1 // SPDX-License-Identifier: GPL-2.0-only 2 3 #include <linux/clk.h> 4 #include <linux/clk-provider.h> 5 #include <linux/delay.h> 6 #include <linux/err.h> 7 #include <linux/io.h> 8 #include <linux/math64.h> 9 #include <linux/of.h> 10 #include <linux/of_address.h> 11 #include <linux/clk/ti.h> 12 13 #include "clock.h" 14 15 /* FAPLL Control Register PLL_CTRL */ 16 #define FAPLL_MAIN_MULT_N_SHIFT 16 17 #define FAPLL_MAIN_DIV_P_SHIFT 8 18 #define FAPLL_MAIN_LOCK BIT(7) 19 #define FAPLL_MAIN_PLLEN BIT(3) 20 #define FAPLL_MAIN_BP BIT(2) 21 #define FAPLL_MAIN_LOC_CTL BIT(0) 22 23 #define FAPLL_MAIN_MAX_MULT_N 0xffff 24 #define FAPLL_MAIN_MAX_DIV_P 0xff 25 #define FAPLL_MAIN_CLEAR_MASK \ 26 ((FAPLL_MAIN_MAX_MULT_N << FAPLL_MAIN_MULT_N_SHIFT) | \ 27 (FAPLL_MAIN_DIV_P_SHIFT << FAPLL_MAIN_DIV_P_SHIFT) | \ 28 FAPLL_MAIN_LOC_CTL) 29 30 /* FAPLL powerdown register PWD */ 31 #define FAPLL_PWD_OFFSET 4 32 33 #define MAX_FAPLL_OUTPUTS 7 34 #define FAPLL_MAX_RETRIES 1000 35 36 #define to_fapll(_hw) container_of(_hw, struct fapll_data, hw) 37 #define to_synth(_hw) container_of(_hw, struct fapll_synth, hw) 38 39 /* The bypass bit is inverted on the ddr_pll.. */ 40 #define fapll_is_ddr_pll(va) (((u32)(va) & 0xffff) == 0x0440) 41 42 /* 43 * The audio_pll_clk1 input is hard wired to the 27MHz bypass clock, 44 * and the audio_pll_clk1 synthesizer is hardwared to 32KiHz output. 45 */ 46 #define is_ddr_pll_clk1(va) (((u32)(va) & 0xffff) == 0x044c) 47 #define is_audio_pll_clk1(va) (((u32)(va) & 0xffff) == 0x04a8) 48 49 /* Synthesizer divider register */ 50 #define SYNTH_LDMDIV1 BIT(8) 51 52 /* Synthesizer frequency register */ 53 #define SYNTH_LDFREQ BIT(31) 54 55 #define SYNTH_PHASE_K 8 56 #define SYNTH_MAX_INT_DIV 0xf 57 #define SYNTH_MAX_DIV_M 0xff 58 59 struct fapll_data { 60 struct clk_hw hw; 61 void __iomem *base; 62 const char *name; 63 struct clk *clk_ref; 64 struct clk *clk_bypass; 65 struct clk_onecell_data outputs; 66 bool bypass_bit_inverted; 67 }; 68 69 struct fapll_synth { 70 struct clk_hw hw; 71 struct fapll_data *fd; 72 int index; 73 void __iomem *freq; 74 void __iomem *div; 75 const char *name; 76 struct clk *clk_pll; 77 }; 78 79 static bool ti_fapll_clock_is_bypass(struct fapll_data *fd) 80 { 81 u32 v = readl_relaxed(fd->base); 82 83 if (fd->bypass_bit_inverted) 84 return !(v & FAPLL_MAIN_BP); 85 else 86 return !!(v & FAPLL_MAIN_BP); 87 } 88 89 static void ti_fapll_set_bypass(struct fapll_data *fd) 90 { 91 u32 v = readl_relaxed(fd->base); 92 93 if (fd->bypass_bit_inverted) 94 v &= ~FAPLL_MAIN_BP; 95 else 96 v |= FAPLL_MAIN_BP; 97 writel_relaxed(v, fd->base); 98 } 99 100 static void ti_fapll_clear_bypass(struct fapll_data *fd) 101 { 102 u32 v = readl_relaxed(fd->base); 103 104 if (fd->bypass_bit_inverted) 105 v |= FAPLL_MAIN_BP; 106 else 107 v &= ~FAPLL_MAIN_BP; 108 writel_relaxed(v, fd->base); 109 } 110 111 static int ti_fapll_wait_lock(struct fapll_data *fd) 112 { 113 int retries = FAPLL_MAX_RETRIES; 114 u32 v; 115 116 while ((v = readl_relaxed(fd->base))) { 117 if (v & FAPLL_MAIN_LOCK) 118 return 0; 119 120 if (retries-- <= 0) 121 break; 122 123 udelay(1); 124 } 125 126 pr_err("%s failed to lock\n", fd->name); 127 128 return -ETIMEDOUT; 129 } 130 131 static int ti_fapll_enable(struct clk_hw *hw) 132 { 133 struct fapll_data *fd = to_fapll(hw); 134 u32 v = readl_relaxed(fd->base); 135 136 v |= FAPLL_MAIN_PLLEN; 137 writel_relaxed(v, fd->base); 138 