1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/clocksource/arm_arch_timer.c 4 * 5 * Copyright (C) 2011 ARM Ltd. 6 * All Rights Reserved 7 */ 8 9 #define pr_fmt(fmt) "arch_timer: " fmt 10 11 #include <linux/init.h> 12 #include <linux/kernel.h> 13 #include <linux/device.h> 14 #include <linux/smp.h> 15 #include <linux/cpu.h> 16 #include <linux/cpu_pm.h> 17 #include <linux/clockchips.h> 18 #include <linux/clocksource.h> 19 #include <linux/interrupt.h> 20 #include <linux/of_irq.h> 21 #include <linux/of_address.h> 22 #include <linux/io.h> 23 #include <linux/slab.h> 24 #include <linux/sched/clock.h> 25 #include <linux/sched_clock.h> 26 #include <linux/acpi.h> 27 28 #include <asm/arch_timer.h> 29 #include <asm/virt.h> 30 31 #include <clocksource/arm_arch_timer.h> 32 33 #define CNTTIDR 0x08 34 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4)) 35 36 #define CNTACR(n) (0x40 + ((n) * 4)) 37 #define CNTACR_RPCT BIT(0) 38 #define CNTACR_RVCT BIT(1) 39 #define CNTACR_RFRQ BIT(2) 40 #define CNTACR_RVOFF BIT(3) 41 #define CNTACR_RWVT BIT(4) 42 #define CNTACR_RWPT BIT(5) 43 44 #define CNTVCT_LO 0x08 45 #define CNTVCT_HI 0x0c 46 #define CNTFRQ 0x10 47 #define CNTP_TVAL 0x28 48 #define CNTP_CTL 0x2c 49 #define CNTV_TVAL 0x38 50 #define CNTV_CTL 0x3c 51 52 static unsigned arch_timers_present __initdata; 53 54 static void __iomem *arch_counter_base; 55 56 struct arch_timer { 57 void __iomem *base; 58 struct clock_event_device evt; 59 }; 60 61 #define to_arch_timer(e) container_of(e, struct arch_timer, evt) 62 63 static u32 arch_timer_rate; 64 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI]; 65 66 static struct clock_event_device __percpu *arch_timer_evt; 67 68 static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI; 69 static bool arch_timer_c3stop; 70 static bool arch_timer_mem_use_virtual; 71 static bool arch_counter_suspend_stop; 72 #ifdef CONFIG_GENERIC_GETTIMEOFDAY 73 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER; 74 #else 75 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE; 76 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */ 77 78 static cpumask_t evtstrm_available = CPU_MASK_NONE; 79 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM); 80 81 static int __init early_evtstrm_cfg(char *buf) 82 { 83 return strtobool(buf, &evtstrm_enable); 84 } 85 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg); 86 87 /* 88 * Architected system timer support. 89 */ 90 91 static __always_inline 92 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val, 93 struct clock_event_device *clk) 94 { 95 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 96 struct arch_timer *timer = to_arch_timer(clk); 97 switch (reg) { 98 case ARCH_TIMER_REG_CTRL: 99 writel_relaxed(val, timer->base + CNTP_CTL); 100 break; 101 case ARCH_TIMER_REG_TVAL: 102 writel_relaxed(val, timer->base + CNTP_TVAL); 103 break; 104 } 105 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 106 struct arch_timer *timer = to_arch_timer(clk); 107 switch (reg) { 108 case ARCH_TIMER_REG_CTRL: 109 writel_relaxed(val, timer->base + CNTV_CTL); 110 break; 111 case ARCH_TIMER_REG_TVAL: 112 writel_relaxed(val, timer->base + CNTV_TVAL); 113 break; 114 } 115 } else { 116 arch_timer_reg_write_cp15(access, reg, val); 117 } 118 } 119 120 static __always_inline 121 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg, 122 struct clock_event_device *clk) 123 { 124 u32 val; 125 126 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 127 struct arch_timer *timer = to_arch_timer(clk); 128 switch (reg) { 129 case ARCH_TIMER_REG_CTRL: 130 val = readl_relaxed(timer->base + CNTP_CTL); 131 break; 132 case ARCH_TIMER_REG_TVAL: 133 val = readl_relaxed(timer->base + CNTP_TVAL); 134 break; 135 } 136 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 137 struct arch_timer *timer = to_arch_timer(clk); 138 switch (reg) { 139 case ARCH_TIMER_REG_CTRL: 140 val = readl_relaxed(timer->base + CNTV_CTL); 141 break; 142 case ARCH_TIMER_REG_TVAL: 143 val = readl_relaxed(timer->base + CNTV_TVAL); 144 break; 145 } 146 } else { 147 val = arch_timer_reg_read_cp15(access, reg); 148 } 149 150 return val; 151 } 152 153 static notrace u64 arch_counter_get_cntpct_stable(void) 154 { 155 return __arch_counter_get_cntpct_stable(); 156 } 157 158 static notrace u64 arch_counter_get_cntpct(void) 159 { 160 return __arch_counter_get_cntpct(); 161 } 162 163 static notrace u64 arch_counter_get_cntvct_stable(void) 164 { 165 return __arch_counter_get_cntvct_stable(); 166 } 167 168 static notrace u64 arch_counter_get_cntvct(void) 169 { 170 return __arch_counter_get_cntvct(); 171 } 172 173 /* 174 * Default to cp15 based access because arm64 uses this function for 175 * sched_clock() before DT is probed and the cp15 method is guaranteed 176 * to exist on arm64. arm doesn't use this before DT is probed so even 177 * if we don't have the cp15 accessors we won't have a problem. 178 */ 179 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct; 180 EXPORT_SYMBOL_GPL(arch_timer_read_counter); 181 182 static u64 arch_counter_read(struct clocksource *cs) 183 { 184 return arch_timer_read_counter(); 185 } 186 187 static u64 arch_counter_read_cc(const struct cyclecounter *cc) 188 { 189 return arch_timer_read_counter(); 190 } 191 192 static struct clocksource clocksource_counter = { 193 .name = "arch_sys_counter", 194 .rating = 400, 195 .read = arch_counter_read, 196 .mask = CLOCKSOURCE_MASK(56), 197 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 198 }; 199 200 static struct cyclecounter cyclecounter __ro_after_init = { 201 .read = arch_counter_read_cc, 202 .mask = CLOCKSOURCE_MASK(56), 203 }; 204 205 struct ate_acpi_oem_info { 206 char oem_id[ACPI_OEM_ID_SIZE + 1]; 207 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1]; 208 u32 oem_revision; 209 }; 210 211 #ifdef CONFIG_FSL_ERRATUM_A008585 212 /* 213 * The number of retries is an arbitrary value well beyond the highest number 214 * of iterations the loop has been observed to take. 215 */ 216 #define __fsl_a008585_read_reg(reg) ({ \ 217 u64 _old, _new; \ 218 int _retries = 200; \ 219 \ 220 do { \ 221 _old = read_sysreg(reg); \ 222 _new = read_sysreg(reg); \ 223 _retries--; \ 224 } while (unlikely(_old != _new) && _retries); \ 225 \ 226 WARN_ON_ONCE(!