1 /* 2 * linux/drivers/clocksource/arm_arch_timer.c 3 * 4 * Copyright (C) 2011 ARM Ltd. 5 * All Rights Reserved 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #define pr_fmt(fmt) "arch_timer: " fmt 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/device.h> 17 #include <linux/smp.h> 18 #include <linux/cpu.h> 19 #include <linux/cpu_pm.h> 20 #include <linux/clockchips.h> 21 #include <linux/clocksource.h> 22 #include <linux/interrupt.h> 23 #include <linux/of_irq.h> 24 #include <linux/of_address.h> 25 #include <linux/io.h> 26 #include <linux/slab.h> 27 #include <linux/sched/clock.h> 28 #include <linux/sched_clock.h> 29 #include <linux/acpi.h> 30 31 #include <asm/arch_timer.h> 32 #include <asm/virt.h> 33 34 #include <clocksource/arm_arch_timer.h> 35 36 #define CNTTIDR 0x08 37 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4)) 38 39 #define CNTACR(n) (0x40 + ((n) * 4)) 40 #define CNTACR_RPCT BIT(0) 41 #define CNTACR_RVCT BIT(1) 42 #define CNTACR_RFRQ BIT(2) 43 #define CNTACR_RVOFF BIT(3) 44 #define CNTACR_RWVT BIT(4) 45 #define CNTACR_RWPT BIT(5) 46 47 #define CNTVCT_LO 0x08 48 #define CNTVCT_HI 0x0c 49 #define CNTFRQ 0x10 50 #define CNTP_TVAL 0x28 51 #define CNTP_CTL 0x2c 52 #define CNTV_TVAL 0x38 53 #define CNTV_CTL 0x3c 54 55 static unsigned arch_timers_present __initdata; 56 57 static void __iomem *arch_counter_base; 58 59 struct arch_timer { 60 void __iomem *base; 61 struct clock_event_device evt; 62 }; 63 64 #define to_arch_timer(e) container_of(e, struct arch_timer, evt) 65 66 static u32 arch_timer_rate; 67 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI]; 68 69 static struct clock_event_device __percpu *arch_timer_evt; 70 71 static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI; 72 static bool arch_timer_c3stop; 73 static bool arch_timer_mem_use_virtual; 74 static bool arch_counter_suspend_stop; 75 static bool vdso_default = true; 76 77 static cpumask_t evtstrm_available = CPU_MASK_NONE; 78 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM); 79 80 static int __init early_evtstrm_cfg(char *buf) 81 { 82 return strtobool(buf, &evtstrm_enable); 83 } 84 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg); 85 86 /* 87 * Architected system timer support. 88 */ 89 90 static __always_inline 91 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val, 92 struct clock_event_device *clk) 93 { 94 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 95 struct arch_timer *timer = to_arch_timer(clk); 96 switch (reg) { 97 case ARCH_TIMER_REG_CTRL: 98 writel_relaxed(val, timer->base + CNTP_CTL); 99 break; 100 case ARCH_TIMER_REG_TVAL: 101 writel_relaxed(val, timer->base + CNTP_TVAL); 102 break; 103 } 104 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 105 struct arch_timer *timer = to_arch_timer(clk); 106 switch (reg) { 107 case ARCH_TIMER_REG_CTRL: 108 writel_relaxed(val, timer->base + CNTV_CTL); 109 break; 110 case ARCH_TIMER_REG_TVAL: 111 writel_relaxed(val, timer->base + CNTV_TVAL); 112 break; 113 } 114 } else { 115 arch_timer_reg_write_cp15(access, reg, val); 116 } 117 } 118 119 static __always_inline 120 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg, 121 struct clock_event_device *clk) 122 { 123 u32 val; 124 125 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 126 struct arch_timer *timer = to_arch_timer(clk); 127 switch (reg) { 128 case ARCH_TIMER_REG_CTRL: 129 val = readl_relaxed(timer->base + CNTP_CTL); 130 break; 131 case ARCH_TIMER_REG_TVAL: 132 val = readl_relaxed(timer->base + CNTP_TVAL); 133 break; 134 } 135 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 136 struct arch_timer *timer = to_arch_timer(clk); 137 switch (reg) { 138 case ARCH_TIMER_REG_CTRL: 139 val = readl_relaxed(timer->base + CNTV_CTL); 140 break; 141 case ARCH_TIMER_REG_TVAL: 142 val = readl_relaxed(timer->base + CNTV_TVAL); 143 break; 144 } 145 } else { 146 val = arch_timer_reg_read_cp15(access, reg); 147 } 148 149 return val; 150 } 151 152 /* 153 * Default to cp15 based access because arm64 uses this function for 154 * sched_clock() before DT is probed and the cp15 method is guaranteed 155 * to exist on arm64. arm doesn't use this before DT is probed so even 156 * if we don't have the cp15 accessors we won't have a problem. 157 */ 158 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct; 159 EXPORT_SYMBOL_GPL(arch_timer_read_counter); 160 161 static u64 arch_counter_read(struct clocksource *cs) 162 { 163 return arch_timer_read_counter(); 164 } 165 166 static u64 arch_counter_read_cc(const struct cyclecounter *cc) 167 { 168 return arch_timer_read_counter(); 169 } 170 171 static struct clocksource clocksource_counter = { 172 .name = "arch_sys_counter", 173 .rating = 400, 174 .read = arch_counter_read, 175 .mask = CLOCKSOURCE_MASK(56), 176 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 177 }; 178 179 static struct cyclecounter cyclecounter __ro_after_init = { 180 .read = arch_counter_read_cc, 181 .mask = CLOCKSOURCE_MASK(56), 182 }; 183 184 struct ate_acpi_oem_info { 185 char oem_id[ACPI_OEM_ID_SIZE + 1]; 186 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1]; 187 u32 oem_revision; 188 }; 189 190 #ifdef CONFIG_FSL_ERRATUM_A008585 191 /* 192 * The number of retries is an arbitrary value well beyond the highest number 193 * of iterations the loop has been observed to take. 194 */ 195 #define __fsl_a008585_read_reg(reg) ({ \ 196 u64 _old, _new; \ 197 int _retries = 200; \ 198 \ 199 do { \ 200 _old = read_sysreg(reg); \ 201 _new = read_sysreg(reg); \ 202 _retries--; \ 203 } while (unlikely(_old != _new) && _retries); \ 204 \ 205 WARN_ON_ONCE(!