1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/clocksource/arm_arch_timer.c
4 *
5 * Copyright (C) 2011 ARM Ltd.
6 * All Rights Reserved
7 */
8
9 #define pr_fmt(fmt) "arch_timer: " fmt
10
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/clocksource_ids.h>
20 #include <linux/interrupt.h>
21 #include <linux/kstrtox.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_address.h>
24 #include <linux/io.h>
25 #include <linux/slab.h>
26 #include <linux/sched/clock.h>
27 #include <linux/sched_clock.h>
28 #include <linux/acpi.h>
29 #include <linux/arm-smccc.h>
30 #include <linux/ptp_kvm.h>
31
32 #include <asm/arch_timer.h>
33 #include <asm/virt.h>
34
35 #include <clocksource/arm_arch_timer.h>
36
37 #define CNTTIDR 0x08
38 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
39
40 #define CNTACR(n) (0x40 + ((n) * 4))
41 #define CNTACR_RPCT BIT(0)
42 #define CNTACR_RVCT BIT(1)
43 #define CNTACR_RFRQ BIT(2)
44 #define CNTACR_RVOFF BIT(3)
45 #define CNTACR_RWVT BIT(4)
46 #define CNTACR_RWPT BIT(5)
47
48 #define CNTPCT_LO 0x00
49 #define CNTVCT_LO 0x08
50 #define CNTFRQ 0x10
51 #define CNTP_CVAL_LO 0x20
52 #define CNTP_CTL 0x2c
53 #define CNTV_CVAL_LO 0x30
54 #define CNTV_CTL 0x3c
55
56 /*
57 * The minimum amount of time a generic counter is guaranteed to not roll over
58 * (40 years)
59 */
60 #define MIN_ROLLOVER_SECS (40ULL * 365 * 24 * 3600)
61
62 static unsigned arch_timers_present __initdata;
63
64 struct arch_timer {
65 void __iomem *base;
66 struct clock_event_device evt;
67 };
68
69 static struct arch_timer *arch_timer_mem __ro_after_init;
70
71 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
72
73 static u32 arch_timer_rate __ro_after_init;
74 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
75
76 static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
77 [ARCH_TIMER_PHYS_SECURE_PPI] = "sec-phys",
78 [ARCH_TIMER_PHYS_NONSECURE_PPI] = "phys",
79 [ARCH_TIMER_VIRT_PPI] = "virt",
80 [ARCH_TIMER_HYP_PPI] = "hyp-phys",
81 [ARCH_TIMER_HYP_VIRT_PPI] = "hyp-virt",
82 };
83
84 static struct clock_event_device __percpu *arch_timer_evt;
85
86 static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
87 static bool arch_timer_c3stop __ro_after_init;
88 static bool arch_timer_mem_use_virtual __ro_after_init;
89 static bool arch_counter_suspend_stop __ro_after_init;
90 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
91 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
92 #else
93 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
94 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
95
96 static cpumask_t evtstrm_available = CPU_MASK_NONE;
97 static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
98
early_evtstrm_cfg(char * buf)99 static int __init early_evtstrm_cfg(char *buf)
100 {
101 return kstrtobool(buf, &evtstrm_enable);
102 }
103 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
104
105 /*
106 * Makes an educated guess at a valid counter width based on the Generic Timer
107 * specification. Of note:
108 * 1) the system counter is at least 56 bits wide
109 * 2) a roll-over time of not less than 40 years
110 *
111 * See 'ARM DDI 0487G.a D11.1.2 ("The system counter")' for more details.
112 */
arch_counter_get_width(void)113 static int arch_counter_get_width(void)
114 {
115 u64 min_cycles = MIN_ROLLOVER_SECS * arch_timer_rate;
116
117 /* guarantee the returned width is within the valid range */
118 return clamp_val(ilog2(min_cycles - 1) + 1, 56, 64);
119 }
120
121 /*
122 * Architected system timer support.
123 */
124
125 static __always_inline
arch_timer_reg_write(int access,enum arch_timer_reg reg,u64 val,struct clock_event_device * clk)126 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u64 val,
127 struct clock_event_device *clk)
128 {
129 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
130 struct arch_timer *timer = to_arch_timer(clk);
131 switch (reg) {
132 case ARCH_TIMER_REG_CTRL:
133 writel_relaxed((u32)val, timer->base + CNTP_CTL);
134 break;
135 case ARCH_TIMER_REG_CVAL:
136 /*
137 * Not guaranteed to be atomic, so the timer
138 * must be disabled at this point.
139 */
140 writeq_relaxed(val, timer->base + CNTP_CVAL_LO);
141 break;
142 default:
143 BUILD_BUG();
144 }
145 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
146 struct arch_timer *timer = to_arch_timer(clk);
147 switch (reg) {
148 case ARCH_TIMER_REG_CTRL:
149 writel_relaxed((u32)val, timer->base + CNTV_CTL);
150 break;
151 case ARCH_TIMER_REG_CVAL:
152 /* Same restriction as above */
153 writeq_relaxed(val, timer->base + CNTV_CVAL_LO);
154 break;
155 default:
156 BUILD_BUG();
157 }
158 } else {
159 arch_timer_reg_write_cp15(access, reg, val);
160 }
161 }
162
163 static __always_inline
arch_timer_reg_read(int access,enum arch_timer_reg reg,struct clock_event_device * clk)164 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
165 struct clock_event_device *clk)
166 {
167 u32 val;
168
169 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
170 struct arch_timer *timer = to_arch_timer(clk);
171 switch (reg) {
172 case ARCH_TIMER_REG_CTRL:
173 val = readl_relaxed(timer->base + CNTP_CTL);
174 break;
175 default:
176 BUILD_BUG();
177 }
178 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
179 struct arch_timer *timer = to_arch_timer(clk);
180 switch (reg) {
181 case ARCH_TIMER_REG_CTRL:
182 val = readl_relaxed(timer->base + CNTV_CTL);
183 break;
184 default:
185 BUILD_BUG();
186 }
187 } else {
188 val = arch_timer_reg_read_cp15(access, reg);
189 }
190
191 return val;
192 }
193
raw_counter_get_cntpct_stable(void)194 static noinstr u64 raw_counter_get_cntpct_stable(void)
195 {
196 return __arch_counter_get_cntpct_stable();
197 }
198
arch_counter_get_cntpct_stable(void)199 static notrace u64 arch_counter_get_cntpct_stable(void)
200 {
201 u64 val;
202 preempt_disable_notrace();
203 val = __arch_counter_get_cntpct_stable();
204 preempt_enable_notrace();
205 return val;
206 }
207
arch_counter_get_cntpct(void)208 static noinstr u64 arch_counter_get_cntpct(void)
209 {
210 return __arch_counter_get_cntpct();
211 }
212
raw_counter_get_cntvct_stable(void)213 static noinstr u64 raw_counter_get_cntvct_stable(void)
214 {
215 return __arch_counter_get_cntvct_stable();
216 }
217
arch_counter_get_cntvct_stable(void)218 static notrace u64 arch_counter_get_cntvct_stable(void)
219 {
220 u64 val;
221 preempt_disable_notrace();
222 val = __arch_counter_get_cntvct_stable();
223 preempt_enable_notrace();
224 return val;
225 }
226
arch_counter_get_cntvct(void)227 static noinstr u64 arch_counter_get_cntvct(void)
228 {
229 return __arch_counter_get_cntvct();
230 }
231
232 /*
233 * Default to cp15 based access because arm64 uses this function for
234 * sched_clock() before DT is probed and the cp15 method is guaranteed
235 * to exist on arm64. arm doesn't use this before DT is probed so even
236 * if we don't have the cp15 accessors we won't have a problem.