ti_fapll_wait_lock(fd); 139 140 return 0; 141 } 142 143 static void ti_fapll_disable(struct clk_hw *hw) 144 { 145 struct fapll_data *fd = to_fapll(hw); 146 u32 v = readl_relaxed(fd->base); 147 148 v &= ~FAPLL_MAIN_PLLEN; 149 writel_relaxed(v, fd->base); 150 } 151 152 static int ti_fapll_is_enabled(struct clk_hw *hw) 153 { 154 struct fapll_data *fd = to_fapll(hw); 155 u32 v = readl_relaxed(fd->base); 156 157 return v & FAPLL_MAIN_PLLEN; 158 } 159 160 static unsigned long ti_fapll_recalc_rate(struct clk_hw *hw, 161 unsigned long parent_rate) 162 { 163 struct fapll_data *fd = to_fapll(hw); 164 u32 fapll_n, fapll_p, v; 165 u64 rate; 166 167 if (ti_fapll_clock_is_bypass(fd)) 168 return parent_rate; 169 170 rate = parent_rate; 171 172 /* PLL pre-divider is P and multiplier is N */ 173 v = readl_relaxed(fd->base); 174 fapll_p = (v >> 8) & 0xff; 175 if (fapll_p) 176 do_div(rate, fapll_p); 177 fapll_n = v >> 16; 178 if (fapll_n) 179 rate *= fapll_n; 180 181 return rate; 182 } 183 184 static u8 ti_fapll_get_parent(struct clk_hw *hw) 185 { 186 struct fapll_data *fd = to_fapll(hw); 187 188 if (ti_fapll_clock_is_bypass(fd)) 189 return 1; 190 191 return 0; 192 } 193 194 static int ti_fapll_set_div_mult(unsigned long rate, 195 unsigned long parent_rate, 196 u32 *pre_div_p, u32 *mult_n) 197 { 198 /* 199 * So far no luck getting decent clock with PLL divider, 200 * PLL does not seem to lock and the signal does not look 201 * right. It seems the divider can only be used together 202 * with the multiplier? 203 */ 204 if (rate < parent_rate) { 205 pr_warn("FAPLL main divider rates unsupported\n"); 206 return -EINVAL; 207 } 208 209 *mult_n = rate / parent_rate; 210 if (*mult_n > FAPLL_MAIN_MAX_MULT_N) 211 return -EINVAL; 212 *pre_div_p = 1; 213 214 return 0; 215 } 216 217 static long ti_fapll_round_rate(struct clk_hw *hw, unsigned long rate, 218 unsigned long *parent_rate) 219 { 220 u32 pre_div_p, mult_n; 221 int error; 222 223 if (!rate) 224 return -EINVAL; 225 226 error = ti_fapll_set_div_mult(rate, *parent_rate, 227 &pre_div_p, &mult_n); 228 if (error) 229 return error; 230 231 rate = *parent_rate / pre_div_p; 232 rate *= mult_n; 233 234 return rate; 235 } 236 237 static int ti_fapll_set_rate(struct clk_hw *hw, unsigned long rate, 238 unsigned long parent_rate) 239 { 240 struct fapll_data *fd = to_fapll(hw); 241 u32 pre_div_p, mult_n, v; 242 int error; 243 244 if (!rate) 245 return -EINVAL; 246 247 error = ti_fapll_set_div_mult(rate, parent_rate, 248 &pre_div_p, &mult_n); 249 if (error) 250 return error; 251 252 ti_fapll_set_bypass(fd); 253 v = readl_relaxed(fd->base); 254 v &= ~FAPLL_MAIN_CLEAR_MASK; 255 v |= pre_div_p << FAPLL_MAIN_DIV_P_SHIFT; 256 v |= mult_n << FAPLL_MAIN_MULT_N_SHIFT; 257 writel_relaxed(v, fd->base); 258 if (ti_fapll_is_enabled(hw)) 259 ti_fapll_wait_lock(fd); 260 ti_fapll_clear_bypass(fd); 261 262 return 0; 263 } 264 265 static const struct clk_ops ti_fapll_ops = { 266 .enable = ti_fapll_enable, 267 .disable = ti_fapll_disable, 268 .is_enabled = ti_fapll_is_enabled, 269 .recalc_rate = ti_fapll_recalc_rate, 270 .get_parent = ti_fapll_get_parent, 271 .round_rate = ti_fapll_round_rate, 272 .set_rate = ti_fapll_set_rate, 273 }; 274 275 static int ti_fapll_synth_enable(struct clk_hw *hw) 276 { 277 struct fapll_synth *synth = to_synth(hw); 278 u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET); 279 280 v &= ~(1 << synth->index); 281 writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET); 282 283 return 0; 284 } 285 286 static void ti_fapll_synth_disable(struct clk_hw *hw) 287 { 288 struct fapll_synth *synth = to_synth(hw); 289 u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET); 290 291 v |= 1 << synth->index; 292 writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET); 293 } 294 295 static int ti_fapll_synth_is_enabled(struct clk_hw *hw) 296 { 297 struct fapll_synth *synth = to_synth(hw); 298 u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET); 299 300 return !(v & (1 << synth->index)); 301 } 302 303 /* 304 * See dm816x TRM chapter 1.10.3 Flying Adder PLL fore more info 305 */ 306 static unsigned long ti_fapll_synth_recalc_rate(struct clk_hw *hw, 307 unsigned long parent_rate) 308 { 309 struct fapll_synth *synth = to_synth(hw); 310 u32 synth_div_m; 311 u64 rate; 312 313 /* The audio_pll_clk1 is hardwired to produce 32.768KiHz clock */ 314 if (!synth->div) 315 return 32768; 316 317 /* 318 * PLL in bypass sets the synths in bypass mode too. The PLL rate 319 * can be also be set to 27MHz, so we can't use parent_rate to 320 * check for bypass mode. 321 */ 322 if (ti_fapll_clock_is_bypass(synth->fd)) 323 return parent_rate; 324 325 rate = parent_rate; 326 327 /* 328 * Synth frequency integer and fractional divider. 329 * Note that the phase output K is 8, so the result needs 330 * to be multiplied by SYNTH_PHASE_K. 331 */ 332 if (synth->freq) { 333 u32 v, synth_int_div, synth_frac_div, synth_div_freq; 334 335 v = readl_relaxed(synth->freq); 336 synth_int_div = (v >> 24) & 0xf; 337 synth_frac_div = v & 0xffffff; 338 synth_div_freq = (synth_int_div * 10000000) + synth_frac_div; 339 rate *= 10000000; 340 do_div(rate, synth_div_freq); 341 rate *= SYNTH_PHASE_K; 342 } 343 344 /* Synth post-divider M */ 345 synth_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M; 346 347 return DIV_ROUND_UP_ULL(rate, synth_div_m); 348 } 349 350 static unsigned long ti_fapll_synth_get_frac_rate(struct clk_hw *hw, 351 unsigned long parent_rate) 352 { 353 struct fapll_synth *synth = to_synth(hw); 354 unsigned long current_rate, frac_rate; 355 u32 post_div_m; 356 357 current_rate = ti_fapll_synth_recalc_rate(hw, parent_rate); 358 post_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M; 359 frac_rate = current_rate * post_div_m; 360 361 return frac_rate; 362 } 363 364 static u32 ti_fapll_synth_set_frac_rate(struct fapll_synth *synth, 365 unsigned long rate, 366 unsigned long parent_rate) 367 { 368 u32 post_div_m, synth_int_div = 0, synth_frac_div = 0, v; 369 370 post_div_m = DIV_ROUND_UP_ULL((u64)parent_rate * SYNTH_PHASE_K, rate); 371 post_div_m = post_div_m / SYNTH_MAX_INT_DIV; 372 if (post_div_m > SYNTH_MAX_DIV_M) 373 return -EINVAL; 374 if (!post_div_m) 375 post_div_m = 1; 376 377 for (; post_div_m < SYNTH_MAX_DIV_M; post_div_m++) { 378 synth_int_div = DIV_ROUND_UP_ULL((u64)parent_rate * 379 SYNTH_PHASE_K * 380 10000000, 381 rate * post_div_m); 382 synth_frac_div = synth_int_div % 10000000; 383 synth_int_div /= 10000000; 384 385 if (synth_int_div <= SYNTH_MAX_INT_DIV) 386 break; 387 } 388 389 if (synth_int_div > SYNTH_MAX_INT_DIV) 390 return -EINVAL; 391 392 v = readl_relaxed(synth->freq); 393 v &= ~0x1fffffff; 394 v |= (synth_int_div & SYNTH_MAX_INT_DIV) << 24; 395 v |= (synth_frac_div & 0xffffff); 396 v |= SYNTH_LDFREQ; 397 writel_relaxed(v, synth->freq); 398 399 return