_retries); \ 206 _new; \ 207 }) 208 209 static u32 notrace fsl_a008585_read_cntp_tval_el0(void) 210 { 211 return __fsl_a008585_read_reg(cntp_tval_el0); 212 } 213 214 static u32 notrace fsl_a008585_read_cntv_tval_el0(void) 215 { 216 return __fsl_a008585_read_reg(cntv_tval_el0); 217 } 218 219 static u64 notrace fsl_a008585_read_cntpct_el0(void) 220 { 221 return __fsl_a008585_read_reg(cntpct_el0); 222 } 223 224 static u64 notrace fsl_a008585_read_cntvct_el0(void) 225 { 226 return __fsl_a008585_read_reg(cntvct_el0); 227 } 228 #endif 229 230 #ifdef CONFIG_HISILICON_ERRATUM_161010101 231 /* 232 * Verify whether the value of the second read is larger than the first by 233 * less than 32 is the only way to confirm the value is correct, so clear the 234 * lower 5 bits to check whether the difference is greater than 32 or not. 235 * Theoretically the erratum should not occur more than twice in succession 236 * when reading the system counter, but it is possible that some interrupts 237 * may lead to more than twice read errors, triggering the warning, so setting 238 * the number of retries far beyond the number of iterations the loop has been 239 * observed to take. 240 */ 241 #define __hisi_161010101_read_reg(reg) ({ \ 242 u64 _old, _new; \ 243 int _retries = 50; \ 244 \ 245 do { \ 246 _old = read_sysreg(reg); \ 247 _new = read_sysreg(reg); \ 248 _retries--; \ 249 } while (unlikely((_new - _old) >> 5) && _retries); \ 250 \ 251 WARN_ON_ONCE(!_retries); \ 252 _new; \ 253 }) 254 255 static u32 notrace hisi_161010101_read_cntp_tval_el0(void) 256 { 257 return __hisi_161010101_read_reg(cntp_tval_el0); 258 } 259 260 static u32 notrace hisi_161010101_read_cntv_tval_el0(void) 261 { 262 return __hisi_161010101_read_reg(cntv_tval_el0); 263 } 264 265 static u64 notrace hisi_161010101_read_cntpct_el0(void) 266 { 267 return __hisi_161010101_read_reg(cntpct_el0); 268 } 269 270 static u64 notrace hisi_161010101_read_cntvct_el0(void) 271 { 272 return __hisi_161010101_read_reg(cntvct_el0); 273 } 274 275 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = { 276 /* 277 * Note that trailing spaces are required to properly match 278 * the OEM table information. 279 */ 280 { 281 .oem_id = "HISI ", 282 .oem_table_id = "HIP05 ", 283 .oem_revision = 0, 284 }, 285 { 286 .oem_id = "HISI ", 287 .oem_table_id = "HIP06 ", 288 .oem_revision = 0, 289 }, 290 { 291 .oem_id = "HISI ", 292 .oem_table_id = "HIP07 ", 293 .oem_revision = 0, 294 }, 295 { /* Sentinel indicating the end of the OEM array */ }, 296 }; 297 #endif 298 299 #ifdef CONFIG_ARM64_ERRATUM_858921 300 static u64 notrace arm64_858921_read_cntpct_el0(void) 301 { 302 u64 old, new; 303 304 old = read_sysreg(cntpct_el0); 305 new = read_sysreg(cntpct_el0); 306 return (((old ^ new) >> 32) & 1) ? old : new; 307 } 308 309 static u64 notrace arm64_858921_read_cntvct_el0(void) 310 { 311 u64 old, new; 312 313 old = read_sysreg(cntvct_el0); 314 new = read_sysreg(cntvct_el0); 315 return (((old ^ new) >> 32) & 1) ? old : new; 316 } 317 #endif 318 319 #ifdef CONFIG_ARM64_ERRATUM_1188873 320 static u64 notrace arm64_1188873_read_cntvct_el0(void) 321 { 322 return read_sysreg(cntvct_el0); 323 } 324 #endif 325 326 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1 327 /* 328 * The low bits of the counter registers are indeterminate while bit 10 or 329 * greater is rolling over. Since the counter value can jump both backward 330 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values 331 * with all ones or all zeros in the low bits. Bound the loop by the maximum 332 * number of CPU cycles in 3 consecutive 24 MHz counter periods. 333 */ 334 #define __sun50i_a64_read_reg(reg) ({ \ 335 u64 _val; \ 336 int _retries = 150; \ 337 \ 338 do { \ 339 _val = read_sysreg(reg); \ 340 _retries--; \ 341 } while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries); \ 342 \ 343 WARN_ON_ONCE(!_retries); \ 344 _val; \ 345 }) 346 347 static u64 notrace sun50i_a64_read_cntpct_el0(void) 348 { 349 return __sun50i_a64_read_reg(cntpct_el0); 350 } 351 352 static u64 notrace sun50i_a64_read_cntvct_el0(void) 353 { 354 return __sun50i_a64_read_reg(cntvct_el0); 355 } 356 357 static u32 notrace sun50i_a64_read_cntp_tval_el0(void) 358 { 359 return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0(); 360 } 361 362 static u32 notrace sun50i_a64_read_cntv_tval_el0(void) 363 { 364 return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0(); 365 } 366 #endif 367 368 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND 369 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround); 370 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround); 371 372 DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled); 373 EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled); 374 375 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt, 376 struct clock_event_device *clk) 377 { 378 unsigned long ctrl; 379 u64 cval; 380 381 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 382 ctrl |= ARCH_TIMER_CTRL_ENABLE; 383 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 384 385 if (access == ARCH_TIMER_PHYS_ACCESS) { 386 cval = evt + arch_counter_get_cntpct(); 387 write_sysreg(cval, cntp_cval_el0); 388 } else { 389 cval = evt + arch_counter_get_cntvct(); 390 write_sysreg(cval, cntv_cval_el0); 391 } 392 393 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 394 } 395 396 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt, 397 struct clock_event_device *clk) 398 { 399 erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk); 400 return 0; 401 } 402 403 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt, 404 struct clock_event_device *clk) 405 { 406 erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk); 407 return 0; 408 } 409 410 static const struct arch_timer_erratum_workaround ool_workarounds[] = { 411 #ifdef CONFIG_FSL_ERRATUM_A008585 412 { 413 .match_type = ate_match_dt, 414 .id = "fsl,erratum-a008585", 415 .desc = "Freescale erratum a005858", 416 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0, 417 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0, 418 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0, 419 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0, 420 .set_next_event_phys = erratum_set_next_event_tval_phys, 421 .set_next_event_virt = erratum_set_next_event_tval_virt, 422 }, 423 #endif 424 #ifdef CONFIG_HISILICON_ERRATUM_161010101 425 { 426 .match_type = ate_match_dt, 427 .id = "hisilicon,erratum-161010101", 428 .desc = "HiSilicon erratum 161010101", 429 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0, 430 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0, 431 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0, 432 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, 433 .set_next_event_phys = erratum_set_next_event_tval_phys, 434 .set_next_event_virt = erratum_set_next_event_tval_virt, 435 }, 436 { 437 .match_type = ate_match_acpi_oem_info, 438 .id = hisi_161010101_oem_info, 439 .desc = "HiSilicon erratum 161010101", 440 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0, 441 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0, 442 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0, 443 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, 444 .set_next_event_phys = erratum_set_next_event_tval_phys, 445 .set_next_event_virt = erratum_set_next_event_tval_virt, 446 }, 447 #endif 448 #ifdef CONFIG_ARM64_ERRATUM_858921 449 { 450 .match_type = ate_match_local_cap_id, 451 .id = (void *)ARM64_WORKAROUND_858921, 452 .desc = "ARM erratum 858921", 453 .read_cntpct_el0 = arm64_858921_read_cntpct_el0, 454 .read_cntvct_el0 = arm64_858921_read_cntvct_el0, 455 }, 456 #endif 457 #ifdef CONFIG_ARM64_ERRATUM_1188873 458 { 459 .match_type = ate_match_local_cap_id, 460 .id = (void *)ARM64_WORKAROUND_1188873, 461 .desc = "ARM erratum 1188873", 462 .read_cntvct_el0 = arm64_1188873_read_cntvct_el0, 463 }, 464 #endif 465 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1 466 { 467 .match_type = ate_match_dt, 468 .id = "allwinner,erratum-unknown1", 469 .desc = "Allwinner erratum UNKNOWN1", 470 .read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0, 471 .read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0, 472 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0, 473 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0, 474 .set_next_event_phys = erratum_set_next_event_tval_phys, 475 .set_next_event_virt = erratum_set_next_event_tval_virt, 476 }, 477 #endif 478 }; 479 480 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *, 481 const void *); 482 483 static 484 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa, 485 const void *arg) 486 { 487 const struct device_node *np = arg; 488 489 return of_property_read_bool(np, wa->id); 490 } 491 492 static 493 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa, 494 const void *arg) 495 { 496 return this_cpu_has_cap((uintptr_t)wa->id); 497 } 498 499 500 static 501 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa, 502 const void *arg) 503 { 504 static const struct ate_acpi_oem_info empty_oem_info = {}; 505 const struct ate_acpi_oem_info *info = wa->id; 506 const struct acpi_table_header *table = arg; 507 508 /* Iterate over the ACPI OEM info array, looking for a match */ 509 while (memcmp(info, &empty_oem_info, sizeof(*info))) { 510 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) && 511 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) && 512 info->oem_revision == table->oem_revision) 513 return true; 514 515 info++; 516 } 517 518 return false; 519 } 520 521 static const struct arch_timer_erratum_workaround * 522 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type, 523 ate_match_fn_t match_fn, 524 void *arg) 525 { 526 int i; 527 528 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) { 529 if (ool_workarounds[i].match_type != type) 530 continue; 531 532 if (match_fn(&ool_workarounds[i], arg)) 533 return &ool_workarounds[i]; 534 } 535 536 return NULL; 537 } 538 539 static 540 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa, 541 bool local) 542 { 543 int i; 544 545 if (local) { 546 __this_cpu_write(timer_unstable_counter_workaround, wa); 547 } else { 548 for_each_possible_cpu(i) 549 per_cpu(timer_unstable_counter_workaround, i) = wa; 550 } 551 552 /* 553 * Use the locked version, as we're called from the CPU 554 * hotplug framework. Otherwise, we end-up in deadlock-land. 555 */ 556 static_branch_enable_cpuslocked(&arch_timer_read_ool_enabled); 557 558 /* 559 * Don't use the vdso fastpath if errata require using the 560 * out-of-line counter accessor. We may change our mind pretty 561 * late in the game (with a per-CPU erratum, for example), so 562 * change both the default value and the vdso itself. 563 */ 564 if (wa->read_cntvct_el0) { 565 clocksource_counter.archdata.vdso_direct = false; 566 vdso_default = false; 567 } 568 } 569 570 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type, 571 void *arg) 572 { 573 const struct arch_timer_erratum_workaround *wa; 574 ate_match_fn_t match_fn = NULL; 575 bool local = false; 576 577 switch (type) { 578 case ate_match_dt: 579 match_fn = arch_timer_check_dt_erratum; 580 break; 581 case ate_match_local_cap_id: 582 match_fn = arch_timer_check_local_cap_erratum; 583 local = true; 584 break; 585 case ate_match_acpi_oem_info: 586 match_fn = arch_timer_check_acpi_oem_erratum; 587 break; 588 default: 589 WARN_ON(1); 590 return; 591 } 592 593 wa = arch_timer_iterate_errata(type, match_fn, arg); 594 if (!wa) 595 return; 596 597 if (needs_unstable_timer_counter_workaround()) { 598 const struct arch_timer_erratum_workaround *__wa; 599 __wa = __this_cpu_read(timer_unstable_counter_workaround); 600 if (__wa && wa != __wa) 601 pr_warn("Can't enable workaround for %s (clashes with %s\n)", 602 wa->desc, __wa->desc); 603 604 if (__wa) 605 return; 606 } 607 608 arch_timer_enable_workaround(wa, local); 609 pr_info("Enabling %s workaround for %s\n", 610 local ? "local" : "global", wa->desc); 611 } 612 613 #define erratum_handler(fn, r, ...) \ 614 ({ \ 615 bool __val; \ 616 if (needs_unstable_timer_counter_workaround()) { \ 617 const struct arch_timer_erratum_workaround *__wa; \ 618 __wa = __this_cpu_read(timer_unstable_counter_workaround); \ 619 if (__wa && __wa->fn) { \ 620 r = __wa->fn(__VA_ARGS__); \ 621 __val = true; \ 622 } else { \ 623 __val = false; \ 624 } \ 625 } else { \ 626 __val = false; \ 