_timer_set_next_event_virt_mem; 759 } else { 760 clk->set_state_shutdown = arch_timer_shutdown_phys_mem; 761 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem; 762 clk->set_next_event = 763 arch_timer_set_next_event_phys_mem; 764 } 765 } 766 767 clk->set_state_shutdown(clk); 768 769 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff); 770 } 771 772 static void arch_timer_evtstrm_enable(int divider) 773 { 774 u32 cntkctl = arch_timer_get_cntkctl(); 775 776 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK; 777 /* Set the divider and enable virtual event stream */ 778 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT) 779 | ARCH_TIMER_VIRT_EVT_EN; 780 arch_timer_set_cntkctl(cntkctl); 781 elf_hwcap |= HWCAP_EVTSTRM; 782 #ifdef CONFIG_COMPAT 783 compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM; 784 #endif 785 cpumask_set_cpu(smp_processor_id(), &evtstrm_available); 786 } 787 788 static void arch_timer_configure_evtstream(void) 789 { 790 int evt_stream_div, pos; 791 792 /* Find the closest power of two to the divisor */ 793 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ; 794 pos = fls(evt_stream_div); 795 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2)))) 796 pos--; 797 /* enable event stream */ 798 arch_timer_evtstrm_enable(min(pos, 15)); 799 } 800 801 static void arch_counter_set_user_access(void) 802 { 803 u32 cntkctl = arch_timer_get_cntkctl(); 804 805 /* Disable user access to the timers and both counters */ 806 /* Also disable virtual event stream */ 807 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN 808 | ARCH_TIMER_USR_VT_ACCESS_EN 809 | ARCH_TIMER_USR_VCT_ACCESS_EN 810 | ARCH_TIMER_VIRT_EVT_EN 811 | ARCH_TIMER_USR_PCT_ACCESS_EN); 812 813 /* 814 * Enable user access to the virtual counter if it doesn't 815 * need to be workaround. The vdso may have been already 816 * disabled though. 817 */ 818 if (arch_timer_this_cpu_has_cntvct_wa()) 819 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id()); 820 else 821 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN; 822 823 arch_timer_set_cntkctl(cntkctl); 824 } 825 826 static bool arch_timer_has_nonsecure_ppi(void) 827 { 828 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI && 829 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 830 } 831 832 static u32 check_ppi_trigger(int irq) 833 { 834 u32 flags = irq_get_trigger_type(irq); 835 836 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) { 837 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq); 838 pr_warn("WARNING: Please fix your firmware\n"); 839 flags = IRQF_TRIGGER_LOW; 840 } 841 842 return flags; 843 } 844 845 static int arch_timer_starting_cpu(unsigned int cpu) 846 { 847 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 848 u32 flags; 849 850 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk); 851 852 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]); 853 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags); 854 855 if (arch_timer_has_nonsecure_ppi()) { 856 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 857 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], 858 flags); 859 } 860 861 arch_counter_set_user_access(); 862 if (evtstrm_enable) 863 arch_timer_configure_evtstream(); 864 865 return 0; 866 } 867 868 /* 869 * For historical reasons, when probing with DT we use whichever (non-zero) 870 * rate was probed first, and don't verify that others match. If the first node 871 * probed has a clock-frequency property, this overrides the HW register. 872 */ 873 static void arch_timer_of_configure_rate(u32 rate, struct device_node *np) 874 { 875 /* Who has more than one independent system counter? */ 876 if (arch_timer_rate) 877 return; 878 879 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) 880 arch_timer_rate = rate; 881 882 /* Check the timer frequency. */ 883 if (arch_timer_rate == 0) 884 pr_warn("frequency not available\n"); 885 } 886 887 static void arch_timer_banner(unsigned type) 888 { 889 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n", 890 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "", 891 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? 