xref: /openbmc/linux/drivers/clk/tegra/clk-dfll.c (revision ccb01374)
1 /*
2  * clk-dfll.c - Tegra DFLL clock source common code
3  *
4  * Copyright (C) 2012-2014 NVIDIA Corporation. All rights reserved.
5  *
6  * Aleksandr Frid <afrid@nvidia.com>
7  * Paul Walmsley <pwalmsley@nvidia.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but WITHOUT
14  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16  * more details.
17  *
18  * This library is for the DVCO and DFLL IP blocks on the Tegra124
19  * SoC. These IP blocks together are also known at NVIDIA as
20  * "CL-DVFS". To try to avoid confusion, this code refers to them
21  * collectively as the "DFLL."
22  *
23  * The DFLL is a root clocksource which tolerates some amount of
24  * supply voltage noise. Tegra124 uses it to clock the fast CPU
25  * complex when the target CPU speed is above a particular rate. The
26  * DFLL can be operated in either open-loop mode or closed-loop mode.
27  * In open-loop mode, the DFLL generates an output clock appropriate
28  * to the supply voltage. In closed-loop mode, when configured with a
29  * target frequency, the DFLL minimizes supply voltage while
30  * delivering an average frequency equal to the target.
31  *
32  * Devices clocked by the DFLL must be able to tolerate frequency
33  * variation. In the case of the CPU, it's important to note that the
34  * CPU cycle time will vary. This has implications for
35  * performance-measurement code and any code that relies on the CPU
36  * cycle time to delay for a certain length of time.
37  *
38  */
39 
40 #include <linux/clk.h>
41 #include <linux/clk-provider.h>
42 #include <linux/debugfs.h>
43 #include <linux/device.h>
44 #include <linux/err.h>
45 #include <linux/i2c.h>
46 #include <linux/io.h>
47 #include <linux/kernel.h>
48 #include <linux/module.h>
49 #include <linux/of.h>
50 #include <linux/pm_opp.h>
51 #include <linux/pm_runtime.h>
52 #include <linux/regmap.h>
53 #include <linux/regulator/consumer.h>
54 #include <linux/reset.h>
55 #include <linux/seq_file.h>
56 
57 #include "clk-dfll.h"
58 #include "cvb.h"
59 
60 /*
61  * DFLL control registers - access via dfll_{readl,writel}
62  */
63 
64 /* DFLL_CTRL: DFLL control register */
65 #define DFLL_CTRL			0x00
66 #define DFLL_CTRL_MODE_MASK		0x03
67 
68 /* DFLL_CONFIG: DFLL sample rate control */
69 #define DFLL_CONFIG			0x04
70 #define DFLL_CONFIG_DIV_MASK		0xff
71 #define DFLL_CONFIG_DIV_PRESCALE	32
72 
73 /* DFLL_PARAMS: tuning coefficients for closed loop integrator */
74 #define DFLL_PARAMS			0x08
75 #define DFLL_PARAMS_CG_SCALE		(0x1 << 24)
76 #define DFLL_PARAMS_FORCE_MODE_SHIFT	22
77 #define DFLL_PARAMS_FORCE_MODE_MASK	(0x3 << DFLL_PARAMS_FORCE_MODE_SHIFT)
78 #define DFLL_PARAMS_CF_PARAM_SHIFT	16
79 #define DFLL_PARAMS_CF_PARAM_MASK	(0x3f << DFLL_PARAMS_CF_PARAM_SHIFT)
80 #define DFLL_PARAMS_CI_PARAM_SHIFT	8
81 #define DFLL_PARAMS_CI_PARAM_MASK	(0x7 << DFLL_PARAMS_CI_PARAM_SHIFT)
82 #define DFLL_PARAMS_CG_PARAM_SHIFT	0
83 #define DFLL_PARAMS_CG_PARAM_MASK	(0xff << DFLL_PARAMS_CG_PARAM_SHIFT)
84 
85 /* DFLL_TUNE0: delay line configuration register 0 */
86 #define DFLL_TUNE0			0x0c
87 
88 /* DFLL_TUNE1: delay line configuration register 1 */
89 #define DFLL_TUNE1			0x10
90 
91 /* DFLL_FREQ_REQ: target DFLL frequency control */
92 #define DFLL_FREQ_REQ			0x14
93 #define DFLL_FREQ_REQ_FORCE_ENABLE	(0x1 << 28)
94 #define DFLL_FREQ_REQ_FORCE_SHIFT	16
95 #define DFLL_FREQ_REQ_FORCE_MASK	(0xfff << DFLL_FREQ_REQ_FORCE_SHIFT)
96 #define FORCE_MAX			2047
97 #define FORCE_MIN			-2048
98 #define DFLL_FREQ_REQ_SCALE_SHIFT	8
99 #define DFLL_FREQ_REQ_SCALE_MASK	(0xff << DFLL_FREQ_REQ_SCALE_SHIFT)
100 #define DFLL_FREQ_REQ_SCALE_MAX		256
