1 /* 2 * linux/drivers/clocksource/arm_arch_timer.c 3 * 4 * Copyright (C) 2011 ARM Ltd. 5 * All Rights Reserved 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #define pr_fmt(fmt) "arm_arch_timer: " fmt 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/device.h> 17 #include <linux/smp.h> 18 #include <linux/cpu.h> 19 #include <linux/cpu_pm.h> 20 #include <linux/clockchips.h> 21 #include <linux/clocksource.h> 22 #include <linux/interrupt.h> 23 #include <linux/of_irq.h> 24 #include <linux/of_address.h> 25 #include <linux/io.h> 26 #include <linux/slab.h> 27 #include <linux/sched/clock.h> 28 #include <linux/sched_clock.h> 29 #include <linux/acpi.h> 30 31 #include <asm/arch_timer.h> 32 #include <asm/virt.h> 33 34 #include <clocksource/arm_arch_timer.h> 35 36 #undef pr_fmt 37 #define pr_fmt(fmt) "arch_timer: " fmt 38 39 #define CNTTIDR 0x08 40 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4)) 41 42 #define CNTACR(n) (0x40 + ((n) * 4)) 43 #define CNTACR_RPCT BIT(0) 44 #define CNTACR_RVCT BIT(1) 45 #define CNTACR_RFRQ BIT(2) 46 #define CNTACR_RVOFF BIT(3) 47 #define CNTACR_RWVT BIT(4) 48 #define CNTACR_RWPT BIT(5) 49 50 #define CNTVCT_LO 0x08 51 #define CNTVCT_HI 0x0c 52 #define CNTFRQ 0x10 53 #define CNTP_TVAL 0x28 54 #define CNTP_CTL 0x2c 55 #define CNTV_TVAL 0x38 56 #define CNTV_CTL 0x3c 57 58 static unsigned arch_timers_present __initdata; 59 60 static void __iomem *arch_counter_base; 61 62 struct arch_timer { 63 void __iomem *base; 64 struct clock_event_device evt; 65 }; 66 67 #define to_arch_timer(e) container_of(e, struct arch_timer, evt) 68 69 static u32 arch_timer_rate; 70 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI]; 71 72 static struct clock_event_device __percpu *arch_timer_evt; 73 74 static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI; 75 static bool arch_timer_c3stop; 76 static bool arch_timer_mem_use_virtual; 77 static bool arch_counter_suspend_stop; 78 static bool vdso_default = true; 79 80 static cpumask_t evtstrm_available = CPU_MASK_NONE; 81 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM); 82 83 static int __init early_evtstrm_cfg(char *buf) 84 { 85 return strtobool(buf, &evtstrm_enable); 86 } 87 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg); 88 89 /* 90 * Architected system timer support. 91 */ 92 93 static __always_inline 94 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val, 95 struct clock_event_device *clk) 96 { 97 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 98 struct arch_timer *timer = to_arch_timer(clk); 99 switch (reg) { 100 case ARCH_TIMER_REG_CTRL: 101 writel_relaxed(val, timer->base + CNTP_CTL); 102 break; 103 case ARCH_TIMER_REG_TVAL: 104 writel_relaxed(val, timer->base + CNTP_TVAL); 105 break; 106 } 107 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 108 struct arch_timer *timer = to_arch_timer(clk); 109 switch (reg) { 110 case ARCH_TIMER_REG_CTRL: 111 writel_relaxed(val, timer->base + CNTV_CTL); 112 break; 113 case ARCH_TIMER_REG_TVAL: 114 writel_relaxed(val, timer->base + CNTV_TVAL); 115 break; 116 } 117 } else { 118 arch_timer_reg_write_cp15(access, reg, val); 119 } 120 } 121 122 static __always_inline 123 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg, 124 struct clock_event_device *clk) 125 { 126 u32 val; 127 128 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { 129 struct arch_timer *timer = to_arch_timer(clk); 130 switch (reg) { 131 case ARCH_TIMER_REG_CTRL: 132 val = readl_relaxed(timer->base + CNTP_CTL); 133 break; 134 case ARCH_TIMER_REG_TVAL: 135 val = readl_relaxed(timer->base + CNTP_TVAL); 136 break; 137 } 138 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { 139 struct arch_timer *timer = to_arch_timer(clk); 140 switch (reg) { 141 case ARCH_TIMER_REG_CTRL: 142 val = readl_relaxed(timer->base + CNTV_CTL); 143 break; 144 case ARCH_TIMER_REG_TVAL: 145 val = readl_relaxed(timer->base + CNTV_TVAL); 146 break; 147 } 148 } else { 149 val = arch_timer_reg_read_cp15(access, reg); 150 } 151 152 return val; 153 } 154 155 /* 156 * Default to cp15 based access because arm64 uses this function for 157 * sched_clock() before DT is probed and the cp15 method is guaranteed 158 * to exist on arm64. arm doesn't use this before DT is probed so even 159 * if we don't have the cp15 accessors we won't have a problem. 160 */ 161 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct; 162 EXPORT_SYMBOL_GPL(arch_timer_read_counter); 163 164 static u64 arch_counter_read(struct clocksource *cs) 165 { 166 return arch_timer_read_counter(); 167 } 168 169 static u64 arch_counter_read_cc(const struct cyclecounter *cc) 170 { 171 return arch_timer_read_counter(); 172 } 173 174 static struct clocksource clocksource_counter = { 175 .name = "arch_sys_counter", 176 .rating = 400, 177 .read = arch_counter_read, 178 .mask = CLOCKSOURCE_MASK(56), 179 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 180 }; 181 182 static struct cyclecounter cyclecounter __ro_after_init = { 183 .read = arch_counter_read_cc, 184 .mask = CLOCKSOURCE_MASK(56), 185 }; 186 187 struct ate_acpi_oem_info { 188 char oem_id[ACPI_OEM_ID_SIZE + 1]; 189 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1]; 190 u32 oem_revision; 191 }; 192 193 #ifdef CONFIG_FSL_ERRATUM_A008585 194 /* 195 * The number of retries is an arbitrary value well beyond the highest number 196 * of iterations the loop has been observed to take. 197 */ 198 #define __fsl_a008585_read_reg(reg) ({ \ 199 u64 _old, _new; \ 200 int _retries = 200; \ 201 \ 202 do { \ 203 _old = read_sysreg(reg); \ 204 _new = read_sysreg(reg); \ 205 _retries--; \ 206 } while (unlikely(_old != _new) && _retries); \ 207 \ 208 WARN_ON_ONCE(!