892 " and " : "", 893 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "", 894 (unsigned long)arch_timer_rate / 1000000, 895 (unsigned long)(arch_timer_rate / 10000) % 100, 896 type & ARCH_TIMER_TYPE_CP15 ? 897 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" : 898 "", 899 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "", 900 type & ARCH_TIMER_TYPE_MEM ? 901 arch_timer_mem_use_virtual ? "virt" : "phys" : 902 ""); 903 } 904 905 u32 arch_timer_get_rate(void) 906 { 907 return arch_timer_rate; 908 } 909 910 bool arch_timer_evtstrm_available(void) 911 { 912 /* 913 * We might get called from a preemptible context. This is fine 914 * because availability of the event stream should be always the same 915 * for a preemptible context and context where we might resume a task. 916 */ 917 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available); 918 } 919 920 static u64 arch_counter_get_cntvct_mem(void) 921 { 922 u32 vct_lo, vct_hi, tmp_hi; 923 924 do { 925 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); 926 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO); 927 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); 928 } while (vct_hi != tmp_hi); 929 930 return ((u64) vct_hi << 32) | vct_lo; 931 } 932 933 static struct arch_timer_kvm_info arch_timer_kvm_info; 934 935 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void) 936 { 937 return &arch_timer_kvm_info; 938 } 939 940 static void __init arch_counter_register(unsigned type) 941 { 942 u64 start_count; 943 944 /* Register the CP15 based counter if we have one */ 945 if (type & ARCH_TIMER_TYPE_CP15) { 946 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) || 947 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) 948 arch_timer_read_counter = arch_counter_get_cntvct; 949 else 950 arch_timer_read_counter = arch_counter_get_cntpct; 951 952 clocksource_counter.archdata.vdso_direct = vdso_default; 953 } else { 954 arch_timer_read_counter = arch_counter_get_cntvct_mem; 955 } 956 957 if (!arch_counter_suspend_stop) 958 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; 959 start_count = arch_timer_read_counter(); 960 clocksource_register_hz(&clocksource_counter, arch_timer_rate); 961 cyclecounter.mult = clocksource_counter.mult; 962 cyclecounter.shift = clocksource_counter.shift; 963 timecounter_init(&arch_timer_kvm_info.timecounter, 964 &cyclecounter, start_count); 965 966 /* 56 bits minimum, so we assume worst case rollover */ 967 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate); 968 } 969 970 static void arch_timer_stop(struct clock_event_device *clk) 971 { 972 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id()); 973 974 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]); 975 if (arch_timer_has_nonsecure_ppi()) 976 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 977 978 clk->set_state_shutdown(clk); 979 } 980 981 static int arch_timer_dying_cpu(unsigned int cpu) 982 { 983 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 984 985 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available); 986 987 arch_timer_stop(clk); 988 return 0; 989 } 990 991 #ifdef CONFIG_CPU_PM 992 static DEFINE_PER_CPU(unsigned long, saved_cntkctl); 993 static int arch_timer_cpu_pm_notify(struct notifier_block *self, 994 unsigned long action, void *hcpu) 995 { 996 if (action == CPU_PM_ENTER) { 997 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl()); 998 999 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available); 1000 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) { 1001 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl)); 1002 1003 if (elf_hwcap & HWCAP_EVTSTRM) 1004 cpumask_set_cpu(smp_processor_id(), &evtstrm_available); 1005 } 1006 return NOTIFY_OK; 1007 } 1008 1009 static struct notifier_block arch_timer_cpu_pm_notifier = { 1010 .notifier_call = arch_timer_cpu_pm_notify, 1011 }; 1012 1013 static int __init arch_timer_cpu_pm_init(void) 