237 */
238 u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
239 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
240
arch_counter_read(struct clocksource * cs)241 static u64 arch_counter_read(struct clocksource *cs)
242 {
243 return arch_timer_read_counter();
244 }
245
arch_counter_read_cc(const struct cyclecounter * cc)246 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
247 {
248 return arch_timer_read_counter();
249 }
250
251 static struct clocksource clocksource_counter = {
252 .name = "arch_sys_counter",
253 .id = CSID_ARM_ARCH_COUNTER,
254 .rating = 400,
255 .read = arch_counter_read,
256 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
257 };
258
259 static struct cyclecounter cyclecounter __ro_after_init = {
260 .read = arch_counter_read_cc,
261 };
262
263 struct ate_acpi_oem_info {
264 char oem_id[ACPI_OEM_ID_SIZE + 1];
265 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
266 u32 oem_revision;
267 };
268
269 #ifdef CONFIG_FSL_ERRATUM_A008585
270 /*
271 * The number of retries is an arbitrary value well beyond the highest number
272 * of iterations the loop has been observed to take.
273 */
274 #define __fsl_a008585_read_reg(reg) ({ \
275 u64 _old, _new; \
276 int _retries = 200; \
277 \
278 do { \
279 _old = read_sysreg(reg); \
280 _new = read_sysreg(reg); \
281 _retries--; \
282 } while (unlikely(_old != _new) && _retries); \
283 \
284 WARN_ON_ONCE(!_retries); \
285 _new; \
286 })
287
fsl_a008585_read_cntpct_el0(void)288 static u64 notrace fsl_a008585_read_cntpct_el0(void)
289 {
290 return __fsl_a008585_read_reg(cntpct_el0);
291 }
292
fsl_a008585_read_cntvct_el0(void)293 static u64 notrace fsl_a008585_read_cntvct_el0(void)
294 {
295 return __fsl_a008585_read_reg(cntvct_el0);
296 }
297 #endif
298
299 #ifdef CONFIG_HISILICON_ERRATUM_161010101
300 /*
301 * Verify whether the value of the second read is larger than the first by
302 * less than 32 is the only way to confirm the value is correct, so clear the
303 * lower 5 bits to check whether the difference is greater than 32 or not.
304 * Theoretically the erratum should not occur more than twice in succession
305 * when reading the system counter, but it is possible that some interrupts
306 * may lead to more than twice read errors, triggering the warning, so setting
307 * the number of retries far beyond the number of iterations the loop has been
308 * observed to take.
309 */
310 #define __hisi_161010101_read_reg(reg) ({ \
311 u64 _old, _new; \
312 int _retries = 50; \
313 \
314 do { \
315 _old = read_sysreg(reg); \
316 _new = read_sysreg(reg); \
317 _retries--; \
318 } while (unlikely((_new - _old) >> 5) && _retries); \
319 \
320 WARN_ON_ONCE(!_retries); \
321 _new; \
322 })
323
hisi_161010101_read_cntpct_el0(void)324 static u64 notrace hisi_161010101_read_cntpct_el0(void)
325 {
326 return __hisi_161010101_read_reg(cntpct_el0);
327 }
328
hisi_161010101_read_cntvct_el0(void)329 static u64 notrace hisi_161010101_read_cntvct_el0(void)
330 {
331 return __hisi_161010101_read_reg(cntvct_el0);
332 }
333
334 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
335 /*
336 * Note that trailing spaces are required to properly match
337 * the OEM table information.
338 */
339 {
340 .oem_id = "HISI ",
341 .oem_table_id = "HIP05 ",
342 .oem_revision = 0,
343 },
344 {
345 .oem_id = "HISI ",
346 .oem_table_id = "HIP06 ",
347 .oem_revision = 0,
348 },
349 {
350 .oem_id = "HISI ",
351 .oem_table_id = "HIP07 ",
352 .oem_revision = 0,
353 },
354 { /* Sentinel indicating the end of the OEM array */ },
355 };
356 #endif
357
358 #ifdef CONFIG_ARM64_ERRATUM_858921
arm64_858921_read_cntpct_el0(void)359 static u64 notrace arm64_858921_read_cntpct_el0(void)
360 {
361 u64 old, new;
362
363 old = read_sysreg(cntpct_el0);
364 new = read_sysreg(cntpct_el0);
365 return (((old ^ new) >> 32) & 1) ? old : new;
366 }
367
arm64_858921_read_cntvct_el0(void)368 static u64 notrace arm64_858921_read_cntvct_el0(void)
369 {
370 u64 old, new;
371
372 old = read_sysreg(cntvct_el0);
373 new = read_sysreg(cntvct_el0);
374 return (((old ^ new) >> 32) & 1) ? old : new;
375 }
376 #endif
377
378 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
379 /*
380 * The low bits of the counter registers are indeterminate while bit 10 or
381 * greater is rolling over. Since the counter value can jump both backward
382 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
383 * with all ones or all zeros in the low bits. Bound the loop by the maximum
384 * number of CPU cycles in 3 consecutive 24 MHz counter periods.
385 */
386 #define __sun50i_a64_read_reg(reg) ({ \
387 u64 _val; \
388 int _retries = 150; \
389 \
390 do { \
391 _val = read_sysreg(reg); \
392 _retries--; \
393 } while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries); \
394 \
395 WARN_ON_ONCE(!_retries); \
396 _val; \
397 })
398
sun50i_a64_read_cntpct_el0(void)399 static u64 notrace sun50i_a64_read_cntpct_el0(void)
400 {
401 return __sun50i_a64_read_reg(cntpct_el0);
402 }
403
sun50i_a64_read_cntvct_el0(void)404 static u64 notrace sun50i_a64_read_cntvct_el0(void)
405 {
406 return __sun50i_a64_read_reg(cntvct_el0);
407 }
408 #endif
409
410 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
411 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
412 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
413
414 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
415
416 /*
417 * Force the inlining of this function so that the register accesses
418 * can be themselves correctly inlined.