627 } \ 628 __val; \ 629 }) 630 631 static bool arch_timer_this_cpu_has_cntvct_wa(void) 632 { 633 const struct arch_timer_erratum_workaround *wa; 634 635 wa = __this_cpu_read(timer_unstable_counter_workaround); 636 return wa && wa->read_cntvct_el0; 637 } 638 #else 639 #define arch_timer_check_ool_workaround(t,a) do { } while(0) 640 #define erratum_set_next_event_tval_virt(...) ({BUG(); 0;}) 641 #define erratum_set_next_event_tval_phys(...) ({BUG(); 0;}) 642 #define erratum_handler(fn, r, ...) ({false;}) 643 #define arch_timer_this_cpu_has_cntvct_wa() ({false;}) 644 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */ 645 646 static __always_inline irqreturn_t timer_handler(const int access, 647 struct clock_event_device *evt) 648 { 649 unsigned long ctrl; 650 651 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt); 652 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { 653 ctrl |= ARCH_TIMER_CTRL_IT_MASK; 654 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt); 655 evt->event_handler(evt); 656 return IRQ_HANDLED; 657 } 658 659 return IRQ_NONE; 660 } 661 662 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id) 663 { 664 struct clock_event_device *evt = dev_id; 665 666 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt); 667 } 668 669 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id) 670 { 671 struct clock_event_device *evt = dev_id; 672 673 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt); 674 } 675 676 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id) 677 { 678 struct clock_event_device *evt = dev_id; 679 680 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt); 681 } 682 683 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id) 684 { 685 struct clock_event_device *evt = dev_id; 686 687 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt); 688 } 689 690 static __always_inline int timer_shutdown(const int access, 691 struct clock_event_device *clk) 692 { 693 unsigned long ctrl; 694 695 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 696 ctrl &= ~ARCH_TIMER_CTRL_ENABLE; 697 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 698 699 return 0; 700 } 701 702 static int arch_timer_shutdown_virt(struct clock_event_device *clk) 703 { 704 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk); 705 } 706 707 static int arch_timer_shutdown_phys(struct clock_event_device *clk) 708 { 709 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk); 710 } 711 712 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk) 713 { 714 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk); 715 } 716 717 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk) 718 { 719 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk); 720 } 721 722 static __always_inline void set_next_event(const int access, unsigned long evt, 723 struct clock_event_device *clk) 724 { 725 unsigned long ctrl; 726 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 727 ctrl |= ARCH_TIMER_CTRL_ENABLE; 728 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 729 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk); 730 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 731 } 732 733 static int arch_timer_set_next_event_virt(unsigned long evt, 734 struct clock_event_device *clk) 735 { 736 int ret; 737 738 if (erratum_handler(set_next_event_virt, ret, evt, clk)) 739 return ret; 740 741 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk); 742 return 0; 743 } 744 745 static int arch_timer_set_next_event_phys(unsigned long evt, 746 struct clock_event_device *clk) 747 { 748 int ret; 749 750 if (erratum_handler(set_next_event_phys, ret, evt, clk)) 751 return ret; 752 753 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk); 754 return 0; 755 } 756 757 static int arch_timer_set_next_event_virt_mem(unsigned long evt, 758 struct clock_event_device *clk) 759 { 760 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk); 761 return 0; 762 } 763 764 static int arch_timer_set_next_event_phys_mem(unsigned long evt, 765 struct clock_event_device *clk) 766 { 767 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk); 768 return 0; 769 } 770 771 static void __arch_timer_setup(unsigned type, 772 struct clock_event_device *clk) 773 { 774 clk->features = CLOCK_EVT_FEAT_ONESHOT; 775 776 if (type == ARCH_TIMER_TYPE_CP15) { 777 if (arch_timer_c3stop) 778 clk->features |= CLOCK_EVT_FEAT_C3STOP; 779 clk->name = "arch_sys_timer"; 780 clk->rating = 450; 781 clk->cpumask = cpumask_of(smp_processor_id()); 782 clk->irq = arch_timer_ppi[arch_timer_uses_ppi]; 783 switch (arch_timer_uses_ppi) { 784 case ARCH_TIMER_VIRT_PPI: 785 clk->set_state_shutdown = arch_timer_shutdown_virt; 786 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt; 787 clk->set_next_event = arch_timer_set_next_event_virt; 788 break; 789 case ARCH_TIMER_PHYS_SECURE_PPI: 790 case ARCH_TIMER_PHYS_NONSECURE_PPI: 791 case ARCH_TIMER_HYP_PPI: 792 clk->set_state_shutdown = arch_timer_shutdown_phys; 793 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys; 794 clk->set_next_event = arch_timer_set_next_event_phys; 795 break; 796 default: 797 BUG(); 798 } 799 800 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL); 801 } else { 802 clk->features |= CLOCK_EVT_FEAT_DYNIRQ; 803 clk->name = "arch_mem_timer"; 804 clk->rating = 400; 805 clk->cpumask = cpu_possible_mask; 806 if (arch_timer_mem_use_virtual) { 807 clk->set_state_shutdown = arch_timer_shutdown_virt_mem; 808 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem; 809 clk->set_next_event = 810 arch_timer_set_next_event_virt_mem; 811 } else { 812 clk->set_state_shutdown = arch_timer_shutdown_phys_mem; 813 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem; 814 clk->set_next_event = 815 arch_timer_set_next_event_phys_mem; 816 } 817 } 818 819 clk->set_state_shutdown(clk); 820 821 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff); 822 } 823 824 static void arch_timer_evtstrm_enable(int divider) 825 { 826 u32 cntkctl = arch_timer_get_cntkctl(); 827 828 