xref: /openbmc/linux/drivers/clk/tegra/clk-dfll.c (revision fa0a497b)
1 /*
2  * clk-dfll.c - Tegra DFLL clock source common code
3  *
4  * Copyright (C) 2012-2014 NVIDIA Corporation. All rights reserved.
5  *
6  * Aleksandr Frid <afrid@nvidia.com>
7  * Paul Walmsley <pwalmsley@nvidia.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but WITHOUT
14  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16  * more details.
17  *
18  * This library is for the DVCO and DFLL IP blocks on the Tegra124
19  * SoC. These IP blocks together are also known at NVIDIA as
20  * "CL-DVFS". To try to avoid confusion, this code refers to them
21  * collectively as the "DFLL."
22  *
23  * The DFLL is a root clocksource which tolerates some amount of
24  * supply voltage noise. Tegra124 uses it to clock the fast CPU
25  * complex when the target CPU speed is above a particular rate. The
26  * DFLL can be operated in either open-loop mode or closed-loop mode.
27  * In open-loop mode, the DFLL generates an output clock appropriate
28  * to the supply voltage. In closed-loop mode, when configured with a
29  * target frequency, the DFLL minimizes supply voltage while
30  * delivering an average frequency equal to the target.
31  *
32  * Devices clocked by the DFLL must be able to tolerate frequency
33  * variation. In the case of the CPU, it's important to note that the
34  * CPU cycle time will vary. This has implications for
35  * performance-measurement code and any code that relies on the CPU
36  * cycle time to delay for a certain length of time.
37  *
38  */
39 
40 #include <linux/clk.h>
41 #include <linux/clk-provider.h>
42 #include <linux/debugfs.h>
43 #include <linux/device.h>
44 #include <linux/err.h>
45 #include <linux/i2c.h>
46 #include <linux/io.h>
47 #include <linux/kernel.h>
48 #include <linux/module.h>
49 #include <linux/of.h>
50 #include <linux/pm_opp.h>
51 #include <linux/pm_runtime.h>
52 #include <linux/regmap.h>
53 #include <linux/regulator/consumer.h>
54 #include <linux/reset.h>
55 #include <linux/seq_file.h>
56 
57 #include "clk-dfll.h"
58 
59 /*
60  * DFLL control registers - access via dfll_{readl,writel}
61  */
62 
63 /* DFLL_CTRL: DFLL control register */
64 #define DFLL_CTRL			0x00
65 #define DFLL_CTRL_MODE_MASK		0x03
66 
67 /* DFLL_CONFIG: DFLL sample rate control */
68 #define DFLL_CONFIG			0x04
69 #define DFLL_CONFIG_DIV_MASK		0xff
70 #define DFLL_CONFIG_DIV_PRESCALE	32
71 
72 /* DFLL_PARAMS: tuning coefficients for closed loop integrator */
73 #define DFLL_PARAMS			0x08
74 #define DFLL_PARAMS_CG_SCALE		(0x1 << 24)
75 #define DFLL_PARAMS_FORCE_MODE_SHIFT	22
76 #define DFLL_PARAMS_FORCE_MODE_MASK	(0x3 << DFLL_PARAMS_FORCE_MODE_SHIFT)
77 #define DFLL_PARAMS_CF_PARAM_SHIFT	16
78 #define DFLL_PARAMS_CF_PARAM_MASK	(0x3f << DFLL_PARAMS_CF_PARAM_SHIFT)
79 #define DFLL_PARAMS_CI_PARAM_SHIFT	8
80 #define DFLL_PARAMS_CI_PARAM_MASK	(0x7 << DFLL_PARAMS_CI_PARAM_SHIFT)
81 #define DFLL_PARAMS_CG_PARAM_SHIFT	0
82 #define DFLL_PARAMS_CG_PARAM_MASK	(0xff << DFLL_PARAMS_CG_PARAM_SHIFT)
83 
84 /* DFLL_TUNE0: delay line configuration register 0 */
85 #define DFLL_TUNE0			0x0c
86 
87 /* DFLL_TUNE1: delay line configuration register 1 */
88 #define DFLL_TUNE1			0x10
89 
90 /* DFLL_FREQ_REQ: target DFLL frequency control */
91 #define DFLL_FREQ_REQ			0x14
92 #define DFLL_FREQ_REQ_FORCE_ENABLE	(0x1 << 28)
93 #define DFLL_FREQ_REQ_FORCE_SHIFT	16
94 #define DFLL_FREQ_REQ_FORCE_MASK	(0xfff << DFLL_FREQ_REQ_FORCE_SHIFT)
95 #define FORCE_MAX			2047
96 #define FORCE_MIN			-2048
97 #define DFLL_FREQ_REQ_SCALE_SHIFT	8
98 #define DFLL_FREQ_REQ_SCALE_MASK	(0xff << DFLL_FREQ_REQ_SCALE_SHIFT)
99 #define DFLL_FREQ_REQ_SCALE_MAX		256
100 #define DFLL_FREQ_REQ_FREQ_VALID	(0x1 << 7)
101 #define DFLL_FREQ_REQ_MULT_SHIFT	0
102 #define DFLL_FREQ_REG_MULT_MASK		(0x7f << DFLL_FREQ_REQ_MULT_SHIFT)
103 #define FREQ_MAX			127
104 
105 /* DFLL_DROOP_CTRL: droop prevention control */
106 #define DFLL_DROOP_CTRL			0x1c
107 
108 /* DFLL_OUTPUT_CFG: closed loop mode control registers */
109 /* NOTE: access via dfll_i2c_{readl,writel} */
110 #define DFLL_OUTPUT_CFG			0x20
111 #define DFLL_OUTPUT_CFG_I2C_ENABLE	(0x1 << 30)
112 #define OUT_MASK			0x3f
113 #define DFLL_OUTPUT_CFG_SAFE_SHIFT	24
114 #define DFLL_OUTPUT_CFG_SAFE_MASK	\
115 		(OUT_MASK << DFLL_OUTPUT_CFG_SAFE_SHIFT)
116 #define DFLL_OUTPUT_CFG_MAX_SHIFT	16
117 #define DFLL_OUTPUT_CFG_MAX_MASK	\
118 		(OUT_MASK << DFLL_OUTPUT_CFG_MAX_SHIFT)
119 #define DFLL_OUTPUT_CFG_MIN_SHIFT	8
120 #define DFLL_OUTPUT_CFG_MIN_MASK	\
121 		(OUT_MASK << DFLL_OUTPUT_CFG_MIN_SHIFT)
122 #define DFLL_OUTPUT_CFG_PWM_DELTA	(0x1 << 7)
123 #define DFLL_OUTPUT_CFG_PWM_ENABLE	(0x1 << 6)
124 #define DFLL_OUTPUT_CFG_PWM_DIV_SHIFT	0
125 #define DFLL_OUTPUT_CFG_PWM_DIV_MASK	\
126 		(OUT_MASK << DFLL_OUTPUT_CFG_PWM_DIV_SHIFT)
127 
128 /* DFLL_OUTPUT_FORCE: closed loop mode voltage forcing control */
129 #define DFLL_OUTPUT_FORCE		0x24
130 #define DFLL_OUTPUT_FORCE_ENABLE	(0x1 << 6)
131 #define DFLL_OUTPUT_FORCE_VALUE_SHIFT	0
132 #define DFLL_OUTPUT_FORCE_VALUE_MASK	\
133 		(OUT_MASK << DFLL_OUTPUT_FORCE_VALUE_SHIFT)
134 
135 /* DFLL_MONITOR_CTRL: internal monitor data source control */
136 #define DFLL_MONITOR_CTRL		0x28
137 #define DFLL_MONITOR_CTRL_FREQ		6
138 
139 /* DFLL_MONITOR_DATA: internal monitor data output */
140 #define DFLL_MONITOR_DATA		0x2c
141 #define DFLL_MONITOR_DATA_NEW_MASK	(0x1 << 16)
142 #define DFLL_MONITOR_DATA_VAL_SHIFT	0
143 #define DFLL_MONITOR_DATA_VAL_MASK	(0xFFFF << DFLL_MONITOR_DATA_VAL_SHIFT)
144 
145 /*
146  * I2C output control registers - access via dfll_i2c_{readl,writel}
147  */
148 
149 /* DFLL_I2C_CFG: I2C controller configuration register */
150 #define DFLL_I2C_CFG			0x40
151 #define DFLL_I2C_CFG_ARB_ENABLE		(0x1 << 20)
152 #define DFLL_I2C_CFG_HS_CODE_SHIFT	16
153 #define DFLL_I2C_CFG_HS_CODE_MASK	(0x7 << DFLL_I2C_CFG_HS_CODE_SHIFT)
154 #define DFLL_I2C_CFG_PACKET_ENABLE	(0x1 << 15)
155 #define DFLL_I2C_CFG_SIZE_SHIFT		12
156 #define DFLL_I2C_CFG_SIZE_MASK		(0x7 << DFLL_I2C_CFG_SIZE_SHIFT)
157 #define DFLL_I2C_CFG_SLAVE_ADDR_10	(0x1 << 10)
158 #define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT	1
159 #define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT	0
160 
161 /* DFLL_I2C_VDD_REG_ADDR: PMIC I2C address for closed loop mode */
162 #define DFLL_I2C_VDD_REG_ADDR		0x44
163 
164 /* DFLL_I2C_STS: I2C controller status */
165 #define DFLL_I2C_STS			0x48
166 #define DFLL_I2C_STS_I2C_LAST_SHIFT	1
167 #define DFLL_I2C_STS_I2C_REQ_PENDING	0x1