101 #define DFLL_FREQ_REQ_FREQ_VALID	(0x1 << 7)
102 #define DFLL_FREQ_REQ_MULT_SHIFT	0
103 #define DFLL_FREQ_REG_MULT_MASK		(0x7f << DFLL_FREQ_REQ_MULT_SHIFT)
104 #define FREQ_MAX			127
105 
106 /* DFLL_DROOP_CTRL: droop prevention control */
107 #define DFLL_DROOP_CTRL			0x1c
108 
109 /* DFLL_OUTPUT_CFG: closed loop mode control registers */
110 /* NOTE: access via dfll_i2c_{readl,writel} */
111 #define DFLL_OUTPUT_CFG			0x20
112 #define DFLL_OUTPUT_CFG_I2C_ENABLE	(0x1 << 30)
113 #define OUT_MASK			0x3f
114 #define DFLL_OUTPUT_CFG_SAFE_SHIFT	24
115 #define DFLL_OUTPUT_CFG_SAFE_MASK	\
116 		(OUT_MASK << DFLL_OUTPUT_CFG_SAFE_SHIFT)
117 #define DFLL_OUTPUT_CFG_MAX_SHIFT	16
118 #define DFLL_OUTPUT_CFG_MAX_MASK	\
119 		(OUT_MASK << DFLL_OUTPUT_CFG_MAX_SHIFT)
120 #define DFLL_OUTPUT_CFG_MIN_SHIFT	8
121 #define DFLL_OUTPUT_CFG_MIN_MASK	\
122 		(OUT_MASK << DFLL_OUTPUT_CFG_MIN_SHIFT)
123 #define DFLL_OUTPUT_CFG_PWM_DELTA	(0x1 << 7)
124 #define DFLL_OUTPUT_CFG_PWM_ENABLE	(0x1 << 6)
125 #define DFLL_OUTPUT_CFG_PWM_DIV_SHIFT	0
126 #define DFLL_OUTPUT_CFG_PWM_DIV_MASK	\
127 		(OUT_MASK << DFLL_OUTPUT_CFG_PWM_DIV_SHIFT)
128 
129 /* DFLL_OUTPUT_FORCE: closed loop mode voltage forcing control */
130 #define DFLL_OUTPUT_FORCE		0x24
131 #define DFLL_OUTPUT_FORCE_ENABLE	(0x1 << 6)
132 #define DFLL_OUTPUT_FORCE_VALUE_SHIFT	0
133 #define DFLL_OUTPUT_FORCE_VALUE_MASK	\
134 		(OUT_MASK << DFLL_OUTPUT_FORCE_VALUE_SHIFT)
135 
136 /* DFLL_MONITOR_CTRL: internal monitor data source control */
137 #define DFLL_MONITOR_CTRL		0x28
138 #define DFLL_MONITOR_CTRL_FREQ		6
139 
140 /* DFLL_MONITOR_DATA: internal monitor data output */
141 #define DFLL_MONITOR_DATA		0x2c
142 #define DFLL_MONITOR_DATA_NEW_MASK	(0x1 << 16)
143 #define DFLL_MONITOR_DATA_VAL_SHIFT	0
144 #define DFLL_MONITOR_DATA_VAL_MASK	(0xFFFF << DFLL_MONITOR_DATA_VAL_SHIFT)
145 
146 /*
147  * I2C output control registers - access via dfll_i2c_{readl,writel}
148  */
149 
150 /* DFLL_I2C_CFG: I2C controller configuration register */
151 #define DFLL_I2C_CFG			0x40
152 #define DFLL_I2C_CFG_ARB_ENABLE		(0x1 << 20)
153 #define DFLL_I2C_CFG_HS_CODE_SHIFT	16
154 #define DFLL_I2C_CFG_HS_CODE_MASK	(0x7 << DFLL_I2C_CFG_HS_CODE_SHIFT)
155 #define DFLL_I2C_CFG_PACKET_ENABLE	(0x1 << 15)
156 #define DFLL_I2C_CFG_SIZE_SHIFT		12
157 #define DFLL_I2C_CFG_SIZE_MASK		(0x7 << DFLL_I2C_CFG_SIZE_SHIFT)
158 #define DFLL_I2C_CFG_SLAVE_ADDR_10	(0x1 << 10)
159 #define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT	1
160 #define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT	0
161 
162 /* DFLL_I2C_VDD_REG_ADDR: PMIC I2C address for closed loop mode */
163 #define DFLL_I2C_VDD_REG_ADDR		0x44
164 
165 /* DFLL_I2C_STS: I2C controller status */
166 #define DFLL_I2C_STS			0x48
167 #define DFLL_I2C_STS_I2C_LAST_SHIFT	1
168 #define DFLL_I2C_STS_I2C_REQ_PENDING	0x1
169 
170 /* DFLL_INTR_STS: DFLL interrupt status register */
171 #define DFLL_INTR_STS			0x5c
172 
173 /* DFLL_INTR_EN: DFLL interrupt enable register */
174 #define DFLL_INTR_EN			0x60
175 #define DFLL_INTR_MIN_MASK		0x1
176 #define DFLL_INTR_MAX_MASK		0x2
177 
178 /*
179  * Integrated I2C controller registers - relative to td->i2c_controller_base
180  */
181 
182 /* DFLL_I2C_CLK_DIVISOR: I2C controller clock divisor */
183 #define DFLL_I2C_CLK_DIVISOR		0x6c
184 #define DFLL_I2C_CLK_DIVISOR_MASK	0xffff
185 #define DFLL_I2C_CLK_DIVISOR_FS_SHIFT	16
186 #define DFLL_I2C_CLK_DIVISOR_HS_SHIFT	0
187 #define DFLL_I2C_CLK_DIVISOR_PREDIV	8
188 #define DFLL_I2C_CLK_DIVISOR_HSMODE_PREDIV	12
189 
190 /*
191  * Other constants
192  */
193 
194 /* MAX_DFLL_VOLTAGES: number of LUT entries in the DFLL IP block */
195 #define MAX_DFLL_VOLTAGES		33