_retries); \ 209 _new; \ 210 }) 211 212 static u32 notrace fsl_a008585_read_cntp_tval_el0(void) 213 { 214 return __fsl_a008585_read_reg(cntp_tval_el0); 215 } 216 217 static u32 notrace fsl_a008585_read_cntv_tval_el0(void) 218 { 219 return __fsl_a008585_read_reg(cntv_tval_el0); 220 } 221 222 static u64 notrace fsl_a008585_read_cntpct_el0(void) 223 { 224 return __fsl_a008585_read_reg(cntpct_el0); 225 } 226 227 static u64 notrace fsl_a008585_read_cntvct_el0(void) 228 { 229 return __fsl_a008585_read_reg(cntvct_el0); 230 } 231 #endif 232 233 #ifdef CONFIG_HISILICON_ERRATUM_161010101 234 /* 235 * Verify whether the value of the second read is larger than the first by 236 * less than 32 is the only way to confirm the value is correct, so clear the 237 * lower 5 bits to check whether the difference is greater than 32 or not. 238 * Theoretically the erratum should not occur more than twice in succession 239 * when reading the system counter, but it is possible that some interrupts 240 * may lead to more than twice read errors, triggering the warning, so setting 241 * the number of retries far beyond the number of iterations the loop has been 242 * observed to take. 243 */ 244 #define __hisi_161010101_read_reg(reg) ({ \ 245 u64 _old, _new; \ 246 int _retries = 50; \ 247 \ 248 do { \ 249 _old = read_sysreg(reg); \ 250 _new = read_sysreg(reg); \ 251 _retries--; \ 252 } while (unlikely((_new - _old) >> 5) && _retries); \ 253 \ 254 WARN_ON_ONCE(!_retries); \ 255 _new; \ 256 }) 257 258 static u32 notrace hisi_161010101_read_cntp_tval_el0(void) 259 { 260 return __hisi_161010101_read_reg(cntp_tval_el0); 261 } 262 263 static u32 notrace hisi_161010101_read_cntv_tval_el0(void) 264 { 265 return __hisi_161010101_read_reg(cntv_tval_el0); 266 } 267 268 static u64 notrace hisi_161010101_read_cntpct_el0(void) 269 { 270 return __hisi_161010101_read_reg(cntpct_el0); 271 } 272 273 static u64 notrace hisi_161010101_read_cntvct_el0(void) 274 { 275 return __hisi_161010101_read_reg(cntvct_el0); 276 } 277 278 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = { 279 /* 280 * Note that trailing spaces are required to properly match 281 * the OEM table information. 282 */ 283 { 284 .oem_id = "HISI ", 285 .oem_table_id = "HIP05 ", 286 .oem_revision = 0, 287 }, 288 { 289 .oem_id = "HISI ", 290 .oem_table_id = "HIP06 ", 291 .oem_revision = 0, 292 }, 293 { 294 .oem_id = "HISI ", 295 .oem_table_id = "HIP07 ", 296 .oem_revision = 0, 297 }, 298 { /* Sentinel indicating the end of the OEM array */ }, 299 }; 300 #endif 301 302 #ifdef CONFIG_ARM64_ERRATUM_858921 303 static u64 notrace arm64_858921_read_cntpct_el0(void) 304 { 305 u64 old, new; 306 307 old = read_sysreg(cntpct_el0); 308 new = read_sysreg(cntpct_el0); 309 return (((old ^ new) >> 32) & 1) ? old : new; 310 } 311 312 static u64 notrace arm64_858921_read_cntvct_el0(void) 313 { 314 u64 old, new; 315 316 old = read_sysreg(cntvct_el0); 317 new = read_sysreg(cntvct_el0); 318 return (((old ^ new) >> 32) & 1) ? old : new; 319 } 320 #endif 321 322 #ifdef CONFIG_ARM64_ERRATUM_1188873 323 static u64 notrace arm64_1188873_read_cntvct_el0(void) 324 { 325 return read_sysreg(cntvct_el0); 326 } 327 #endif 328 329 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1 330 /* 331 * The low bits of the counter registers are indeterminate while bit 10 or 332 * greater is rolling over. Since the counter value can jump both backward 333 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values 334 * with all ones or all zeros in the low bits. Bound the loop by the maximum 335 * number of CPU cycles in 3 consecutive 24 MHz counter periods. 336 */ 337 #define __sun50i_a64_read_reg(reg) ({ \ 338 u64 _val; \ 339 int _retries = 150; \ 340 \ 341 do { \ 342 _val = read_sysreg(reg); \ 343 _retries--; \ 344 } while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries); \ 345 \ 346 WARN_ON_ONCE(!_retries); \ 347 _val; \ 348 }) 349 350 static u64 notrace sun50i_a64_read_cntpct_el0(void) 351 { 352 return __sun50i_a64_read_reg(cntpct_el0); 353 } 354 355 static u64 notrace sun50i_a64_read_cntvct_el0(void) 356 { 357 return __sun50i_a64_read_reg(cntvct_el0); 358 } 359 360 static u32 notrace sun50i_a64_read_cntp_tval_el0(void) 361 { 362 return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0(); 363 } 364 365 static u32 notrace sun50i_a64_read_cntv_tval_el0(void) 366 { 367 return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0(); 368 } 369 #endif 370 371 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND 372 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround); 373 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround); 374 375 DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled); 376 EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled); 377 378 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt, 379 struct clock_event_device *clk) 380 { 381 unsigned long ctrl; 382 u64 cval; 383 384 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 385 ctrl |= ARCH_TIMER_CTRL_ENABLE; 386 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 387 388 if (access == ARCH_TIMER_PHYS_ACCESS) { 389 cval = evt + arch_counter_get_cntpct(); 390 write_sysreg(cval, cntp_cval_el0); 391 } else { 392 cval = evt + arch_counter_get_cntvct(); 393 write_sysreg(cval, cntv_cval_el0); 394 } 395 396 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 397 } 398 399 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt, 400 struct clock_event_device *clk) 401 { 402 erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk); 403 return 0; 404 } 405 406 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt, 407 struct clock_event_device *clk) 408 { 409 erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk); 410 return 0; 411 } 412 413 static const struct arch_timer_erratum_workaround ool_workarounds[] = { 414 #ifdef CONFIG_FSL_ERRATUM_A008585 415 { 416 .match_type = ate_match_dt, 417 .id = "fsl,erratum-a008585", 418 .desc = "Freescale erratum a005858", 419 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0, 420 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0, 421 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0, 422 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0, 423 .set_next_event_phys = erratum_set_next_event_tval_phys, 424 .set_next_event_virt = erratum_set_next_event_tval_virt, 425 }, 426 #endif 427 #ifdef