xref: /openbmc/linux/drivers/clk/ti/fapll.c (revision 82e6fdd6)
1 /*
2  * This program is free software; you can redistribute it and/or
3  * modify it under the terms of the GNU General Public License as
4  * published by the Free Software Foundation version 2.
5  *
6  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
7  * kind, whether express or implied; without even the implied warranty
8  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9  * GNU General Public License for more details.
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/clk-provider.h>
14 #include <linux/delay.h>
15 #include <linux/err.h>
16 #include <linux/math64.h>
17 #include <linux/of.h>
18 #include <linux/of_address.h>
19 #include <linux/clk/ti.h>
20 
21 /* FAPLL Control Register PLL_CTRL */
22 #define FAPLL_MAIN_MULT_N_SHIFT	16
23 #define FAPLL_MAIN_DIV_P_SHIFT	8
24 #define FAPLL_MAIN_LOCK		BIT(7)
25 #define FAPLL_MAIN_PLLEN	BIT(3)
26 #define FAPLL_MAIN_BP		BIT(2)
27 #define FAPLL_MAIN_LOC_CTL	BIT(0)
28 
29 #define FAPLL_MAIN_MAX_MULT_N	0xffff
30 #define FAPLL_MAIN_MAX_DIV_P	0xff
31 #define FAPLL_MAIN_CLEAR_MASK	\
32 	((FAPLL_MAIN_MAX_MULT_N << FAPLL_MAIN_MULT_N_SHIFT) | \
33 	 (FAPLL_MAIN_DIV_P_SHIFT << FAPLL_MAIN_DIV_P_SHIFT) | \
34 	 FAPLL_MAIN_LOC_CTL)
35 
36 /* FAPLL powerdown register PWD */
37 #define FAPLL_PWD_OFFSET	4
38 
39 #define MAX_FAPLL_OUTPUTS	7
40 #define FAPLL_MAX_RETRIES	1000
41 
42 #define to_fapll(_hw)		container_of(_hw, struct fapll_data, hw)
43 #define to_synth(_hw)		container_of(_hw, struct fapll_synth, hw)
44 
45 /* The bypass bit is inverted on the ddr_pll.. */
46 #define fapll_is_ddr_pll(va)	(((u32)(va) & 0xffff) == 0x0440)
47 
48 /*
49  * The audio_pll_clk1 input is hard wired to the 27MHz bypass clock,
50  * and the audio_pll_clk1 synthesizer is hardwared to 32KiHz output.
51  */
52 #define is_ddr_pll_clk1(va)	(((u32)(va) & 0xffff) == 0x044c)
53 #define is_audio_pll_clk1(va)	(((u32)(va) & 0xffff) == 0x04a8)
54 
55 /* Synthesizer divider register */
56 #define SYNTH_LDMDIV1		BIT(8)
57 
58 /* Synthesizer frequency register */
59 #define SYNTH_LDFREQ		BIT(31)
60 
61 #define SYNTH_PHASE_K		8
62 #define SYNTH_MAX_INT_DIV	0xf
63 #define SYNTH_MAX_DIV_M		0xff
64 
65 struct fapll_data {
66 	struct clk_hw hw;
67 	void __iomem *base;
68 	const char *name;
69 	struct clk *clk_ref;
70 	struct clk *clk_bypass;
71 	struct clk_onecell_data outputs;
72 	bool bypass_bit_inverted;
73 };
74 
75 struct fapll_synth {
76 	struct clk_hw hw;
77 	struct fapll_data *fd;
78 	int index;
79 	void __iomem *freq;
80 	void __iomem *div;
81 	const char *name;
82 	struct clk *clk_pll;
83 };
84 
85 static bool ti_fapll_clock_is_bypass(struct fapll_data *fd)
86 {
87 	u32 v = readl_relaxed(fd->base);
88 
89 	if (fd->bypass_bit_inverted)