196 
197 /*
198  * REF_CLK_CYC_PER_DVCO_SAMPLE: the number of ref_clk cycles that the hardware
199  *    integrates the DVCO counter over - used for debug rate monitoring and
200  *    droop control
201  */
202 #define REF_CLK_CYC_PER_DVCO_SAMPLE	4
203 
204 /*
205  * REF_CLOCK_RATE: the DFLL reference clock rate currently supported by this
206  * driver, in Hz
207  */
208 #define REF_CLOCK_RATE			51000000UL
209 
210 #define DVCO_RATE_TO_MULT(rate, ref_rate)	((rate) / ((ref_rate) / 2))
211 #define MULT_TO_DVCO_RATE(mult, ref_rate)	((mult) * ((ref_rate) / 2))
212 
213 /**
214  * enum dfll_ctrl_mode - DFLL hardware operating mode
215  * @DFLL_UNINITIALIZED: (uninitialized state - not in hardware bitfield)
216  * @DFLL_DISABLED: DFLL not generating an output clock
217  * @DFLL_OPEN_LOOP: DVCO running, but DFLL not adjusting voltage
218  * @DFLL_CLOSED_LOOP: DVCO running, and DFLL adjusting voltage to match
219  *		      the requested rate
220  *
221  * The integer corresponding to the last two states, minus one, is
222  * written to the DFLL hardware to change operating modes.
223  */
224 enum dfll_ctrl_mode {
225 	DFLL_UNINITIALIZED = 0,
226 	DFLL_DISABLED = 1,
227 	DFLL_OPEN_LOOP = 2,
228 	DFLL_CLOSED_LOOP = 3,
229 };
230 
231 /**
232  * enum dfll_tune_range - voltage range that the driver believes it's in
233  * @DFLL_TUNE_UNINITIALIZED: DFLL tuning not yet programmed
234  * @DFLL_TUNE_LOW: DFLL in the low-voltage range (or open-loop mode)
235  *
236  * Some DFLL tuning parameters may need to change depending on the
237  * DVCO's voltage; these states represent the ranges that the driver
238  * supports. These are software states; these values are never
239  * written into registers.
240  */
241 enum dfll_tune_range {
242 	DFLL_TUNE_UNINITIALIZED = 0,
243 	DFLL_TUNE_LOW = 1,
244 };
245 
246 /**
247  * struct dfll_rate_req - target DFLL rate request data
248  * @rate: target frequency, after the postscaling
249  * @dvco_target_rate: target frequency, after the postscaling
250  * @lut_index: LUT index at which voltage the dvco_target_rate will be reached
251  * @mult_bits: value to program to the MULT bits of the DFLL_FREQ_REQ register
252  * @scale_bits: value to program to the SCALE bits of the DFLL_FREQ_REQ register
253  */
254 struct dfll_rate_req {
255 	unsigned long rate;
256 	unsigned long dvco_target_rate;
257 	int lut_index;
258 	u8 mult_bits;
259 	u8 scale_bits;
260 };
261 
262 struct tegra_dfll {
263 	struct device			*dev;
264 	struct tegra_dfll_soc_data	*soc;
265 
266 	void __iomem			*base;
267 	void __iomem			*i2c_base;
268 	void __iomem			*i2c_controller_base;
269 	void __iomem			*lut_base;
270 
271 	struct regulator		*vdd_reg;
272 	struct clk			*soc_clk;
273 	struct clk			*ref_clk;
274 	struct clk			*i2c_clk;
275 	struct clk			*dfll_clk;
276 	struct reset_control		*dvco_rst;
277 	unsigned long			ref_rate;
278 	unsigned long			i2c_clk_rate;
279 	unsigned long			dvco_rate_min;
280 
281 	enum dfll_ctrl_mode		mode;
282 	enum dfll_tune_range		tune_range;
283 	struct dentry			*debugfs_dir;
284 	struct clk_hw			dfll_clk_hw;
285 	const char			*output_clock_name;
286 	struct dfll_rate_req		last_req;
287 	unsigned long			last_unrounded_rate;
288 
289 	/* Parameters from DT */
290 	u32				droop_ctrl;
291 	u32				sample_rate;
292 	u32				force_mode;
293 	u32				cf;
294 	u32				ci;
295 	u32				cg;
296 	bool				cg_scale;
297 
298 	/* I2C interface parameters */
299 	u32				i2c_fs_rate;
300 	u32				i2c_reg;
301 	u32				i2c_slave_addr;
302 
303 	/* i2c_lut array entries are regulator framework selectors */
304 	unsigned			i2c_lut[MAX_DFLL_VOLTAGES];
305 	int				i2c_lut_size;
306 	u8				lut_min, lut_max, lut_safe;