1014 { 1015 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier); 1016 } 1017 1018 static void __init arch_timer_cpu_pm_deinit(void) 1019 { 1020 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier)); 1021 } 1022 1023 #else 1024 static int __init arch_timer_cpu_pm_init(void) 1025 { 1026 return 0; 1027 } 1028 1029 static void __init arch_timer_cpu_pm_deinit(void) 1030 { 1031 } 1032 #endif 1033 1034 static int __init arch_timer_register(void) 1035 { 1036 int err; 1037 int ppi; 1038 1039 arch_timer_evt = alloc_percpu(struct clock_event_device); 1040 if (!arch_timer_evt) { 1041 err = -ENOMEM; 1042 goto out; 1043 } 1044 1045 ppi = arch_timer_ppi[arch_timer_uses_ppi]; 1046 switch (arch_timer_uses_ppi) { 1047 case ARCH_TIMER_VIRT_PPI: 1048 err = request_percpu_irq(ppi, arch_timer_handler_virt, 1049 "arch_timer", arch_timer_evt); 1050 break; 1051 case ARCH_TIMER_PHYS_SECURE_PPI: 1052 case ARCH_TIMER_PHYS_NONSECURE_PPI: 1053 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1054 "arch_timer", arch_timer_evt); 1055 if (!err && arch_timer_has_nonsecure_ppi()) { 1056 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]; 1057 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1058 "arch_timer", arch_timer_evt); 1059 if (err) 1060 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI], 1061 arch_timer_evt); 1062 } 1063 break; 1064 case ARCH_TIMER_HYP_PPI: 1065 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1066 "arch_timer", arch_timer_evt); 1067 break; 1068 default: 1069 BUG(); 1070 } 1071 1072 if (err) { 1073 pr_err("can't register interrupt %d (%d)\n", ppi, err); 1074 goto out_free; 1075 } 1076 1077 err = arch_timer_cpu_pm_init(); 1078 if (err) 1079 goto out_unreg_notify; 1080 1081 /* Register and immediately configure the timer on the boot CPU */ 1082 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING, 1083 "clockevents/arm/arch_timer:starting", 1084 arch_timer_starting_cpu, arch_timer_dying_cpu); 1085 if (err) 1086 goto out_unreg_cpupm; 1087 return 0; 1088 1089 out_unreg_cpupm: 1090 arch_timer_cpu_pm_deinit(); 1091 1092 out_unreg_notify: 1093 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt); 1094 if (arch_timer_has_nonsecure_ppi()) 1095 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], 1096 arch_timer_evt); 1097 1098 out_free: 1099 free_percpu(arch_timer_evt); 1100 out: 1101 return err; 1102 } 1103 1104 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq) 1105 { 1106 int ret; 1107 irq_handler_t func; 1108 struct arch_timer *t; 1109 1110 t = kzalloc(sizeof(*t), GFP_KERNEL); 1111 if (!t) 1112 return -ENOMEM; 1113 1114 t->base = base; 1115 t->evt.irq = irq; 1116 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt); 1117 1118 if (arch_timer_mem_use_virtual) 1119 func = arch_timer_handler_virt_mem; 1120 else 1121 func = arch_timer_handler_phys_mem; 1122 1123 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt); 1124 if (ret) { 1125 pr_err("Failed to request mem timer irq\n"); 1126 kfree(t); 1127 } 1128 1129 return ret; 1130 } 1131 1132 static const struct of_device_id arch_timer_of_match[] __initconst = { 1133 { .compatible = "arm,armv7-timer", }, 1134 { .compatible = "arm,armv8-timer", }, 1135 {}, 1136 }; 1137 1138 static const struct of_device_id arch_timer_mem_of_match[] __initconst = { 1139 { .compatible = "arm,armv7-timer-mem", }, 1140 {}, 1141 }; 1142 1143 static bool __init arch_timer_needs_of_probing(void) 1144 { 1145 struct device_node *dn; 1146 bool needs_probing = false; 1147 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM; 1148 1149 /* We have two timers, and both device-tree nodes are probed. */ 1150 if ((arch_timers_present & mask) == mask) 1151 return false; 1152 1153 /* 1154 * Only one type of timer is probed, 1155 * check if we have another type of timer node in device-tree. 1156 */ 1157 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) 1158 dn = of_find_matching_node(NULL, arch_timer_mem_of_match); 1159 else 1160 dn = of_find_matching_node(NULL, arch_timer_of_match); 1161 1162 if (dn && of_device_is_available(dn)) 1163 needs_probing = true; 1164 1165 of_node_put(dn); 1166 1167 return needs_probing; 1168 } 1169 1170 static int __init arch_timer_common_init(void) 1171 { 1172 arch_timer_banner(arch_timers_present); 1173 arch_counter_register(arch_timers_present); 1174 return arch_timer_arch_init(); 1175 } 1176 1177 /** 1178 * arch_timer_select_ppi() - Select suitable PPI for the current system. 