post_div_m; 400 } 401 402 static long ti_fapll_synth_round_rate(struct clk_hw *hw, unsigned long rate, 403 unsigned long *parent_rate) 404 { 405 struct fapll_synth *synth = to_synth(hw); 406 struct fapll_data *fd = synth->fd; 407 unsigned long r; 408 409 if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate) 410 return -EINVAL; 411 412 /* Only post divider m available with no fractional divider? */ 413 if (!synth->freq) { 414 unsigned long frac_rate; 415 u32 synth_post_div_m; 416 417 frac_rate = ti_fapll_synth_get_frac_rate(hw, *parent_rate); 418 synth_post_div_m = DIV_ROUND_UP(frac_rate, rate); 419 r = DIV_ROUND_UP(frac_rate, synth_post_div_m); 420 goto out; 421 } 422 423 r = *parent_rate * SYNTH_PHASE_K; 424 if (rate > r) 425 goto out; 426 427 r = DIV_ROUND_UP_ULL(r, SYNTH_MAX_INT_DIV * SYNTH_MAX_DIV_M); 428 if (rate < r) 429 goto out; 430 431 r = rate; 432 out: 433 return r; 434 } 435 436 static int ti_fapll_synth_set_rate(struct clk_hw *hw, unsigned long rate, 437 unsigned long parent_rate) 438 { 439 struct fapll_synth *synth = to_synth(hw); 440 struct fapll_data *fd = synth->fd; 441 unsigned long frac_rate, post_rate = 0; 442 u32 post_div_m = 0, v; 443 444 if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate) 445 return -EINVAL; 446 447 /* Produce the rate with just post divider M? */ 448 frac_rate = ti_fapll_synth_get_frac_rate(hw, parent_rate); 449 if (frac_rate < rate) { 450 if (!synth->freq) 451 return -EINVAL; 452 } else { 453 post_div_m = DIV_ROUND_UP(frac_rate, rate); 454 if (post_div_m && (post_div_m <= SYNTH_MAX_DIV_M)) 455 post_rate = DIV_ROUND_UP(frac_rate, post_div_m); 456 if (!synth->freq && !post_rate) 457 return -EINVAL; 458 } 459 460 /* Need to recalculate the fractional divider? */ 461 if ((post_rate != rate) && synth->freq) 462 post_div_m = ti_fapll_synth_set_frac_rate(synth, 463 rate, 464 parent_rate); 465 466 v = readl_relaxed(synth->div); 467 v &= ~SYNTH_MAX_DIV_M; 468 v |= post_div_m; 469 v |= SYNTH_LDMDIV1; 470 writel_relaxed(v, synth->div); 471 472 return 0; 473 } 474 475 static const struct clk_ops ti_fapll_synt_ops = { 476 .enable = ti_fapll_synth_enable, 477 .disable = ti_fapll_synth_disable, 478 .is_enabled = ti_fapll_synth_is_enabled, 479 .recalc_rate = ti_fapll_synth_recalc_rate, 480 .round_rate = ti_fapll_synth_round_rate, 481 .set_rate = ti_fapll_synth_set_rate, 482 }; 483 484 static struct clk * __init ti_fapll_synth_setup(struct fapll_data *fd, 485 void __iomem *freq, 486 void __iomem *div, 487 int index, 488 const char *name, 489 const char *parent, 490 struct clk *pll_clk) 491 { 492 struct clk_init_data *init; 493 struct fapll_synth *synth; 494 struct clk *clk = ERR_PTR(-ENOMEM); 495 496 init = kzalloc(sizeof(*init), GFP_KERNEL); 497 if (!init) 498 return ERR_PTR(-ENOMEM); 499 500 init->ops = &ti_fapll_synt_ops; 501 init->name = name; 502 init->parent_names = &parent; 503 init->num_parents = 1; 504 505 synth = kzalloc(sizeof(*synth), GFP_KERNEL); 506 if (!synth) 507 goto free; 508 509 synth->fd = fd; 510 synth->index = index; 511 synth->freq = freq; 512 synth->div = div; 513 synth->name = name; 514 synth->hw.init = init; 515 synth->clk_pll = pll_clk; 516 517 clk = clk_register(NULL, &synth->hw); 518 if (IS_ERR(clk)) { 519 pr_err("failed to register clock\n"); 520 goto free; 521 } 522 523 return clk; 524 525 free: 526 kfree(synth); 527 kfree(init); 528 529 return clk; 530 } 531 532 static void __init ti_fapll_setup(struct device_node *node) 533 { 534 struct fapll_data *fd; 535 struct clk_init_data *init = NULL; 536 const char *parent_name[2]; 537 struct clk *pll_clk; 538 const char *name; 539 int i; 540 541 fd = kzalloc(sizeof(*fd), GFP_KERNEL); 542 if (!fd) 543 return; 544 545 fd->outputs.clks = kzalloc(sizeof(struct clk *) * 546 MAX_FAPLL_OUTPUTS + 1, 547 GFP_KERNEL); 548 if (!fd->outputs.clks) 549 goto free; 550 551 init = kzalloc(sizeof(*init), GFP_KERNEL); 552 if (!init) 553 goto free; 554 555 init->ops = &ti_fapll_ops; 556 name = ti_dt_clk_name(node); 557 init->name = name; 558 559 init->num_parents = of_clk_get_parent_count(node); 560 if (init->num_parents != 2) { 561 pr_err("%pOFn must have two parents\n", node); 562 goto free; 563 } 564 565 of_clk_parent_fill(node, parent_name, 2); 566 init->parent_names = parent_name; 567 568 fd->clk_ref = of_clk_get(node, 0); 569 if (IS_ERR(fd->clk_ref)) { 570 pr_err("%pOFn could not get clk_ref\n", node); 571 goto free; 572 } 573 574 fd->clk_bypass = of_clk_get(node, 1); 575 if (IS_ERR(fd->clk_bypass)) { 576 pr_err("%pOFn could not get clk_bypass\n", node); 577 goto free; 578 } 579 580 fd->base = of_iomap(node, 0); 581 if (!fd->base) { 582 pr_err("%pOFn could not get IO base\n", node); 583 goto free; 584 } 585 586 if (fapll_is_ddr_pll(fd->base)) 587 fd->bypass_bit_inverted = true; 588 589 fd->name = name; 590 fd->hw.init = init; 591 592 /* Register the parent PLL */ 593 pll_clk = clk_register(NULL, &fd->hw); 594 if (IS_ERR(pll_clk)) 595 goto unmap; 596 597 fd->outputs.clks[0] = pll_clk; 598 fd->outputs.clk_num++; 599 600 /* 601 * Set up the child synthesizers starting at index 1 as the 602 * PLL output is at index 0. We need to check the clock-indices 603 * for numbering in case there are holes in the synth mapping, 604 * and then probe the synth register to see if it has a FREQ 605 * register available. 606 */ 607 for (i = 0; i < MAX_FAPLL_OUTPUTS; i++) { 608 const char *output_name; 609 void __iomem *freq, *div; 610 struct clk *synth_clk; 611 int output_instance; 612 u32 v; 613 614 if (of_property_read_string_index(node, "clock-output-names", 615 i, &output_name)) 616 continue; 617 618 if (of_property_read_u32_index(node, "clock-indices", i, 619 &output_instance)) 620 output_instance = i; 621 622 freq = fd->base + (output_instance * 8); 623 div = freq + 4; 624 625 /* Check for hardwired audio_pll_clk1 */ 626 if (is_audio_pll_clk1(freq)) { 627 freq = NULL; 628 div = NULL; 629 } else { 630 /* Does the synthesizer have a FREQ register? */ 631 v = readl_relaxed(freq); 632 if (!v) 633 freq = NULL; 634 } 635 synth_clk = ti_fapll_synth_setup(fd, freq, div, output_instance, 636 output_name, name, pll_clk); 637 if (IS_ERR(synth_clk)) 638 continue; 639 640 fd->outputs.clks[output_instance] = synth_clk; 641 fd->outputs.clk_num++; 642 643 clk_register_clkdev(synth_clk, output_name, NULL); 644 } 645 646 /* Register the child synthesizers as the FAPLL outputs */ 647 of_clk_add_provider(node, of_clk_src_onecell_get, &fd->outputs); 648 /* Add clock alias for the outputs */ 649 650 kfree(init); 651 652 return; 653 654 unmap: 655 iounmap(fd->base); 656 free: 657 if (fd->clk_bypass) 658 clk_put(fd->clk_bypass); 659 if (fd->clk_ref) 660 clk_put(fd->clk_ref); 661 kfree(fd->outputs.clks); 662 kfree(fd); 663 kfree(init); 664 } 665 666 CLK_OF_DECLARE(ti_fapll_clock, "ti,dm816-fapll-clock", ti_fapll_setup); 667