168 
169 /* DFLL_INTR_STS: DFLL interrupt status register */
170 #define DFLL_INTR_STS			0x5c
171 
172 /* DFLL_INTR_EN: DFLL interrupt enable register */
173 #define DFLL_INTR_EN			0x60
174 #define DFLL_INTR_MIN_MASK		0x1
175 #define DFLL_INTR_MAX_MASK		0x2
176 
177 /*
178  * Integrated I2C controller registers - relative to td->i2c_controller_base
179  */
180 
181 /* DFLL_I2C_CLK_DIVISOR: I2C controller clock divisor */
182 #define DFLL_I2C_CLK_DIVISOR		0x6c
183 #define DFLL_I2C_CLK_DIVISOR_MASK	0xffff
184 #define DFLL_I2C_CLK_DIVISOR_FS_SHIFT	16
185 #define DFLL_I2C_CLK_DIVISOR_HS_SHIFT	0
186 #define DFLL_I2C_CLK_DIVISOR_PREDIV	8
187 #define DFLL_I2C_CLK_DIVISOR_HSMODE_PREDIV	12
188 
189 /*
190  * Other constants
191  */
192 
193 /* MAX_DFLL_VOLTAGES: number of LUT entries in the DFLL IP block */
194 #define MAX_DFLL_VOLTAGES		33
195 
196 /*
197  * REF_CLK_CYC_PER_DVCO_SAMPLE: the number of ref_clk cycles that the hardware
198  *    integrates the DVCO counter over - used for debug rate monitoring and
199  *    droop control
200  */
201 #define REF_CLK_CYC_PER_DVCO_SAMPLE	4
202 
203 /*
204  * REF_CLOCK_RATE: the DFLL reference clock rate currently supported by this
205  * driver, in Hz
206  */
207 #define REF_CLOCK_RATE			51000000UL
208 
209 #define DVCO_RATE_TO_MULT(rate, ref_rate)	((rate) / ((ref_rate) / 2))
210 #define MULT_TO_DVCO_RATE(mult, ref_rate)	((mult) * ((ref_rate) / 2))
211 
212 /**
213  * enum dfll_ctrl_mode - DFLL hardware operating mode
214  * @DFLL_UNINITIALIZED: (uninitialized state - not in hardware bitfield)
215  * @DFLL_DISABLED: DFLL not generating an output clock
216  * @DFLL_OPEN_LOOP: DVCO running, but DFLL not adjusting voltage
217  * @DFLL_CLOSED_LOOP: DVCO running, and DFLL adjusting voltage to match
218  *		      the requested rate
219  *
220  * The integer corresponding to the last two states, minus one, is
221  * written to the DFLL hardware to change operating modes.
222  */
223 enum dfll_ctrl_mode {
224 	DFLL_UNINITIALIZED = 0,
225 	DFLL_DISABLED = 1,
226 	DFLL_OPEN_LOOP = 2,
227 	DFLL_CLOSED_LOOP = 3,
228 };
229 
230 /**
231  * enum dfll_tune_range - voltage range that the driver believes it's in
232  * @DFLL_TUNE_UNINITIALIZED: DFLL tuning not yet programmed
233  * @DFLL_TUNE_LOW: DFLL in the low-voltage range (or open-loop mode)
234  *
235  * Some DFLL tuning parameters may need to change depending on the
236  * DVCO's voltage; these states represent the ranges that the driver
237  * supports. These are software states; these values are never
238  * written into registers.
239  */
240 enum dfll_tune_range {
241 	DFLL_TUNE_UNINITIALIZED = 0,
242 	DFLL_TUNE_LOW = 1,
243 };
244 
245 /**
246  * struct dfll_rate_req - target DFLL rate request data
247  * @rate: target frequency, after the postscaling
248  * @dvco_target_rate: target frequency, after the postscaling
249  * @lut_index: LUT index at which voltage the dvco_target_rate will be reached
250  * @mult_bits: value to program to the MULT bits of the DFLL_FREQ_REQ register
251  * @scale_bits: value to program to the SCALE bits of the DFLL_FREQ_REQ register
252  */
253 struct dfll_rate_req {
254 	unsigned long rate;
255 	unsigned long dvco_target_rate;
256 	int lut_index;
257 	u8 mult_bits;
258 	u8 scale_bits;
259 };
260 
261 struct tegra_dfll {
262 	struct device			*dev;
263 	struct tegra_dfll_soc_data	*soc;
264 
265 	void __iomem			*base;
266 	void __iomem			*i2c_base;
267 	void __iomem			*i2c_controller_base;
268 	void __iomem			*lut_base;
269 
270 	struct regulator		*vdd_reg;
271 	struct clk			*soc_clk;
272 	struct clk			*ref_clk;
273 	struct clk			*i2c_clk;
274 	struct clk			*dfll_clk;
275 	struct reset_control		*dvco_rst;
276 	unsigned long			ref_rate;
277 	unsigned long			i2c_clk_rate;
278 	unsigned long			dvco_rate_min;
279 
280 	enum dfll_ctrl_mode		mode;
281 	enum dfll_tune_range		tune_range;
282 	struct dentry			*debugfs_dir;
283 	struct clk_hw			dfll_clk_hw;
284 	const char			*output_clock_name;
285 	struct dfll_rate_req		last_req;
286 	unsigned long			last_unrounded_rate;
287 
288 	/* Parameters from DT */
289 	u32				droop_ctrl;
290 	u32				sample_rate;
291 	u32				force_mode;
292 	u32				cf;
293 	u32				ci;
294 	u32				cg;
295 	bool				cg_scale;
296 
297 	/* I2C interface parameters */
298 	u32				i2c_fs_rate;
299 	u32				i2c_reg;
300 	u32				i2c_slave_addr;
301 
302 	/* i2c_lut array entries are regulator framework selectors */
303 	unsigned			i2c_lut[MAX_DFLL_VOLTAGES];
304 	int				i2c_lut_size;
305 	u8				lut_min, lut_max, lut_safe;
306 };
307 
308 #define clk_hw_to_dfll(_hw) container_of(_hw, struct tegra_dfll, dfll_clk_hw)
309 
310 /* mode_name: map numeric DFLL modes to names for friendly console messages */
311 static const char * const mode_name[] = {
312 	[DFLL_UNINITIALIZED] = "uninitialized",
313 	[DFLL_DISABLED] = "disabled",
314 	[DFLL_OPEN_LOOP] = "open_loop",
315 	[DFLL_CLOSED_LOOP] = "closed_loop",
316 };
317 
318 /*
319  * Register accessors
320  */
321 
322 static inline u32 dfll_readl(struct tegra_dfll *td, u32 offs)
323 {
324 	return __raw_readl(td->base + offs);
325 }
326 
327 static inline void dfll_writel(struct tegra_dfll *td, u32 val, u32 offs)
328 {
329 	WARN_ON(offs >= DFLL_I2C_CFG);
330 	__raw_writel(val, td->base + offs);
331 }
332 
333 static inline void dfll_wmb(struct tegra_dfll *td)
334 {
335 	dfll_readl(td, DFLL_CTRL);
336 }
337 
338 /* I2C output control registers - for addresses above DFLL_I2C_CFG */
339 
340 static inline u32 dfll_i2c_readl(struct tegra_dfll *td, u32 offs)
341 {
342 	return __raw_readl(td->i2c_base + offs);
343 }
344 
345 static inline void dfll_i2c_writel(struct tegra_dfll *td, u32 val, u32 offs)
346 {
347 	__raw_writel(val, td->i2c_base + offs);
348 }
349 
350 static inline void dfll_i2c_wmb(struct tegra_dfll *td)
351 {
352 	dfll_i2c_readl(td, DFLL_I2C_CFG);
353 }
354 
355 /**
356  * dfll_is_running - is the DFLL currently generating a clock?
357  * @td: DFLL instance
358  *
359  * If the DFLL is currently generating an output clock signal, return
360  * true; otherwise return false.
361  */
362 static bool dfll_is_running(struct tegra_dfll *td)
363 {
364 	return td->mode >= DFLL_OPEN_LOOP;
365 }
366 
367 /*
368  * Runtime PM suspend/resume callbacks
369  */
370 
371 /**
372  * tegra_dfll_runtime_resume - enable all clocks needed by the DFLL
373  * @dev: DFLL device *
374  *
375  * Enable all clocks needed by the DFLL. Assumes that clk_prepare()
376  * has already been called on all the clocks.