CONFIG_HISILICON_ERRATUM_161010101 428 { 429 .match_type = ate_match_dt, 430 .id = "hisilicon,erratum-161010101", 431 .desc = "HiSilicon erratum 161010101", 432 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0, 433 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0, 434 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0, 435 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, 436 .set_next_event_phys = erratum_set_next_event_tval_phys, 437 .set_next_event_virt = erratum_set_next_event_tval_virt, 438 }, 439 { 440 .match_type = ate_match_acpi_oem_info, 441 .id = hisi_161010101_oem_info, 442 .desc = "HiSilicon erratum 161010101", 443 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0, 444 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0, 445 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0, 446 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, 447 .set_next_event_phys = erratum_set_next_event_tval_phys, 448 .set_next_event_virt = erratum_set_next_event_tval_virt, 449 }, 450 #endif 451 #ifdef CONFIG_ARM64_ERRATUM_858921 452 { 453 .match_type = ate_match_local_cap_id, 454 .id = (void *)ARM64_WORKAROUND_858921, 455 .desc = "ARM erratum 858921", 456 .read_cntpct_el0 = arm64_858921_read_cntpct_el0, 457 .read_cntvct_el0 = arm64_858921_read_cntvct_el0, 458 }, 459 #endif 460 #ifdef CONFIG_ARM64_ERRATUM_1188873 461 { 462 .match_type = ate_match_local_cap_id, 463 .id = (void *)ARM64_WORKAROUND_1188873, 464 .desc = "ARM erratum 1188873", 465 .read_cntvct_el0 = arm64_1188873_read_cntvct_el0, 466 }, 467 #endif 468 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1 469 { 470 .match_type = ate_match_dt, 471 .id = "allwinner,erratum-unknown1", 472 .desc = "Allwinner erratum UNKNOWN1", 473 .read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0, 474 .read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0, 475 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0, 476 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0, 477 .set_next_event_phys = erratum_set_next_event_tval_phys, 478 .set_next_event_virt = erratum_set_next_event_tval_virt, 479 }, 480 #endif 481 }; 482 483 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *, 484 const void *); 485 486 static 487 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa, 488 const void *arg) 489 { 490 const struct device_node *np = arg; 491 492 return of_property_read_bool(np, wa->id); 493 } 494 495 static 496 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa, 497 const void *arg) 498 { 499 return this_cpu_has_cap((uintptr_t)wa->id); 500 } 501 502 503 static 504 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa, 505 const void *arg) 506 { 507 static const struct ate_acpi_oem_info empty_oem_info = {}; 508 const struct ate_acpi_oem_info *info = wa->id; 509 const struct acpi_table_header *table = arg; 510 511 /* Iterate over the ACPI OEM info array, looking for a match */ 512 while (memcmp(info, &empty_oem_info, sizeof(*info))) { 513 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) && 514 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) && 515 info->oem_revision == table->oem_revision) 516 return true; 517 518 info++; 519 } 520 521 return false; 522 } 523 524 static const struct arch_timer_erratum_workaround * 525 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type, 526 ate_match_fn_t match_fn, 527 void *arg) 528 { 529 int i; 530 531 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) { 532 if (ool_workarounds[i].match_type != type) 533 continue; 534 535 if (match_fn(&ool_workarounds[i], arg)) 536 return &ool_workarounds[i]; 537 } 538 539 return NULL; 540 } 541 542 static 543 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa, 544 bool local) 545 { 546 int i; 547 548 if (local) { 549 __this_cpu_write(timer_unstable_counter_workaround, wa); 550 } else { 551 for_each_possible_cpu(i) 552 per_cpu(timer_unstable_counter_workaround, i) = wa; 553 } 554 555 /* 556 * Use the locked version, as we're called from the CPU 557 * hotplug framework. Otherwise, we end-up in deadlock-land. 558 */ 559 static_branch_enable_cpuslocked(&arch_timer_read_ool_enabled); 560 561 /* 562 * Don't use the vdso fastpath if errata require using the 563 * out-of-line counter accessor. We may change our mind pretty 564 * late in the game (with a per-CPU erratum, for example), so 565 * change both the default value and the vdso itself. 566 */ 567 if (wa->read_cntvct_el0) { 568 clocksource_counter.archdata.vdso_direct = false; 569 vdso_default = false; 570 } 571 } 572 573 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type, 574 void *arg) 575 { 576 const struct arch_timer_erratum_workaround *wa; 577 ate_match_fn_t match_fn = NULL; 578 bool local = false; 579 580 switch (type) { 581 case ate_match_dt: 582 match_fn = arch_timer_check_dt_erratum; 583 break; 584 case ate_match_local_cap_id: 585 match_fn = arch_timer_check_local_cap_erratum; 586 local = true; 587 break; 588 case ate_match_acpi_oem_info: 589 match_fn = arch_timer_check_acpi_oem_erratum; 590 break; 591 default: 592 WARN_ON(1); 593 return; 594 } 595 596 wa = arch_timer_iterate_errata(type, match_fn, arg); 597 if (!wa) 598 return; 599 600 if (needs_unstable_timer_counter_workaround()) { 601 const struct arch_timer_erratum_workaround *__wa; 602 __wa = __this_cpu_read(timer_unstable_counter_workaround); 603 if (__wa && wa != __wa) 604 pr_warn("Can't enable workaround for %s (clashes with %s\n)", 605 wa->desc, __wa->desc); 606 607 if (__wa) 608 return; 609 } 610 611 arch_timer_enable_workaround(wa, local); 612 pr_info("Enabling %s workaround for %s\n", 613 local ? "local" : "global", wa->desc); 614 } 615 616 #define erratum_handler(fn, r, ...) \ 617 ({ \ 618 bool __val; \ 619 if (needs_unstable_timer_counter_workaround()) { \ 620 const struct arch_timer_erratum_workaround *__wa; \ 621 __wa = __this_cpu_read(timer_unstable_counter_workaround); \ 622 if (__wa && __wa->fn) { \ 623 r = __wa->fn(__VA_ARGS__); \ 624 __val = true; \ 625 } else { \ 626 __val = false; \ 627 } \ 628 } else { \ 629 __val = false; \ 630 } \ 631 __val; \ 632 }) 633 634 static bool arch_timer_this_cpu_has_cntvct_wa(void) 635 { 636 const struct arch_timer_erratum_workaround *wa; 637 638 wa = __this_cpu_read(timer_unstable_counter_workaround); 639 return wa && wa->read_cntvct_el0; 640 } 641 #else 642 #define arch_timer_check_ool_workaround(t,a) do { } while(0) 643 #define erratum_set_next_event_tval_virt(...) ({BUG(); 0;}) 644 #define erratum_set_next_event_tval_phys(...) ({BUG(); 0;}) 645 #define erratum_handler(fn, r, ...) ({false;}) 646 #define arch_timer_this_cpu_has_cntvct_wa() ({false;}) 647 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */ 648 649 static __always_inline irqreturn_t timer_handler(const int access, 650 struct clock_event_device *evt) 651 { 652 unsigned long ctrl; 653 654 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt); 655 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { 656 ctrl |= ARCH_TIMER_CTRL_IT_MASK; 657 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt); 658 evt->event_handler(evt); 659 return IRQ_HANDLED; 660 } 661 662 return IRQ_NONE; 663 } 664 665 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id) 666 { 667 struct clock_event_device *evt = dev_id; 668 669 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt); 670 } 671 672 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id) 673 { 674 struct clock_event_device *evt = dev_id; 675 676 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt); 677 } 678 679 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id) 680 { 681 struct clock_event_device *evt = dev_id; 682 683 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt); 684 } 685 686 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id) 687 { 688 struct clock_event_device *evt = dev_id; 689 690 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt); 691 } 692 693 static __always_inline int timer_shutdown(const int access, 694 struct clock_event_device *clk) 695 { 696 unsigned long ctrl; 697 698 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 699 ctrl &= ~ARCH_TIMER_CTRL_ENABLE; 700 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 701 702 return 0; 703 } 704 705 static int arch_timer_shutdown_virt(struct clock_event_device *clk) 706 { 707 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk); 708 } 709 710 static int arch_timer_shutdown_phys(struct clock_event_device *clk) 711 { 712 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk); 713 } 714 715 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk) 716 { 717 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk); 718 } 719 720 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk) 721 { 722 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk); 723 } 724 725 static __always_inline void set_next_event(const int access, unsigned long evt, 726 struct clock_event_device *clk) 727 { 728 unsigned long ctrl; 729 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); 730 ctrl |= ARCH_TIMER_CTRL_ENABLE; 731 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; 732 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk); 733 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); 734 } 735 736 static int arch_timer_set_next_event_virt(unsigned long evt, 737 struct clock_event_device *clk) 738 { 739 int ret; 740 741 if (erratum_handler(set_next_event_virt, ret, evt, clk)) 742 return ret; 743 744 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk); 745 return 0; 746 } 747 748 static int arch_timer_set_next_event_phys(unsigned long evt, 749 struct clock_event_device *clk) 750 { 751 int ret; 752 753 if (erratum_handler(set_next_event_phys, ret, evt, clk)) 754 return ret; 755 756 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk); 757 return 0; 758 } 759 760 static int arch_timer_set_next_event_virt_mem(unsigned long evt, 761 struct clock_event_device *clk) 762 { 763 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk); 764 return 0; 765 } 766 767 static int arch_timer_set_next_event_phys_mem(unsigned long evt, 768 struct clock_event_device *clk) 769 { 770 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk); 771 return 0; 772 } 773 774 static void __arch_timer_setup(unsigned type, 775 struct clock_event_device *clk) 776 { 777 clk->features = CLOCK_EVT_FEAT_ONESHOT; 778 779 if (type == ARCH_TIMER_TYPE_CP15) { 780 if (arch_timer_c3stop) 781 clk->features |= CLOCK_EVT_FEAT_C3STOP; 782 clk->name = "arch_sys_timer"; 783 clk->rating = 450; 784 clk->cpumask = cpumask_of(smp_processor_id()); 785 clk->irq = arch_timer_ppi[arch_timer_uses_ppi]; 786 switch (arch_timer_uses_ppi) { 787 case ARCH_TIMER_VIRT_PPI: 788 clk->set_state_shutdown = arch_timer_shutdown_virt; 789 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt; 790 clk->set_next_event = arch_timer_set_next_event_virt; 791 break; 792 case ARCH_TIMER_PHYS_SECURE_PPI: 793 case ARCH_TIMER_PHYS_NONSECURE_PPI: 794 case ARCH_TIMER_HYP_PPI: 795 clk->set_state_shutdown = arch_timer_shutdown_phys; 796 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys; 797 clk->set_next_event = arch_timer_set_next_event_phys; 798 break; 799 default: 800 BUG(); 801 } 802 803 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL); 804 } else { 805 clk->features |= CLOCK_EVT_FEAT_DYNIRQ; 806 clk->name = "arch_mem_timer"; 807 clk->rating = 400; 808 clk->cpumask = cpu_possible_mask; 809 if (arch_timer_mem_use_virtual) { 810 clk->set_state_shutdown = arch_timer_shutdown_virt_mem; 811 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem; 812 clk->set_next_event = 813 arch_timer_set_next_event_virt_mem; 814 } else { 815 clk->set_state_shutdown = arch_timer_shutdown_phys_mem; 816 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem; 817 clk->set_next_event = 818 arch_timer_set_next_event_phys_mem; 819 } 820 } 821 822 clk->set_state_shutdown(clk); 823 824 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff); 825 } 826 827 static void arch_timer_evtstrm_enable(int divider) 828 { 829 u32 cntkctl = arch_timer_get_cntkctl(); 830 831 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK; 832 /* Set the divider and enable virtual event stream */ 833 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT) 834 | ARCH_TIMER_VIRT_EVT_EN; 835 arch_timer_set_cntkctl(cntkctl); 836 elf_hwcap |= HWCAP_EVTSTRM; 837 #ifdef CONFIG_COMPAT 838 compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM; 839 #endif 840 cpumask_set_cpu(smp_processor_id(), &evtstrm_available); 841 } 842 843 static void arch_timer_configure_evtstream(void) 844 { 845 int evt_stream_div, pos; 846 847 /* Find the closest power of two to the divisor */ 848 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ; 849 pos = fls(evt_stream_div); 850 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2)))) 851 pos--; 852 /* enable event stream */ 853 arch_timer_evtstrm_enable(min(pos, 15)); 854 } 855 856 static void arch_counter_set_user_access(void) 857 { 858 u32 cntkctl = arch_timer_get_cntkctl(); 859 860 /* Disable user access to the timers and both counters */ 861 /* Also disable virtual event stream */ 862 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN 863 | ARCH_TIMER_USR_VT_ACCESS_EN 864 | ARCH_TIMER_USR_VCT_ACCESS_EN 865 | ARCH_TIMER_VIRT_EVT_EN 866 | ARCH_TIMER_USR_PCT_ACCESS_EN); 867 868 /* 869 * Enable user access to the virtual counter if it doesn't 870 * need to be workaround. The vdso may have been already 871 * disabled though. 872 */ 873 if (arch_timer_this_cpu_has_cntvct_wa()) 874 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id()); 875 else 876 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN; 877 878 arch_timer_set_cntkctl(cntkctl); 879 } 880 881 static bool arch_timer_has_nonsecure_ppi(void) 882 { 883 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI && 884 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 885 } 886 887 static u32 check_ppi_trigger(int irq) 888 { 889 u32 flags = irq_get_trigger_type(irq); 890 891 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) { 892 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq); 893 pr_warn("WARNING: Please fix your firmware\n"); 894 flags = IRQF_TRIGGER_LOW; 895 } 896 897 return flags; 898 } 899 900 static int arch_timer_starting_cpu(unsigned int cpu) 901 { 902 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 903 u32 flags; 904 905 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk); 906 907 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]); 908 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags); 909 910 if (arch_timer_has_nonsecure_ppi()) { 911 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 912 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], 913 flags); 914 } 915 916 arch_counter_set_user_access(); 917 if (evtstrm_enable) 918 arch_timer_configure_evtstream(); 919 920 return 0; 921 } 922 923 /* 924 * For historical reasons, when probing with DT we use whichever (non-zero) 925 * rate was probed first, and don't verify that others match. If the first node 926 * probed has a clock-frequency property, this overrides the HW register. 927 */ 928 static void arch_timer_of_configure_rate(u32 rate, struct device_node *np) 929 { 930 /* Who has more than one independent system counter? */ 931 if (arch_timer_rate) 932 return; 933 934 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) 935 arch_timer_rate = rate; 936 937 /* Check the timer frequency. */ 938 if (arch_timer_rate == 0) 939 pr_warn("frequency not available\n"); 940 } 941 942 static void arch_timer_banner(unsigned type) 943 { 944 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n", 945 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "", 946 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? 947 " and " : "", 948 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "", 949 (unsigned long)arch_timer_rate / 1000000, 950 (unsigned long)(arch_timer_rate / 10000) % 100, 951 type & ARCH_TIMER_TYPE_CP15 ? 952 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" : 953 "", 954 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "", 955 type & ARCH_TIMER_TYPE_MEM ? 956 arch_timer_mem_use_virtual ? "virt" : "phys" : 957 ""); 958 } 959 960 u32 arch_timer_get_rate(void) 961 { 962 return arch_timer_rate; 963 } 964 965 bool arch_timer_evtstrm_available(void) 966 { 967 /* 968 * We might get called from a preemptible context. This is fine 969 * because availability of the event stream should be always the same 970 * for a preemptible context and context where we might resume a task. 971 */ 972 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available); 973 } 974 975 static u64 arch_counter_get_cntvct_mem(void) 976 { 977 u32 vct_lo, vct_hi, tmp_hi; 978 979 do { 980 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); 981 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO); 982 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); 983 } while (vct_hi != tmp_hi); 984 985 return ((u64) vct_hi << 32) | vct_lo; 986 } 987 988 static struct arch_timer_kvm_info arch_timer_kvm_info; 989 990 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void) 991 { 992 return &arch_timer_kvm_info; 993 } 994 995 static void __init arch_counter_register(unsigned type) 996 { 997 u64 start_count; 998 999 /* Register the CP15 based counter if we have one */ 1000 if (type & ARCH_TIMER_TYPE_CP15) { 1001 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) || 1002 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) 1003 arch_timer_read_counter = arch_counter_get_cntvct; 1004 else 1005 arch_timer_read_counter = arch_counter_get_cntpct; 1006 1007 clocksource_counter.archdata.vdso_direct = vdso_default; 1008 } else { 1009 arch_timer_read_counter = arch_counter_get_cntvct_mem; 1010 } 1011 1012 if (!arch_counter_suspend_stop) 1013 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; 1014 start_count = arch_timer_read_counter(); 1015 clocksource_register_hz(&clocksource_counter, arch_timer_rate); 1016 cyclecounter.mult = clocksource_counter.mult; 1017 cyclecounter.shift = clocksource_counter.shift; 1018 timecounter_init(&arch_timer_kvm_info.timecounter, 1019 &cyclecounter, start_count); 1020 1021 /* 56 bits minimum, so we assume worst case rollover */ 1022 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate); 1023 } 1024 1025 static void arch_timer_stop(struct clock_event_device *clk) 1026 { 1027 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id()); 1028 1029 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]); 1030 if (arch_timer_has_nonsecure_ppi()) 1031 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); 1032 1033 clk->set_state_shutdown(clk); 1034 } 1035 1036 static int arch_timer_dying_cpu(unsigned int cpu) 1037 { 1038 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); 1039 1040 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available); 1041 1042 arch_timer_stop(clk); 1043 return 0; 1044 } 1045 1046 #ifdef CONFIG_CPU_PM 1047 static DEFINE_PER_CPU(unsigned long, saved_cntkctl); 1048 static int arch_timer_cpu_pm_notify(struct notifier_block *self, 1049 unsigned long action, void *hcpu) 1050 { 1051 if (action == CPU_PM_ENTER) { 1052 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl()); 1053 1054 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available); 1055 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) { 1056 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl)); 1057 1058 if (elf_hwcap & HWCAP_EVTSTRM) 1059 cpumask_set_cpu(smp_processor_id(), &evtstrm_available); 1060 } 1061 return NOTIFY_OK; 1062 } 1063 1064 static struct notifier_block arch_timer_cpu_pm_notifier = { 1065 .notifier_call = arch_timer_cpu_pm_notify, 1066 }; 1067 1068 static int __init arch_timer_cpu_pm_init(void) 1069 { 1070 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier); 1071 } 1072 1073 static void __init arch_timer_cpu_pm_deinit(void) 1074 { 1075 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier)); 1076 } 1077 1078 #else 1079 static int __init arch_timer_cpu_pm_init(void) 1080 { 1081 return 0; 1082 } 1083 1084 static void __init arch_timer_cpu_pm_deinit(void) 1085 { 1086 } 1087 #endif 1088 1089 static int __init arch_timer_register(void) 1090 { 1091 int err; 1092 int ppi; 1093 1094 arch_timer_evt = alloc_percpu(struct clock_event_device); 1095 if (!arch_timer_evt) { 1096 err = -ENOMEM; 1097 goto out; 1098 } 1099 1100 ppi = arch_timer_ppi[arch_timer_uses_ppi]; 1101 switch (arch_timer_uses_ppi) { 1102 case ARCH_TIMER_VIRT_PPI: 1103 err = request_percpu_irq(ppi, arch_timer_handler_virt, 1104 "arch_timer", arch_timer_evt); 1105 break; 1106 case ARCH_TIMER_PHYS_SECURE_PPI: 1107 case ARCH_TIMER_PHYS_NONSECURE_PPI: 1108 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1109 "arch_timer", arch_timer_evt); 1110 if (!err && arch_timer_has_nonsecure_ppi()) { 1111 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]; 1112 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1113 "arch_timer", arch_timer_evt); 1114 if (err) 1115 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI], 1116 arch_timer_evt); 1117 } 1118 break; 1119 case ARCH_TIMER_HYP_PPI: 1120 err = request_percpu_irq(ppi, arch_timer_handler_phys, 1121 "arch_timer", arch_timer_evt); 1122 break; 1123 default: 1124 BUG(); 1125 } 1126 1127 if (err) { 1128 pr_err("can't register interrupt %d (%d)\n", ppi, err); 1129 goto out_free; 1130 } 1131 1132 err = arch_timer_cpu_pm_init(); 1133 if (err) 1134 goto out_unreg_notify; 1135 1136 /* Register and immediately configure the timer on the boot CPU */ 1137 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING, 1138 "clockevents/arm/arch_timer:starting", 1139 arch_timer_starting_cpu, arch_timer_dying_cpu); 1140 if (err) 1141 goto out_unreg_cpupm; 1142 return 0; 1143 1144 out_unreg_cpupm: 1145 arch_timer_cpu_pm_deinit(); 1146 1147 out_unreg_notify: 1148 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt); 1149 if (arch_timer_has_nonsecure_ppi()) 1150 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], 1151 arch_timer_evt); 1152 1153 out_free: 1154 free_percpu(arch_timer_evt); 1155 out: 1156 return err; 1157 } 1158 1159 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq) 1160 { 1161 int ret; 1162 irq_handler_t func; 1163 struct arch_timer *t; 1164 1165 t = kzalloc(sizeof(*t), GFP_KERNEL); 1166 if (!t) 1167 return -ENOMEM; 1168 1169 t->base = base; 1170 t->evt.irq = irq; 1171 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt); 1172 1173 if (arch_timer_mem_use_virtual) 1174 func = arch_timer_handler_virt_mem; 1175 else 1176 func = arch_timer_handler_phys_mem; 1177 1178 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt); 1179 if (ret) { 1180 pr_err("Failed to request mem timer irq\n"); 1181 kfree(t); 1182 } 1183 1184 return ret; 1185 } 1186 1187 static const struct of_device_id arch_timer_of_match[] __initconst = { 1188 { .compatible = "arm,armv7-timer", }, 1189 { .compatible = "arm,armv8-timer", }, 1190 {}, 1191 }; 1192 1193 static const struct of_device_id arch_timer_mem_of_match[] __initconst = { 1194 { .compatible = "arm,armv7-timer-mem", }, 1195 {}, 1196 }; 1197 1198 static bool __init arch_timer_needs_of_probing(void) 1199 { 1200 struct device_node *dn; 1201 bool needs_probing = false; 1202 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM; 1203 1204 /* We have two timers, and both device-tree nodes are probed. */ 1205 if ((arch_timers_present & mask) == mask) 1206 return false; 1207 1208 /* 1209 * Only one type of timer is probed, 1210 * check if we have another type of timer node in device-tree. 1211 */ 1212 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) 1213 dn = of_find_matching_node(NULL, arch_timer_mem_of_match); 1214 else 1215 dn = of_find_matching_node(NULL, arch_timer_of_match); 1216 1217 if (dn && of_device_is_available(dn)) 1218 needs_probing = true; 1219 1220 of_node_put(dn); 1221 1222 return needs_probing; 1223 } 1224 1225 static int __init arch_timer_common_init(void) 1226 { 1227 arch_timer_banner(arch_timers_present); 1228 arch_counter_register(arch_timers_present); 1229 return arch_timer_arch_init(); 1230 } 1231 1232 /** 1233 * arch_timer_select_ppi() - Select suitable PPI for the current system. 