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK; 829 /* Set the divider and enable virtual event stream */ 830 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT) 831 | ARCH_TIMER_VIRT_EVT_EN; 832 arch_timer_set_cntkctl(cntkctl); 833 elf_hwcap |= HWCAP_EVTSTRM; 834 #ifdef CONFIG_COMPAT 835 compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM; 836 #endif 837 cpumask_set_cpu(smp_processor_id(), &evtstrm_available); 838 } 839 840 static void arch_timer_configure_evtstream(void) 841 { 842 int evt_stream_div, pos; 843 844 /* Find the closest power of two to the divisor */ 845 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ; 846 pos = fls(evt_stream_div); 847 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2)))) 848 pos--; 849 /* enable event stream */ 850 arch_timer_evtstrm_enable(min(pos, 15)); 851 } 852 853 static void arch_counter_set_user_access(void) 854 { 855 u32 cntkctl = arch_timer_get_cntkctl(); 856 857 /* Disable user access to the timers and both counters */ 858 /* Also disable virtual event stream */ 859 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN 860 | ARCH_TIMER_USR_VT_ACCESS_EN 861 | ARCH_TIMER_USR_VCT_ACCESS_EN 862 | ARCH_TIMER_VIRT_EVT_EN 863 | ARCH_TIMER_USR_PCT_ACCESS_EN); 864 865 /* 866 * Enable user access to the virtual counter if it doesn't 867 * need to be workaround. The vdso may have been already 868 * disabled though. 869 */ 870 if (arch_timer_this_cpu_has_cntvct_wa()) 871 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id()); 872 else 873 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN; 874 875 arch_timer_set_cntkctl(cntkctl); 876 } 877 878 static bool arch_timer_has_nonsecure_ppi(void) 879 { 880 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI && 881 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 882 } 883 884 static u32 check_ppi_trigger(int irq) 885 { 886 u32 flags = irq_get_trigger_type(irq); 887 888 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) { 889 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq); 890 pr_warn("WARNING: Please fix your firmware\n"); 891 flags = IRQF_TRIGGER_LOW; 892 } 893 894 return flags; 895 } 896 897 static int arch_timer_starting_cpu(unsigned int cpu) 898 { 899 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 900 u32 flags; 901 902 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk); 903 904 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]); 905 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags); 906 907 if (arch_timer_has_nonsecure_ppi()) { 908 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 909 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], 910 flags); 911 } 912 913 arch_counter_set_user_access(); 914 if (evtstrm_enable) 915 arch_timer_configure_evtstream(); 916 917 return 0; 918 } 919 920 /* 921 * For historical reasons, when probing with DT we use whichever (non-zero) 922 * rate was probed first, and don't verify that others match. If the first node 923 * probed has a clock-frequency property, this overrides the HW register. 924 */ 925 static void arch_timer_of_configure_rate(u32 rate, struct device_node *np) 926 { 927 /* Who has more than one independent system counter? */ 928 if (arch_timer_rate) 929 return; 930 931 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) 932 arch_timer_rate = rate; 933 934 /* Check the timer frequency. */ 935 if (arch_timer_rate == 0) 936 pr_warn("frequency not available\n"); 937 } 938 939 static void arch_timer_banner(unsigned type) 940 { 941 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n", 942 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "", 943 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? 944 " and " : "", 945 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "", 946 (unsigned long)arch_timer_rate / 1000000, 947 (unsigned long)(arch_timer_rate / 10000) % 100, 948 type & ARCH_TIMER_TYPE_CP15 ? 949 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" : 950 "", 951 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "", 952 type & ARCH_TIMER_TYPE_MEM ? 953 arch_timer_mem_use_virtual ? "virt" : "phys" : 954 ""); 955 } 956 957 u32 arch_timer_get_rate(void) 958 { 959 return arch_timer_rate; 960 } 961 962 bool arch_timer_evtstrm_available(void) 963 { 964 /* 965 * We might get called from a preemptible context. This is fine 966 * because availability of the event stream should be always the same 967 * for a preemptible context and context where we might resume a task. 968 */ 969 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available); 970 } 971 972 static u64 arch_counter_get_cntvct_mem(void) 973 { 974 u32 vct_lo, vct_hi, tmp_hi; 975 976 do { 977 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); 978 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO); 979 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); 980 } while (vct_hi != tmp_hi); 981 982 return ((u64) vct_hi << 32) | vct_lo; 983 } 984 985 static struct arch_timer_kvm_info arch_timer_kvm_info; 986 987 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void) 988 { 989 return &arch_timer_kvm_info; 990 } 991 992 static void __init arch_counter_register(unsigned type) 993 { 994 u64 start_count; 995 996 /* Register the CP15 based counter if we have one */ 997 if (type & ARCH_TIMER_TYPE_CP15) { 998 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) || 999 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) 1000 arch_timer_read_counter = arch_counter_get_cntvct; 1001 else 1002 arch_timer_read_counter = arch_counter_get_cntpct; 1003 1004 clocksource_counter.archdata.vdso_direct = vdso_default; 1005 } else { 1006 arch_timer_read_counter = arch_counter_get_cntvct_mem; 1007 } 1008 1009 if (!arch_counter_suspend_stop) 1010 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; 1011 start_count = arch_timer_read_counter(); 1012 clocksource_register_hz(&clocksource_counter, arch_timer_rate); 1013 cyclecounter.mult = clocksource_counter.mult; 1014 cyclecounter.shift = clocksource_counter.shift; 