377  *
378  * XXX Should also handle context restore when returning from off.
379  */
380 int tegra_dfll_runtime_resume(struct device *dev)
381 {
382 	struct tegra_dfll *td = dev_get_drvdata(dev);
383 	int ret;
384 
385 	ret = clk_enable(td->ref_clk);
386 	if (ret) {
387 		dev_err(dev, "could not enable ref clock: %d\n", ret);
388 		return ret;
389 	}
390 
391 	ret = clk_enable(td->soc_clk);
392 	if (ret) {
393 		dev_err(dev, "could not enable register clock: %d\n", ret);
394 		clk_disable(td->ref_clk);
395 		return ret;
396 	}
397 
398 	ret = clk_enable(td->i2c_clk);
399 	if (ret) {
400 		dev_err(dev, "could not enable i2c clock: %d\n", ret);
401 		clk_disable(td->soc_clk);
402 		clk_disable(td->ref_clk);
403 		return ret;
404 	}
405 
406 	return 0;
407 }
408 EXPORT_SYMBOL(tegra_dfll_runtime_resume);
409 
410 /**
411  * tegra_dfll_runtime_suspend - disable all clocks needed by the DFLL
412  * @dev: DFLL device *
413  *
414  * Disable all clocks needed by the DFLL. Assumes that other code
415  * will later call clk_unprepare().
416  */
417 int tegra_dfll_runtime_suspend(struct device *dev)
418 {
419 	struct tegra_dfll *td = dev_get_drvdata(dev);
420 
421 	clk_disable(td->ref_clk);
422 	clk_disable(td->soc_clk);
423 	clk_disable(td->i2c_clk);
424 
425 	return 0;
426 }
427 EXPORT_SYMBOL(tegra_dfll_runtime_suspend);
428 
429 /*
430  * DFLL tuning operations (per-voltage-range tuning settings)
431  */
432 
433 /**
434  * dfll_tune_low - tune to DFLL and CPU settings valid for any voltage
435  * @td: DFLL instance
436  *
437  * Tune the DFLL oscillator parameters and the CPU clock shaper for
438  * the low-voltage range. These settings are valid for any voltage,
439  * but may not be optimal.
440  */
441 static void dfll_tune_low(struct tegra_dfll *td)
442 {
443 	td->tune_range = DFLL_TUNE_LOW;
444 
445 	dfll_writel(td, td->soc->tune0_low, DFLL_TUNE0);
446 	dfll_writel(td, td->soc->tune1, DFLL_TUNE1);
447 	dfll_wmb(td);
448 
449 	if (td->soc->set_clock_trimmers_low)
450 		td->soc->set_clock_trimmers_low();
451 }
452 
453 /*
454  * Output clock scaler helpers
455  */
456 
457 /**
458  * dfll_scale_dvco_rate - calculate scaled rate from the DVCO rate
459  * @scale_bits: clock scaler value (bits in the DFLL_FREQ_REQ_SCALE field)
460  * @dvco_rate: the DVCO rate
461  *
462  * Apply the same scaling formula that the DFLL hardware uses to scale
463  * the DVCO rate.
464  */
465 static unsigned long dfll_scale_dvco_rate(int scale_bits,
466 					  unsigned long dvco_rate)
467 {
468 	return (u64)dvco_rate * (scale_bits + 1) / DFLL_FREQ_REQ_SCALE_MAX;
469 }
470 
471 /*
472  * DFLL mode switching
473  */
474 
475 /**
476  * dfll_set_mode - change the DFLL control mode
477  * @td: DFLL instance
478  * @mode: DFLL control mode (see enum dfll_ctrl_mode)
479  *
480  * Change the DFLL's operating mode between disabled, open-loop mode,
481  * and closed-loop mode, or vice versa.
482  */
483 static void dfll_set_mode(struct tegra_dfll *td,
484 			  enum dfll_ctrl_mode mode)
485 {
486 	td->mode = mode;
487 	dfll_writel(td, mode - 1, DFLL_CTRL);
488 	dfll_wmb(td);
489 }
490 
491 /*
492  * DFLL-to-I2C controller interface
493  */
494 
495 /**
496  * dfll_i2c_set_output_enabled - enable/disable I2C PMIC voltage requests
497  * @td: DFLL instance
498  * @enable: whether to enable or disable the I2C voltage requests
499  *
500  * Set the master enable control for I2C control value updates. If disabled,
501  * then I2C control messages are inhibited, regardless of the DFLL mode.
502  */
503 static int dfll_i2c_set_output_enabled(struct tegra_dfll *td, bool enable)
504 {
505 	u32 val;
506 
507 	val = dfll_i2c_readl(td, DFLL_OUTPUT_CFG);
508 
509 	if (enable)
510 		val |= DFLL_OUTPUT_CFG_I2C_ENABLE;
511 	else
512 		val &= ~DFLL_OUTPUT_CFG_I2C_ENABLE;
513 
514 	dfll_i2c_writel(td, val, DFLL_OUTPUT_CFG);
515 	dfll_i2c_wmb(td);
516 
517 	return 0;
518 }
519 
520 /**
521  * dfll_load_lut - load the voltage lookup table
522  * @td: struct tegra_dfll *
523  *
524  * Load the voltage-to-PMIC register value lookup table into the DFLL
525  * IP block memory. Look-up tables can be loaded at any time.
526  */
527 static void dfll_load_i2c_lut(struct tegra_dfll *td)
528 {
529 	int i, lut_index;
530 	u32 val;
531 
532 	for (i = 0; i < MAX_DFLL_VOLTAGES; i++) {
533 		if (i < td->lut_min)
534 			lut_index = td->lut_min;
535 		else if (i > td->lut_max)
536 			lut_index = td->lut_max;
537 		else
538 			lut_index = i;
539 
540 		val = regulator_list_hardware_vsel(td->vdd_reg,
541 						     td->i2c_lut[lut_index]);
542 		__raw_writel(val, td->lut_base + i * 4);
543 	}
544 
545 	dfll_i2c_wmb(td);
546 }
547 
548 /**
549  * dfll_init_i2c_if - set up the DFLL's DFLL-I2C interface
550  * @td: DFLL instance
551  *
552  * During DFLL driver initialization, program the DFLL-I2C interface
553  * with the PMU slave address, vdd register offset, and transfer mode.
554  * This data is used by the DFLL to automatically construct I2C
555  * voltage-set commands, which are then passed to the DFLL's internal
556  * I2C controller.
557  */
558 static void dfll_init_i2c_if(struct tegra_dfll *td)
559 {
560 	u32 val;
561 
562 	if (td->i2c_slave_addr > 0x7f) {
563 		val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT;
564 		val |= DFLL_I2C_CFG_SLAVE_ADDR_10;
565 	} else {
566 		val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT;
567 	}
568 	val |= DFLL_I2C_CFG_SIZE_MASK;
569 	val |= DFLL_I2C_CFG_ARB_ENABLE;
570 	dfll_i2c_writel(td, val, DFLL_I2C_CFG);
571 
572 	dfll_i2c_writel(td, td->i2c_reg, DFLL_I2C_VDD_REG_ADDR);
573 
574 	val = DIV_ROUND_UP(td->i2c_clk_rate, td->i2c_fs_rate * 8);
575 	BUG_ON(!val || (val > DFLL_I2C_CLK_DIVISOR_MASK));
576 	val = (val - 1) << DFLL_I2C_CLK_DIVISOR_FS_SHIFT;
577 
578 	/* default hs divisor just in case */
579 	val |= 1 << DFLL_I2C_CLK_DIVISOR_HS_SHIFT;
580 	__raw_writel(val, td->i2c_controller_base + DFLL_I2C_CLK_DIVISOR);
581 	dfll_i2c_wmb(td);
582 }
583 
584 /**
585  * dfll_init_out_if - prepare DFLL-to-PMIC interface
586  * @td: DFLL instance
587  *
588  * During DFLL driver initialization or resume from context loss,
589  * disable the I2C command output to the PMIC, set safe voltage and
590  * output limits, and disable and clear limit interrupts.
591  */
592 static void dfll_init_out_if(struct tegra_dfll *td)
593 {
594 	u32 val;
595 
596 	td->lut_min = 0;
597 	td->lut_max = td->i2c_lut_size - 1;
598 	td->lut_safe = td->lut_min + 1;
599 
600 	dfll_i2c_writel(td, 0, DFLL_OUTPUT_CFG);
601 	val = (td->lut_safe << DFLL_OUTPUT_CFG_SAFE_SHIFT) |
602 		(td->lut_max << DFLL_OUTPUT_CFG_MAX_SHIFT) |
603 		(td->lut_min << DFLL_OUTPUT_CFG_MIN_SHIFT);
604 	dfll_i2c_writel(td, val, DFLL_OUTPUT_CFG);
605 	dfll_i2c_wmb(td);
606 
607 	dfll_writel(td, 0, DFLL_OUTPUT_FORCE);
608 	dfll_i2c_writel(td, 0, DFLL_INTR_EN);
609 	dfll_i2c_writel(td, DFLL_INTR_MAX_MASK | DFLL_INTR_MIN_MASK,
610 			DFLL_INTR_STS);
611 
612 	dfll_load_i2c_lut(td);
613 	dfll_init_i2c_if(td);
614 }
615 
616 /*
617  * Set/get the DFLL's targeted output clock rate
618  */
619 
620 /**
621  * find_lut_index_for_rate - determine I2C LUT index for given DFLL rate
622  * @td: DFLL instance
623  * @rate: clock rate
624  *
625  * Determines the index of a I2C LUT entry for a voltage that approximately
626  * produces the given DFLL clock rate. This is used when forcing a value
627  * to the integrator during rate changes. Returns -ENOENT if a suitable
628  * LUT index is not found.