419 */
420 static __always_inline
erratum_set_next_event_generic(const int access,unsigned long evt,struct clock_event_device * clk)421 void erratum_set_next_event_generic(const int access, unsigned long evt,
422 struct clock_event_device *clk)
423 {
424 unsigned long ctrl;
425 u64 cval;
426
427 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
428 ctrl |= ARCH_TIMER_CTRL_ENABLE;
429 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
430
431 if (access == ARCH_TIMER_PHYS_ACCESS) {
432 cval = evt + arch_counter_get_cntpct_stable();
433 write_sysreg(cval, cntp_cval_el0);
434 } else {
435 cval = evt + arch_counter_get_cntvct_stable();
436 write_sysreg(cval, cntv_cval_el0);
437 }
438
439 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
440 }
441
erratum_set_next_event_virt(unsigned long evt,struct clock_event_device * clk)442 static __maybe_unused int erratum_set_next_event_virt(unsigned long evt,
443 struct clock_event_device *clk)
444 {
445 erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
446 return 0;
447 }
448
erratum_set_next_event_phys(unsigned long evt,struct clock_event_device * clk)449 static __maybe_unused int erratum_set_next_event_phys(unsigned long evt,
450 struct clock_event_device *clk)
451 {
452 erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
453 return 0;
454 }
455
456 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
457 #ifdef CONFIG_FSL_ERRATUM_A008585
458 {
459 .match_type = ate_match_dt,
460 .id = "fsl,erratum-a008585",
461 .desc = "Freescale erratum a005858",
462 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
463 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
464 .set_next_event_phys = erratum_set_next_event_phys,
465 .set_next_event_virt = erratum_set_next_event_virt,
466 },
467 #endif
468 #ifdef CONFIG_HISILICON_ERRATUM_161010101
469 {
470 .match_type = ate_match_dt,
471 .id = "hisilicon,erratum-161010101",
472 .desc = "HiSilicon erratum 161010101",
473 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
474 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
475 .set_next_event_phys = erratum_set_next_event_phys,
476 .set_next_event_virt = erratum_set_next_event_virt,
477 },
478 {
479 .match_type = ate_match_acpi_oem_info,
480 .id = hisi_161010101_oem_info,
481 .desc = "HiSilicon erratum 161010101",
482 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
483 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
484 .set_next_event_phys = erratum_set_next_event_phys,
485 .set_next_event_virt = erratum_set_next_event_virt,
486 },
487 #endif
488 #ifdef CONFIG_ARM64_ERRATUM_858921
489 {
490 .match_type = ate_match_local_cap_id,
491 .id = (void *)ARM64_WORKAROUND_858921,
492 .desc = "ARM erratum 858921",
493 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
494 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
495 .set_next_event_phys = erratum_set_next_event_phys,
496 .set_next_event_virt = erratum_set_next_event_virt,
497 },
498 #endif
499 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
500 {
501 .match_type = ate_match_dt,
502 .id = "allwinner,erratum-unknown1",
503 .desc = "Allwinner erratum UNKNOWN1",
504 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
505 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
506 .set_next_event_phys = erratum_set_next_event_phys,
507 .set_next_event_virt = erratum_set_next_event_virt,
508 },
509 #endif
510 #ifdef CONFIG_ARM64_ERRATUM_1418040
511 {
512 .match_type = ate_match_local_cap_id,
513 .id = (void *)ARM64_WORKAROUND_1418040,
514 .desc = "ARM erratum 1418040",
515 .disable_compat_vdso = true,
516 },
517 #endif
518 };
519
520 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
521 const void *);
522
523 static
arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)524 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
525 const void *arg)
526 {
527 const struct device_node *np = arg;
528
529 return of_property_read_bool(np, wa->id);
530 }
531
532 static
arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)533 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
534 const void *arg)
535 {
536 return this_cpu_has_cap((uintptr_t)wa->id);
537 }
538
539
540 static
arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)541 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
542 const void *arg)
543 {
544 static const struct ate_acpi_oem_info empty_oem_info = {};
545 const struct ate_acpi_oem_info *info = wa->id;
546 const struct acpi_table_header *table = arg;
547
548 /* Iterate over the ACPI OEM info array, looking for a match */
549 while (memcmp(info, &empty_oem_info, sizeof(*info))) {
550 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
551 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
552 info->oem_revision == table->oem_revision)
553 return true;
554
555 info++;
556 }
557
558 return false;
559 }
560
561 static const struct arch_timer_erratum_workaround *
arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,ate_match_fn_t match_fn,void * arg)562 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
563 ate_match_fn_t match_fn,
564 void *arg)
565 {
566 int i;
567
568 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
569 if (ool_workarounds[i].match_type != type)
570 continue;
571
572 if (match_fn(&ool_workarounds[i], arg))
573 return &ool_workarounds[i];
574 }
575
576 return NULL;
577 }
578
579 static
arch_timer_enable_workaround(const struct arch_timer_erratum_workaround * wa,bool local)580 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
581 bool local)
582 {
583 int i;
584
585 if (local) {
586 __this_cpu_write(timer_unstable_counter_workaround, wa);
587 } else {
588 for_each_possible_cpu(i)
589 per_cpu(timer_unstable_counter_workaround, i) = wa;
590 }
591
592 if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
593 atomic_set(&timer_unstable_counter_workaround_in_use, 1);
594
595 /*
596 * Don't use the vdso fastpath if errata require using the
597 * out-of-line counter accessor. We may change our mind pretty
598 * late in the game (with a per-CPU erratum, for example), so
599 * change both the default value and the vdso itself.