90 		return !(v & FAPLL_MAIN_BP);
91 	else
92 		return !!(v & FAPLL_MAIN_BP);
93 }
94 
95 static void ti_fapll_set_bypass(struct fapll_data *fd)
96 {
97 	u32 v = readl_relaxed(fd->base);
98 
99 	if (fd->bypass_bit_inverted)
100 		v &= ~FAPLL_MAIN_BP;
101 	else
102 		v |= FAPLL_MAIN_BP;
103 	writel_relaxed(v, fd->base);
104 }
105 
106 static void ti_fapll_clear_bypass(struct fapll_data *fd)
107 {
108 	u32 v = readl_relaxed(fd->base);
109 
110 	if (fd->bypass_bit_inverted)
111 		v |= FAPLL_MAIN_BP;
112 	else
113 		v &= ~FAPLL_MAIN_BP;
114 	writel_relaxed(v, fd->base);
115 }
116 
117 static int ti_fapll_wait_lock(struct fapll_data *fd)
118 {
119 	int retries = FAPLL_MAX_RETRIES;
120 	u32 v;
121 
122 	while ((v = readl_relaxed(fd->base))) {
123 		if (v & FAPLL_MAIN_LOCK)
124 			return 0;
125 
126 		if (retries-- <= 0)
127 			break;
128 
129 		udelay(1);
130 	}
131 
132 	pr_err("%s failed to lock\n", fd->name);
133 
134 	return -ETIMEDOUT;
135 }
136 
137 static int ti_fapll_enable(struct clk_hw *hw)
138 {
139 	struct fapll_data *fd = to_fapll(hw);
140 	u32 v = readl_relaxed(fd->base);
141 
142 	v |= FAPLL_MAIN_PLLEN;
143 	writel_relaxed(v, fd->base);
144 	ti_fapll_wait_lock(fd);
145 
146 	return 0;
147 }
148 
149 static void ti_fapll_disable(struct clk_hw *hw)
150 {
151 	struct fapll_data *fd = to_fapll(hw);
152 	u32 v = readl_relaxed(fd->base);
153 
154 	v &= ~FAPLL_MAIN_PLLEN;
155 	writel_relaxed(v, fd->base);
156 }
157 
158 static int ti_fapll_is_enabled(struct clk_hw *hw)
159 {
160 	struct fapll_data *fd = to_fapll(hw);
161 	u32 v = readl_relaxed(fd->base);
162 
163 	return v & FAPLL_MAIN_PLLEN;
164 }
165 
166 static unsigned long ti_fapll_recalc_rate(struct clk_hw *hw,
167 					  unsigned long parent_rate)
168 {
169 	struct fapll_data *fd = to_fapll(hw);
170 	u32 fapll_n, fapll_p, v;
171 	u64 rate;
172 
173 	if (ti_fapll_clock_is_bypass(fd))
174 		return parent_rate;
175 
176 	rate = parent_rate;
177 
178 	/* PLL pre-divider is P and multiplier is N */
179 	v = readl_relaxed(fd->base);
180 	fapll_p = (v >> 8) & 0xff;
181 	if (fapll_p)
182 		do_div(rate, fapll_p);
183 	fapll_n = v >> 16;
184 	if (fapll_n)
185 		rate *= fapll_n;
186 
187 	return rate;
188 }
189 
190 static u8 ti_fapll_get_parent(struct clk_hw *hw)
191 {
192 	struct fapll_data *fd = to_fapll(hw);
193 
194 	if (ti_fapll_clock_is_bypass(fd))
195 		return 1;
196 
197 	return 0;
198 }
199 
200 static int ti_fapll_set_div_mult(unsigned long rate,
201 				 unsigned long parent_rate,
202 				 u32 *pre_div_p, u32 *mult_n)
203 {
204 	/*
205 	 * So far no luck getting decent clock with PLL divider,
206 	 * PLL does not seem to lock and the signal does not look
207 	 * right. It seems the divider can only be used together
208 	 * with the multiplier?