629  */
630 static int find_lut_index_for_rate(struct tegra_dfll *td, unsigned long rate)
631 {
632 	struct dev_pm_opp *opp;
633 	int i, uv;
634 
635 	rcu_read_lock();
636 
637 	opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate);
638 	if (IS_ERR(opp)) {
639 		rcu_read_unlock();
640 		return PTR_ERR(opp);
641 	}
642 	uv = dev_pm_opp_get_voltage(opp);
643 
644 	rcu_read_unlock();
645 
646 	for (i = 0; i < td->i2c_lut_size; i++) {
647 		if (regulator_list_voltage(td->vdd_reg, td->i2c_lut[i]) == uv)
648 			return i;
649 	}
650 
651 	return -ENOENT;
652 }
653 
654 /**
655  * dfll_calculate_rate_request - calculate DFLL parameters for a given rate
656  * @td: DFLL instance
657  * @req: DFLL-rate-request structure
658  * @rate: the desired DFLL rate
659  *
660  * Populate the DFLL-rate-request record @req fields with the scale_bits
661  * and mult_bits fields, based on the target input rate. Returns 0 upon
662  * success, or -EINVAL if the requested rate in req->rate is too high
663  * or low for the DFLL to generate.
664  */
665 static int dfll_calculate_rate_request(struct tegra_dfll *td,
666 				       struct dfll_rate_req *req,
667 				       unsigned long rate)
668 {
669 	u32 val;
670 
671 	/*
672 	 * If requested rate is below the minimum DVCO rate, active the scaler.
673 	 * In the future the DVCO minimum voltage should be selected based on
674 	 * chip temperature and the actual minimum rate should be calibrated
675 	 * at runtime.
676 	 */
677 	req->scale_bits = DFLL_FREQ_REQ_SCALE_MAX - 1;
678 	if (rate < td->dvco_rate_min) {
679 		int scale;
680 
681 		scale = DIV_ROUND_CLOSEST(rate / 1000 * DFLL_FREQ_REQ_SCALE_MAX,
682 					  td->dvco_rate_min / 1000);
683 		if (!scale) {
684 			dev_err(td->dev, "%s: Rate %lu is too low\n",
685 				__func__, rate);
686 			return -EINVAL;
687 		}
688 		req->scale_bits = scale - 1;
689 		rate = td->dvco_rate_min;
690 	}
691 
692 	/* Convert requested rate into frequency request and scale settings */
693 	val = DVCO_RATE_TO_MULT(rate, td->ref_rate);
694 	if (val > FREQ_MAX) {
695 		dev_err(td->dev, "%s: Rate %lu is above dfll range\n",
696 			__func__, rate);
697 		return -EINVAL;
698 	}
699 	req->mult_bits = val;
700 	req->dvco_target_rate = MULT_TO_DVCO_RATE(req->mult_bits, td->ref_rate);
701 	req->rate = dfll_scale_dvco_rate(req->scale_bits,
702 					 req->dvco_target_rate);
703 	req->lut_index = find_lut_index_for_rate(td, req->dvco_target_rate);
704 	if (req->lut_index < 0)
705 		return req->lut_index;
706 
707 	return 0;
708 }
709 
710 /**
711  * dfll_set_frequency_request - start the frequency change operation
712  * @td: DFLL instance
713  * @req: rate request structure
714  *
715  * Tell the DFLL to try to change its output frequency to the
716  * frequency represented by @req. DFLL must be in closed-loop mode.
717  */
718 static void dfll_set_frequency_request(struct tegra_dfll *td,
719 				       struct dfll_rate_req *req)
720 {
721 	u32 val = 0;
722 	int force_val;
723 	int coef = 128; /* FIXME: td->cg_scale? */;
724 
725 	force_val = (req->lut_index - td->lut_safe) * coef / td->cg;
726 	force_val = clamp(force_val, FORCE_MIN, FORCE_MAX);
727 
728 	val |= req->mult_bits << DFLL_FREQ_REQ_MULT_SHIFT;
729 	val |= req->scale_bits << DFLL_FREQ_REQ_SCALE_SHIFT;
730 	val |= ((u32)force_val << DFLL_FREQ_REQ_FORCE_SHIFT) &
731 		DFLL_FREQ_REQ_FORCE_MASK;
732 	val |= DFLL_FREQ_REQ_FREQ_VALID | DFLL_FREQ_REQ_FORCE_ENABLE;
733 
734 	dfll_writel(td, val, DFLL_FREQ_REQ);
735 	dfll_wmb(td);
736 }
737 
738 /**
739  * tegra_dfll_request_rate - set the next rate for the DFLL to tune to
740  * @td: DFLL instance
741  * @rate: clock rate to target
742  *
743  * Convert the requested clock rate @rate into the DFLL control logic
744  * settings. In closed-loop mode, update new settings immediately to
745  * adjust DFLL output rate accordingly. Otherwise, just save them
746  * until the next switch to closed loop. Returns 0 upon success,
747  * -EPERM if the DFLL driver has not yet been initialized, or -EINVAL
748  * if @rate is outside the DFLL's tunable range.
749  */
750 static int dfll_request_rate(struct tegra_dfll *td, unsigned long rate)
751 {
752 	int ret;
753 	struct dfll_rate_req req;
754 
755 	if (td->mode == DFLL_UNINITIALIZED) {
756 		dev_err(td->dev, "%s: Cannot set DFLL rate in %s mode\n",
757 			__func__, mode_name[td->mode]);
758 		return -EPERM;
759 	}
760 
761 	ret = dfll_calculate_rate_request(td, &req, rate);
762 	if (ret)
763 		return ret;
764 
765 	td->last_unrounded_rate = rate;
766 	td->last_req = req;
767 
768 	if (td->mode == DFLL_CLOSED_LOOP)
769 		dfll_set_frequency_request(td, &td->last_req);
770 
771 	return 0;
772 }
773 
774 /*
775  * DFLL enable/disable & open-loop <-> closed-loop transitions
776  */
777 
778 /**
779  * dfll_disable - switch from open-loop mode to disabled mode
780  * @td: DFLL instance
781  *
782  * Switch from OPEN_LOOP state to DISABLED state. Returns 0 upon success
783  * or -EPERM if the DFLL is not currently in open-loop mode.
784  */
785 static int dfll_disable(struct tegra_dfll *td)
786 {
787 	if (td->mode != DFLL_OPEN_LOOP) {
788 		dev_err(td->dev, "cannot disable DFLL in %s mode\n",
789 			mode_name[td->mode]);
790 		return -EINVAL;
791 	}
792 
793 	dfll_set_mode(td, DFLL_DISABLED);
794 	pm_runtime_put_sync(td->dev);
795 
796 	return 0;
797 }
798 
799 /**
800  * dfll_enable - switch a disabled DFLL to open-loop mode
801  * @td: DFLL instance
802  *
803  * Switch from DISABLED state to OPEN_LOOP state. Returns 0 upon success
804  * or -EPERM if the DFLL is not currently disabled.
805  */
806 static int dfll_enable(struct tegra_dfll *td)
807 {
808 	if (td->mode != DFLL_DISABLED) {
809 		dev_err(td->dev, "cannot enable DFLL in %s mode\n",
810 			mode_name[td->mode]);
811 		return -EPERM;
812 	}
813 
814 	pm_runtime_get_sync(td->dev);
815 	dfll_set_mode(td, DFLL_OPEN_LOOP);
816 
817 	return 0;
818 }
819 
820 /**
821  * dfll_set_open_loop_config - prepare to switch to open-loop mode
822  * @td: DFLL instance
823  *
824  * Prepare to switch the DFLL to open-loop mode. This switches the
825  * DFLL to the low-voltage tuning range, ensures that I2C output
826  * forcing is disabled, and disables the output clock rate scaler.
827  * The DFLL's low-voltage tuning range parameters must be
828  * characterized to keep the downstream device stable at any DVCO
829  * input voltage. No return value.