_retries); \ 227 _new; \ 228 }) 229 230 static u32 notrace fsl_a008585_read_cntp_tval_el0(void) 231 { 232 return __fsl_a008585_read_reg(cntp_tval_el0); 233 } 234 235 static u32 notrace fsl_a008585_read_cntv_tval_el0(void) 236 { 237 return __fsl_a008585_read_reg(cntv_tval_el0); 238 } 239 240 static u64 notrace fsl_a008585_read_cntpct_el0(void) 241 { 242 return __fsl_a008585_read_reg(cntpct_el0); 243 } 244 245 static u64 notrace fsl_a008585_read_cntvct_el0(void) 246 { 247 return __fsl_a008585_read_reg(cntvct_el0); 248 } 249 #endif 250 251 #ifdef CONFIG_HISILICON_ERRATUM_161010101 252 /* 253 * Verify whether the value of the second read is larger than the first by 254 * less than 32 is the only way to confirm the value is correct, so clear the 255 * lower 5 bits to check whether the difference is greater than 32 or not. 256 * Theoretically the erratum should not occur more than twice in succession 257 * when reading the system counter, but it is possible that some interrupts 258 * may lead to more than twice read errors, triggering the warning, so setting 259 * the number of retries far beyond the number of iterations the loop has been 260 * observed to take. 261 */ 262 #define __hisi_161010101_read_reg(reg) ({ \ 263 u64 _old, _new; \ 264 int _retries = 50; \ 265 \ 266 do { \ 267 _old = read_sysreg(reg); \ 268 _new = read_sysreg(reg); \ 269 _retries--; \ 270 } while (unlikely((_new - _old) >> 5) && _retries); \ 271 \ 272 WARN_ON_ONCE(!_retries); \ 273 _new; \ 274 }) 275 276 static u32 notrace hisi_161010101_read_cntp_tval_el0(void) 277 { 278 return __hisi_161010101_read_reg(cntp_tval_el0); 279 } 280 281 static u32 notrace hisi_161010101_read_cntv_tval_el0(void) 282 { 283 return __hisi_161010101_read_reg(cntv_tval_el0); 284 } 285 286 static u64 notrace hisi_161010101_read_cntpct_el0(void) 287 { 288 return __hisi_161010101_read_reg(cntpct_el0); 289 } 290 291 static u64 notrace hisi_161010101_read_cntvct_el0(void) 292 { 293 return __hisi_161010101_read_reg(cntvct_el0); 294 } 295 296 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = { 297 /* 298 * Note that trailing spaces are required to properly match 299 * the OEM table information. 300 */ 301 { 302 .oem_id = "HISI ", 303 .oem_table_id = "HIP05 ", 304 .oem_revision = 0, 305 }, 306 { 307 .oem_id = "HISI ", 308 .oem_table_id = "HIP06 ", 309 .oem_revision = 0, 310 }, 311 { 312 .oem_id = "HISI ", 313 .oem_table_id = "HIP07 ", 314 .oem_revision = 0, 315 }, 316 { /* Sentinel indicating the end of the OEM array */ }, 317 }; 318 #endif 319 320 #ifdef CONFIG_ARM64_ERRATUM_858921 321 static u64 notrace arm64_858921_read_cntpct_el0(void) 322 { 323 u64 old, new; 324 325 old = read_sysreg(cntpct_el0); 326 new = read_sysreg(cntpct_el0); 327 return (((old ^ new) >> 32) & 1) ? old : new; 328 } 329 330 static u64 notrace arm64_858921_read_cntvct_el0(void) 331 { 332 u64 old, new; 333 334 old = read_sysreg(cntvct_el0); 335 new = read_sysreg(cntvct_el0); 336 return (((old ^ new) >> 32) & 1) ? old : new; 337 } 338 #endif 339 340 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1 341 /* 342 * The low bits of the counter registers are indeterminate while bit 10 or 343 * greater is rolling over. Since the counter value can jump both backward 344 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values 345 * with all ones or all zeros in the low bits. Bound the loop by the maximum 346 * number of CPU cycles in 3 consecutive 24 MHz counter periods. 347 */ 348 #define __sun50i_a64_read_reg(reg) ({ \ 349 u64 _val; \ 350 int _retries = 150; \ 351 \ 352 do { \ 353 _val = read_sysreg(reg); \ 354 _retries--; \ 355 } while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries); \ 356 \ 357 WARN_ON_ONCE(!_retries); \ 358 _val; \ 359 }) 360 361 static u64 notrace sun50i_a64_read_cntpct_el0(void) 362 { 363 return __sun50i_a64_read_reg(cntpct_el0); 364 } 365 366 static u64 notrace sun50i_a64_read_cntvct_el0(void) 367 { 368 return __sun50i_a64_read_reg(cntvct_el0); 369 } 370 371 static u32 notrace sun50i_a64_read_cntp_tval_el0(void) 372 { 373 return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0(); 374 } 375 376 static u32 notrace sun50i_a64_read_cntv_tval_el0(void) 377 { 378 return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0(); 379 } 380 #endif 381 382 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND 383 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround); 384 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround); 385 386 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0); 387 388 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt, 389 struct clock_event_device *clk) 390 { 391 unsigned long ctrl; 392 u64 cval; 393 394 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 395 ctrl |= ARCH_TIMER_CTRL_ENABLE; 396 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 397 398 if (access == ARCH_TIMER_PHYS_ACCESS) { 399 cval = evt + arch_counter_get_cntpct_stable(); 400 write_sysreg(cval, cntp_cval_el0); 401 } else { 402 cval = evt + arch_counter_get_cntvct_stable(); 403 write_sysreg(cval, cntv_cval_el0); 404 } 405 406 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 407 } 408 409 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt, 410 struct clock_event_device *clk) 411 { 412 erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk); 413 return 0; 414 } 415 416 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt, 417 struct clock_event_device *clk) 418 { 419 erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk); 420 return 0; 421 } 422 423 static const struct arch_timer_erratum_workaround ool_workarounds[] = { 424 #ifdef CONFIG_FSL_ERRATUM_A008585 425 { 426 .match_type = ate_match_dt, 427 .id = "fsl,erratum-a008585", 428 .desc = "Freescale erratum a005858", 429 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0, 430 