600 */
601 if (wa->read_cntvct_el0) {
602 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
603 vdso_default = VDSO_CLOCKMODE_NONE;
604 } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
605 vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
606 clocksource_counter.vdso_clock_mode = vdso_default;
607 }
608 }
609
arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,void * arg)610 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
611 void *arg)
612 {
613 const struct arch_timer_erratum_workaround *wa, *__wa;
614 ate_match_fn_t match_fn = NULL;
615 bool local = false;
616
617 switch (type) {
618 case ate_match_dt:
619 match_fn = arch_timer_check_dt_erratum;
620 break;
621 case ate_match_local_cap_id:
622 match_fn = arch_timer_check_local_cap_erratum;
623 local = true;
624 break;
625 case ate_match_acpi_oem_info:
626 match_fn = arch_timer_check_acpi_oem_erratum;
627 break;
628 default:
629 WARN_ON(1);
630 return;
631 }
632
633 wa = arch_timer_iterate_errata(type, match_fn, arg);
634 if (!wa)
635 return;
636
637 __wa = __this_cpu_read(timer_unstable_counter_workaround);
638 if (__wa && wa != __wa)
639 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
640 wa->desc, __wa->desc);
641
642 if (__wa)
643 return;
644
645 arch_timer_enable_workaround(wa, local);
646 pr_info("Enabling %s workaround for %s\n",
647 local ? "local" : "global", wa->desc);
648 }
649
arch_timer_this_cpu_has_cntvct_wa(void)650 static bool arch_timer_this_cpu_has_cntvct_wa(void)
651 {
652 return has_erratum_handler(read_cntvct_el0);
653 }
654
arch_timer_counter_has_wa(void)655 static bool arch_timer_counter_has_wa(void)
656 {
657 return atomic_read(&timer_unstable_counter_workaround_in_use);
658 }
659 #else
660 #define arch_timer_check_ool_workaround(t,a) do { } while(0)
661 #define arch_timer_this_cpu_has_cntvct_wa() ({false;})
662 #define arch_timer_counter_has_wa() ({false;})
663 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
664
timer_handler(const int access,struct clock_event_device * evt)665 static __always_inline irqreturn_t timer_handler(const int access,
666 struct clock_event_device *evt)
667 {
668 unsigned long ctrl;
669
670 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
671 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
672 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
673 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
674 evt->event_handler(evt);
675 return IRQ_HANDLED;
676 }
677
678 return IRQ_NONE;
679 }
680
arch_timer_handler_virt(int irq,void * dev_id)681 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
682 {
683 struct clock_event_device *evt = dev_id;
684
685 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
686 }
687
arch_timer_handler_phys(int irq,void * dev_id)688 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
689 {
690 struct clock_event_device *evt = dev_id;
691
692 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
693 }
694
arch_timer_handler_phys_mem(int irq,void * dev_id)695 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
696 {
697 struct clock_event_device *evt = dev_id;
698
699 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
700 }
701
arch_timer_handler_virt_mem(int irq,void * dev_id)702 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
703 {
704 struct clock_event_device *evt = dev_id;
705
706 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
707 }
708
arch_timer_shutdown(const int access,struct clock_event_device * clk)709 static __always_inline int arch_timer_shutdown(const int access,
710 struct clock_event_device *clk)
711 {
712 unsigned long ctrl;
713
714 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
715 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
716 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
717
718 return 0;
719 }
720
arch_timer_shutdown_virt(struct clock_event_device * clk)721 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
722 {
723 return arch_timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
724 }
725
arch_timer_shutdown_phys(struct clock_event_device * clk)726 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
727 {
728 return arch_timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
729 }
730
arch_timer_shutdown_virt_mem(struct clock_event_device * clk)731 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
732 {
733 return arch_timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
734 }
735
arch_timer_shutdown_phys_mem(struct clock_event_device * clk)736 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
737 {
738 return arch_timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
739 }
740
set_next_event(const int access,unsigned long evt,struct clock_event_device * clk)741 static __always_inline void set_next_event(const int access, unsigned long evt,
742 struct clock_event_device *clk)
743 {
744 unsigned long ctrl;
745 u64 cnt;
746
747 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
748 ctrl |= ARCH_TIMER_CTRL_ENABLE;
749 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
750
751 if (access == ARCH_TIMER_PHYS_ACCESS)
752 cnt = __arch_counter_get_cntpct();
753 else
754 cnt = __arch_counter_get_cntvct();
755
756 arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
757 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
758 }
759
arch_timer_set_next_event_virt(unsigned long evt,struct clock_event_device * clk)760 static int arch_timer_set_next_event_virt(unsigned long evt,
761 struct clock_event_device *clk)
762 {
763 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
764 return 0;
765 }
766
arch_timer_set_next_event_phys(unsigned long evt,struct clock_event_device * clk)767 static int arch_timer_set_next_event_phys(unsigned long evt,
768 struct clock_event_device *clk)
769 {
770 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
771 return 0;
772 }
773
arch_counter_get_cnt_mem(struct arch_timer * t,int offset_lo)774 static noinstr u64 arch_counter_get_cnt_mem(struct arch_timer *t, int offset_lo)
775 {
776 u32 cnt_lo, cnt_hi, tmp_hi;
777
778 do {
779 cnt_hi = __le32_to_cpu((__le32 __force)__raw_readl(t->base + offset_lo + 4));
780 cnt_lo = __le32_to_cpu((__le32 __force)__raw_readl(t->base + offset_lo));
781 tmp_hi = __le32_to_cpu((__le32 __force)__raw_readl(t->base + offset_lo + 4));
782 } while (cnt_hi != tmp_hi);
783
784 return ((u64) cnt_hi << 32) | cnt_lo;
785 }
786
set_next_event_mem(const int access,unsigned long evt,struct clock_event_device * clk)787 static __always_inline void set_next_event_mem(const int access, unsigned long evt,
788 struct clock_event_device *clk)
789 {
790 struct arch_timer *timer = to_arch_timer(clk);
791 unsigned long ctrl;
792 u64 cnt;
793
794 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
795
796 /* Timer must be disabled before programming CVAL */
797 if (ctrl & ARCH_TIMER_CTRL_ENABLE) {
798 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
799 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
800 }
801
802 ctrl |= ARCH_TIMER_CTRL_ENABLE;
803 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
804
805 if (access == ARCH_TIMER_MEM_VIRT_ACCESS)
806 cnt = arch_counter_get_cnt_mem(timer, CNTVCT_LO);
807 else
808 cnt = arch_counter_get_cnt_mem(timer, CNTPCT_LO);
809
810 arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
811 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
812 }
813
arch_timer_set_next_event_virt_mem(unsigned long evt,struct clock_event_device * clk)814 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
815 struct clock_event_device *clk)
816 {
817 set_next_event_mem(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
818 return 0;
819 }
820
arch_timer_set_next_event_phys_mem(unsigned long evt,struct clock_event_device * clk)821 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
822 struct clock_event_device *clk)
823 {
824 set_next_event_mem(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
825 return 0;
826 }
827
__arch_timer_check_delta(void)828 static u64 __arch_timer_check_delta(void)
829 {
830 #ifdef CONFIG_ARM64
831 const struct midr_range broken_cval_midrs[] = {
832 /*
833 * XGene-1 implements CVAL in terms of TVAL, meaning
834 * that the maximum timer range is 32bit. Shame on them.
835 *
836 * Note that TVAL is signed, thus has only 31 of its
837 * 32 bits to express magnitude.