209 	 */
210 	if (rate < parent_rate) {
211 		pr_warn("FAPLL main divider rates unsupported\n");
212 		return -EINVAL;
213 	}
214 
215 	*mult_n = rate / parent_rate;
216 	if (*mult_n > FAPLL_MAIN_MAX_MULT_N)
217 		return -EINVAL;
218 	*pre_div_p = 1;
219 
220 	return 0;
221 }
222 
223 static long ti_fapll_round_rate(struct clk_hw *hw, unsigned long rate,
224 				unsigned long *parent_rate)
225 {
226 	u32 pre_div_p, mult_n;
227 	int error;
228 
229 	if (!rate)
230 		return -EINVAL;
231 
232 	error = ti_fapll_set_div_mult(rate, *parent_rate,
233 				      &pre_div_p, &mult_n);
234 	if (error)
235 		return error;
236 
237 	rate = *parent_rate / pre_div_p;
238 	rate *= mult_n;
239 
240 	return rate;
241 }
242 
243 static int ti_fapll_set_rate(struct clk_hw *hw, unsigned long rate,
244 			     unsigned long parent_rate)
245 {
246 	struct fapll_data *fd = to_fapll(hw);
247 	u32 pre_div_p, mult_n, v;
248 	int error;
249 
250 	if (!rate)
251 		return -EINVAL;
252 
253 	error = ti_fapll_set_div_mult(rate, parent_rate,
254 				      &pre_div_p, &mult_n);
255 	if (error)
256 		return error;
257 
258 	ti_fapll_set_bypass(fd);
259 	v = readl_relaxed(fd->base);
260 	v &= ~FAPLL_MAIN_CLEAR_MASK;
261 	v |= pre_div_p << FAPLL_MAIN_DIV_P_SHIFT;
262 	v |= mult_n << FAPLL_MAIN_MULT_N_SHIFT;
263 	writel_relaxed(v, fd->base);
264 	if (ti_fapll_is_enabled(hw))
265 		ti_fapll_wait_lock(fd);
266 	ti_fapll_clear_bypass(fd);
267 
268 	return 0;
269 }
270 
271 static const struct clk_ops ti_fapll_ops = {
272 	.enable = ti_fapll_enable,
273 	.disable = ti_fapll_disable,
274 	.is_enabled = ti_fapll_is_enabled,
275 	.recalc_rate = ti_fapll_recalc_rate,
276 	.get_parent = ti_fapll_get_parent,
277 	.round_rate = ti_fapll_round_rate,
278 	.set_rate = ti_fapll_set_rate,
279 };
280 
281 static int ti_fapll_synth_enable(struct clk_hw *hw)
282 {
283 	struct fapll_synth *synth = to_synth(hw);
284 	u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
285 
286 	v &= ~(1 << synth->index);
287 	writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
288 
289 	return 0;
290 }
291 
292 static void ti_fapll_synth_disable(struct clk_hw *hw)
293 {
294 	struct fapll_synth *synth = to_synth(hw);
295 	u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
296 
297 	v |= 1 << synth->index;
298 	writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
299 }
300 
301 static int ti_fapll_synth_is_enabled(struct clk_hw *hw)
302 {
303 	struct fapll_synth *synth = to_synth(hw);
304 	u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
305 
306 	return !(v & (1 << synth->index));
307 }
308 
309 /*
310  * See dm816x TRM chapter 1.10.3 Flying Adder PLL fore more info
311  */
312 static unsigned long ti_fapll_synth_recalc_rate(struct clk_hw *hw,
313 						unsigned long parent_rate)
314 {
315 	struct fapll_synth *synth = to_synth(hw);
316 	u32 synth_div_m;
317 	u64 rate;
318 
319 	/* The audio_pll_clk1 is hardwired to produce 32.768KiHz clock */
320 	if (!synth->div)
321 		return 32768;
322 
323 	/*
324 	 * PLL in bypass sets the synths in bypass mode too. The PLL rate
325 	 * can be also be set to 27MHz, so we can't use parent_rate to
326 	 * check for bypass mode.
327 	 */
328 	if (ti_fapll_clock_is_bypass(synth->fd))
329 		return parent_rate;
330 
331 	rate = parent_rate;
332 
333 	/*
334 	 * Synth frequency integer and fractional divider.