307 };
308 
309 #define clk_hw_to_dfll(_hw) container_of(_hw, struct tegra_dfll, dfll_clk_hw)
310 
311 /* mode_name: map numeric DFLL modes to names for friendly console messages */
312 static const char * const mode_name[] = {
313 	[DFLL_UNINITIALIZED] = "uninitialized",
314 	[DFLL_DISABLED] = "disabled",
315 	[DFLL_OPEN_LOOP] = "open_loop",
316 	[DFLL_CLOSED_LOOP] = "closed_loop",
317 };
318 
319 /*
320  * Register accessors
321  */
322 
323 static inline u32 dfll_readl(struct tegra_dfll *td, u32 offs)
324 {
325 	return __raw_readl(td->base + offs);
326 }
327 
328 static inline void dfll_writel(struct tegra_dfll *td, u32 val, u32 offs)
329 {
330 	WARN_ON(offs >= DFLL_I2C_CFG);
331 	__raw_writel(val, td->base + offs);
332 }
333 
334 static inline void dfll_wmb(struct tegra_dfll *td)
335 {
336 	dfll_readl(td, DFLL_CTRL);
337 }
338 
339 /* I2C output control registers - for addresses above DFLL_I2C_CFG */
340 
341 static inline u32 dfll_i2c_readl(struct tegra_dfll *td, u32 offs)
342 {
343 	return __raw_readl(td->i2c_base + offs);
344 }
345 
346 static inline void dfll_i2c_writel(struct tegra_dfll *td, u32 val, u32 offs)
347 {
348 	__raw_writel(val, td->i2c_base + offs);
349 }
350 
351 static inline void dfll_i2c_wmb(struct tegra_dfll *td)
352 {
353 	dfll_i2c_readl(td, DFLL_I2C_CFG);
354 }
355 
356 /**
357  * dfll_is_running - is the DFLL currently generating a clock?
358  * @td: DFLL instance
359  *
360  * If the DFLL is currently generating an output clock signal, return
361  * true; otherwise return false.
362  */
363 static bool dfll_is_running(struct tegra_dfll *td)
364 {
365 	return td->mode >= DFLL_OPEN_LOOP;
366 }
367 
368 /*
369  * Runtime PM suspend/resume callbacks
370  */
371 
372 /**
373  * tegra_dfll_runtime_resume - enable all clocks needed by the DFLL
374  * @dev: DFLL device *
375  *
376  * Enable all clocks needed by the DFLL. Assumes that clk_prepare()
377  * has already been called on all the clocks.
378  *
379  * XXX Should also handle context restore when returning from off.
380  */
381 int tegra_dfll_runtime_resume(struct device *dev)
382 {
383 	struct tegra_dfll *td = dev_get_drvdata(dev);
384 	int ret;
385 
386 	ret = clk_enable(td->ref_clk);
387 	if (ret) {
388 		dev_err(dev, "could not enable ref clock: %d\n", ret);
389 		return ret;
390 	}
391 
392 	ret = clk_enable(td->soc_clk);
393 	if (ret) {
394 		dev_err(dev, "could not enable register clock: %d\n", ret);
395 		clk_disable(td->ref_clk);
396 		return ret;
397 	}
398 
399 	ret = clk_enable(td->i2c_clk);
400 	if (ret) {
401 		dev_err(dev, "could not enable i2c clock: %d\n", ret);
402 		clk_disable(td->soc_clk);
403 		clk_disable(td->ref_clk);
404 		return ret;
405 	}
406 
407 	return 0;
408 }
409 EXPORT_SYMBOL(tegra_dfll_runtime_resume);
410 
411 /**
412  * tegra_dfll_runtime_suspend - disable all clocks needed by the DFLL
413  * @dev: DFLL device *
414  *
415  * Disable all clocks needed by the DFLL. Assumes that other code
416  * will later call clk_unprepare().
417  */
418 int tegra_dfll_runtime_suspend(struct device *dev)
419 {
420 	struct tegra_dfll *td = dev_get_drvdata(dev);
421 
422 	clk_disable(td->ref_clk);
423 	clk_disable(td->soc_clk);
424 	clk_disable(td->i2c_clk);
425 
426 	return 0;
427 }
428 EXPORT_SYMBOL(tegra_dfll_runtime_suspend);
429 
430 /*
431  * DFLL tuning operations (per-voltage-range tuning settings)
432  */
433 
434 /**
435  * dfll_tune_low - tune to DFLL and CPU settings valid for any voltage
436  * @td: DFLL instance
437  *
438  * Tune the DFLL oscillator parameters and the CPU clock shaper for
439  * the low-voltage range. These settings are valid for any voltage,
440  * but may not be optimal.