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0, 431 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0, 432 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0, 433 .set_next_event_phys = erratum_set_next_event_tval_phys, 434 .set_next_event_virt = erratum_set_next_event_tval_virt, 435 }, 436 #endif 437 #ifdef CONFIG_HISILICON_ERRATUM_161010101 438 { 439 .match_type = ate_match_dt, 440 .id = "hisilicon,erratum-161010101", 441 .desc = "HiSilicon erratum 161010101", 442 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0, 443 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0, 444 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0, 445 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, 446 .set_next_event_phys = erratum_set_next_event_tval_phys, 447 .set_next_event_virt = erratum_set_next_event_tval_virt, 448 }, 449 { 450 .match_type = ate_match_acpi_oem_info, 451 .id = hisi_161010101_oem_info, 452 .desc = "HiSilicon erratum 161010101", 453 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0, 454 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0, 455 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0, 456 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, 457 .set_next_event_phys = erratum_set_next_event_tval_phys, 458 .set_next_event_virt = erratum_set_next_event_tval_virt, 459 }, 460 #endif 461 #ifdef CONFIG_ARM64_ERRATUM_858921 462 { 463 .match_type = ate_match_local_cap_id, 464 .id = (void *)ARM64_WORKAROUND_858921, 465 .desc = "ARM erratum 858921", 466 .read_cntpct_el0 = arm64_858921_read_cntpct_el0, 467 .read_cntvct_el0 = arm64_858921_read_cntvct_el0, 468 }, 469 #endif 470 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1 471 { 472 .match_type = ate_match_dt, 473 .id = "allwinner,erratum-unknown1", 474 .desc = "Allwinner erratum UNKNOWN1", 475 .read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0, 476 .read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0, 477 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0, 478 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0, 479 .set_next_event_phys = erratum_set_next_event_tval_phys, 480 .set_next_event_virt = erratum_set_next_event_tval_virt, 481 }, 482 #endif 483 #ifdef CONFIG_ARM64_ERRATUM_1418040 484 { 485 .match_type = ate_match_local_cap_id, 486 .id = (void *)ARM64_WORKAROUND_1418040, 487 .desc = "ARM erratum 1418040", 488 .disable_compat_vdso = true, 489 }, 490 #endif 491 }; 492 493 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *, 494 const void *); 495 496 static 497 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa, 498 const void *arg) 499 { 500 const struct device_node *np = arg; 501 502 return of_property_read_bool(np, wa->id); 503 } 504 505 static 506 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa, 507 const void *arg) 508 { 509 return this_cpu_has_cap((uintptr_t)wa->id); 510 } 511 512 513 static 514 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa, 515 const void *arg) 516 { 517 static const struct ate_acpi_oem_info empty_oem_info = {}; 518 const struct ate_acpi_oem_info *info = wa->id; 519 const struct acpi_table_header *table = arg; 520 521 /* Iterate over the ACPI OEM info array, looking for a match */ 522 while (memcmp(info, &empty_oem_info, sizeof(*info))) { 523 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) && 524 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) && 525 info->oem_revision == table->oem_revision) 526 return true; 527 528 info++; 529 } 530 531 return false; 532 } 533 534 static const struct arch_timer_erratum_workaround * 535 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type, 536 ate_match_fn_t match_fn, 537 void *arg) 538 { 539 int i; 540 541 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) { 542 if (ool_workarounds[i].match_type != type) 543 continue; 544 545 if (match_fn(&ool_workarounds[i], arg)) 546 return &ool_workarounds[i]; 547 } 548 549 return NULL; 550 } 551 552 static 553 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa, 554 bool local) 555 { 556 int i; 557 558 if (local) { 559 __this_cpu_write(timer_unstable_counter_workaround, wa); 560 } else { 561 for_each_possible_cpu(i) 562 per_cpu(timer_unstable_counter_workaround, i) = wa; 563 } 564 565 if (wa->read_cntvct_el0 || wa->read_cntpct_el0) 566 atomic_set(&timer_unstable_counter_workaround_in_use, 1); 567 568 /* 569 * Don't use the vdso fastpath if errata require using the 570 * out-of-line counter accessor. We may change our mind pretty 571 * late in the game (with a per-CPU erratum, for example), so 572 * change both the default value and the vdso itself. 573 */ 574 if (wa->read_cntvct_el0) { 575 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE; 576 vdso_default = VDSO_CLOCKMODE_NONE; 577 } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) { 578 vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT; 579 clocksource_counter.vdso_clock_mode = vdso_default; 580 } 581 } 582 583 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type, 584 void *arg) 585 { 586 const struct arch_timer_erratum_workaround *wa, *__wa; 587 ate_match_fn_t match_fn = NULL; 588 bool local = false; 589 590 switch (type) { 591 case ate_match_dt: 592 match_fn = arch_timer_check_dt_erratum; 593 break; 594 case ate_match_local_cap_id: 595 match_fn = arch_timer_check_local_cap_erratum; 596 local = true; 597 break; 598 case ate_match_acpi_oem_info: 599 match_fn = arch_timer_check_acpi_oem_erratum; 600 break; 601 default: 602 WARN_ON(1); 603 return; 604 } 605 606 wa = arch_timer_iterate_errata(type, match_fn, arg); 607 if (!wa) 608 return; 609 610 __wa = __this_cpu_read(timer_unstable_counter_workaround); 611 if (__wa && wa != __wa) 612 pr_warn("Can't enable workaround for %s (clashes with %s\n)", 613 wa->desc, __wa->desc); 614 615 if (__wa) 616 return; 617 618 arch_timer_enable_workaround(wa, local); 619 pr_info("Enabling %s workaround for %s\n", 620 local ? "local" : "global", wa->desc); 621 } 622 623 static bool arch_timer_this_cpu_has_cntvct_wa(void) 624 { 625 return has_erratum_handler(read_cntvct_el0); 