1015 timecounter_init(&arch_timer_kvm_info.timecounter, 1016 &cyclecounter, start_count); 1017 1018 /* 56 bits minimum, so we assume worst case rollover */ 1019 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate); 1020 } 1021 1022 static void arch_timer_stop(struct clock_event_device *clk) 1023 { 1024 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id()); 1025 1026 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]); 1027 if (arch_timer_has_nonsecure_ppi()) 1028 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 1029 1030 clk->set_state_shutdown(clk); 1031 } 1032 1033 static int arch_timer_dying_cpu(unsigned int cpu) 1034 { 1035 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 1036 1037 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available); 1038 1039 arch_timer_stop(clk); 1040 return 0; 1041 } 1042 1043 #ifdef CONFIG_CPU_PM 1044 static DEFINE_PER_CPU(unsigned long, saved_cntkctl); 1045 static int arch_timer_cpu_pm_notify(struct notifier_block *self, 1046 unsigned long action, void *hcpu) 1047 { 1048 if (action == CPU_PM_ENTER) { 1049 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl()); 1050 1051 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available); 1052 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) { 1053 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl)); 1054 1055 if (elf_hwcap & HWCAP_EVTSTRM) 1056 cpumask_set_cpu(smp_processor_id(), &evtstrm_available); 1057 } 1058 return NOTIFY_OK; 1059 } 1060 1061 static struct notifier_block arch_timer_cpu_pm_notifier = { 1062 .notifier_call = arch_timer_cpu_pm_notify, 1063 }; 1064 1065 static int __init arch_timer_cpu_pm_init(void) 1066 { 1067 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier); 1068 } 1069 1070 static void __init arch_timer_cpu_pm_deinit(void) 1071 { 1072 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier)); 1073 } 1074 1075 #else 1076 static int __init arch_timer_cpu_pm_init(void) 1077 { 1078 return 0; 1079 } 1080 1081 static void __init arch_timer_cpu_pm_deinit(void) 1082 { 1083 } 1084 #endif 1085 1086 static int __init arch_timer_register(void) 1087 { 1088 int err; 1089 int ppi; 1090 1091 arch_timer_evt = alloc_percpu(struct clock_event_device); 1092 if (!arch_timer_evt) { 1093 err = -ENOMEM; 1094 goto out; 1095 } 1096 1097 ppi = arch_timer_ppi[arch_timer_uses_ppi]; 1098 switch (arch_timer_uses_ppi) { 1099 case ARCH_TIMER_VIRT_PPI: 1100 err = request_percpu_irq(ppi, arch_timer_handler_virt, 1101 "arch_timer", arch_timer_evt); 1102 break; 1103 case ARCH_TIMER_PHYS_SECURE_PPI: 1104 case ARCH_TIMER_PHYS_NONSECURE_PPI: 1105 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1106 "arch_timer", arch_timer_evt); 1107 if (!err && arch_timer_has_nonsecure_ppi()) { 1108 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]; 1109 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1110 "arch_timer", arch_timer_evt); 1111 if (err) 1112 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI], 1113 arch_timer_evt); 1114 } 1115 break; 1116 case ARCH_TIMER_HYP_PPI: 1117 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1118 "arch_timer", arch_timer_evt); 1119 break; 1120 default: 1121 BUG(); 1122 } 1123 1124 if (err) { 1125 pr_err("can't register interrupt %d (%d)\n", ppi, err); 1126 goto out_free; 1127 } 1128 1129 err = arch_timer_cpu_pm_init(); 1130 if (err) 1131 goto out_unreg_notify; 1132 1133 /* Register and immediately configure the timer on the boot CPU */ 1134 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING, 1135 "clockevents/arm/arch_timer:starting", 1136 arch_timer_starting_cpu, arch_timer_dying_cpu); 1137 if (err) 1138 goto out_unreg_cpupm; 1139 return 0; 1140 1141 out_unreg_cpupm: 1142 arch_timer_cpu_pm_deinit(); 1143 1144 out_unreg_notify: 1145 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt); 1146 if (arch_timer_has_nonsecure_ppi()) 1147 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], 1148 arch_timer_evt); 1149 1150 out_free: 1151 free_percpu(arch_timer_evt); 1152 out: 1153 return err; 1154 } 1155 1156 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq) 1157 { 1158 int ret; 1159 irq_handler_t func; 1160 struct arch_timer *t; 1161 1162 t = kzalloc(sizeof(*t), GFP_KERNEL); 1163 if (!t) 1164 return -ENOMEM; 1165 1166 t->base = base; 1167 t->evt.irq = irq; 1168 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt); 1169 1170 if (arch_timer_mem_use_virtual) 1171 func = arch_timer_handler_virt_mem; 1172 else 1173 func = arch_timer_handler_phys_mem; 1174 1175 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt); 1176 if (ret) { 1177 pr_err("Failed to request mem timer irq\n"); 1178 kfree(t); 1179 } 1180 1181 return ret; 1182 } 1183 1184 static const struct of_device_id arch_timer_of_match[] __initconst = { 1185 { .compatible = "arm,armv7-timer", }, 1186 { .compatible = "arm,armv8-timer", }, 1187 {}, 1188 }; 1189 1190 static const struct of_device_id arch_timer_mem_of_match[] __initconst = { 1191 { .compatible = "arm,armv7-timer-mem", }, 1192 {}, 1193 }; 1194 1195 static bool __init arch_timer_needs_of_probing(void) 1196 { 1197 struct device_node *dn; 1198 bool needs_probing = false; 1199 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM; 1200 1201 /* We have two timers, and both device-tree nodes are probed. */ 1202 if ((arch_timers_present & mask) == mask) 1203 return false; 1204 1205 /* 1206 * Only one type of timer is probed, 1207 * check if we have another type of timer node in device-tree. 1208 */ 1209 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) 1210 dn = of_find_matching_node(NULL, arch_timer_mem_of_match); 1211 else 1212 dn = of_find_matching_node(NULL, arch_timer_of_match); 1213 1214 if (dn && of_device_is_available(dn)) 1215 needs_probing = true; 1216 1217 of_node_put(dn); 1218 1219 return needs_probing; 1220 } 1221 1222 static int __init arch_timer_common_init(void) 1223 { 1224 arch_timer_banner(arch_timers_present); 1225 arch_counter_register(arch_timers_present); 1226 return arch_timer_arch_init(); 1227 } 1228 1229 /** 1230 * arch_timer_select_ppi() - Select suitable PPI for the current system. 