441  */
442 static void dfll_tune_low(struct tegra_dfll *td)
443 {
444 	td->tune_range = DFLL_TUNE_LOW;
445 
446 	dfll_writel(td, td->soc->cvb->cpu_dfll_data.tune0_low, DFLL_TUNE0);
447 	dfll_writel(td, td->soc->cvb->cpu_dfll_data.tune1, DFLL_TUNE1);
448 	dfll_wmb(td);
449 
450 	if (td->soc->set_clock_trimmers_low)
451 		td->soc->set_clock_trimmers_low();
452 }
453 
454 /*
455  * Output clock scaler helpers
456  */
457 
458 /**
459  * dfll_scale_dvco_rate - calculate scaled rate from the DVCO rate
460  * @scale_bits: clock scaler value (bits in the DFLL_FREQ_REQ_SCALE field)
461  * @dvco_rate: the DVCO rate
462  *
463  * Apply the same scaling formula that the DFLL hardware uses to scale
464  * the DVCO rate.
465  */
466 static unsigned long dfll_scale_dvco_rate(int scale_bits,
467 					  unsigned long dvco_rate)
468 {
469 	return (u64)dvco_rate * (scale_bits + 1) / DFLL_FREQ_REQ_SCALE_MAX;
470 }
471 
472 /*
473  * DFLL mode switching
474  */
475 
476 /**
477  * dfll_set_mode - change the DFLL control mode
478  * @td: DFLL instance
479  * @mode: DFLL control mode (see enum dfll_ctrl_mode)
480  *
481  * Change the DFLL's operating mode between disabled, open-loop mode,
482  * and closed-loop mode, or vice versa.
483  */
484 static void dfll_set_mode(struct tegra_dfll *td,
485 			  enum dfll_ctrl_mode mode)
486 {
487 	td->mode = mode;
488 	dfll_writel(td, mode - 1, DFLL_CTRL);
489 	dfll_wmb(td);
490 }
491 
492 /*
493  * DFLL-to-I2C controller interface
494  */
495 
496 /**
497  * dfll_i2c_set_output_enabled - enable/disable I2C PMIC voltage requests
498  * @td: DFLL instance
499  * @enable: whether to enable or disable the I2C voltage requests
500  *
501  * Set the master enable control for I2C control value updates. If disabled,
502  * then I2C control messages are inhibited, regardless of the DFLL mode.
503  */
504 static int dfll_i2c_set_output_enabled(struct tegra_dfll *td, bool enable)
505 {
506 	u32 val;
507 
508 	val = dfll_i2c_readl(td, DFLL_OUTPUT_CFG);
509 
510 	if (enable)
511 		val |= DFLL_OUTPUT_CFG_I2C_ENABLE;
512 	else
513 		val &= ~DFLL_OUTPUT_CFG_I2C_ENABLE;
514 
515 	dfll_i2c_writel(td, val, DFLL_OUTPUT_CFG);
516 	dfll_i2c_wmb(td);
517 
518 	return 0;
519 }
520 
521 /**
522  * dfll_load_lut - load the voltage lookup table
523  * @td: struct tegra_dfll *
524  *
525  * Load the voltage-to-PMIC register value lookup table into the DFLL
526  * IP block memory. Look-up tables can be loaded at any time.
527  */
528 static void dfll_load_i2c_lut(struct tegra_dfll *td)
529 {
530 	int i, lut_index;
531 	u32 val;
532 
533 	for (i = 0; i < MAX_DFLL_VOLTAGES; i++) {
534 		if (i < td->lut_min)
535 			lut_index = td->lut_min;
536 		else if (i > td->lut_max)
537 			lut_index = td->lut_max;
538 		else
539 			lut_index = i;
540 
541 		val = regulator_list_hardware_vsel(td->vdd_reg,
542 						     td->i2c_lut[lut_index]);
543 		__raw_writel(val, td->lut_base + i * 4);
544 	}
545 
546 	dfll_i2c_wmb(td);
547 }
548 
549 /**
550  * dfll_init_i2c_if - set up the DFLL's DFLL-I2C interface
551  * @td: DFLL instance
552  *
553  * During DFLL driver initialization, program the DFLL-I2C interface
554  * with the PMU slave address, vdd register offset, and transfer mode.
555  * This data is used by the DFLL to automatically construct I2C
556  * voltage-set commands, which are then passed to the DFLL's internal
557  * I2C controller.
558  */
559 static void dfll_init_i2c_if(struct tegra_dfll *td)
560 {
561 	u32 val;
562 
563 	if (td->i2c_slave_addr > 0x7f) {
564 		val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT;
565 		val |= DFLL_I2C_CFG_SLAVE_ADDR_10;
566 	} else {
567 		val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT;
568 	}
569 	val |= DFLL_I2C_CFG_SIZE_MASK;
570 	val |= DFLL_I2C_CFG_ARB_ENABLE;
571 	dfll_i2c_writel(td, val, DFLL_I2C_CFG);
572 
573 	dfll_i2c_writel(td, td->i2c_reg, DFLL_I2C_VDD_REG_ADDR);
574 
575 	val = DIV_ROUND_UP(td->i2c_clk_rate, td->i2c_fs_rate * 8);
576 	BUG_ON(!val || (val > DFLL_I2C_CLK_DIVISOR_MASK));
577 	val = (val - 1) << DFLL_I2C_CLK_DIVISOR_FS_SHIFT;
578 
579 	/* default hs divisor just in case */
580 	val |= 1 << DFLL_I2C_CLK_DIVISOR_HS_SHIFT;
581 	__raw_writel(val, td->i2c_controller_base + DFLL_I2C_CLK_DIVISOR);
582 	dfll_i2c_wmb(td);
583 }
584 
585 /**
586  * dfll_init_out_if - prepare DFLL-to-PMIC interface
587  * @td: DFLL instance
588  *
589  * During DFLL driver initialization or resume from context loss,
590  * disable the I2C command output to the PMIC, set safe voltage and
591  * output limits, and disable and clear limit interrupts.