626 } 627 628 static bool arch_timer_counter_has_wa(void) 629 { 630 return atomic_read(&timer_unstable_counter_workaround_in_use); 631 } 632 #else 633 #define arch_timer_check_ool_workaround(t,a) do { } while(0) 634 #define arch_timer_this_cpu_has_cntvct_wa() ({false;}) 635 #define arch_timer_counter_has_wa() ({false;}) 636 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */ 637 638 static __always_inline irqreturn_t timer_handler(const int access, 639 struct clock_event_device *evt) 640 { 641 unsigned long ctrl; 642 643 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt); 644 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { 645 ctrl |= ARCH_TIMER_CTRL_IT_MASK; 646 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt); 647 evt->event_handler(evt); 648 return IRQ_HANDLED; 649 } 650 651 return IRQ_NONE; 652 } 653 654 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id) 655 { 656 struct clock_event_device *evt = dev_id; 657 658 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt); 659 } 660 661 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id) 662 { 663 struct clock_event_device *evt = dev_id; 664 665 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt); 666 } 667 668 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id) 669 { 670 struct clock_event_device *evt = dev_id; 671 672 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt); 673 } 674 675 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id) 676 { 677 struct clock_event_device *evt = dev_id; 678 679 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt); 680 } 681 682 static __always_inline int timer_shutdown(const int access, 683 struct clock_event_device *clk) 684 { 685 unsigned long ctrl; 686 687 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 688 ctrl &= ~ARCH_TIMER_CTRL_ENABLE; 689 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 690 691 return 0; 692 } 693 694 static int arch_timer_shutdown_virt(struct clock_event_device *clk) 695 { 696 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk); 697 } 698 699 static int arch_timer_shutdown_phys(struct clock_event_device *clk) 700 { 701 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk); 702 } 703 704 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk) 705 { 706 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk); 707 } 708 709 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk) 710 { 711 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk); 712 } 713 714 static __always_inline void set_next_event(const int access, unsigned long evt, 715 struct clock_event_device *clk) 716 { 717 unsigned long ctrl; 718 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 719 ctrl |= ARCH_TIMER_CTRL_ENABLE; 720 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 721 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk); 722 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 723 } 724 725 static int arch_timer_set_next_event_virt(unsigned long evt, 726 struct clock_event_device *clk) 727 { 728 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk); 729 return 0; 730 } 731 732 static int arch_timer_set_next_event_phys(unsigned long evt, 733 struct clock_event_device *clk) 734 { 735 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk); 736 return 0; 737 } 738 739 static int arch_timer_set_next_event_virt_mem(unsigned long evt, 740 struct clock_event_device *clk) 741 { 742 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk); 743 return 0; 744 } 745 746 static int arch_timer_set_next_event_phys_mem(unsigned long evt, 747 struct clock_event_device *clk) 748 { 749 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk); 750 return 0; 751 } 752 753 static void __arch_timer_setup(unsigned type, 754 struct clock_event_device *clk) 755 { 756 clk->features = CLOCK_EVT_FEAT_ONESHOT; 757 758 if (type == ARCH_TIMER_TYPE_CP15) { 759 typeof(clk->set_next_event) sne; 760 761 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL); 762 763 if (arch_timer_c3stop) 764 clk->features |= CLOCK_EVT_FEAT_C3STOP; 765 clk->name = "arch_sys_timer"; 766 clk->rating = 450; 767 clk->cpumask = cpumask_of(smp_processor_id()); 768 clk->irq = arch_timer_ppi[arch_timer_uses_ppi]; 769 switch (arch_timer_uses_ppi) { 770 case ARCH_TIMER_VIRT_PPI: 771 clk->set_state_shutdown = arch_timer_shutdown_virt; 772 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt; 773 sne = erratum_handler(set_next_event_virt); 774 break; 775 case ARCH_TIMER_PHYS_SECURE_PPI: 776 case ARCH_TIMER_PHYS_NONSECURE_PPI: 777 case ARCH_TIMER_HYP_PPI: 778 clk->set_state_shutdown = arch_timer_shutdown_phys; 779 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys; 780 sne = erratum_handler(set_next_event_phys); 781 break; 782 default: 783 BUG(); 784 } 785 786 clk->set_next_event = sne; 787 } else { 788 clk->features |= CLOCK_EVT_FEAT_DYNIRQ; 789 clk->name = "arch_mem_timer"; 790 clk->rating = 400; 791 clk->cpumask = cpu_possible_mask; 792 if (arch_timer_mem_use_virtual) { 793 clk->set_state_shutdown = arch_timer_shutdown_virt_mem; 794 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem; 795 clk->set_next_event = 796 arch_timer_set_next_event_virt_mem; 797 } else { 798 clk->set_state_shutdown = arch_timer_shutdown_phys_mem; 799 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem; 800 clk->set_next_event = 801 arch_timer_set_next_event_phys_mem; 802 } 803 } 804 805 clk->set_state_shutdown(clk); 806 807 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff); 808 } 809 810 static void arch_timer_evtstrm_enable(int divider) 811 { 812 u32 cntkctl = arch_timer_get_cntkctl(); 813 814 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK; 815 /* Set the divider and enable virtual event stream */ 816 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT) 817 | ARCH_TIMER_VIRT_EVT_EN; 818 arch_timer_set_cntkctl(cntkctl); 819 arch_timer_set_evtstrm_feature(); 820 cpumask_set_cpu(smp_processor_id(), &evtstrm_available); 821 } 822 823 static void arch_timer_configure_evtstream(void) 824 { 825 int evt_stream_div, lsb; 826 827 /* 828 * As the event stream can at most be generated at half the frequency 829 * of the counter, use half the frequency when computing the divider. 