335 	 * Note that the phase output K is 8, so the result needs
336 	 * to be multiplied by SYNTH_PHASE_K.
337 	 */
338 	if (synth->freq) {
339 		u32 v, synth_int_div, synth_frac_div, synth_div_freq;
340 
341 		v = readl_relaxed(synth->freq);
342 		synth_int_div = (v >> 24) & 0xf;
343 		synth_frac_div = v & 0xffffff;
344 		synth_div_freq = (synth_int_div * 10000000) + synth_frac_div;
345 		rate *= 10000000;
346 		do_div(rate, synth_div_freq);
347 		rate *= SYNTH_PHASE_K;
348 	}
349 
350 	/* Synth post-divider M */
351 	synth_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
352 
353 	return DIV_ROUND_UP_ULL(rate, synth_div_m);
354 }
355 
356 static unsigned long ti_fapll_synth_get_frac_rate(struct clk_hw *hw,
357 						  unsigned long parent_rate)
358 {
359 	struct fapll_synth *synth = to_synth(hw);
360 	unsigned long current_rate, frac_rate;
361 	u32 post_div_m;
362 
363 	current_rate = ti_fapll_synth_recalc_rate(hw, parent_rate);
364 	post_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
365 	frac_rate = current_rate * post_div_m;
366 
367 	return frac_rate;
368 }
369 
370 static u32 ti_fapll_synth_set_frac_rate(struct fapll_synth *synth,
371 					unsigned long rate,
372 					unsigned long parent_rate)
373 {
374 	u32 post_div_m, synth_int_div = 0, synth_frac_div = 0, v;
375 
376 	post_div_m = DIV_ROUND_UP_ULL((u64)parent_rate * SYNTH_PHASE_K, rate);
377 	post_div_m = post_div_m / SYNTH_MAX_INT_DIV;
378 	if (post_div_m > SYNTH_MAX_DIV_M)
379 		return -EINVAL;
380 	if (!post_div_m)
381 		post_div_m = 1;
382 
383 	for (; post_div_m < SYNTH_MAX_DIV_M; post_div_m++) {
384 		synth_int_div = DIV_ROUND_UP_ULL((u64)parent_rate *
385 						 SYNTH_PHASE_K *
386 						 10000000,
387 						 rate * post_div_m);
388 		synth_frac_div = synth_int_div % 10000000;
389 		synth_int_div /= 10000000;
390 
391 		if (synth_int_div <= SYNTH_MAX_INT_DIV)
392 			break;
393 	}
394 
395 	if (synth_int_div > SYNTH_MAX_INT_DIV)
396 		return -EINVAL;
397 
398 	v = readl_relaxed(synth->freq);
399 	v &= ~0x1fffffff;
400 	v |= (synth_int_div & SYNTH_MAX_INT_DIV) << 24;
401 	v |= (synth_frac_div & 0xffffff);
402 	v |= SYNTH_LDFREQ;
403 	writel_relaxed(v, synth->freq);
404 
405 	return post_div_m;
406 }
407 
408 static long ti_fapll_synth_round_rate(struct clk_hw *hw, unsigned long rate,
409 				      unsigned long *parent_rate)
410 {
411 	struct fapll_synth *synth = to_synth(hw);
412 	struct fapll_data *fd = synth->fd;
413 	unsigned long r;
414 
415 	if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
416 		return -EINVAL;
417 
418 	/* Only post divider m available with no fractional divider? */
419 	if (!synth->freq) {
420 		unsigned long frac_rate;
421 		u32 synth_post_div_m;
422 
423 		frac_rate = ti_fapll_synth_get_frac_rate(hw, *parent_rate);
424 		synth_post_div_m = DIV_ROUND_UP(frac_rate, rate);
425 		r = DIV_ROUND_UP(frac_rate, synth_post_div_m);
426 		goto out;
427 	}
428 
429 	r = *parent_rate * SYNTH_PHASE_K;
430 	if (rate > r)
431 		goto out;
432 
433 	r = DIV_ROUND_UP_ULL(r, SYNTH_MAX_INT_DIV * SYNTH_MAX_DIV_M);
434 	if (rate < r)
435 		goto out;