830  */
831 static void dfll_set_open_loop_config(struct tegra_dfll *td)
832 {
833 	u32 val;
834 
835 	/* always tune low (safe) in open loop */
836 	if (td->tune_range != DFLL_TUNE_LOW)
837 		dfll_tune_low(td);
838 
839 	val = dfll_readl(td, DFLL_FREQ_REQ);
840 	val |= DFLL_FREQ_REQ_SCALE_MASK;
841 	val &= ~DFLL_FREQ_REQ_FORCE_ENABLE;
842 	dfll_writel(td, val, DFLL_FREQ_REQ);
843 	dfll_wmb(td);
844 }
845 
846 /**
847  * tegra_dfll_lock - switch from open-loop to closed-loop mode
848  * @td: DFLL instance
849  *
850  * Switch from OPEN_LOOP state to CLOSED_LOOP state. Returns 0 upon success,
851  * -EINVAL if the DFLL's target rate hasn't been set yet, or -EPERM if the
852  * DFLL is not currently in open-loop mode.
853  */
854 static int dfll_lock(struct tegra_dfll *td)
855 {
856 	struct dfll_rate_req *req = &td->last_req;
857 
858 	switch (td->mode) {
859 	case DFLL_CLOSED_LOOP:
860 		return 0;
861 
862 	case DFLL_OPEN_LOOP:
863 		if (req->rate == 0) {
864 			dev_err(td->dev, "%s: Cannot lock DFLL at rate 0\n",
865 				__func__);
866 			return -EINVAL;
867 		}
868 
869 		dfll_i2c_set_output_enabled(td, true);
870 		dfll_set_mode(td, DFLL_CLOSED_LOOP);
871 		dfll_set_frequency_request(td, req);
872 		return 0;
873 
874 	default:
875 		BUG_ON(td->mode > DFLL_CLOSED_LOOP);
876 		dev_err(td->dev, "%s: Cannot lock DFLL in %s mode\n",
877 			__func__, mode_name[td->mode]);
878 		return -EPERM;
879 	}
880 }
881 
882 /**
883  * tegra_dfll_unlock - switch from closed-loop to open-loop mode
884  * @td: DFLL instance
885  *
886  * Switch from CLOSED_LOOP state to OPEN_LOOP state. Returns 0 upon success,
887  * or -EPERM if the DFLL is not currently in open-loop mode.
888  */
889 static int dfll_unlock(struct tegra_dfll *td)
890 {
891 	switch (td->mode) {
892 	case DFLL_CLOSED_LOOP:
893 		dfll_set_open_loop_config(td);
894 		dfll_set_mode(td, DFLL_OPEN_LOOP);
895 		dfll_i2c_set_output_enabled(td, false);
896 		return 0;
897 
898 	case DFLL_OPEN_LOOP:
899 		return 0;
900 
901 	default:
902 		BUG_ON(td->mode > DFLL_CLOSED_LOOP);
903 		dev_err(td->dev, "%s: Cannot unlock DFLL in %s mode\n",
904 			__func__, mode_name[td->mode]);
905 		return -EPERM;
906 	}
907 }
908 
909 /*
910  * Clock framework integration
911  *
912  * When the DFLL is being controlled by the CCF, always enter closed loop
913  * mode when the clk is enabled. This requires that a DFLL rate request
914  * has been set beforehand, which implies that a clk_set_rate() call is
915  * always required before a clk_enable().
916  */
917 
918 static int dfll_clk_is_enabled(struct clk_hw *hw)
919 {
920 	struct tegra_dfll *td = clk_hw_to_dfll(hw);
921 
922 	return dfll_is_running(td);
923 }
924 
925 static int dfll_clk_enable(struct clk_hw *hw)
926 {
927 	struct tegra_dfll *td = clk_hw_to_dfll(hw);
928 	int ret;
929 
930 	ret = dfll_enable(td);
931 	if (ret)
932 		return ret;
933 
934 	ret = dfll_lock(td);
935 	if (ret)
936 		dfll_disable(td);
937 
938 	return ret;
939 }
940 
941 static void dfll_clk_disable(struct clk_hw *hw)
942 {
943 	struct tegra_dfll *td = clk_hw_to_dfll(hw);
944 	int ret;
945 
946 	ret = dfll_unlock(td);
947 	if (!ret)
948 		dfll_disable(td);
949 }
950 
951 static unsigned long dfll_clk_recalc_rate(struct clk_hw *hw,
952 					  unsigned long parent_rate)
953 {
954 	struct tegra_dfll *td = clk_hw_to_dfll(hw);
955 
956 	return td->last_unrounded_rate;
957 }
958 
959 /* Must use determine_rate since it allows for rates exceeding 2^31-1 */
960 static int dfll_clk_determine_rate(struct clk_hw *hw,
961 				   struct clk_rate_request *clk_req)
962 {
963 	struct tegra_dfll *td = clk_hw_to_dfll(hw);
964 	struct dfll_rate_req req;
965 	int ret;
966 
967 	ret = dfll_calculate_rate_request(td, &req, clk_req->rate);
968 	if (ret)
969 		return ret;
970 
971 	/*
972 	 * Don't set the rounded rate, since it doesn't really matter as
973 	 * the output rate will be voltage controlled anyway, and cpufreq
974 	 * freaks out if any rounding happens.
975 	 */
976 
977 	return 0;
978 }
979 
980 static int dfll_clk_set_rate(struct clk_hw *hw, unsigned long rate,
981 			     unsigned long parent_rate)
982 {
983 	struct tegra_dfll *td = clk_hw_to_dfll(hw);
984 
985 	return dfll_request_rate(td, rate);
986 }
987 
988 static const struct clk_ops dfll_clk_ops = {
989 	.is_enabled	= dfll_clk_is_enabled,
990 	.enable		= dfll_clk_enable,
991 	.disable	= dfll_clk_disable,
992 	.recalc_rate	= dfll_clk_recalc_rate,
993 	.determine_rate	= dfll_clk_determine_rate,
994 	.set_rate	= dfll_clk_set_rate,
995 };
996 
997 static struct clk_init_data dfll_clk_init_data = {
998 	.ops		= &dfll_clk_ops,
999 	.num_parents	= 0,
1000 };
1001 
1002 /**
1003  * dfll_register_clk - register the DFLL output clock with the clock framework
1004  * @td: DFLL instance
1005  *
1006  * Register the DFLL's output clock with the Linux clock framework and register
1007  * the DFLL driver as an OF clock provider. Returns 0 upon success or -EINVAL
1008  * or -ENOMEM upon failure.
1009  */
1010 static int dfll_register_clk(struct tegra_dfll *td)
1011 {
1012 	int ret;
1013 
1014 	dfll_clk_init_data.name = td->output_clock_name;
1015 	td->dfll_clk_hw.init = &dfll_clk_init_data;
1016 
1017 	td->dfll_clk = clk_register(td->dev, &td->dfll_clk_hw);
1018 	if (IS_ERR(td->dfll_clk)) {
1019 		dev_err(td->dev, "DFLL clock registration error\n");
1020 		return -EINVAL;
1021 	}
1022 
1023 	ret = of_clk_add_provider(td->dev->of_node, of_clk_src_simple_get,
1024 				  td->dfll_clk);
1025 	if (ret) {
1026 		dev_err(td->dev, "of_clk_add_provider() failed\n");
1027 
1028 		clk_unregister(td->dfll_clk);
1029 		return ret;
1030 	}
1031 
1032 	return 0;
1033 }
1034 
1035 /**
1036  * dfll_unregister_clk - unregister the DFLL output clock
1037  * @td: DFLL instance
1038  *
1039  * Unregister the DFLL's output clock from the Linux clock framework
1040  * and from clkdev. No return value.
1041  */
1042 static void dfll_unregister_clk(struct tegra_dfll *td)
1043 {
1044 	of_clk_del_provider(td->dev->of_node);
1045 	clk_unregister(td->dfll_clk);
1046 	td->dfll_clk = NULL;
1047 }
1048 
1049 /*
1050  * Debugfs interface
1051  */
1052 
1053 #ifdef CONFIG_DEBUG_FS
1054 /*
1055  * Monitor control
1056  */
1057 
1058 /**
1059  * dfll_calc_monitored_rate - convert DFLL_MONITOR_DATA_VAL rate into real freq
1060  * @monitor_data: value read from the DFLL_MONITOR_DATA_VAL bitfield
1061  * @ref_rate: DFLL reference clock rate
1062  *
1063  * Convert @monitor_data from DFLL_MONITOR_DATA_VAL units into cycles
1064  * per second. Returns the converted value.
1065  */
1066 static u64 dfll_calc_monitored_rate(u32 monitor_data,
1067 				    unsigned long ref_rate)
1068 {
1069 	return monitor_data * (ref_rate / REF_CLK_CYC_PER_DVCO_SAMPLE);
1070 }
1071 
1072 /**
1073  * dfll_read_monitor_rate - return the DFLL's output rate from internal monitor
1074  * @td: DFLL instance
1075  *
1076  * If the DFLL is enabled, return the last rate reported by the DFLL's
1077  * internal monitoring hardware. This works in both open-loop and
1078  * closed-loop mode, and takes the output scaler setting into account.