838 */
839 MIDR_REV_RANGE(MIDR_CPU_MODEL(ARM_CPU_IMP_APM,
840 APM_CPU_PART_XGENE),
841 APM_CPU_VAR_POTENZA, 0x0, 0xf),
842 {},
843 };
844
845 if (is_midr_in_range_list(read_cpuid_id(), broken_cval_midrs)) {
846 pr_warn_once("Broken CNTx_CVAL_EL1, using 31 bit TVAL instead.\n");
847 return CLOCKSOURCE_MASK(31);
848 }
849 #endif
850 return CLOCKSOURCE_MASK(arch_counter_get_width());
851 }
852
__arch_timer_setup(unsigned type,struct clock_event_device * clk)853 static void __arch_timer_setup(unsigned type,
854 struct clock_event_device *clk)
855 {
856 u64 max_delta;
857
858 clk->features = CLOCK_EVT_FEAT_ONESHOT;
859
860 if (type == ARCH_TIMER_TYPE_CP15) {
861 typeof(clk->set_next_event) sne;
862
863 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
864
865 if (arch_timer_c3stop)
866 clk->features |= CLOCK_EVT_FEAT_C3STOP;
867 clk->name = "arch_sys_timer";
868 clk->rating = 450;
869 clk->cpumask = cpumask_of(smp_processor_id());
870 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
871 switch (arch_timer_uses_ppi) {
872 case ARCH_TIMER_VIRT_PPI:
873 clk->set_state_shutdown = arch_timer_shutdown_virt;
874 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
875 sne = erratum_handler(set_next_event_virt);
876 break;
877 case ARCH_TIMER_PHYS_SECURE_PPI:
878 case ARCH_TIMER_PHYS_NONSECURE_PPI:
879 case ARCH_TIMER_HYP_PPI:
880 clk->set_state_shutdown = arch_timer_shutdown_phys;
881 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
882 sne = erratum_handler(set_next_event_phys);
883 break;
884 default:
885 BUG();
886 }
887
888 clk->set_next_event = sne;
889 max_delta = __arch_timer_check_delta();
890 } else {
891 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
892 clk->name = "arch_mem_timer";
893 clk->rating = 400;
894 clk->cpumask = cpu_possible_mask;
895 if (arch_timer_mem_use_virtual) {
896 clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
897 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
898 clk->set_next_event =
899 arch_timer_set_next_event_virt_mem;
900 } else {
901 clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
902 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
903 clk->set_next_event =
904 arch_timer_set_next_event_phys_mem;
905 }
906
907 max_delta = CLOCKSOURCE_MASK(56);
908 }
909
910 clk->set_state_shutdown(clk);
911
912 clockevents_config_and_register(clk, arch_timer_rate, 0xf, max_delta);
913 }
914
arch_timer_evtstrm_enable(unsigned int divider)915 static void arch_timer_evtstrm_enable(unsigned int divider)
916 {
917 u32 cntkctl = arch_timer_get_cntkctl();
918
919 #ifdef CONFIG_ARM64
920 /* ECV is likely to require a large divider. Use the EVNTIS flag. */
921 if (cpus_have_const_cap(ARM64_HAS_ECV) && divider > 15) {
922 cntkctl |= ARCH_TIMER_EVT_INTERVAL_SCALE;
923 divider -= 8;
924 }
925 #endif
926
927 divider = min(divider, 15U);
928 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
929 /* Set the divider and enable virtual event stream */
930 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
931 | ARCH_TIMER_VIRT_EVT_EN;
932 arch_timer_set_cntkctl(cntkctl);
933 arch_timer_set_evtstrm_feature();
934 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
935 }
936
arch_timer_configure_evtstream(void)937 static void arch_timer_configure_evtstream(void)
938 {
939 int evt_stream_div, lsb;
940
941 /*
942 * As the event stream can at most be generated at half the frequency
943 * of the counter, use half the frequency when computing the divider.
944 */
945 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
946
947 /*
948 * Find the closest power of two to the divisor. If the adjacent bit
949 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
950 */
951 lsb = fls(evt_stream_div) - 1;
952 if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
953 lsb++;
954
955 /* enable event stream */
956 arch_timer_evtstrm_enable(max(0, lsb));
957 }
958
arch_counter_set_user_access(void)959 static void arch_counter_set_user_access(void)
960 {
961 u32 cntkctl = arch_timer_get_cntkctl();
962
963 /* Disable user access to the timers and both counters */
964 /* Also disable virtual event stream */
965 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
966 | ARCH_TIMER_USR_VT_ACCESS_EN
967 | ARCH_TIMER_USR_VCT_ACCESS_EN
968 | ARCH_TIMER_VIRT_EVT_EN
969 | ARCH_TIMER_USR_PCT_ACCESS_EN);
970
971 /*
972 * Enable user access to the virtual counter if it doesn't
973 * need to be workaround. The vdso may have been already
974 * disabled though.
975 */
976 if (arch_timer_this_cpu_has_cntvct_wa())
977 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
978 else
979 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
980
981 arch_timer_set_cntkctl(cntkctl);
982 }
983
arch_timer_has_nonsecure_ppi(void)984 static bool arch_timer_has_nonsecure_ppi(void)
985 {
986 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
987 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
988 }
989
check_ppi_trigger(int irq)990 static u32 check_ppi_trigger(int irq)
991 {
992 u32 flags = irq_get_trigger_type(irq);
993
994 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
995 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
996 pr_warn("WARNING: Please fix your firmware\n");
997 flags = IRQF_TRIGGER_LOW;
998 }
999
1000 return flags;
1001 }
1002
arch_timer_starting_cpu(unsigned int cpu)1003 static int arch_timer_starting_cpu(unsigned int cpu)
1004 {
1005 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1006 u32 flags;
1007
1008 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
1009
1010 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
1011 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
1012
1013 if (arch_timer_has_nonsecure_ppi()) {
1014 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1015 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1016 flags);
1017 }
1018
1019 arch_counter_set_user_access();
1020 if (evtstrm_enable)
1021 arch_timer_configure_evtstream();
1022
1023 return 0;
1024 }
1025
validate_timer_rate(void)1026 static int validate_timer_rate(void)
1027 {
1028 if (!arch_timer_rate)
1029 return -EINVAL;
1030
1031 /* Arch timer frequency < 1MHz can cause trouble */
1032 WARN_ON(arch_timer_rate < 1000000);
1033
1034 return 0;
1035 }
1036
1037 /*
1038 * For historical reasons, when probing with DT we use whichever (non-zero)
1039 * rate was probed first, and don't verify that others match. If the first node
1040 * probed has a clock-frequency property, this overrides the HW register.
1041 */
arch_timer_of_configure_rate(u32 rate,struct device_node * np)1042 static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
1043 {
1044 /* Who has more than one independent system counter? */
1045 if (arch_timer_rate)
1046 return;
1047
1048 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
1049 arch_timer_rate = rate;
1050
1051 /* Check the timer frequency. */
1052 if (validate_timer_rate())
1053 pr_warn("frequency not available\n");
1054 }
1055
arch_timer_banner(unsigned type)1056 static void __init arch_timer_banner(unsigned type)
1057 {
1058 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
1059 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
1060 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
1061 " and " : "",
1062 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
1063 (unsigned long)arch_timer_rate / 1000000,
1064 (unsigned long)(arch_timer_rate / 10000) % 100,
1065 type & ARCH_TIMER_TYPE_CP15 ?
1066 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
1067 "",
1068 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
1069 type & ARCH_TIMER_TYPE_MEM ?
1070 arch_timer_mem_use_virtual ? "virt" : "phys" :
1071 "");
1072 }
1073
arch_timer_get_rate(void)1074 u32 arch_timer_get_rate(void)
1075 {
1076 return arch_timer_rate;
1077 }
1078
arch_timer_evtstrm_available(void)1079 bool arch_timer_evtstrm_available(void)
1080 {
1081 /*
1082 * We might get called from a preemptible context. This is fine
1083 * because availability of the event stream should be always the same
1084 * for a preemptible context and context where we might resume a task.