592  */
593 static void dfll_init_out_if(struct tegra_dfll *td)
594 {
595 	u32 val;
596 
597 	td->lut_min = 0;
598 	td->lut_max = td->i2c_lut_size - 1;
599 	td->lut_safe = td->lut_min + 1;
600 
601 	dfll_i2c_writel(td, 0, DFLL_OUTPUT_CFG);
602 	val = (td->lut_safe << DFLL_OUTPUT_CFG_SAFE_SHIFT) |
603 		(td->lut_max << DFLL_OUTPUT_CFG_MAX_SHIFT) |
604 		(td->lut_min << DFLL_OUTPUT_CFG_MIN_SHIFT);
605 	dfll_i2c_writel(td, val, DFLL_OUTPUT_CFG);
606 	dfll_i2c_wmb(td);
607 
608 	dfll_writel(td, 0, DFLL_OUTPUT_FORCE);
609 	dfll_i2c_writel(td, 0, DFLL_INTR_EN);
610 	dfll_i2c_writel(td, DFLL_INTR_MAX_MASK | DFLL_INTR_MIN_MASK,
611 			DFLL_INTR_STS);
612 
613 	dfll_load_i2c_lut(td);
614 	dfll_init_i2c_if(td);
615 }
616 
617 /*
618  * Set/get the DFLL's targeted output clock rate
619  */
620 
621 /**
622  * find_lut_index_for_rate - determine I2C LUT index for given DFLL rate
623  * @td: DFLL instance
624  * @rate: clock rate
625  *
626  * Determines the index of a I2C LUT entry for a voltage that approximately
627  * produces the given DFLL clock rate. This is used when forcing a value
628  * to the integrator during rate changes. Returns -ENOENT if a suitable
629  * LUT index is not found.
630  */
631 static int find_lut_index_for_rate(struct tegra_dfll *td, unsigned long rate)
632 {
633 	struct dev_pm_opp *opp;
634 	int i, uv;
635 
636 	opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate);
637 	if (IS_ERR(opp))
638 		return PTR_ERR(opp);
639 
640 	uv = dev_pm_opp_get_voltage(opp);
641 	dev_pm_opp_put(opp);
642 
643 	for (i = 0; i < td->i2c_lut_size; i++) {
644 		if (regulator_list_voltage(td->vdd_reg, td->i2c_lut[i]) == uv)
645 			return i;
646 	}
647 
648 	return -ENOENT;
649 }
650 
651 /**
652  * dfll_calculate_rate_request - calculate DFLL parameters for a given rate
653  * @td: DFLL instance
654  * @req: DFLL-rate-request structure
655  * @rate: the desired DFLL rate
656  *
657  * Populate the DFLL-rate-request record @req fields with the scale_bits
658  * and mult_bits fields, based on the target input rate. Returns 0 upon
659  * success, or -EINVAL if the requested rate in req->rate is too high
660  * or low for the DFLL to generate.
661  */
662 static int dfll_calculate_rate_request(struct tegra_dfll *td,
663 				       struct dfll_rate_req *req,
664 				       unsigned long rate)
665 {
666 	u32 val;
667 
668 	/*
669 	 * If requested rate is below the minimum DVCO rate, active the scaler.
670 	 * In the future the DVCO minimum voltage should be selected based on
671 	 * chip temperature and the actual minimum rate should be calibrated
672 	 * at runtime.
673 	 */
674 	req->scale_bits = DFLL_FREQ_REQ_SCALE_MAX - 1;
675 	if (rate < td->dvco_rate_min) {
676 		int scale;
677 
678 		scale = DIV_ROUND_CLOSEST(rate / 1000 * DFLL_FREQ_REQ_SCALE_MAX,
679 					  td->dvco_rate_min / 1000);
680 		if (!scale) {
681 			dev_err(td->dev, "%s: Rate %lu is too low\n",
682 				__func__, rate);
683 			return -EINVAL;
684 		}
685 		req->scale_bits = scale - 1;
686 		rate = td->dvco_rate_min;
687 	}
688 
689 	/* Convert requested rate into frequency request and scale settings */
690 	val = DVCO_RATE_TO_MULT(rate, td->ref_rate);
691 	if (val > FREQ_MAX) {
692 		dev_err(td->dev, "%s: Rate %lu is above dfll range\n",
693 			__func__, rate);
694 		return -EINVAL;
695 	}
696 	req->mult_bits = val;
697 	req->dvco_target_rate = MULT_TO_DVCO_RATE(req->mult_bits, td->ref_rate);
698 	req->rate = dfll_scale_dvco_rate(req->scale_bits,
699 					 req->dvco_target_rate);
700 	req->lut_index = find_lut_index_for_rate(td, req->dvco_target_rate);
701 	if (req->lut_index < 0)
702 		return req->lut_index;
703 
704 	return 0;
705 }
706 
707 /**
708  * dfll_set_frequency_request - start the frequency change operation
709  * @td: DFLL instance
710  * @req: rate request structure
711  *
712  * Tell the DFLL to try to change its output frequency to the
713  * frequency represented by @req. DFLL must be in closed-loop mode.