1231 * 1232 * If HYP mode is available, we know that the physical timer 1233 * has been configured to be accessible from PL1. Use it, so 1234 * that a guest can use the virtual timer instead. 1235 * 1236 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE 1237 * accesses to CNTP_*_EL1 registers are silently redirected to 1238 * their CNTHP_*_EL2 counterparts, and use a different PPI 1239 * number. 1240 * 1241 * If no interrupt provided for virtual timer, we'll have to 1242 * stick to the physical timer. It'd better be accessible... 1243 * For arm64 we never use the secure interrupt. 1244 * 1245 * Return: a suitable PPI type for the current system. 1246 */ 1247 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void) 1248 { 1249 if (is_kernel_in_hyp_mode()) 1250 return ARCH_TIMER_HYP_PPI; 1251 1252 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI]) 1253 return ARCH_TIMER_VIRT_PPI; 1254 1255 if (IS_ENABLED(CONFIG_ARM64)) 1256 return ARCH_TIMER_PHYS_NONSECURE_PPI; 1257 1258 return ARCH_TIMER_PHYS_SECURE_PPI; 1259 } 1260 1261 static void __init arch_timer_populate_kvm_info(void) 1262 { 1263 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI]; 1264 if (is_kernel_in_hyp_mode()) 1265 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]; 1266 } 1267 1268 static int __init arch_timer_of_init(struct device_node *np) 1269 { 1270 int i, ret; 1271 u32 rate; 1272 1273 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { 1274 pr_warn("multiple nodes in dt, skipping\n"); 1275 return 0; 1276 } 1277 1278 arch_timers_present |= ARCH_TIMER_TYPE_CP15; 1279 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) 1280 arch_timer_ppi[i] = irq_of_parse_and_map(np, i); 1281 1282 arch_timer_populate_kvm_info(); 1283 1284 rate = arch_timer_get_cntfrq(); 1285 arch_timer_of_configure_rate(rate, np); 1286 1287 arch_timer_c3stop = !of_property_read_bool(np, "always-on"); 1288 1289 /* Check for globally applicable workarounds */ 1290 arch_timer_check_ool_workaround(ate_match_dt, np); 1291 1292 /* 1293 * If we cannot rely on firmware initializing the timer registers then 1294 * we should use the physical timers instead. 1295 */ 1296 if (IS_ENABLED(CONFIG_ARM) && 1297 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured")) 1298 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI; 1299 else 1300 arch_timer_uses_ppi = arch_timer_select_ppi(); 1301 1302 if (!arch_timer_ppi[arch_timer_uses_ppi]) { 1303 pr_err("No interrupt available, giving up\n"); 1304 return -EINVAL; 1305 } 1306 1307 /* On some systems, the counter stops ticking when in suspend. */ 1308 arch_counter_suspend_stop = of_property_read_bool(np, 1309 "arm,no-tick-in-suspend"); 1310 1311 ret = arch_timer_register(); 1312 if (ret) 1313 return ret; 1314 1315 if (arch_timer_needs_of_probing()) 1316 return 0; 1317 1318 return arch_timer_common_init(); 1319 } 1320 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init); 1321 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init); 1322 1323 static u32 __init 1324 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame) 1325 { 1326 void __iomem *base; 1327 u32 rate; 1328 1329 base = ioremap(frame->cntbase, frame->size); 1330 if (!base) { 1331 pr_err("Unable to map frame @ %pa\n", &frame->cntbase); 1332 return 0; 1333 } 1334 1335 rate = readl_relaxed(base + CNTFRQ); 1336 1337 iounmap(base); 1338 1339 return rate; 1340 } 1341 1342 static struct arch_timer_mem_frame * __init 1343 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem) 1344 { 1345 struct arch_timer_mem_frame *frame, *best_frame = NULL; 1346 void __iomem *cntctlbase; 1347 u32 cnttidr; 1348 int i; 1349 1350 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size); 1351 if (!cntctlbase) { 1352 pr_err("Can't map CNTCTLBase @ %pa\n", 1353 &timer_mem->cntctlbase); 1354 return NULL; 1355 } 1356 1357 cnttidr = readl_relaxed(cntctlbase + CNTTIDR); 1358 1359 /* 1360 * Try to find a virtual capable frame. Otherwise fall back to a 1361 * physical capable frame. 1362 */ 1363 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) { 1364 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT | 1365 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT; 1366 1367 frame = &timer_mem->frame[i]; 1368 if (!frame->valid) 1369 continue; 1370 1371 /* Try enabling everything, and see what sticks */ 1372 writel_relaxed(cntacr, cntctlbase + CNTACR(i)); 1373 cntacr = readl_relaxed(cntctlbase + CNTACR(i)); 1374 1375 if ((cnttidr & CNTTIDR_VIRT(i)) && 1376 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) { 1377 best_frame = frame; 1378 arch_timer_mem_use_virtual = true; 1379 break; 1380 } 1381 1382 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT)) 1383 continue; 1384 1385 best_frame = frame; 1386 } 1387 1388 iounmap(cntctlbase); 1389 1390 return best_frame; 1391 } 1392 1393 static int __init 1394 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame) 1395 { 1396 void __iomem *base; 1397 int ret, irq = 0; 1398 1399 if (arch_timer_mem_use_virtual) 1400 irq = frame->virt_irq; 1401 else 1402 irq = frame->phys_irq; 1403 1404 if (!irq) { 1405 pr_err("Frame missing %s irq.\n", 1406 arch_timer_mem_use_virtual ? "virt" : "phys"); 1407 return -EINVAL; 1408 } 1409 1410 if (!request_mem_region(frame->cntbase, frame->size, 1411 "arch_mem_timer")) 1412 return -EBUSY; 1413 1414 base = ioremap(frame->cntbase, frame->size); 1415 if (!base) { 1416 pr_err("Can't map frame's registers\n"); 1417 return -ENXIO; 1418 } 1419 1420 ret = arch_timer_mem_register(base, irq); 1421 if (ret) { 1422 iounmap(base); 1423 return ret; 1424 } 1425 1426 arch_counter_base = base; 1427 arch_timers_present |= ARCH_TIMER_TYPE_MEM; 1428 1429 return 0; 1430 } 1431 1432 static int __init arch_timer_mem_of_init(struct device_node *np) 1433 { 1434 struct arch_timer_mem *timer_mem; 1435 struct arch_timer_mem_frame *frame; 1436 struct device_node *frame_node; 1437 struct resource res; 1438 int ret = -EINVAL; 1439 u32 rate; 1440 1441 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL); 1442 if (!timer_mem) 1443 return -ENOMEM; 1444 1445 if (of_address_to_resource(np, 0, &res)) 1446 goto out; 1447 timer_mem->cntctlbase = res.start; 1448 timer_mem->size = resource_size(&res); 1449 1450 for_each_available_child_of_node(np, frame_node) { 1451 u32 n; 1452 struct arch_timer_mem_frame *frame; 1453 1454 if (of_property_read_u32(frame_node, "frame-number", &n)) { 1455 pr_err(FW_BUG "Missing frame-number.