1085 */
1086 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
1087 }
1088
arch_counter_get_cntvct_mem(void)1089 static noinstr u64 arch_counter_get_cntvct_mem(void)
1090 {
1091 return arch_counter_get_cnt_mem(arch_timer_mem, CNTVCT_LO);
1092 }
1093
1094 static struct arch_timer_kvm_info arch_timer_kvm_info;
1095
arch_timer_get_kvm_info(void)1096 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
1097 {
1098 return &arch_timer_kvm_info;
1099 }
1100
arch_counter_register(unsigned type)1101 static void __init arch_counter_register(unsigned type)
1102 {
1103 u64 (*scr)(void);
1104 u64 start_count;
1105 int width;
1106
1107 /* Register the CP15 based counter if we have one */
1108 if (type & ARCH_TIMER_TYPE_CP15) {
1109 u64 (*rd)(void);
1110
1111 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1112 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1113 if (arch_timer_counter_has_wa()) {
1114 rd = arch_counter_get_cntvct_stable;
1115 scr = raw_counter_get_cntvct_stable;
1116 } else {
1117 rd = arch_counter_get_cntvct;
1118 scr = arch_counter_get_cntvct;
1119 }
1120 } else {
1121 if (arch_timer_counter_has_wa()) {
1122 rd = arch_counter_get_cntpct_stable;
1123 scr = raw_counter_get_cntpct_stable;
1124 } else {
1125 rd = arch_counter_get_cntpct;
1126 scr = arch_counter_get_cntpct;
1127 }
1128 }
1129
1130 arch_timer_read_counter = rd;
1131 clocksource_counter.vdso_clock_mode = vdso_default;
1132 } else {
1133 arch_timer_read_counter = arch_counter_get_cntvct_mem;
1134 scr = arch_counter_get_cntvct_mem;
1135 }
1136
1137 width = arch_counter_get_width();
1138 clocksource_counter.mask = CLOCKSOURCE_MASK(width);
1139 cyclecounter.mask = CLOCKSOURCE_MASK(width);
1140
1141 if (!arch_counter_suspend_stop)
1142 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1143 start_count = arch_timer_read_counter();
1144 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1145 cyclecounter.mult = clocksource_counter.mult;
1146 cyclecounter.shift = clocksource_counter.shift;
1147 timecounter_init(&arch_timer_kvm_info.timecounter,
1148 &cyclecounter, start_count);
1149
1150 sched_clock_register(scr, width, arch_timer_rate);
1151 }
1152
arch_timer_stop(struct clock_event_device * clk)1153 static void arch_timer_stop(struct clock_event_device *clk)
1154 {
1155 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1156
1157 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1158 if (arch_timer_has_nonsecure_ppi())
1159 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1160
1161 clk->set_state_shutdown(clk);
1162 }
1163
arch_timer_dying_cpu(unsigned int cpu)1164 static int arch_timer_dying_cpu(unsigned int cpu)
1165 {
1166 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1167
1168 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1169
1170 arch_timer_stop(clk);
1171 return 0;
1172 }
1173
1174 #ifdef CONFIG_CPU_PM
1175 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
arch_timer_cpu_pm_notify(struct notifier_block * self,unsigned long action,void * hcpu)1176 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1177 unsigned long action, void *hcpu)
1178 {
1179 if (action == CPU_PM_ENTER) {
1180 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1181
1182 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1183 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1184 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1185
1186 if (arch_timer_have_evtstrm_feature())
1187 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1188 }
1189 return NOTIFY_OK;
1190 }
1191
1192 static struct notifier_block arch_timer_cpu_pm_notifier = {
1193 .notifier_call = arch_timer_cpu_pm_notify,
1194 };
1195
arch_timer_cpu_pm_init(void)1196 static int __init arch_timer_cpu_pm_init(void)
1197 {
1198 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1199 }
1200
arch_timer_cpu_pm_deinit(void)1201 static void __init arch_timer_cpu_pm_deinit(void)
1202 {
1203 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1204 }
1205
1206 #else
arch_timer_cpu_pm_init(void)1207 static int __init arch_timer_cpu_pm_init(void)
1208 {
1209 return 0;
1210 }
1211
arch_timer_cpu_pm_deinit(void)1212 static void __init arch_timer_cpu_pm_deinit(void)
1213 {
1214 }
1215 #endif
1216
arch_timer_register(void)1217 static int __init arch_timer_register(void)
1218 {
1219 int err;
1220 int ppi;
1221
1222 arch_timer_evt = alloc_percpu(struct clock_event_device);
1223 if (!arch_timer_evt) {
1224 err = -ENOMEM;
1225 goto out;
1226 }
1227
1228 ppi = arch_timer_ppi[arch_timer_uses_ppi];
1229 switch (arch_timer_uses_ppi) {
1230 case ARCH_TIMER_VIRT_PPI:
1231 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1232 "arch_timer", arch_timer_evt);
1233 break;
1234 case ARCH_TIMER_PHYS_SECURE_PPI:
1235 case ARCH_TIMER_PHYS_NONSECURE_PPI:
1236 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1237 "arch_timer", arch_timer_evt);
1238 if (!err && arch_timer_has_nonsecure_ppi()) {
1239 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1240 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1241 "arch_timer", arch_timer_evt);
1242 if (err)
1243 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1244 arch_timer_evt);
1245 }
1246 break;
1247 case ARCH_TIMER_HYP_PPI:
1248 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1249 "arch_timer", arch_timer_evt);
1250 break;
1251 default:
1252 BUG();
1253 }
1254
1255 if (err) {
1256 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1257 goto out_free;
1258 }
1259
1260 err = arch_timer_cpu_pm_init();
1261 if (err)
1262 goto out_unreg_notify;
1263
1264 /* Register and immediately configure the timer on the boot CPU */
1265 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1266 "clockevents/arm/arch_timer:starting",
1267 arch_timer_starting_cpu, arch_timer_dying_cpu);
1268 if (err)
1269 goto out_unreg_cpupm;
1270 return 0;
1271
1272 out_unreg_cpupm:
1273 arch_timer_cpu_pm_deinit();
1274
1275 out_unreg_notify:
1276 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1277 if (arch_timer_has_nonsecure_ppi())
1278 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1279 arch_timer_evt);
1280
1281 out_free:
1282 free_percpu(arch_timer_evt);
1283 out:
1284 return err;
1285 }
1286
arch_timer_mem_register(void __iomem * base,unsigned int irq)1287 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1288 {
1289 int ret;
1290 irq_handler_t func;
1291
1292 arch_timer_mem = kzalloc(sizeof(*arch_timer_mem), GFP_KERNEL);
1293 if (!arch_timer_mem)
1294 return -ENOMEM;
1295
1296 arch_timer_mem->base = base;
1297 arch_timer_mem->evt.irq = irq;
1298 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &arch_timer_mem->evt);
1299
1300 if (arch_timer_mem_use_virtual)
1301 func = arch_timer_handler_virt_mem;
1302 else
1303 func = arch_timer_handler_phys_mem;
1304
1305 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &arch_timer_mem->evt);
1306 if (ret) {
1307 pr_err("Failed to request mem timer irq\n");
1308 kfree(arch_timer_mem);
1309 arch_timer_mem = NULL;
1310 }
1311
1312 return ret;
1313 }
1314
1315 static const struct of_device_id arch_timer_of_match[] __initconst = {
1316 { .compatible = "arm,armv7-timer", },
1317 { .compatible = "arm,armv8-timer", },
1318 {},
1319 };
1320
1321 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1322 { .compatible = "arm,armv7-timer-mem", },
1323 {},
1324 };
1325
arch_timer_needs_of_probing(void)1326 static bool __init arch_timer_needs_of_probing(void)
1327 {
1328 struct device_node *dn;
1329 bool needs_probing = false;
1330 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1331
1332 /* We have two timers, and both device-tree nodes are probed. */
1333 if ((arch_timers_present & mask) == mask)
1334 return false;
1335
1336 /*
1337 * Only one type of timer is probed,
1338 * check if we have another type of timer node in device-tree.