1234 * 1235 * If HYP mode is available, we know that the physical timer 1236 * has been configured to be accessible from PL1. Use it, so 1237 * that a guest can use the virtual timer instead. 1238 * 1239 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE 1240 * accesses to CNTP_*_EL1 registers are silently redirected to 1241 * their CNTHP_*_EL2 counterparts, and use a different PPI 1242 * number. 1243 * 1244 * If no interrupt provided for virtual timer, we'll have to 1245 * stick to the physical timer. It'd better be accessible... 1246 * For arm64 we never use the secure interrupt. 1247 * 1248 * Return: a suitable PPI type for the current system. 1249 */ 1250 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void) 1251 { 1252 if (is_kernel_in_hyp_mode()) 1253 return ARCH_TIMER_HYP_PPI; 1254 1255 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI]) 1256 return ARCH_TIMER_VIRT_PPI; 1257 1258 if (IS_ENABLED(CONFIG_ARM64)) 1259 return ARCH_TIMER_PHYS_NONSECURE_PPI; 1260 1261 return ARCH_TIMER_PHYS_SECURE_PPI; 1262 } 1263 1264 static void __init arch_timer_populate_kvm_info(void) 1265 { 1266 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI]; 1267 if (is_kernel_in_hyp_mode()) 1268 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]; 1269 } 1270 1271 static int __init arch_timer_of_init(struct device_node *np) 1272 { 1273 int i, ret; 1274 u32 rate; 1275 1276 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { 1277 pr_warn("multiple nodes in dt, skipping\n"); 1278 return 0; 1279 } 1280 1281 arch_timers_present |= ARCH_TIMER_TYPE_CP15; 1282 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) 1283 arch_timer_ppi[i] = irq_of_parse_and_map(np, i); 1284 1285 arch_timer_populate_kvm_info(); 1286 1287 rate = arch_timer_get_cntfrq(); 1288 arch_timer_of_configure_rate(rate, np); 1289 1290 arch_timer_c3stop = !of_property_read_bool(np, "always-on"); 1291 1292 /* Check for globally applicable workarounds */ 1293 arch_timer_check_ool_workaround(ate_match_dt, np); 1294 1295 /* 1296 * If we cannot rely on firmware initializing the timer registers then 1297 * we should use the physical timers instead. 1298 */ 1299 if (IS_ENABLED(CONFIG_ARM) && 1300 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured")) 1301 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI; 1302 else 1303 arch_timer_uses_ppi = arch_timer_select_ppi(); 1304 1305 if (!arch_timer_ppi[arch_timer_uses_ppi]) { 1306 pr_err("No interrupt available, giving up\n"); 1307 return -EINVAL; 1308 } 1309 1310 /* On some systems, the counter stops ticking when in suspend. */ 1311 arch_counter_suspend_stop = of_property_read_bool(np, 1312 "arm,no-tick-in-suspend"); 1313 1314 ret = arch_timer_register(); 1315 if (ret) 1316 return ret; 1317 1318 if (arch_timer_needs_of_probing()) 1319 return 0; 1320 1321 return arch_timer_common_init(); 1322 } 1323 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init); 1324 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init); 1325 1326 static u32 __init 1327 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame) 1328 { 1329 void __iomem *base; 1330 u32 rate; 1331 1332 base = ioremap(frame->cntbase, frame->size); 1333 if (!base) { 1334 pr_err("Unable to map frame @ %pa\n", &frame->cntbase); 1335 return 0; 1336 } 1337 1338 rate = readl_relaxed(base + CNTFRQ); 1339 1340 iounmap(base); 1341 1342 return rate; 1343 } 1344 1345 static struct arch_timer_mem_frame * __init 1346 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem) 1347 { 1348 struct arch_timer_mem_frame *frame, *best_frame = NULL; 1349 void __iomem *cntctlbase; 1350 u32 cnttidr; 1351 int i; 1352 1353 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size); 1354 if (!cntctlbase) { 1355 pr_err("Can't map CNTCTLBase @ %pa\n", 1356 &timer_mem->cntctlbase); 1357 return NULL; 1358 } 1359 1360 cnttidr = readl_relaxed(cntctlbase + CNTTIDR); 1361 1362 /* 1363 * Try to find a virtual capable frame. Otherwise fall back to a 1364 * physical capable frame. 1365 */ 1366 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) { 1367 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT | 1368 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT; 1369 1370 frame = &timer_mem->frame[i]; 1371 if (!frame->valid) 1372 continue; 1373 1374 /* Try enabling everything, and see what sticks */ 1375 writel_relaxed(cntacr, cntctlbase + CNTACR(i)); 1376 cntacr = readl_relaxed(cntctlbase + CNTACR(i)); 1377 1378 if ((cnttidr & CNTTIDR_VIRT(i)) && 1379 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) { 1380 best_frame = frame; 1381 arch_timer_mem_use_virtual = true; 1382 break; 1383 } 1384 1385 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT)) 1386 continue; 1387 1388 best_frame = frame; 1389 } 1390 1391 iounmap(cntctlbase); 1392 1393 return best_frame; 1394 } 1395 1396 static int __init 1397 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame) 1398 { 1399 void __iomem *base; 1400 int ret, irq = 0; 1401 1402 if (arch_timer_mem_use_virtual) 1403 irq = frame->virt_irq; 1404 else 1405 irq = frame->phys_irq; 1406 1407 if (!irq) { 1408 pr_err("Frame missing %s irq.\n", 1409 arch_timer_mem_use_virtual ? "virt" : "phys"); 1410 return -EINVAL; 1411 } 1412 1413 if (!request_mem_region(frame->cntbase, frame->size, 1414 "arch_mem_timer")) 1415 return -EBUSY; 1416 1417 base = ioremap(frame->cntbase, frame->size); 1418 if (!base) { 1419 pr_err("Can't map frame's registers\n"); 1420 return -ENXIO; 1421 } 1422 1423 ret = arch_timer_mem_register(base, irq); 1424 if (ret) { 1425 iounmap(base); 1426 return ret; 1427 } 1428 1429 arch_counter_base = base; 1430 arch_timers_present |= ARCH_TIMER_TYPE_MEM; 1431 1432 return 0; 1433 } 1434 1435 static int __init arch_timer_mem_of_init(struct device_node *np) 1436 { 1437 struct arch_timer_mem *timer_mem; 1438 struct arch_timer_mem_frame *frame; 1439 struct device_node *frame_node; 1440 struct resource res; 1441 int ret = -EINVAL; 1442 u32 rate; 1443 1444 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL); 1445 if (!timer_mem) 1446 return -ENOMEM; 1447 1448 if (of_address_to_resource(np, 0, &res)) 1449 goto out; 1450 timer_mem->cntctlbase = res.start; 1451 timer_mem->size = resource_size(&res); 1452 1453 for_each_available_child_of_node(np, frame_node) { 1454 u32 n; 1455 struct arch_timer_mem_frame *frame; 1456 1457 if (of_property_read_u32(frame_node, "frame-number", &n)) { 1458 pr_err(FW_BUG "Missing frame-number.