\n"); 1456 of_node_put(frame_node); 1457 goto out; 1458 } 1459 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) { 1460 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n", 1461 ARCH_TIMER_MEM_MAX_FRAMES - 1); 1462 of_node_put(frame_node); 1463 goto out; 1464 } 1465 frame = &timer_mem->frame[n]; 1466 1467 if (frame->valid) { 1468 pr_err(FW_BUG "Duplicated frame-number.\n"); 1469 of_node_put(frame_node); 1470 goto out; 1471 } 1472 1473 if (of_address_to_resource(frame_node, 0, &res)) { 1474 of_node_put(frame_node); 1475 goto out; 1476 } 1477 frame->cntbase = res.start; 1478 frame->size = resource_size(&res); 1479 1480 frame->virt_irq = irq_of_parse_and_map(frame_node, 1481 ARCH_TIMER_VIRT_SPI); 1482 frame->phys_irq = irq_of_parse_and_map(frame_node, 1483 ARCH_TIMER_PHYS_SPI); 1484 1485 frame->valid = true; 1486 } 1487 1488 frame = arch_timer_mem_find_best_frame(timer_mem); 1489 if (!frame) { 1490 pr_err("Unable to find a suitable frame in timer @ %pa\n", 1491 &timer_mem->cntctlbase); 1492 ret = -EINVAL; 1493 goto out; 1494 } 1495 1496 rate = arch_timer_mem_frame_get_cntfrq(frame); 1497 arch_timer_of_configure_rate(rate, np); 1498 1499 ret = arch_timer_mem_frame_register(frame); 1500 if (!ret && !arch_timer_needs_of_probing()) 1501 ret = arch_timer_common_init(); 1502 out: 1503 kfree(timer_mem); 1504 return ret; 1505 } 1506 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem", 1507 arch_timer_mem_of_init); 1508 1509 #ifdef CONFIG_ACPI_GTDT 1510 static int __init 1511 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem) 1512 { 1513 struct arch_timer_mem_frame *frame; 1514 u32 rate; 1515 int i; 1516 1517 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) { 1518 frame = &timer_mem->frame[i]; 1519 1520 if (!frame->valid) 1521 continue; 1522 1523 rate = arch_timer_mem_frame_get_cntfrq(frame); 1524 if (rate == arch_timer_rate) 1525 continue; 1526 1527 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n", 1528 &frame->cntbase, 1529 (unsigned long)rate, (unsigned long)arch_timer_rate); 1530 1531 return -EINVAL; 1532 } 1533 1534 return 0; 1535 } 1536 1537 static int __init arch_timer_mem_acpi_init(int platform_timer_count) 1538 { 1539 struct arch_timer_mem *timers, *timer; 1540 struct arch_timer_mem_frame *frame, *best_frame = NULL; 1541 int timer_count, i, ret = 0; 1542 1543 timers = kcalloc(platform_timer_count, sizeof(*timers), 1544 GFP_KERNEL); 1545 if (!timers) 1546 return -ENOMEM; 1547 1548 ret = acpi_arch_timer_mem_init(timers, &timer_count); 1549 if (ret || !timer_count) 1550 goto out; 1551 1552 /* 1553 * While unlikely, it's theoretically possible that none of the frames 1554 * in a timer expose the combination of feature we want. 1555 */ 1556 for (i = 0; i < timer_count; i++) { 1557 timer = &timers[i]; 1558 1559 frame = arch_timer_mem_find_best_frame(timer); 1560 if (!best_frame) 1561 best_frame = frame; 1562 1563 ret = arch_timer_mem_verify_cntfrq(timer); 1564 if (ret) { 1565 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n"); 1566 goto out; 1567 } 1568 1569 if (!best_frame) /* implies !frame */ 1570 /* 1571 * Only complain about missing suitable frames if we 1572 * haven't already found one in a previous iteration. 1573 */ 1574 pr_err("Unable to find a suitable frame in timer @ %pa\n", 1575 &timer->cntctlbase); 1576 } 1577 1578 if (best_frame) 1579 ret = arch_timer_mem_frame_register(best_frame); 1580 out: 1581 kfree(timers); 1582 return ret; 1583 } 1584 1585 /* Initialize per-processor generic timer and memory-mapped timer(if present) */ 1586 static int __init arch_timer_acpi_init(struct acpi_table_header *table) 1587 { 1588 int ret, platform_timer_count; 1589 1590 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { 1591 pr_warn("already initialized, skipping\n"); 1592 return -EINVAL; 1593 } 1594 1595 arch_timers_present |= ARCH_TIMER_TYPE_CP15; 1596 1597 ret = acpi_gtdt_init(table, &platform_timer_count); 1598 if (ret) { 1599 pr_err("Failed to init GTDT table.\n"); 1600 return ret; 1601 } 1602 1603 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] = 1604 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI); 1605 1606 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] = 1607 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI); 1608 1609 arch_timer_ppi[ARCH_TIMER_HYP_PPI] = 1610 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI); 1611 1612 arch_timer_populate_kvm_info(); 1613 1614 /* 1615 * When probing via ACPI, we have no mechanism to override the sysreg 1616 * CNTFRQ value. This *must* be correct. 1617 */ 1618 arch_timer_rate = arch_timer_get_cntfrq(); 1619 if (!arch_timer_rate) { 1620 pr_err(FW_BUG "frequency not available.\n"); 1621 return -EINVAL; 1622 } 1623 1624 arch_timer_uses_ppi = arch_timer_select_ppi(); 1625 if (!arch_timer_ppi[arch_timer_uses_ppi]) { 1626 pr_err("No interrupt available, giving up\n"); 1627 return -EINVAL; 1628 } 1629 1630 /* Always-on capability */ 1631 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi); 1632 1633 /* Check for globally applicable workarounds */ 1634 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table); 1635 1636 ret = arch_timer_register(); 1637 if (ret) 1638 return ret; 1639 1640 if (platform_timer_count && 1641 arch_timer_mem_acpi_init(platform_timer_count)) 1642 pr_err("Failed to initialize memory-mapped timer.\n"); 1643 1644 return arch_timer_common_init(); 1645 } 1646 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init); 1647 #endif 1648