714  */
715 static void dfll_set_frequency_request(struct tegra_dfll *td,
716 				       struct dfll_rate_req *req)
717 {
718 	u32 val = 0;
719 	int force_val;
720 	int coef = 128; /* FIXME: td->cg_scale? */;
721 
722 	force_val = (req->lut_index - td->lut_safe) * coef / td->cg;
723 	force_val = clamp(force_val, FORCE_MIN, FORCE_MAX);
724 
725 	val |= req->mult_bits << DFLL_FREQ_REQ_MULT_SHIFT;
726 	val |= req->scale_bits << DFLL_FREQ_REQ_SCALE_SHIFT;
727 	val |= ((u32)force_val << DFLL_FREQ_REQ_FORCE_SHIFT) &
728 		DFLL_FREQ_REQ_FORCE_MASK;
729 	val |= DFLL_FREQ_REQ_FREQ_VALID | DFLL_FREQ_REQ_FORCE_ENABLE;
730 
731 	dfll_writel(td, val, DFLL_FREQ_REQ);
732 	dfll_wmb(td);
733 }
734 
735 /**
736  * tegra_dfll_request_rate - set the next rate for the DFLL to tune to
737  * @td: DFLL instance
738  * @rate: clock rate to target
739  *
740  * Convert the requested clock rate @rate into the DFLL control logic
741  * settings. In closed-loop mode, update new settings immediately to
742  * adjust DFLL output rate accordingly. Otherwise, just save them
743  * until the next switch to closed loop. Returns 0 upon success,
744  * -EPERM if the DFLL driver has not yet been initialized, or -EINVAL
745  * if @rate is outside the DFLL's tunable range.
746  */
747 static int dfll_request_rate(struct tegra_dfll *td, unsigned long rate)
748 {
749 	int ret;
750 	struct dfll_rate_req req;
751 
752 	if (td->mode == DFLL_UNINITIALIZED) {
753 		dev_err(td->dev, "%s: Cannot set DFLL rate in %s mode\n",
754 			__func__, mode_name[td->mode]);
755 		return -EPERM;
756 	}
757 
758 	ret = dfll_calculate_rate_request(td, &req, rate);
759 	if (ret)
760 		return ret;
761 
762 	td->last_unrounded_rate = rate;
763 	td->last_req = req;
764 
765 	if (td->mode == DFLL_CLOSED_LOOP)
766 		dfll_set_frequency_request(td, &td->last_req);
767 
768 	return 0;
769 }
770 
771 /*
772  * DFLL enable/disable & open-loop <-> closed-loop transitions
773  */
774 
775 /**
776  * dfll_disable - switch from open-loop mode to disabled mode
777  * @td: DFLL instance
778  *
779  * Switch from OPEN_LOOP state to DISABLED state. Returns 0 upon success
780  * or -EPERM if the DFLL is not currently in open-loop mode.
781  */
782 static int dfll_disable(struct tegra_dfll *td)
783 {
784 	if (td->mode != DFLL_OPEN_LOOP) {
785 		dev_err(td->dev, "cannot disable DFLL in %s mode\n",
786 			mode_name[td->mode]);
787 		return -EINVAL;
788 	}
789 
790 	dfll_set_mode(td, DFLL_DISABLED);
791 	pm_runtime_put_sync(td->dev);
792 
793 	return 0;
794 }
795 
796 /**
797  * dfll_enable - switch a disabled DFLL to open-loop mode
798  * @td: DFLL instance
799  *
800  * Switch from DISABLED state to OPEN_LOOP state. Returns 0 upon success
801  * or -EPERM if the DFLL is not currently disabled.
802  */
803 static int dfll_enable(struct tegra_dfll *td)
804 {
805 	if (td->mode != DFLL_DISABLED) {
806 		dev_err(td->dev, "cannot enable DFLL in %s mode\n",
807 			mode_name[td->mode]);
808 		return -EPERM;
809 	}
810 
811 	pm_runtime_get_sync(td->dev);
812 	dfll_set_mode(td, DFLL_OPEN_LOOP);
813 
814 	return 0;
815 }
816 
817 /**
818  * dfll_set_open_loop_config - prepare to switch to open-loop mode
819  * @td: DFLL instance
820  *
821  * Prepare to switch the DFLL to open-loop mode. This switches the
822  * DFLL to the low-voltage tuning range, ensures that I2C output
823  * forcing is disabled, and disables the output clock rate scaler.
824  * The DFLL's low-voltage tuning range parameters must be
825  * characterized to keep the downstream device stable at any DVCO
826  * input voltage. No return value.