1079  * Assumes that the monitor was programmed to monitor frequency before
1080  * the sample period started. If the driver believes that the DFLL is
1081  * currently uninitialized or disabled, it will return 0, since
1082  * otherwise the DFLL monitor data register will return the last
1083  * measured rate from when the DFLL was active.
1084  */
1085 static u64 dfll_read_monitor_rate(struct tegra_dfll *td)
1086 {
1087 	u32 v, s;
1088 	u64 pre_scaler_rate, post_scaler_rate;
1089 
1090 	if (!dfll_is_running(td))
1091 		return 0;
1092 
1093 	v = dfll_readl(td, DFLL_MONITOR_DATA);
1094 	v = (v & DFLL_MONITOR_DATA_VAL_MASK) >> DFLL_MONITOR_DATA_VAL_SHIFT;
1095 	pre_scaler_rate = dfll_calc_monitored_rate(v, td->ref_rate);
1096 
1097 	s = dfll_readl(td, DFLL_FREQ_REQ);
1098 	s = (s & DFLL_FREQ_REQ_SCALE_MASK) >> DFLL_FREQ_REQ_SCALE_SHIFT;
1099 	post_scaler_rate = dfll_scale_dvco_rate(s, pre_scaler_rate);
1100 
1101 	return post_scaler_rate;
1102 }
1103 
1104 static int attr_enable_get(void *data, u64 *val)
1105 {
1106 	struct tegra_dfll *td = data;
1107 
1108 	*val = dfll_is_running(td);
1109 
1110 	return 0;
1111 }
1112 static int attr_enable_set(void *data, u64 val)
1113 {
1114 	struct tegra_dfll *td = data;
1115 
1116 	return val ? dfll_enable(td) : dfll_disable(td);
1117 }
1118 DEFINE_SIMPLE_ATTRIBUTE(enable_fops, attr_enable_get, attr_enable_set,
1119 			"%llu\n");
1120 
1121 static int attr_lock_get(void *data, u64 *val)
1122 {
1123 	struct tegra_dfll *td = data;
1124 
1125 	*val = (td->mode == DFLL_CLOSED_LOOP);
1126 
1127 	return 0;
1128 }
1129 static int attr_lock_set(void *data, u64 val)
1130 {
1131 	struct tegra_dfll *td = data;
1132 
1133 	return val ? dfll_lock(td) :  dfll_unlock(td);
1134 }
1135 DEFINE_SIMPLE_ATTRIBUTE(lock_fops, attr_lock_get, attr_lock_set,
1136 			"%llu\n");
1137 
1138 static int attr_rate_get(void *data, u64 *val)
1139 {
1140 	struct tegra_dfll *td = data;
1141 
1142 	*val = dfll_read_monitor_rate(td);
1143 
1144 	return 0;
1145 }
1146 
1147 static int attr_rate_set(void *data, u64 val)
1148 {
1149 	struct tegra_dfll *td = data;
1150 
1151 	return dfll_request_rate(td, val);
1152 }
1153 DEFINE_SIMPLE_ATTRIBUTE(rate_fops, attr_rate_get, attr_rate_set, "%llu\n");
1154 
1155 static int attr_registers_show(struct seq_file *s, void *data)
1156 {
1157 	u32 val, offs;
1158 	struct tegra_dfll *td = s->private;
1159 
1160 	seq_puts(s, "CONTROL REGISTERS:\n");
1161 	for (offs = 0; offs <= DFLL_MONITOR_DATA; offs += 4) {
1162 		if (offs == DFLL_OUTPUT_CFG)
1163 			val = dfll_i2c_readl(td, offs);
1164 		else
1165 			val = dfll_readl(td, offs);
1166 		seq_printf(s, "[0x%02x] = 0x%08x\n", offs, val);
1167 	}
1168 
1169 	seq_puts(s, "\nI2C and INTR REGISTERS:\n");
1170 	for (offs = DFLL_I2C_CFG; offs <= DFLL_I2C_STS; offs += 4)
1171 		seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1172 			   dfll_i2c_readl(td, offs));
1173 	for (offs = DFLL_INTR_STS; offs <= DFLL_INTR_EN; offs += 4)
1174 		seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1175 			   dfll_i2c_readl(td, offs));
1176 
1177 	seq_puts(s, "\nINTEGRATED I2C CONTROLLER REGISTERS:\n");
1178 	offs = DFLL_I2C_CLK_DIVISOR;
1179 	seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1180 		   __raw_readl(td->i2c_controller_base + offs));
1181 
1182 	seq_puts(s, "\nLUT:\n");
1183 	for (offs = 0; offs <  4 * MAX_DFLL_VOLTAGES; offs += 4)
1184 		seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1185 			   __raw_readl(td->lut_base + offs));
1186 
1187 	return 0;
1188 }
1189 
1190 static int attr_registers_open(struct inode *inode, struct file *file)
1191 {
1192 	return single_open(file, attr_registers_show, inode->i_private);
1193 }
1194 
1195 static const struct file_operations attr_registers_fops = {
1196 	.open		= attr_registers_open,
1197 	.read		= seq_read,
1198 	.llseek		= seq_lseek,
1199 	.release	= single_release,
1200 };
1201 
1202 static int dfll_debug_init(struct tegra_dfll *td)
1203 {
1204 	int ret;
1205 
1206 	if (!td || (td->mode == DFLL_UNINITIALIZED))
1207 		return 0;
1208 
1209 	td->debugfs_dir = debugfs_create_dir("tegra_dfll_fcpu", NULL);
1210 	if (!td->debugfs_dir)
1211 		return -ENOMEM;
1212 
1213 	ret = -ENOMEM;
1214 
1215 	if (!debugfs_create_file("enable", S_IRUGO | S_IWUSR,
1216 				 td->debugfs_dir, td, &enable_fops))
1217 		goto err_out;
1218 
1219 	if (!debugfs_create_file("lock", S_IRUGO,
1220 				 td->debugfs_dir, td, &lock_fops))
1221 		goto err_out;
1222 
1223 	if (!debugfs_create_file("rate", S_IRUGO,
1224 				 td->debugfs_dir, td, &rate_fops))
1225 		goto err_out;
1226 
1227 	if (!debugfs_create_file("registers", S_IRUGO,
1228 				 td->debugfs_dir, td, &attr_registers_fops))
1229 		goto err_out;
1230 
1231 	return 0;
1232 
1233 err_out:
1234 	debugfs_remove_recursive(td->debugfs_dir);
1235 	return ret;
1236 }
1237 
1238 #endif /* CONFIG_DEBUG_FS */
1239 
1240 /*
1241  * DFLL initialization
1242  */
1243 
1244 /**
1245  * dfll_set_default_params - program non-output related DFLL parameters
1246  * @td: DFLL instance
1247  *
1248  * During DFLL driver initialization or resume from context loss,
1249  * program parameters for the closed loop integrator, DVCO tuning,
1250  * voltage droop control and monitor control.
1251  */
1252 static void dfll_set_default_params(struct tegra_dfll *td)
1253 {
1254 	u32 val;
1255 
1256 	val = DIV_ROUND_UP(td->ref_rate, td->sample_rate * 32);
1257 	BUG_ON(val > DFLL_CONFIG_DIV_MASK);
1258 	dfll_writel(td, val, DFLL_CONFIG);
1259 
1260 	val = (td->force_mode << DFLL_PARAMS_FORCE_MODE_SHIFT) |
1261 		(td->cf << DFLL_PARAMS_CF_PARAM_SHIFT) |
1262 		(td->ci << DFLL_PARAMS_CI_PARAM_SHIFT) |
1263 		(td->cg << DFLL_PARAMS_CG_PARAM_SHIFT) |
1264 		(td->cg_scale ? DFLL_PARAMS_CG_SCALE : 0);
1265 	dfll_writel(td, val, DFLL_PARAMS);
1266 
1267 	dfll_tune_low(td);
1268 	dfll_writel(td, td->droop_ctrl, DFLL_DROOP_CTRL);
1269 	dfll_writel(td, DFLL_MONITOR_CTRL_FREQ, DFLL_MONITOR_CTRL);
1270 }
1271 
1272 /**
1273  * dfll_init_clks - clk_get() the DFLL source clocks
1274  * @td: DFLL instance
1275  *
1276  * Call clk_get() on the DFLL source clocks and save the pointers for later
1277  * use. Returns 0 upon success or error (see devm_clk_get) if one or more
1278  * of the clocks couldn't be looked up.