436 
437 	r = rate;
438 out:
439 	return r;
440 }
441 
442 static int ti_fapll_synth_set_rate(struct clk_hw *hw, unsigned long rate,
443 				   unsigned long parent_rate)
444 {
445 	struct fapll_synth *synth = to_synth(hw);
446 	struct fapll_data *fd = synth->fd;
447 	unsigned long frac_rate, post_rate = 0;
448 	u32 post_div_m = 0, v;
449 
450 	if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
451 		return -EINVAL;
452 
453 	/* Produce the rate with just post divider M? */
454 	frac_rate = ti_fapll_synth_get_frac_rate(hw, parent_rate);
455 	if (frac_rate < rate) {
456 		if (!synth->freq)
457 			return -EINVAL;
458 	} else {
459 		post_div_m = DIV_ROUND_UP(frac_rate, rate);
460 		if (post_div_m && (post_div_m <= SYNTH_MAX_DIV_M))
461 			post_rate = DIV_ROUND_UP(frac_rate, post_div_m);
462 		if (!synth->freq && !post_rate)
463 			return -EINVAL;
464 	}
465 
466 	/* Need to recalculate the fractional divider? */
467 	if ((post_rate != rate) && synth->freq)
468 		post_div_m = ti_fapll_synth_set_frac_rate(synth,
469 							  rate,
470 							  parent_rate);
471 
472 	v = readl_relaxed(synth->div);
473 	v &= ~SYNTH_MAX_DIV_M;
474 	v |= post_div_m;
475 	v |= SYNTH_LDMDIV1;
476 	writel_relaxed(v, synth->div);
477 
478 	return 0;
479 }
480 
481 static const struct clk_ops ti_fapll_synt_ops = {
482 	.enable = ti_fapll_synth_enable,
483 	.disable = ti_fapll_synth_disable,
484 	.is_enabled = ti_fapll_synth_is_enabled,
485 	.recalc_rate = ti_fapll_synth_recalc_rate,
486 	.round_rate = ti_fapll_synth_round_rate,
487 	.set_rate = ti_fapll_synth_set_rate,
488 };
489 
490 static struct clk * __init ti_fapll_synth_setup(struct fapll_data *fd,
491 						void __iomem *freq,
492 						void __iomem *div,
493 						int index,
494 						const char *name,
495 						const char *parent,
496 						struct clk *pll_clk)
497 {
498 	struct clk_init_data *init;
499 	struct fapll_synth *synth;
500 
501 	init = kzalloc(sizeof(*init), GFP_KERNEL);
502 	if (!init)
503 		return ERR_PTR(-ENOMEM);
504 
505 	init->ops = &ti_fapll_synt_ops;
506 	init->name = name;
507 	init->parent_names = &parent;
508 	init->num_parents = 1;
509 
510 	synth = kzalloc(sizeof(*synth), GFP_KERNEL);
511 	if (!synth)
512 		goto free;
513 
514 	synth->fd = fd;
515 	synth->index = index;
516 	synth->freq = freq;
517 	synth->div = div;
518 	synth->name = name;
519 	synth->hw.init = init;
520 	synth->clk_pll = pll_clk;
521 
522 	return clk_register(NULL, &synth->hw);
523 
524 free:
525 	kfree(synth);
526 	kfree(init);
527 
528 	return ERR_PTR(-ENOMEM);
529 }
530 
531 static void __init ti_fapll_setup(struct device_node *node)
532 {
533 	struct fapll_data *fd;
534 	struct clk_init_data *init = NULL;
535 	const char *parent_name[2];
536 	struct clk *pll_clk;
537 	int i;
538 
539 	fd = kzalloc(sizeof(*fd), GFP_KERNEL);
540 	if (!fd)
541 		return;
542 
543 	fd->outputs.clks = kzalloc(sizeof(struct clk *) *
544 				   MAX_FAPLL_OUTPUTS + 1,
545 				   GFP_KERNEL);
546 	if (!fd->outputs.clks)
547 		goto free;
548 
549 	init = kzalloc(sizeof(*init), GFP_KERNEL);
550 	if (!init)
551 		goto free;
552 