\n"); 1459 of_node_put(frame_node); 1460 goto out; 1461 } 1462 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) { 1463 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n", 1464 ARCH_TIMER_MEM_MAX_FRAMES - 1); 1465 of_node_put(frame_node); 1466 goto out; 1467 } 1468 frame = &timer_mem->frame[n]; 1469 1470 if (frame->valid) { 1471 pr_err(FW_BUG "Duplicated frame-number.\n"); 1472 of_node_put(frame_node); 1473 goto out; 1474 } 1475 1476 if (of_address_to_resource(frame_node, 0, &res)) { 1477 of_node_put(frame_node); 1478 goto out; 1479 } 1480 frame->cntbase = res.start; 1481 frame->size = resource_size(&res); 1482 1483 frame->virt_irq = irq_of_parse_and_map(frame_node, 1484 ARCH_TIMER_VIRT_SPI); 1485 frame->phys_irq = irq_of_parse_and_map(frame_node, 1486 ARCH_TIMER_PHYS_SPI); 1487 1488 frame->valid = true; 1489 } 1490 1491 frame = arch_timer_mem_find_best_frame(timer_mem); 1492 if (!frame) { 1493 pr_err("Unable to find a suitable frame in timer @ %pa\n", 1494 &timer_mem->cntctlbase); 1495 ret = -EINVAL; 1496 goto out; 1497 } 1498 1499 rate = arch_timer_mem_frame_get_cntfrq(frame); 1500 arch_timer_of_configure_rate(rate, np); 1501 1502 ret = arch_timer_mem_frame_register(frame); 1503 if (!ret && !arch_timer_needs_of_probing()) 1504 ret = arch_timer_common_init(); 1505 out: 1506 kfree(timer_mem); 1507 return ret; 1508 } 1509 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem", 1510 arch_timer_mem_of_init); 1511 1512 #ifdef CONFIG_ACPI_GTDT 1513 static int __init 1514 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem) 1515 { 1516 struct arch_timer_mem_frame *frame; 1517 u32 rate; 1518 int i; 1519 1520 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) { 1521 frame = &timer_mem->frame[i]; 1522 1523 if (!frame->valid) 1524 continue; 1525 1526 rate = arch_timer_mem_frame_get_cntfrq(frame); 1527 if (rate == arch_timer_rate) 1528 continue; 1529 1530 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n", 1531 &frame->cntbase, 1532 (unsigned long)rate, (unsigned long)arch_timer_rate); 1533 1534 return -EINVAL; 1535 } 1536 1537 return 0; 1538 } 1539 1540 static int __init arch_timer_mem_acpi_init(int platform_timer_count) 1541 { 1542 struct arch_timer_mem *timers, *timer; 1543 struct arch_timer_mem_frame *frame, *best_frame = NULL; 1544 int timer_count, i, ret = 0; 1545 1546 timers = kcalloc(platform_timer_count, sizeof(*timers), 1547 GFP_KERNEL); 1548 if (!timers) 1549 return -ENOMEM; 1550 1551 ret = acpi_arch_timer_mem_init(timers, &timer_count); 1552 if (ret || !timer_count) 1553 goto out; 1554 1555 /* 1556 * While unlikely, it's theoretically possible that none of the frames 1557 * in a timer expose the combination of feature we want. 1558 */ 1559 for (i = 0; i < timer_count; i++) { 1560 timer = &timers[i]; 1561 1562 frame = arch_timer_mem_find_best_frame(timer); 1563 if (!best_frame) 1564 best_frame = frame; 1565 1566 ret = arch_timer_mem_verify_cntfrq(timer); 1567 if (ret) { 1568 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n"); 1569 goto out; 1570 } 1571 1572 if (!best_frame) /* implies !frame */ 1573 /* 1574 * Only complain about missing suitable frames if we 1575 * haven't already found one in a previous iteration. 1576 */ 1577 pr_err("Unable to find a suitable frame in timer @ %pa\n", 1578 &timer->cntctlbase); 1579 } 1580 1581 if (best_frame) 1582 ret = arch_timer_mem_frame_register(best_frame); 1583 out: 1584 kfree(timers); 1585 return ret; 1586 } 1587 1588 /* Initialize per-processor generic timer and memory-mapped timer(if present) */ 1589 static int __init arch_timer_acpi_init(struct acpi_table_header *table) 1590 { 1591 int ret, platform_timer_count; 1592 1593 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { 1594 pr_warn("already initialized, skipping\n"); 1595 return -EINVAL; 1596 } 1597 1598 arch_timers_present |= ARCH_TIMER_TYPE_CP15; 1599 1600 ret = acpi_gtdt_init(table, &platform_timer_count); 1601 if (ret) { 1602 pr_err("Failed to init GTDT table.\n"); 1603 return ret; 1604 } 1605 1606 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] = 1607 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI); 1608 1609 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] = 1610 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI); 1611 1612 arch_timer_ppi[ARCH_TIMER_HYP_PPI] = 1613 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI); 1614 1615 arch_timer_populate_kvm_info(); 1616 1617 /* 1618 * When probing via ACPI, we have no mechanism to override the sysreg 1619 * CNTFRQ value. This *must* be correct. 1620 */ 1621 arch_timer_rate = arch_timer_get_cntfrq(); 1622 if (!arch_timer_rate) { 1623 pr_err(FW_BUG "frequency not available.\n"); 1624 return -EINVAL; 1625 } 1626 1627 arch_timer_uses_ppi = arch_timer_select_ppi(); 1628 if (!arch_timer_ppi[arch_timer_uses_ppi]) { 1629 pr_err("No interrupt available, giving up\n"); 1630 return -EINVAL; 1631 } 1632 1633 /* Always-on capability */ 1634 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi); 1635 1636 /* Check for globally applicable workarounds */ 1637 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table); 1638 1639 ret = arch_timer_register(); 1640 if (ret) 1641 return ret; 1642 1643 if (platform_timer_count && 1644 arch_timer_mem_acpi_init(platform_timer_count)) 1645 pr_err("Failed to initialize memory-mapped timer.\n"); 1646 1647 return arch_timer_common_init(); 1648 } 1649 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init); 1650 #endif 1651