1179 * 1180 * If HYP mode is available, we know that the physical timer 1181 * has been configured to be accessible from PL1. Use it, so 1182 * that a guest can use the virtual timer instead. 1183 * 1184 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE 1185 * accesses to CNTP_*_EL1 registers are silently redirected to 1186 * their CNTHP_*_EL2 counterparts, and use a different PPI 1187 * number. 1188 * 1189 * If no interrupt provided for virtual timer, we'll have to 1190 * stick to the physical timer. It'd better be accessible... 1191 * For arm64 we never use the secure interrupt. 1192 * 1193 * Return: a suitable PPI type for the current system. 1194 */ 1195 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void) 1196 { 1197 if (is_kernel_in_hyp_mode()) 1198 return ARCH_TIMER_HYP_PPI; 1199 1200 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI]) 1201 return ARCH_TIMER_VIRT_PPI; 1202 1203 if (IS_ENABLED(CONFIG_ARM64)) 1204 return ARCH_TIMER_PHYS_NONSECURE_PPI; 1205 1206 return ARCH_TIMER_PHYS_SECURE_PPI; 1207 } 1208 1209 static int __init arch_timer_of_init(struct device_node *np) 1210 { 1211 int i, ret; 1212 u32 rate; 1213 1214 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { 1215 pr_warn("multiple nodes in dt, skipping\n"); 1216 return 0; 1217 } 1218 1219 arch_timers_present |= ARCH_TIMER_TYPE_CP15; 1220 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) 1221 arch_timer_ppi[i] = irq_of_parse_and_map(np, i); 1222 1223 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI]; 1224 1225 rate = arch_timer_get_cntfrq(); 1226 arch_timer_of_configure_rate(rate, np); 1227 1228 arch_timer_c3stop = !of_property_read_bool(np, "always-on"); 1229 1230 /* Check for globally applicable workarounds */ 1231 arch_timer_check_ool_workaround(ate_match_dt, np); 1232 1233 /* 1234 * If we cannot rely on firmware initializing the timer registers then 1235 * we should use the physical timers instead. 1236 */ 1237 if (IS_ENABLED(CONFIG_ARM) && 1238 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured")) 1239 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI; 1240 else 1241 arch_timer_uses_ppi = arch_timer_select_ppi(); 1242 1243 if (!arch_timer_ppi[arch_timer_uses_ppi]) { 1244 pr_err("No interrupt available, giving up\n"); 1245 return -EINVAL; 1246 } 1247 1248 /* On some systems, the counter stops ticking when in suspend. */ 1249 arch_counter_suspend_stop = of_property_read_bool(np, 1250 "arm,no-tick-in-suspend"); 1251 1252 ret = arch_timer_register(); 1253 if (ret) 1254 return ret; 1255 1256 if (arch_timer_needs_of_probing()) 1257 return 0; 1258 1259 return arch_timer_common_init(); 1260 } 1261 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init); 1262 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init); 1263 1264 static u32 __init 1265 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame) 1266 { 1267 void __iomem *base; 1268 u32 rate; 1269 1270 base = ioremap(frame->cntbase, frame->size); 1271 if (!base) { 1272 pr_err("Unable to map frame @ %pa\n", &frame->cntbase); 1273 return 0; 1274 } 1275 1276 rate = readl_relaxed(base + CNTFRQ); 1277 1278 iounmap(base); 1279 1280 return rate; 1281 } 1282 1283 static struct arch_timer_mem_frame * __init 1284 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem) 1285 { 1286 struct arch_timer_mem_frame *frame, *best_frame = NULL; 1287 void __iomem *cntctlbase; 1288 u32 cnttidr; 1289 int i; 1290 1291 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size); 1292 if (!cntctlbase) { 1293 pr_err("Can't map CNTCTLBase @ %pa\n", 1294 &timer_mem->cntctlbase); 1295 return NULL; 1296 } 1297 1298 cnttidr = readl_relaxed(cntctlbase + CNTTIDR); 1299 1300 /* 1301 * Try to find a virtual capable frame. Otherwise fall back to a 1302 * physical capable frame. 