1279  */
1280 static int dfll_init_clks(struct tegra_dfll *td)
1281 {
1282 	td->ref_clk = devm_clk_get(td->dev, "ref");
1283 	if (IS_ERR(td->ref_clk)) {
1284 		dev_err(td->dev, "missing ref clock\n");
1285 		return PTR_ERR(td->ref_clk);
1286 	}
1287 
1288 	td->soc_clk = devm_clk_get(td->dev, "soc");
1289 	if (IS_ERR(td->soc_clk)) {
1290 		dev_err(td->dev, "missing soc clock\n");
1291 		return PTR_ERR(td->soc_clk);
1292 	}
1293 
1294 	td->i2c_clk = devm_clk_get(td->dev, "i2c");
1295 	if (IS_ERR(td->i2c_clk)) {
1296 		dev_err(td->dev, "missing i2c clock\n");
1297 		return PTR_ERR(td->i2c_clk);
1298 	}
1299 	td->i2c_clk_rate = clk_get_rate(td->i2c_clk);
1300 
1301 	return 0;
1302 }
1303 
1304 /**
1305  * dfll_init - Prepare the DFLL IP block for use
1306  * @td: DFLL instance
1307  *
1308  * Do everything necessary to prepare the DFLL IP block for use. The
1309  * DFLL will be left in DISABLED state. Called by dfll_probe().
1310  * Returns 0 upon success, or passes along the error from whatever
1311  * function returned it.
1312  */
1313 static int dfll_init(struct tegra_dfll *td)
1314 {
1315 	int ret;
1316 
1317 	td->ref_rate = clk_get_rate(td->ref_clk);
1318 	if (td->ref_rate != REF_CLOCK_RATE) {
1319 		dev_err(td->dev, "unexpected ref clk rate %lu, expecting %lu",
1320 			td->ref_rate, REF_CLOCK_RATE);
1321 		return -EINVAL;
1322 	}
1323 
1324 	reset_control_deassert(td->dvco_rst);
1325 
1326 	ret = clk_prepare(td->ref_clk);
1327 	if (ret) {
1328 		dev_err(td->dev, "failed to prepare ref_clk\n");
1329 		return ret;
1330 	}
1331 
1332 	ret = clk_prepare(td->soc_clk);
1333 	if (ret) {
1334 		dev_err(td->dev, "failed to prepare soc_clk\n");
1335 		goto di_err1;
1336 	}
1337 
1338 	ret = clk_prepare(td->i2c_clk);
1339 	if (ret) {
1340 		dev_err(td->dev, "failed to prepare i2c_clk\n");
1341 		goto di_err2;
1342 	}
1343 
1344 	td->last_unrounded_rate = 0;
1345 
1346 	pm_runtime_enable(td->dev);
1347 	pm_runtime_get_sync(td->dev);
1348 
1349 	dfll_set_mode(td, DFLL_DISABLED);
1350 	dfll_set_default_params(td);
1351 
1352 	if (td->soc->init_clock_trimmers)
1353 		td->soc->init_clock_trimmers();
1354 
1355 	dfll_set_open_loop_config(td);
1356 
1357 	dfll_init_out_if(td);
1358 
1359 	pm_runtime_put_sync(td->dev);
1360 
1361 	return 0;
1362 
1363 di_err2:
1364 	clk_unprepare(td->soc_clk);
1365 di_err1:
1366 	clk_unprepare(td->ref_clk);
1367 
1368 	reset_control_assert(td->dvco_rst);
1369 
1370 	return ret;
1371 }
1372 
1373 /*
1374  * DT data fetch
1375  */
1376 
1377 /*
1378  * Find a PMIC voltage register-to-voltage mapping for the given voltage.
1379  * An exact voltage match is required.
1380  */
1381 static int find_vdd_map_entry_exact(struct tegra_dfll *td, int uV)
1382 {
1383 	int i, n_voltages, reg_uV;
1384 
1385 	n_voltages = regulator_count_voltages(td->vdd_reg);
1386 	for (i = 0; i < n_voltages; i++) {
1387 		reg_uV = regulator_list_voltage(td->vdd_reg, i);
1388 		if (reg_uV < 0)
1389 			break;
1390 
1391 		if (uV == reg_uV)
1392 			return i;
1393 	}
1394 
1395 	dev_err(td->dev, "no voltage map entry for %d uV\n", uV);
1396 	return -EINVAL;
1397 }
1398 
1399 /*
1400  * Find a PMIC voltage register-to-voltage mapping for the given voltage,
1401  * rounding up to the closest supported voltage.
1402  * */
1403 static int find_vdd_map_entry_min(struct tegra_dfll *td, int uV)
1404 {
1405 	int i, n_voltages, reg_uV;
1406 
1407 	n_voltages = regulator_count_voltages(td->vdd_reg);
1408 	for (i = 0; i < n_voltages; i++) {
1409 		reg_uV = regulator_list_voltage(td->vdd_reg, i);
1410 		if (reg_uV < 0)
1411 			break;
1412 
1413 		if (uV <= reg_uV)
1414 			return i;
1415 	}
1416 
1417 	dev_err(td->dev, "no voltage map entry rounding to %d uV\n", uV);
1418 	return -EINVAL;
1419 }
1420 
1421 /**
1422  * dfll_build_i2c_lut - build the I2C voltage register lookup table
1423  * @td: DFLL instance
1424  *
1425  * The DFLL hardware has 33 bytes of look-up table RAM that must be filled with
1426  * PMIC voltage register values that span the entire DFLL operating range.
1427  * This function builds the look-up table based on the OPP table provided by
1428  * the soc-specific platform driver (td->soc->opp_dev) and the PMIC
1429  * register-to-voltage mapping queried from the regulator framework.
1430  *
1431  * On success, fills in td->i2c_lut and returns 0, or -err on failure.
1432  */
1433 static int dfll_build_i2c_lut(struct tegra_dfll *td)
1434 {
1435 	int ret = -EINVAL;
1436 	int j, v, v_max, v_opp;
1437 	int selector;
1438 	unsigned long rate;
1439 	struct dev_pm_opp *opp;
1440 	int lut;
1441 
1442 	rcu_read_lock();
1443 
1444 	rate = ULONG_MAX;
1445 	opp = dev_pm_opp_find_freq_floor(td->soc->dev, &rate);
1446 	if (IS_ERR(opp)) {
1447 		dev_err(td->dev, "couldn't get vmax opp, empty opp table?\n");
1448 		goto out;
1449 	}
1450 	v_max = dev_pm_opp_get_voltage(opp);
1451 
1452 	v = td->soc->min_millivolts * 1000;
1453 	lut = find_vdd_map_entry_exact(td, v);
1454 	if (lut < 0)
1455 		goto out;
1456 	td->i2c_lut[0] = lut;
1457 
1458 	for (j = 1, rate = 0; ; rate++) {
1459 		opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate);
1460 		if (IS_ERR(opp))
1461 			break;
1462 		v_opp = dev_pm_opp_get_voltage(opp);
1463 
1464 		if (v_opp <= td->soc->min_millivolts * 1000)
1465 			td->dvco_rate_min = dev_pm_opp_get_freq(opp);
1466 
1467 		for (;;) {
1468 			v += max(1, (v_max - v) / (MAX_DFLL_VOLTAGES - j));
1469 			if (v >= v_opp)
1470 				break;
1471 
1472 			selector = find_vdd_map_entry_min(td, v);
1473 			if (selector < 0)
1474 				goto out;
1475 			if (selector != td->i2c_lut[j - 1])
1476 				td->i2c_lut[j++] = selector;
1477 		}
1478 
1479 		v = (j == MAX_DFLL_VOLTAGES - 1) ? v_max : v_opp;
1480 		selector = find_vdd_map_entry_exact(td, v);
1481 		if (selector < 0)
1482 			goto out;
1483 		if (selector != td->i2c_lut[j - 1])
1484 			td->i2c_lut[j++] = selector;
1485 
1486 		if (v >= v_max)
1487 			break;
1488 	}
1489 	td->i2c_lut_size = j;
1490 
1491 	if (!td->dvco_rate_min)
1492 		dev_err(td->dev, "no opp above DFLL minimum voltage %d mV\n",
1493 			td->soc->min_millivolts);
1494 	else
1495 		ret = 0;
1496 
1497 out:
1498 	rcu_read_unlock();
1499 
1500 	return ret;
1501 }
1502 
1503 /**
1504  * read_dt_param - helper function for reading required parameters from the DT
1505  * @td: DFLL instance
1506  * @param: DT property name
1507  * @dest: output pointer for the value read
1508  *
1509  * Read a required numeric parameter from the DFLL device node, or complain
1510  * if the property doesn't exist. Returns a boolean indicating success for
1511  * easy chaining of multiple calls to this function.
1512  */
1513 static bool read_dt_param(struct tegra_dfll *td, const char *param, u32 *dest)
1514 {
1515 	int err = of_property_read_u32(td->dev->of_node, param, dest);
1516 
1517 	if (err < 0) {
1518 		dev_err(td->dev, "failed to read DT parameter %s: %d\n",
1519 			param, err);
1520 		return false;
1521 	}
1522 
1523 	return true;
1524 }
1525 
1526 /**
1527  * dfll_fetch_i2c_params - query PMIC I2C params from DT & regulator subsystem
1528  * @td: DFLL instance
1529  *
1530  * Read all the parameters required for operation in I2C mode. The parameters
1531  * can originate from the device tree or the regulator subsystem.