830 */ 831 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2; 832 833 /* 834 * Find the closest power of two to the divisor. If the adjacent bit 835 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1). 836 */ 837 lsb = fls(evt_stream_div) - 1; 838 if (lsb > 0 && (evt_stream_div & BIT(lsb - 1))) 839 lsb++; 840 841 /* enable event stream */ 842 arch_timer_evtstrm_enable(max(0, min(lsb, 15))); 843 } 844 845 static void arch_counter_set_user_access(void) 846 { 847 u32 cntkctl = arch_timer_get_cntkctl(); 848 849 /* Disable user access to the timers and both counters */ 850 /* Also disable virtual event stream */ 851 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN 852 | ARCH_TIMER_USR_VT_ACCESS_EN 853 | ARCH_TIMER_USR_VCT_ACCESS_EN 854 | ARCH_TIMER_VIRT_EVT_EN 855 | ARCH_TIMER_USR_PCT_ACCESS_EN); 856 857 /* 858 * Enable user access to the virtual counter if it doesn't 859 * need to be workaround. The vdso may have been already 860 * disabled though. 861 */ 862 if (arch_timer_this_cpu_has_cntvct_wa()) 863 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id()); 864 else 865 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN; 866 867 arch_timer_set_cntkctl(cntkctl); 868 } 869 870 static bool arch_timer_has_nonsecure_ppi(void) 871 { 872 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI && 873 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 874 } 875 876 static u32 check_ppi_trigger(int irq) 877 { 878 u32 flags = irq_get_trigger_type(irq); 879 880 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) { 881 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq); 882 pr_warn("WARNING: Please fix your firmware\n"); 883 flags = IRQF_TRIGGER_LOW; 884 } 885 886 return flags; 887 } 888 889 static int arch_timer_starting_cpu(unsigned int cpu) 890 { 891 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 892 u32 flags; 893 894 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk); 895 896 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]); 897 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags); 898 899 if (arch_timer_has_nonsecure_ppi()) { 900 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 901 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], 902 flags); 903 } 904 905 arch_counter_set_user_access(); 906 if (evtstrm_enable) 907 arch_timer_configure_evtstream(); 908 909 return 0; 910 } 911 912 static int validate_timer_rate(void) 913 { 914 if (!arch_timer_rate) 915 return -EINVAL; 916 917 /* Arch timer frequency < 1MHz can cause trouble */ 918 WARN_ON(arch_timer_rate < 1000000); 919 920 return 0; 921 } 922 923 /* 924 * For historical reasons, when probing with DT we use whichever (non-zero) 925 * rate was probed first, and don't verify that others match. If the first node 926 * probed has a clock-frequency property, this overrides the HW register. 927 */ 928 static void arch_timer_of_configure_rate(u32 rate, struct device_node *np) 929 { 930 /* Who has more than one independent system counter? */ 931 if (arch_timer_rate) 932 return; 933 934 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) 935 arch_timer_rate = rate; 936 937 /* Check the timer frequency. */ 938 if (validate_timer_rate()) 939 pr_warn("frequency not available\n"); 940 } 941 942 static void arch_timer_banner(unsigned type) 943 { 944 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n", 945 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "", 946 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? 947 " and " : "", 948 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "", 949 (unsigned long)arch_timer_rate / 1000000, 950 (unsigned long)(arch_timer_rate / 10000) % 100, 951 type & ARCH_TIMER_TYPE_CP15 ? 952 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" : 953 "", 954 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "", 955 type & ARCH_TIMER_TYPE_MEM ? 956 arch_timer_mem_use_virtual ? "virt" : "phys" : 957 ""); 958 } 959 960 u32 arch_timer_get_rate(void) 961 { 962 return arch_timer_rate; 963 } 964 965 bool arch_timer_evtstrm_available(void) 966 { 967 /* 968 * We might get called from a preemptible context. This is fine 969 * because availability of the event stream should be always the same 970 * for a preemptible context and context where we might resume a task. 971 */ 972 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available); 973 } 974 975 static u64 arch_counter_get_cntvct_mem(void) 976 { 977 u32 vct_lo, vct_hi, tmp_hi; 978 979 do { 980 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); 981 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO); 982 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); 983 } while (vct_hi != tmp_hi); 984 985 return ((u64) vct_hi << 32) | vct_lo; 986 } 987 988 static struct arch_timer_kvm_info arch_timer_kvm_info; 989 990 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void) 991 { 992 return &arch_timer_kvm_info; 993 } 994 995 static void __init arch_counter_register(unsigned type) 996 { 997 u64 start_count; 998 999 /* Register the CP15 based counter if we have one */ 1000 if (type & ARCH_TIMER_TYPE_CP15) { 1001 u64 (*rd)(void); 1002 1003 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) || 1004 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) { 1005 if (arch_timer_counter_has_wa()) 1006 rd = arch_counter_get_cntvct_stable; 1007 else 1008 rd = arch_counter_get_cntvct; 1009 } else { 1010 if (arch_timer_counter_has_wa()) 1011 rd = arch_counter_get_cntpct_stable; 1012 else 1013 rd = arch_counter_get_cntpct; 1014 } 1015 1016 arch_timer_read_counter = rd; 1017 clocksource_counter.vdso_clock_mode = vdso_default; 1018 } else { 1019 arch_timer_read_counter = arch_counter_get_cntvct_mem; 1020 } 1021 1022 if (!arch_counter_suspend_stop) 1023 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; 1024 start_count = arch_timer_read_counter(); 1025 