1303 */ 1304 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) { 1305 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT | 1306 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT; 1307 1308 frame = &timer_mem->frame[i]; 1309 if (!frame->valid) 1310 continue; 1311 1312 /* Try enabling everything, and see what sticks */ 1313 writel_relaxed(cntacr, cntctlbase + CNTACR(i)); 1314 cntacr = readl_relaxed(cntctlbase + CNTACR(i)); 1315 1316 if ((cnttidr & CNTTIDR_VIRT(i)) && 1317 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) { 1318 best_frame = frame; 1319 arch_timer_mem_use_virtual = true; 1320 break; 1321 } 1322 1323 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT)) 1324 continue; 1325 1326 best_frame = frame; 1327 } 1328 1329 iounmap(cntctlbase); 1330 1331 return best_frame; 1332 } 1333 1334 static int __init 1335 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame) 1336 { 1337 void __iomem *base; 1338 int ret, irq = 0; 1339 1340 if (arch_timer_mem_use_virtual) 1341 irq = frame->virt_irq; 1342 else 1343 irq = frame->phys_irq; 1344 1345 if (!irq) { 1346 pr_err("Frame missing %s irq.\n", 1347 arch_timer_mem_use_virtual ? "virt" : "phys"); 1348 return -EINVAL; 1349 } 1350 1351 if (!request_mem_region(frame->cntbase, frame->size, 1352 "arch_mem_timer")) 1353 return -EBUSY; 1354 1355 base = ioremap(frame->cntbase, frame->size); 1356 if (!base) { 1357 pr_err("Can't map frame's registers\n"); 1358 return -ENXIO; 1359 } 1360 1361 ret = arch_timer_mem_register(base, irq); 1362 if (ret) { 1363 iounmap(base); 1364 return ret; 1365 } 1366 1367 arch_counter_base = base; 1368 arch_timers_present |= ARCH_TIMER_TYPE_MEM; 1369 1370 return 0; 1371 } 1372 1373 static int __init arch_timer_mem_of_init(struct device_node *np) 1374 { 1375 struct arch_timer_mem *timer_mem; 1376 struct arch_timer_mem_frame *frame; 1377 struct device_node *frame_node; 1378 struct resource res; 1379 int ret = -EINVAL; 1380 u32 rate; 1381 1382 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL); 1383 if (!timer_mem) 1384 return -ENOMEM; 1385 1386 if (of_address_to_resource(np, 0, &res)) 1387 goto out; 1388 timer_mem->cntctlbase = res.start; 1389 timer_mem->size = resource_size(&res); 1390 1391 for_each_available_child_of_node(np, frame_node) { 1392 u32 n; 1393 struct arch_timer_mem_frame *frame; 1394 1395 if (of_property_read_u32(frame_node, "frame-number", &n)) { 1396 pr_err(FW_BUG "Missing frame-number.\n"); 1397 of_node_put(frame_node); 1398 goto out; 1399 } 1400 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) { 1401 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n", 1402 ARCH_TIMER_MEM_MAX_FRAMES - 1); 1403 of_node_put(frame_node); 1404 goto out; 1405 } 1406 frame = &timer_mem->frame[n]; 1407 1408 if (frame->valid) { 1409 pr_err(FW_BUG "Duplicated frame-number.\n"); 1410 of_node_put(frame_node); 1411 goto out; 1412 } 1413 1414 if (of_address_to_resource(frame_node, 0, &res)) { 1415 of_node_put(frame_node); 1416 goto out; 1417 } 1418 frame->cntbase = res.start; 1419 frame->size = resource_size(&res); 1420 1421 frame->virt_irq = irq_of_parse_and_map(frame_node, 1422 ARCH_TIMER_VIRT_SPI); 1423 frame->phys_irq = irq_of_parse_and_map(frame_node, 1424 ARCH_TIMER_PHYS_SPI); 1425 1426 frame->valid = true; 1427 } 1428 1429 frame = arch_timer_mem_find_best_frame(timer_mem); 1430 if (!frame) { 1431 pr_err("Unable to find a suitable frame in timer @ %pa\n", 1432 &timer_mem->cntctlbase); 1433 ret = -EINVAL; 1434 goto out; 1435 } 1436 1437 rate = arch_timer_mem_frame_get_cntfrq(frame); 1438 arch_timer_of_configure_rate(rate, np); 1439 1440 ret = arch_timer_mem_frame_register(frame); 1441 if (!ret && !arch_timer_needs_of_probing()) 1442 ret = arch_timer_common_init(); 1443 out: 1444 kfree(timer_mem); 1445 return ret; 1446 } 1447 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem", 1448 arch_timer_mem_of_init); 1449 1450 #ifdef CONFIG_ACPI_GTDT 1451 static int __init 1452 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem) 1453 { 1454 struct arch_timer_mem_frame *frame; 1455 u32 rate; 1456 int i; 1457 1458 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) { 1459 frame = &timer_mem->frame[i]; 1460 1461 if (!frame->valid) 1462 continue; 1463 1464 rate = arch_timer_mem_frame_get_cntfrq(frame); 1465 if (rate == arch_timer_rate) 1466 continue; 1467 1468 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n", 1469 &frame->cntbase, 1470 (unsigned long)rate, (unsigned long)arch_timer_rate); 1471 1472 return -EINVAL; 1473 } 1474 1475 return 0; 1476 } 1477 1478 static int __init arch_timer_mem_acpi_init(int platform_timer_count) 1479 { 1480 struct arch_timer_mem *timers, *timer; 1481 struct arch_timer_mem_frame *frame, *best_frame = NULL; 1482 int timer_count, i, ret = 0; 1483 1484 timers = kcalloc(platform_timer_count, sizeof(*timers), 1485 GFP_KERNEL); 1486 if (!timers) 1487 return -ENOMEM; 1488 1489 ret = acpi_arch_timer_mem_init(timers, &timer_count); 1490 if (ret || !timer_count) 1491 goto out; 1492 1493 /* 1494 * While unlikely, it's theoretically possible that none of the frames 1495 * in a timer expose the combination of feature we want. 1496 */ 1497 for (i = 0; i < timer_count; i++) { 1498 timer = &timers[i]; 1499 1500 frame = arch_timer_mem_find_best_frame(timer); 1501 if (!best_frame) 1502 best_frame = frame; 1503 1504 ret = arch_timer_mem_verify_cntfrq(timer); 1505 if (ret) { 1506 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n"); 1507 goto out; 1508 } 1509 1510 if (!best_frame) /* implies !frame */ 1511 /* 1512 * Only complain about missing suitable frames if we 1513 * haven't already found one in a previous iteration. 1514 */ 1515 pr_err("Unable to find a suitable frame in timer @ %pa\n", 1516 &timer->cntctlbase); 1517 } 1518 1519 if (best_frame) 1520 ret = arch_timer_mem_frame_register(best_frame); 1521 out: 1522 kfree(timers); 1523 return ret; 1524 } 1525 1526 /* Initialize per-processor generic timer and memory-mapped timer(if present) */ 1527 static int __init arch_timer_acpi_init(struct acpi_table_header *table) 1528 { 1529 int ret, platform_timer_count; 1530 1531 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { 1532 pr_warn("already initialized, skipping\n"); 1533 return -EINVAL; 1534 } 1535 1536 arch_timers_present |= ARCH_TIMER_TYPE_CP15; 1537 1538 ret = acpi_gtdt_init(table, &platform_timer_count); 1539 if (ret) { 1540 pr_err("Failed to init GTDT table.\n"); 1541 return ret; 1542 } 1543 1544 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] = 1545 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI); 1546 1547 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] = 1548 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI); 1549 1550 arch_timer_ppi[ARCH_TIMER_HYP_PPI] = 1551 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI); 1552 1553 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI]; 1554 1555 /* 1556 * When probing via ACPI, we have no mechanism to override the sysreg 1557 * CNTFRQ value. This *must* be correct. 1558 */ 1559 arch_timer_rate = arch_timer_get_cntfrq(); 1560 if (!arch_timer_rate) { 1561 pr_err(FW_BUG "frequency not available.\n"); 1562 return -EINVAL; 1563 } 1564 1565 arch_timer_uses_ppi = arch_timer_select_ppi(); 1566 if (!arch_timer_ppi[arch_timer_uses_ppi]) { 1567 pr_err("No interrupt available, giving up\n"); 1568 return -EINVAL; 1569 } 1570 1571 /* Always-on capability */ 1572 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi); 1573 1574 /* Check for globally applicable workarounds */ 1575 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table); 1576 1577 ret = arch_timer_register(); 1578 if (ret) 1579 return ret; 1580 1581 if (platform_timer_count && 1582 arch_timer_mem_acpi_init(platform_timer_count)) 1583 pr_err("Failed to initialize memory-mapped timer.\n"); 1584 1585 return arch_timer_common_init(); 1586 } 1587 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init); 1588 #endif 1589