1339 */
1340 if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1341 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1342 else
1343 dn = of_find_matching_node(NULL, arch_timer_of_match);
1344
1345 if (dn && of_device_is_available(dn))
1346 needs_probing = true;
1347
1348 of_node_put(dn);
1349
1350 return needs_probing;
1351 }
1352
arch_timer_common_init(void)1353 static int __init arch_timer_common_init(void)
1354 {
1355 arch_timer_banner(arch_timers_present);
1356 arch_counter_register(arch_timers_present);
1357 return arch_timer_arch_init();
1358 }
1359
1360 /**
1361 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1362 *
1363 * If HYP mode is available, we know that the physical timer
1364 * has been configured to be accessible from PL1. Use it, so
1365 * that a guest can use the virtual timer instead.
1366 *
1367 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1368 * accesses to CNTP_*_EL1 registers are silently redirected to
1369 * their CNTHP_*_EL2 counterparts, and use a different PPI
1370 * number.
1371 *
1372 * If no interrupt provided for virtual timer, we'll have to
1373 * stick to the physical timer. It'd better be accessible...
1374 * For arm64 we never use the secure interrupt.
1375 *
1376 * Return: a suitable PPI type for the current system.
1377 */
arch_timer_select_ppi(void)1378 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1379 {
1380 if (is_kernel_in_hyp_mode())
1381 return ARCH_TIMER_HYP_PPI;
1382
1383 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1384 return ARCH_TIMER_VIRT_PPI;
1385
1386 if (IS_ENABLED(CONFIG_ARM64))
1387 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1388
1389 return ARCH_TIMER_PHYS_SECURE_PPI;
1390 }
1391
arch_timer_populate_kvm_info(void)1392 static void __init arch_timer_populate_kvm_info(void)
1393 {
1394 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1395 if (is_kernel_in_hyp_mode())
1396 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1397 }
1398
arch_timer_of_init(struct device_node * np)1399 static int __init arch_timer_of_init(struct device_node *np)
1400 {
1401 int i, irq, ret;
1402 u32 rate;
1403 bool has_names;
1404
1405 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1406 pr_warn("multiple nodes in dt, skipping\n");
1407 return 0;
1408 }
1409
1410 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1411
1412 has_names = of_property_read_bool(np, "interrupt-names");
1413
1414 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1415 if (has_names)
1416 irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1417 else
1418 irq = of_irq_get(np, i);
1419 if (irq > 0)
1420 arch_timer_ppi[i] = irq;
1421 }
1422
1423 arch_timer_populate_kvm_info();
1424
1425 rate = arch_timer_get_cntfrq();
1426 arch_timer_of_configure_rate(rate, np);
1427
1428 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1429
1430 /* Check for globally applicable workarounds */
1431 arch_timer_check_ool_workaround(ate_match_dt, np);
1432
1433 /*
1434 * If we cannot rely on firmware initializing the timer registers then
1435 * we should use the physical timers instead.
1436 */
1437 if (IS_ENABLED(CONFIG_ARM) &&
1438 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1439 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1440 else
1441 arch_timer_uses_ppi = arch_timer_select_ppi();
1442
1443 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1444 pr_err("No interrupt available, giving up\n");
1445 return -EINVAL;
1446 }
1447
1448 /* On some systems, the counter stops ticking when in suspend. */
1449 arch_counter_suspend_stop = of_property_read_bool(np,
1450 "arm,no-tick-in-suspend");
1451
1452 ret = arch_timer_register();
1453 if (ret)
1454 return ret;
1455
1456 if (arch_timer_needs_of_probing())
1457 return 0;
1458
1459 return arch_timer_common_init();
1460 }
1461 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1462 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1463
1464 static u32 __init
arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame * frame)1465 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1466 {
1467 void __iomem *base;
1468 u32 rate;
1469
1470 base = ioremap(frame->cntbase, frame->size);
1471 if (!base) {
1472 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1473 return 0;
1474 }
1475
1476 rate = readl_relaxed(base + CNTFRQ);
1477
1478 iounmap(base);
1479
1480 return rate;
1481 }
1482
1483 static struct arch_timer_mem_frame * __init
arch_timer_mem_find_best_frame(struct arch_timer_mem * timer_mem)1484 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1485 {
1486 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1487 void __iomem *cntctlbase;
1488 u32 cnttidr;
1489 int i;
1490
1491 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1492 if (!cntctlbase) {
1493 pr_err("Can't map CNTCTLBase @ %pa\n",
1494 &timer_mem->cntctlbase);
1495 return NULL;
1496 }
1497
1498 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1499
1500 /*
1501 * Try to find a virtual capable frame. Otherwise fall back to a
1502 * physical capable frame.