clocksource_register_hz(&clocksource_counter, arch_timer_rate); 1026 cyclecounter.mult = clocksource_counter.mult; 1027 cyclecounter.shift = clocksource_counter.shift; 1028 timecounter_init(&arch_timer_kvm_info.timecounter, 1029 &cyclecounter, start_count); 1030 1031 /* 56 bits minimum, so we assume worst case rollover */ 1032 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate); 1033 } 1034 1035 static void arch_timer_stop(struct clock_event_device *clk) 1036 { 1037 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id()); 1038 1039 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]); 1040 if (arch_timer_has_nonsecure_ppi()) 1041 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 1042 1043 clk->set_state_shutdown(clk); 1044 } 1045 1046 static int arch_timer_dying_cpu(unsigned int cpu) 1047 { 1048 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 1049 1050 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available); 1051 1052 arch_timer_stop(clk); 1053 return 0; 1054 } 1055 1056 #ifdef CONFIG_CPU_PM 1057 static DEFINE_PER_CPU(unsigned long, saved_cntkctl); 1058 static int arch_timer_cpu_pm_notify(struct notifier_block *self, 1059 unsigned long action, void *hcpu) 1060 { 1061 if (action == CPU_PM_ENTER) { 1062 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl()); 1063 1064 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available); 1065 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) { 1066 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl)); 1067 1068 if (arch_timer_have_evtstrm_feature()) 1069 cpumask_set_cpu(smp_processor_id(), &evtstrm_available); 1070 } 1071 return NOTIFY_OK; 1072 } 1073 1074 static struct notifier_block arch_timer_cpu_pm_notifier = { 1075 .notifier_call = arch_timer_cpu_pm_notify, 1076 }; 1077 1078 static int __init arch_timer_cpu_pm_init(void) 1079 { 1080 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier); 1081 } 1082 1083 static void __init arch_timer_cpu_pm_deinit(void) 1084 { 1085 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier)); 1086 } 1087 1088 #else 1089 static int __init arch_timer_cpu_pm_init(void) 1090 { 1091 return 0; 1092 } 1093 1094 static void __init arch_timer_cpu_pm_deinit(void) 1095 { 1096 } 1097 #endif 1098 1099 static int __init arch_timer_register(void) 1100 { 1101 int err; 1102 int ppi; 1103 1104 arch_timer_evt = alloc_percpu(struct clock_event_device); 1105 if (!arch_timer_evt) { 1106 err = -ENOMEM; 1107 goto out; 1108 } 1109 1110 ppi = arch_timer_ppi[arch_timer_uses_ppi]; 1111 switch (arch_timer_uses_ppi) { 1112 case ARCH_TIMER_VIRT_PPI: 1113 err = request_percpu_irq(ppi, arch_timer_handler_virt, 1114 "arch_timer", arch_timer_evt); 1115 break; 1116 case ARCH_TIMER_PHYS_SECURE_PPI: 1117 case ARCH_TIMER_PHYS_NONSECURE_PPI: 1118 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1119 "arch_timer", arch_timer_evt); 1120 if (!err && arch_timer_has_nonsecure_ppi()) { 1121 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]; 1122 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1123 "arch_timer", arch_timer_evt); 1124 if (err) 1125 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI], 1126 arch_timer_evt); 1127 } 1128 break; 1129 case ARCH_TIMER_HYP_PPI: 1130 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1131 "arch_timer", arch_timer_evt); 1132 break; 1133 default: 1134 BUG(); 1135 } 1136 1137 if (err) { 1138 pr_err("can't register interrupt %d (%d)\n", ppi, err); 1139 goto out_free; 1140 } 1141 1142 err = arch_timer_cpu_pm_init(); 1143 if (err) 1144 goto out_unreg_notify; 1145 1146 /* Register and immediately configure the timer on the boot CPU */ 1147 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING, 1148 "clockevents/arm/arch_timer:starting", 1149 arch_timer_starting_cpu, arch_timer_dying_cpu); 1150 if (err) 1151 goto out_unreg_cpupm; 1152 return 0; 1153 1154 out_unreg_cpupm: 1155 arch_timer_cpu_pm_deinit(); 1156 1157 out_unreg_notify: 1158 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt); 1159 if (arch_timer_has_nonsecure_ppi()) 1160 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], 1161 arch_timer_evt); 1162 1163 out_free: 1164 free_percpu(arch_timer_evt); 1165 out: 1166 return err; 1167 } 1168 1169 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq) 1170 { 1171 int ret; 1172 irq_handler_t func; 1173 struct arch_timer *t; 1174 1175 t = kzalloc(sizeof(*t), GFP_KERNEL); 1176 if (!t) 1177 return -ENOMEM; 1178 1179 t->base = base; 1180 t->evt.irq = irq; 1181 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt); 1182 1183 if (arch_timer_mem_use_virtual) 1184 func = arch_timer_handler_virt_mem; 1185 else 1186 func = arch_timer_handler_phys_mem; 1187 1188 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt); 1189 if (ret) { 1190 pr_err("Failed to request mem timer irq\n"); 1191 kfree(t); 1192 } 1193 1194 return ret; 1195 } 1196 1197 static const struct of_device_id arch_timer_of_match[] __initconst = { 1198 { .compatible = "arm,armv7-timer", }, 1199 { .compatible = "arm,armv8-timer", }, 1200 {}, 1201 }; 1202 1203 static const struct of_device_id arch_timer_mem_of_match[] __initconst = { 1204 { .compatible = "arm,armv7-timer-mem", }, 1205 {}, 1206 }; 1207 1208 static bool __init arch_timer_needs_of_probing(void) 1209 { 1210 struct device_node *dn; 1211 bool needs_probing = false; 1212 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM; 1213 1214 /* We have two timers, and both device-tree nodes are probed. */ 1215 if ((arch_timers_present & mask) == mask) 1216 return false; 1217 1218 /* 1219 * Only one type of timer is probed, 1220 * check if we have another type of timer node in device-tree. 1221 */ 1222 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) 1223 dn = of_find_matching_node(NULL, arch_timer_mem_of_match); 1224 else 1225 dn = of_find_matching_node(NULL, arch_timer_of_match); 1226 1227 if (dn && of_device_is_available(dn)) 1228 needs_probing = true; 1229 1230 of_node_put(dn); 1231 1232 return needs_probing; 1233 } 1234 1235 static int __init arch_timer_common_init(void) 1236 { 1237 arch_timer_banner(arch_timers_present); 1238 arch_counter_register(arch_timers_present); 1239 return arch_timer_arch_init(); 1240 } 1241 1242 /** 1243 * arch_timer_select_ppi() - Select suitable PPI for the current system. 