553 	init->ops = &ti_fapll_ops;
554 	init->name = node->name;
555 
556 	init->num_parents = of_clk_get_parent_count(node);
557 	if (init->num_parents != 2) {
558 		pr_err("%s must have two parents\n", node->name);
559 		goto free;
560 	}
561 
562 	of_clk_parent_fill(node, parent_name, 2);
563 	init->parent_names = parent_name;
564 
565 	fd->clk_ref = of_clk_get(node, 0);
566 	if (IS_ERR(fd->clk_ref)) {
567 		pr_err("%s could not get clk_ref\n", node->name);
568 		goto free;
569 	}
570 
571 	fd->clk_bypass = of_clk_get(node, 1);
572 	if (IS_ERR(fd->clk_bypass)) {
573 		pr_err("%s could not get clk_bypass\n", node->name);
574 		goto free;
575 	}
576 
577 	fd->base = of_iomap(node, 0);
578 	if (!fd->base) {
579 		pr_err("%s could not get IO base\n", node->name);
580 		goto free;
581 	}
582 
583 	if (fapll_is_ddr_pll(fd->base))
584 		fd->bypass_bit_inverted = true;
585 
586 	fd->name = node->name;
587 	fd->hw.init = init;
588 
589 	/* Register the parent PLL */
590 	pll_clk = clk_register(NULL, &fd->hw);
591 	if (IS_ERR(pll_clk))
592 		goto unmap;
593 
594 	fd->outputs.clks[0] = pll_clk;
595 	fd->outputs.clk_num++;
596 
597 	/*
598 	 * Set up the child synthesizers starting at index 1 as the
599 	 * PLL output is at index 0. We need to check the clock-indices
600 	 * for numbering in case there are holes in the synth mapping,
601 	 * and then probe the synth register to see if it has a FREQ
602 	 * register available.
603 	 */
604 	for (i = 0; i < MAX_FAPLL_OUTPUTS; i++) {
605 		const char *output_name;
606 		void __iomem *freq, *div;
607 		struct clk *synth_clk;
608 		int output_instance;
609 		u32 v;
610 
611 		if (of_property_read_string_index(node, "clock-output-names",
612 						  i, &output_name))
613 			continue;
614 
615 		if (of_property_read_u32_index(node, "clock-indices", i,
616 					       &output_instance))
617 			output_instance = i;
618 
619 		freq = fd->base + (output_instance * 8);
620 		div = freq + 4;
621 
622 		/* Check for hardwired audio_pll_clk1 */
623 		if (is_audio_pll_clk1(freq)) {
624 			freq = NULL;
625 			div = NULL;
626 		} else {
627 			/* Does the synthesizer have a FREQ register? */
628 			v = readl_relaxed(freq);
629 			if (!v)
630 				freq = NULL;
631 		}
632 		synth_clk = ti_fapll_synth_setup(fd, freq, div, output_instance,
633 						 output_name, node->name,
634 						 pll_clk);
635 		if (IS_ERR(synth_clk))
636 			continue;
637 
638 		fd->outputs.clks[output_instance] = synth_clk;
639 		fd->outputs.clk_num++;
640 
641 		clk_register_clkdev(synth_clk, output_name, NULL);
642 	}
643 
644 	/* Register the child synthesizers as the FAPLL outputs */
645 	of_clk_add_provider(node, of_clk_src_onecell_get, &fd->outputs);
646 	/* Add clock alias for the outputs */
647 
648 	kfree(init);
649 
650 	return;
651 
652 unmap:
653 	iounmap(fd->base);
654 free:
655 	if (fd->clk_bypass)
656 		clk_put(fd->clk_bypass);
657 	if (fd->clk_ref)
658 		clk_put(fd->clk_ref);
659 	kfree(fd->outputs.clks);
660 	kfree(fd);
661 	kfree(init);
662 }
663 
664 CLK_OF_DECLARE(ti_fapll_clock, "ti,dm816-fapll-clock", ti_fapll_setup);
665