1532  * Returns 0 on success or -err on failure.
1533  */
1534 static int dfll_fetch_i2c_params(struct tegra_dfll *td)
1535 {
1536 	struct regmap *regmap;
1537 	struct device *i2c_dev;
1538 	struct i2c_client *i2c_client;
1539 	int vsel_reg, vsel_mask;
1540 	int ret;
1541 
1542 	if (!read_dt_param(td, "nvidia,i2c-fs-rate", &td->i2c_fs_rate))
1543 		return -EINVAL;
1544 
1545 	regmap = regulator_get_regmap(td->vdd_reg);
1546 	i2c_dev = regmap_get_device(regmap);
1547 	i2c_client = to_i2c_client(i2c_dev);
1548 
1549 	td->i2c_slave_addr = i2c_client->addr;
1550 
1551 	ret = regulator_get_hardware_vsel_register(td->vdd_reg,
1552 						   &vsel_reg,
1553 						   &vsel_mask);
1554 	if (ret < 0) {
1555 		dev_err(td->dev,
1556 			"regulator unsuitable for DFLL I2C operation\n");
1557 		return -EINVAL;
1558 	}
1559 	td->i2c_reg = vsel_reg;
1560 
1561 	ret = dfll_build_i2c_lut(td);
1562 	if (ret) {
1563 		dev_err(td->dev, "couldn't build I2C LUT\n");
1564 		return ret;
1565 	}
1566 
1567 	return 0;
1568 }
1569 
1570 /**
1571  * dfll_fetch_common_params - read DFLL parameters from the device tree
1572  * @td: DFLL instance
1573  *
1574  * Read all the DT parameters that are common to both I2C and PWM operation.
1575  * Returns 0 on success or -EINVAL on any failure.
1576  */
1577 static int dfll_fetch_common_params(struct tegra_dfll *td)
1578 {
1579 	bool ok = true;
1580 
1581 	ok &= read_dt_param(td, "nvidia,droop-ctrl", &td->droop_ctrl);
1582 	ok &= read_dt_param(td, "nvidia,sample-rate", &td->sample_rate);
1583 	ok &= read_dt_param(td, "nvidia,force-mode", &td->force_mode);
1584 	ok &= read_dt_param(td, "nvidia,cf", &td->cf);
1585 	ok &= read_dt_param(td, "nvidia,ci", &td->ci);
1586 	ok &= read_dt_param(td, "nvidia,cg", &td->cg);
1587 	td->cg_scale = of_property_read_bool(td->dev->of_node,
1588 					     "nvidia,cg-scale");
1589 
1590 	if (of_property_read_string(td->dev->of_node, "clock-output-names",
1591 				    &td->output_clock_name)) {
1592 		dev_err(td->dev, "missing clock-output-names property\n");
1593 		ok = false;
1594 	}
1595 
1596 	return ok ? 0 : -EINVAL;
1597 }
1598 
1599 /*
1600  * API exported to per-SoC platform drivers
1601  */
1602 
1603 /**
1604  * tegra_dfll_register - probe a Tegra DFLL device
1605  * @pdev: DFLL platform_device *
1606  * @soc: Per-SoC integration and characterization data for this DFLL instance
1607  *
1608  * Probe and initialize a DFLL device instance. Intended to be called
1609  * by a SoC-specific shim driver that passes in per-SoC integration
1610  * and configuration data via @soc. Returns 0 on success or -err on failure.
1611  */
1612 int tegra_dfll_register(struct platform_device *pdev,
1613 			struct tegra_dfll_soc_data *soc)
1614 {
1615 	struct resource *mem;
1616 	struct tegra_dfll *td;
1617 	int ret;
1618 
1619 	if (!soc) {
1620 		dev_err(&pdev->dev, "no tegra_dfll_soc_data provided\n");
1621 		return -EINVAL;
1622 	}
1623 
1624 	td = devm_kzalloc(&pdev->dev, sizeof(*td), GFP_KERNEL);
1625 	if (!td)
1626 		return -ENOMEM;
1627 	td->dev = &pdev->dev;
1628 	platform_set_drvdata(pdev, td);
1629 
1630 	td->soc = soc;
1631 
1632 	td->vdd_reg = devm_regulator_get(td->dev, "vdd-cpu");
1633 	if (IS_ERR(td->vdd_reg)) {
1634 		dev_err(td->dev, "couldn't get vdd_cpu regulator\n");
1635 		return PTR_ERR(td->vdd_reg);
1636 	}
1637 
1638 	td->dvco_rst = devm_reset_control_get(td->dev, "dvco");
1639 	if (IS_ERR(td->dvco_rst)) {
1640 		dev_err(td->dev, "couldn't get dvco reset\n");
1641 		return PTR_ERR(td->dvco_rst);
1642 	}
1643 
1644 	ret = dfll_fetch_common_params(td);
1645 	if (ret) {
1646 		dev_err(td->dev, "couldn't parse device tree parameters\n");
1647 		return ret;
1648 	}
1649 
1650 	ret = dfll_fetch_i2c_params(td);
1651 	if (ret)
1652 		return ret;
1653 
1654 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1655 	if (!mem) {
1656 		dev_err(td->dev, "no control register resource\n");
1657 		return -ENODEV;
1658 	}
1659 
1660 	td->base = devm_ioremap(td->dev, mem->start, resource_size(mem));
1661 	if (!td->base) {
1662 		dev_err(td->dev, "couldn't ioremap DFLL control registers\n");
1663 		return -ENODEV;
1664 	}
1665 
1666 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1667 	if (!mem) {
1668 		dev_err(td->dev, "no i2c_base resource\n");
1669 		return -ENODEV;
1670 	}
1671 
1672 	td->i2c_base = devm_ioremap(td->dev, mem->start, resource_size(mem));
1673 	if (!td->i2c_base) {
1674 		dev_err(td->dev, "couldn't ioremap i2c_base resource\n");
1675 		return -ENODEV;
1676 	}
1677 
1678 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1679 	if (!mem) {
1680 		dev_err(td->dev, "no i2c_controller_base resource\n");
1681 		return -ENODEV;
1682 	}
1683 
1684 	td->i2c_controller_base = devm_ioremap(td->dev, mem->start,
1685 					       resource_size(mem));
1686 	if (!td->i2c_controller_base) {
1687 		dev_err(td->dev,
1688 			"couldn't ioremap i2c_controller_base resource\n");
1689 		return -ENODEV;
1690 	}
1691 
1692 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1693 	if (!mem) {
1694 		dev_err(td->dev, "no lut_base resource\n");
1695 		return -ENODEV;
1696 	}
1697 
1698 	td->lut_base = devm_ioremap(td->dev, mem->start, resource_size(mem));
1699 	if (!td->lut_base) {
1700 		dev_err(td->dev,
1701 			"couldn't ioremap lut_base resource\n");
1702 		return -ENODEV;
1703 	}
1704 
1705 	ret = dfll_init_clks(td);
1706 	if (ret) {
1707 		dev_err(&pdev->dev, "DFLL clock init error\n");
1708 		return ret;
1709 	}
1710 
1711 	/* Enable the clocks and set the device up */
1712 	ret = dfll_init(td);
1713 	if (ret)
1714 		return ret;
1715 
1716 	ret = dfll_register_clk(td);
1717 	if (ret) {
1718 		dev_err(&pdev->dev, "DFLL clk registration failed\n");
1719 		return ret;
1720 	}
1721 
1722 #ifdef CONFIG_DEBUG_FS
1723 	dfll_debug_init(td);
1724 #endif
1725 
1726 	return 0;
1727 }
1728 EXPORT_SYMBOL(tegra_dfll_register);
1729 
1730 /**
1731  * tegra_dfll_unregister - release all of the DFLL driver resources for a device
1732  * @pdev: DFLL platform_device *
1733  *
1734  * Unbind this driver from the DFLL hardware device represented by
1735  * @pdev. The DFLL must be disabled for this to succeed. Returns 0
1736  * upon success or -EBUSY if the DFLL is still active.
1737  */
1738 int tegra_dfll_unregister(struct platform_device *pdev)
1739 {
1740 	struct tegra_dfll *td = platform_get_drvdata(pdev);
1741 
1742 	/* Try to prevent removal while the DFLL is active */
1743 	if (td->mode != DFLL_DISABLED) {
1744 		dev_err(&pdev->dev,
1745 			"must disable DFLL before removing driver\n");
1746 		return -EBUSY;
1747 	}
1748 
1749 	debugfs_remove_recursive(td->debugfs_dir);
1750 
1751 	dfll_unregister_clk(td);
1752 	pm_runtime_disable(&pdev->dev);
1753 
1754 	clk_unprepare(td->ref_clk);
1755 	clk_unprepare(td->soc_clk);
1756 	clk_unprepare(td->i2c_clk);
1757 
1758 	reset_control_assert(td->dvco_rst);
1759 
1760 	return 0;
1761 }
1762 EXPORT_SYMBOL(tegra_dfll_unregister);
1763