1244 * 1245 * If HYP mode is available, we know that the physical timer 1246 * has been configured to be accessible from PL1. Use it, so 1247 * that a guest can use the virtual timer instead. 1248 * 1249 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE 1250 * accesses to CNTP_*_EL1 registers are silently redirected to 1251 * their CNTHP_*_EL2 counterparts, and use a different PPI 1252 * number. 1253 * 1254 * If no interrupt provided for virtual timer, we'll have to 1255 * stick to the physical timer. It'd better be accessible... 1256 * For arm64 we never use the secure interrupt. 1257 * 1258 * Return: a suitable PPI type for the current system. 1259 */ 1260 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void) 1261 { 1262 if (is_kernel_in_hyp_mode()) 1263 return ARCH_TIMER_HYP_PPI; 1264 1265 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI]) 1266 return ARCH_TIMER_VIRT_PPI; 1267 1268 if (IS_ENABLED(CONFIG_ARM64)) 1269 return ARCH_TIMER_PHYS_NONSECURE_PPI; 1270 1271 return ARCH_TIMER_PHYS_SECURE_PPI; 1272 } 1273 1274 static void __init arch_timer_populate_kvm_info(void) 1275 { 1276 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI]; 1277 if (is_kernel_in_hyp_mode()) 1278 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]; 1279 } 1280 1281 static int __init arch_timer_of_init(struct device_node *np) 1282 { 1283 int i, ret; 1284 u32 rate; 1285 1286 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { 1287 pr_warn("multiple nodes in dt, skipping\n"); 1288 return 0; 1289 } 1290 1291 arch_timers_present |= ARCH_TIMER_TYPE_CP15; 1292 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) 1293 arch_timer_ppi[i] = irq_of_parse_and_map(np, i); 1294 1295 arch_timer_populate_kvm_info(); 1296 1297 rate = arch_timer_get_cntfrq(); 1298 arch_timer_of_configure_rate(rate, np); 1299 1300 arch_timer_c3stop = !of_property_read_bool(np, "always-on"); 1301 1302 /* Check for globally applicable workarounds */ 1303 arch_timer_check_ool_workaround(ate_match_dt, np); 1304 1305 /* 1306 * If we cannot rely on firmware initializing the timer registers then 1307 * we should use the physical timers instead. 1308 */ 1309 if (IS_ENABLED(CONFIG_ARM) && 1310 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured")) 1311 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI; 1312 else 1313 arch_timer_uses_ppi = arch_timer_select_ppi(); 1314 1315 if (!arch_timer_ppi[arch_timer_uses_ppi]) { 1316 pr_err("No interrupt available, giving up\n"); 1317 return -EINVAL; 1318 } 1319 1320 /* On some systems, the counter stops ticking when in suspend. */ 1321 arch_counter_suspend_stop = of_property_read_bool(np, 1322 "arm,no-tick-in-suspend"); 1323 1324 ret = arch_timer_register(); 1325 if (ret) 1326 return ret; 1327 1328 if (arch_timer_needs_of_probing()) 1329 return 0; 1330 1331 return arch_timer_common_init(); 1332 } 1333 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init); 1334 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init); 1335 1336 static u32 __init 1337 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame) 1338 { 1339 void __iomem *base; 1340 u32 rate; 1341 1342 base = ioremap(frame->cntbase, frame->size); 1343 if (!base) { 1344 pr_err("Unable to map frame @ %pa\n", &frame->cntbase); 1345 return 0; 1346 } 1347 1348 rate = readl_relaxed(base + CNTFRQ); 1349 1350 iounmap(base); 1351 1352 return rate; 1353 } 1354 1355 static struct arch_timer_mem_frame * __init 1356 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem) 1357 { 1358 struct arch_timer_mem_frame *frame, *best_frame = NULL; 1359 void __iomem *cntctlbase; 1360 u32 cnttidr; 1361 int i; 1362 1363 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size); 1364 if (!cntctlbase) { 1365 pr_err("Can't map CNTCTLBase @ %pa\n", 1366 &timer_mem->cntctlbase); 1367 return NULL; 1368 } 1369 1370 cnttidr = readl_relaxed(cntctlbase + CNTTIDR); 1371 1372 /* 1373 * Try to find a virtual capable frame. Otherwise fall back to a 1374 * physical capable frame. 1375 */ 1376 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) { 1377 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT | 1378 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT; 1379 1380 frame = &timer_mem->frame[i]; 1381 if (!frame->valid) 1382 continue; 1383 1384 /* Try enabling everything, and see what sticks */ 1385 writel_relaxed(cntacr, cntctlbase + CNTACR(i)); 1386 cntacr = readl_relaxed(cntctlbase + CNTACR(i)); 1387 1388 if ((cnttidr & CNTTIDR_VIRT(i)) && 1389 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) { 1390 best_frame = frame; 1391 arch_timer_mem_use_virtual = true; 1392 break; 1393 } 1394 1395 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT)) 1396 continue; 1397 1398 best_frame = frame; 1399 } 1400 1401 iounmap(cntctlbase); 1402 1403 return best_frame; 1404 } 1405 1406 static int __init 1407 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame) 1408 { 1409 void __iomem *base; 1410 int ret, irq = 0; 1411 1412 if (arch_timer_mem_use_virtual) 1413 irq = frame->virt_irq; 1414 else 1415 irq = frame->phys_irq; 1416 1417 if (!irq) { 1418 pr_err("Frame missing %s irq.\n", 1419 arch_timer_mem_use_virtual ? "virt" : "phys"); 1420 return -EINVAL; 1421 } 1422 1423 if (!request_mem_region(frame->cntbase, frame->size, 1424 "arch_mem_timer")) 1425 return -EBUSY; 1426 1427 base = ioremap(frame->cntbase, frame->size); 1428 if (!base) { 1429 pr_err("Can't map frame's registers\n"); 1430 return -ENXIO; 1431 } 1432 1433 ret = arch_timer_mem_register(base, irq); 1434 if (ret) { 1435 iounmap(base); 1436 return ret; 1437 } 1438 1439 arch_counter_base = base; 1440 arch_timers_present |= ARCH_TIMER_TYPE_MEM; 1441 1442 return 0; 1443 } 1444 1445 static int __init arch_timer_mem_of_init(struct device_node *np) 1446 { 1447 struct arch_timer_mem *timer_mem; 1448 struct arch_timer_mem_frame *frame; 1449 struct device_node *frame_node; 1450 struct resource res; 1451 int ret = -EINVAL; 1452 u32 rate; 1453 1454 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL); 1455 if (!timer_mem) 1456 return -ENOMEM; 1457 1458 if (of_address_to_resource(np, 0, &res)) 1459 goto out; 1460 timer_mem->cntctlbase = res.start; 1461 timer_mem->size = resource_size(&res); 1462 1463 for_each_available_child_of_node(np, frame_node) { 1464 u32 n; 1465 struct arch_timer_mem_frame *frame; 1466 1467 if (of_property_read_u32(frame_node, "frame-number", &n)) { 1468 pr_err(FW_BUG "Missing frame-number.