1503 */
1504 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1505 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1506 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1507
1508 frame = &timer_mem->frame[i];
1509 if (!frame->valid)
1510 continue;
1511
1512 /* Try enabling everything, and see what sticks */
1513 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1514 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1515
1516 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1517 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1518 best_frame = frame;
1519 arch_timer_mem_use_virtual = true;
1520 break;
1521 }
1522
1523 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1524 continue;
1525
1526 best_frame = frame;
1527 }
1528
1529 iounmap(cntctlbase);
1530
1531 return best_frame;
1532 }
1533
1534 static int __init
arch_timer_mem_frame_register(struct arch_timer_mem_frame * frame)1535 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1536 {
1537 void __iomem *base;
1538 int ret, irq = 0;
1539
1540 if (arch_timer_mem_use_virtual)
1541 irq = frame->virt_irq;
1542 else
1543 irq = frame->phys_irq;
1544
1545 if (!irq) {
1546 pr_err("Frame missing %s irq.\n",
1547 arch_timer_mem_use_virtual ? "virt" : "phys");
1548 return -EINVAL;
1549 }
1550
1551 if (!request_mem_region(frame->cntbase, frame->size,
1552 "arch_mem_timer"))
1553 return -EBUSY;
1554
1555 base = ioremap(frame->cntbase, frame->size);
1556 if (!base) {
1557 pr_err("Can't map frame's registers\n");
1558 return -ENXIO;
1559 }
1560
1561 ret = arch_timer_mem_register(base, irq);
1562 if (ret) {
1563 iounmap(base);
1564 return ret;
1565 }
1566
1567 arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1568
1569 return 0;
1570 }
1571
arch_timer_mem_of_init(struct device_node * np)1572 static int __init arch_timer_mem_of_init(struct device_node *np)
1573 {
1574 struct arch_timer_mem *timer_mem;
1575 struct arch_timer_mem_frame *frame;
1576 struct device_node *frame_node;
1577 struct resource res;
1578 int ret = -EINVAL;
1579 u32 rate;
1580
1581 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1582 if (!timer_mem)
1583 return -ENOMEM;
1584
1585 if (of_address_to_resource(np, 0, &res))
1586 goto out;
1587 timer_mem->cntctlbase = res.start;
1588 timer_mem->size = resource_size(&res);
1589
1590 for_each_available_child_of_node(np, frame_node) {
1591 u32 n;
1592 struct arch_timer_mem_frame *frame;
1593
1594 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1595 pr_err(FW_BUG "Missing frame-number.\n");
1596 of_node_put(frame_node);
1597 goto out;
1598 }
1599 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1600 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1601 ARCH_TIMER_MEM_MAX_FRAMES - 1);
1602 of_node_put(frame_node);
1603 goto out;
1604 }
1605 frame = &timer_mem->frame[n];
1606
1607 if (frame->valid) {
1608 pr_err(FW_BUG "Duplicated frame-number.\n");
1609 of_node_put(frame_node);
1610 goto out;
1611 }
1612
1613 if (of_address_to_resource(frame_node, 0, &res)) {
1614 of_node_put(frame_node);
1615 goto out;
1616 }
1617 frame->cntbase = res.start;
1618 frame->size = resource_size(&res);
1619
1620 frame->virt_irq = irq_of_parse_and_map(frame_node,
1621 ARCH_TIMER_VIRT_SPI);
1622 frame->phys_irq = irq_of_parse_and_map(frame_node,
1623 ARCH_TIMER_PHYS_SPI);
1624
1625 frame->valid = true;
1626 }
1627
1628 frame = arch_timer_mem_find_best_frame(timer_mem);
1629 if (!frame) {
1630 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1631 &timer_mem->cntctlbase);
1632 ret = -EINVAL;
1633 goto out;
1634 }
1635
1636 rate = arch_timer_mem_frame_get_cntfrq(frame);
1637 arch_timer_of_configure_rate(rate, np);
1638
1639 ret = arch_timer_mem_frame_register(frame);
1640 if (!ret && !arch_timer_needs_of_probing())
1641 ret = arch_timer_common_init();
1642 out:
1643 kfree(timer_mem);
1644 return ret;
1645 }
1646 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1647 arch_timer_mem_of_init);
1648
1649 #ifdef CONFIG_ACPI_GTDT
1650 static int __init
arch_timer_mem_verify_cntfrq(struct arch_timer_mem * timer_mem)1651 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1652 {
1653 struct arch_timer_mem_frame *frame;
1654 u32 rate;
1655 int i;
1656
1657 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1658 frame = &timer_mem->frame[i];
1659
1660 if (!frame->valid)
1661 continue;
1662
1663 rate = arch_timer_mem_frame_get_cntfrq(frame);
1664 if (rate == arch_timer_rate)
1665 continue;
1666
1667 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1668 &frame->cntbase,
1669 (unsigned long)rate, (unsigned long)arch_timer_rate);
1670
1671 return -EINVAL;
1672 }
1673
1674 return 0;
1675 }
1676
arch_timer_mem_acpi_init(int platform_timer_count)1677 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1678 {
1679 struct arch_timer_mem *timers, *timer;
1680 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1681 int timer_count, i, ret = 0;
1682
1683 timers = kcalloc(platform_timer_count, sizeof(*timers),
1684 GFP_KERNEL);
1685 if (!timers)
1686 return -ENOMEM;
1687
1688 ret = acpi_arch_timer_mem_init(timers, &timer_count);
1689 if (ret || !timer_count)
1690 goto out;
1691
1692 /*
1693 * While unlikely, it's theoretically possible that none of the frames
1694 * in a timer expose the combination of feature we want.
1695 */
1696 for (i = 0; i < timer_count; i++) {
1697 timer = &timers[i];
1698
1699 frame = arch_timer_mem_find_best_frame(timer);
1700 if (!best_frame)
1701 best_frame = frame;
1702
1703 ret = arch_timer_mem_verify_cntfrq(timer);
1704 if (ret) {
1705 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1706 goto out;
1707 }
1708
1709 if (!best_frame) /* implies !frame */
1710 /*
1711 * Only complain about missing suitable frames if we
1712 * haven't already found one in a previous iteration.
1713 */
1714 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1715 &timer->cntctlbase);
1716 }
1717
1718 if (best_frame)
1719 ret = arch_timer_mem_frame_register(best_frame);
1720 out:
1721 kfree(timers);
1722 return ret;
1723 }
1724
1725 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
arch_timer_acpi_init(struct acpi_table_header * table)1726 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1727 {
1728 int ret, platform_timer_count;
1729
1730 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1731 pr_warn("already initialized, skipping\n");
1732 return -EINVAL;
1733 }
1734
1735 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1736
1737 ret = acpi_gtdt_init(table, &platform_timer_count);
1738 if (ret)
1739 return ret;
1740
1741 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1742 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1743
1744 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1745 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1746
1747 arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1748 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1749
1750 arch_timer_populate_kvm_info();
1751
1752 /*
1753 * When probing via ACPI, we have no mechanism to override the sysreg
1754 * CNTFRQ value. This *must* be correct.
1755 */
1756 arch_timer_rate = arch_timer_get_cntfrq();
1757 ret = validate_timer_rate();
1758 if (ret) {
1759 pr_err(FW_BUG "frequency not available.\n");
1760 return ret;
1761 }
1762
1763 arch_timer_uses_ppi = arch_timer_select_ppi();
1764 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1765 pr_err("No interrupt available, giving up\n");
1766 return -EINVAL;
1767 }
1768
1769 /* Always-on capability */
1770 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1771
1772 /* Check for globally applicable workarounds */
1773 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1774
1775 ret = arch_timer_register();
1776 if (ret)
1777 return ret;
1778
1779 if (platform_timer_count &&
1780 arch_timer_mem_acpi_init(platform_timer_count))
1781 pr_err("Failed to initialize memory-mapped timer.\n");
1782
1783 return arch_timer_common_init();
1784 }
1785 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1786 #endif
1787
kvm_arch_ptp_get_crosststamp(u64 * cycle,struct timespec64 * ts,struct clocksource ** cs)1788 int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
1789 struct clocksource **cs)
1790 {
1791 struct arm_smccc_res hvc_res;
1792 u32 ptp_counter;
1793 ktime_t ktime;
1794
1795 if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
1796 return -EOPNOTSUPP;
1797
1798 if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1799 ptp_counter = KVM_PTP_VIRT_COUNTER;
1800 else
1801 ptp_counter = KVM_PTP_PHYS_COUNTER;
1802
1803 arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
1804 ptp_counter, &hvc_res);
1805
1806 if ((int)(hvc_res.a0) < 0)
1807 return -EOPNOTSUPP;
1808
1809 ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
1810 *ts = ktime_to_timespec64(ktime);
1811 if (cycle)
1812 *cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
1813 if (cs)
1814 *cs = &clocksource_counter;
1815
1816 return 0;
1817 }
1818 EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);
1819