\n"); 1469 of_node_put(frame_node); 1470 goto out; 1471 } 1472 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) { 1473 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n", 1474 ARCH_TIMER_MEM_MAX_FRAMES - 1); 1475 of_node_put(frame_node); 1476 goto out; 1477 } 1478 frame = &timer_mem->frame[n]; 1479 1480 if (frame->valid) { 1481 pr_err(FW_BUG "Duplicated frame-number.\n"); 1482 of_node_put(frame_node); 1483 goto out; 1484 } 1485 1486 if (of_address_to_resource(frame_node, 0, &res)) { 1487 of_node_put(frame_node); 1488 goto out; 1489 } 1490 frame->cntbase = res.start; 1491 frame->size = resource_size(&res); 1492 1493 frame->virt_irq = irq_of_parse_and_map(frame_node, 1494 ARCH_TIMER_VIRT_SPI); 1495 frame->phys_irq = irq_of_parse_and_map(frame_node, 1496 ARCH_TIMER_PHYS_SPI); 1497 1498 frame->valid = true; 1499 } 1500 1501 frame = arch_timer_mem_find_best_frame(timer_mem); 1502 if (!frame) { 1503 pr_err("Unable to find a suitable frame in timer @ %pa\n", 1504 &timer_mem->cntctlbase); 1505 ret = -EINVAL; 1506 goto out; 1507 } 1508 1509 rate = arch_timer_mem_frame_get_cntfrq(frame); 1510 arch_timer_of_configure_rate(rate, np); 1511 1512 ret = arch_timer_mem_frame_register(frame); 1513 if (!ret && !arch_timer_needs_of_probing()) 1514 ret = arch_timer_common_init(); 1515 out: 1516 kfree(timer_mem); 1517 return ret; 1518 } 1519 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem", 1520 arch_timer_mem_of_init); 1521 1522 #ifdef CONFIG_ACPI_GTDT 1523 static int __init 1524 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem) 1525 { 1526 struct arch_timer_mem_frame *frame; 1527 u32 rate; 1528 int i; 1529 1530 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) { 1531 frame = &timer_mem->frame[i]; 1532 1533 if (!frame->valid) 1534 continue; 1535 1536 rate = arch_timer_mem_frame_get_cntfrq(frame); 1537 if (rate == arch_timer_rate) 1538 continue; 1539 1540 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n", 1541 &frame->cntbase, 1542 (unsigned long)rate, (unsigned long)arch_timer_rate); 1543 1544 return -EINVAL; 1545 } 1546 1547 return 0; 1548 } 1549 1550 static int __init arch_timer_mem_acpi_init(int platform_timer_count) 1551 { 1552 struct arch_timer_mem *timers, *timer; 1553 struct arch_timer_mem_frame *frame, *best_frame = NULL; 1554 int timer_count, i, ret = 0; 1555 1556 timers = kcalloc(platform_timer_count, sizeof(*timers), 1557 GFP_KERNEL); 1558 if (!timers) 1559 return -ENOMEM; 1560 1561 ret = acpi_arch_timer_mem_init(timers, &timer_count); 1562 if (ret || !timer_count) 1563 goto out; 1564 1565 /* 1566 * While unlikely, it's theoretically possible that none of the frames 1567 * in a timer expose the combination of feature we want. 1568 */ 1569 for (i = 0; i < timer_count; i++) { 1570 timer = &timers[i]; 1571 1572 frame = arch_timer_mem_find_best_frame(timer); 1573 if (!best_frame) 1574 best_frame = frame; 1575 1576 ret = arch_timer_mem_verify_cntfrq(timer); 1577 if (ret) { 1578 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n"); 1579 goto out; 1580 } 1581 1582 if (!best_frame) /* implies !frame */ 1583 /* 1584 * Only complain about missing suitable frames if we 1585 * haven't already found one in a previous iteration. 1586 */ 1587 pr_err("Unable to find a suitable frame in timer @ %pa\n", 1588 &timer->cntctlbase); 1589 } 1590 1591 if (best_frame) 1592 ret = arch_timer_mem_frame_register(best_frame); 1593 out: 1594 kfree(timers); 1595 return ret; 1596 } 1597 1598 /* Initialize per-processor generic timer and memory-mapped timer(if present) */ 1599 static int __init arch_timer_acpi_init(struct acpi_table_header *table) 1600 { 1601 int ret, platform_timer_count; 1602 1603 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { 1604 pr_warn("already initialized, skipping\n"); 1605 return -EINVAL; 1606 } 1607 1608 arch_timers_present |= ARCH_TIMER_TYPE_CP15; 1609 1610 ret = acpi_gtdt_init(table, &platform_timer_count); 1611 if (ret) 1612 return ret; 1613 1614 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] = 1615 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI); 1616 1617 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] = 1618 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI); 1619 1620 arch_timer_ppi[ARCH_TIMER_HYP_PPI] = 1621 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI); 1622 1623 arch_timer_populate_kvm_info(); 1624 1625 /* 1626 * When probing via ACPI, we have no mechanism to override the sysreg 1627 * CNTFRQ value. This *must* be correct. 1628 */ 1629 arch_timer_rate = arch_timer_get_cntfrq(); 1630 ret = validate_timer_rate(); 1631 if (ret) { 1632 pr_err(FW_BUG "frequency not available.\n"); 1633 return ret; 1634 } 1635 1636 arch_timer_uses_ppi = arch_timer_select_ppi(); 1637 if (!arch_timer_ppi[arch_timer_uses_ppi]) { 1638 pr_err("No interrupt available, giving up\n"); 1639 return -EINVAL; 1640 } 1641 1642 /* Always-on capability */ 1643 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi); 1644 1645 /* Check for globally applicable workarounds */ 1646 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table); 1647 1648 ret = arch_timer_register(); 1649 if (ret) 1650 return ret; 1651 1652 if (platform_timer_count && 1653 arch_timer_mem_acpi_init(platform_timer_count)) 1654 pr_err("Failed to initialize memory-mapped timer.\n"); 1655 1656 return arch_timer_common_init(); 1657 } 1658 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init); 1659 #endif 1660