827  */
828 static void dfll_set_open_loop_config(struct tegra_dfll *td)
829 {
830 	u32 val;
831 
832 	/* always tune low (safe) in open loop */
833 	if (td->tune_range != DFLL_TUNE_LOW)
834 		dfll_tune_low(td);
835 
836 	val = dfll_readl(td, DFLL_FREQ_REQ);
837 	val |= DFLL_FREQ_REQ_SCALE_MASK;
838 	val &= ~DFLL_FREQ_REQ_FORCE_ENABLE;
839 	dfll_writel(td, val, DFLL_FREQ_REQ);
840 	dfll_wmb(td);
841 }
842 
843 /**
844  * tegra_dfll_lock - switch from open-loop to closed-loop mode
845  * @td: DFLL instance
846  *
847  * Switch from OPEN_LOOP state to CLOSED_LOOP state. Returns 0 upon success,
848  * -EINVAL if the DFLL's target rate hasn't been set yet, or -EPERM if the
849  * DFLL is not currently in open-loop mode.
850  */
851 static int dfll_lock(struct tegra_dfll *td)
852 {
853 	struct dfll_rate_req *req = &td->last_req;
854 
855 	switch (td->mode) {
856 	case DFLL_CLOSED_LOOP:
857 		return 0;
858 
859 	case DFLL_OPEN_LOOP:
860 		if (req->rate == 0) {
861 			dev_err(td->dev, "%s: Cannot lock DFLL at rate 0\n",
862 				__func__);
863 			return -EINVAL;
864 		}
865 
866 		dfll_i2c_set_output_enabled(td, true);
867 		dfll_set_mode(td, DFLL_CLOSED_LOOP);
868 		dfll_set_frequency_request(td, req);
869 		return 0;
870 
871 	default:
872 		BUG_ON(td->mode > DFLL_CLOSED_LOOP);
873 		dev_err(td->dev, "%s: Cannot lock DFLL in %s mode\n",
874 			__func__, mode_name[td->mode]);
875 		return -EPERM;
876 	}
877 }
878 
879 /**
880  * tegra_dfll_unlock - switch from closed-loop to open-loop mode
881  * @td: DFLL instance
882  *
883  * Switch from CLOSED_LOOP state to OPEN_LOOP state. Returns 0 upon success,
884  * or -EPERM if the DFLL is not currently in open-loop mode.
885  */
886 static int dfll_unlock(struct tegra_dfll *td)
887 {
888 	switch (td->mode) {
889 	case DFLL_CLOSED_LOOP:
890 		dfll_set_open_loop_config(td);
891 		dfll_set_mode(td, DFLL_OPEN_LOOP);
892 		dfll_i2c_set_output_enabled(td, false);
893 		return 0;
894 
895 	case DFLL_OPEN_LOOP:
896 		return 0;
897 
898 	default:
899 		BUG_ON(td->mode > DFLL_CLOSED_LOOP);
900 		dev_err(td->dev, "%s: Cannot unlock DFLL in %s mode\n",
901 			__func__, mode_name[td->mode]);
902 		return -EPERM;
903 	}
904 }
905 
906 /*
907  * Clock framework integration
908  *
909  * When the DFLL is being controlled by the CCF, always enter closed loop
910  * mode when the clk is enabled. This requires that a DFLL rate request
911  * has been set beforehand, which implies that a clk_set_rate() call is
912  * always required before a clk_enable().
913  */
914 
915 static int dfll_clk_is_enabled(struct clk_hw *hw)
916 {
917 	struct tegra_dfll *td = clk_hw_to_dfll(hw);
918 
919 	return dfll_is_running(td);
920 }
921 
922 static int dfll_clk_enable(struct clk_hw *hw)
923 {
924 	struct tegra_dfll *td = clk_hw_to_dfll(hw);
925 	int ret;
926 
927 	ret = dfll_enable(td);
928 	if (ret)
929 		return ret;
930 
931 	ret = dfll_lock(td);
932 	if (ret)
933 		dfll_disable(td);
934 
935 	return ret;
936 }
937 
938 static void dfll_clk_disable(struct clk_hw *hw)
939 {
940 	struct tegra_dfll *td = clk_hw_to_dfll(hw);
941 	int ret;
942 
943 	ret = dfll_unlock(td);
944 	if (!ret)
945 		dfll_disable(td);
946 }
947 
948 static unsigned long dfll_clk_recalc_rate(struct clk_hw *hw,
949 					  unsigned long parent_rate)
950 {
951 	struct tegra_dfll *td = clk_hw_to_dfll(hw);
952 
953 	return td->last_unrounded_rate;
954 }
955 
956 /* Must use determine_rate since it allows for rates exceeding 2^31-1 */
957 static int dfll_clk_determine_rate(struct clk_hw *hw,
958 				   struct clk_rate_request *clk_req)
959 {
960 	struct tegra_dfll *td = clk_hw_to_dfll(hw);
961 	struct dfll_rate_req req;
962 	int ret;
963 
964 	ret = dfll_calculate_rate_request(td, &req, clk_req->rate);
965 	if (ret)
966 		return ret;
967 
968 	/*
969 	 * Don't set the rounded rate, since it doesn't really matter as
970 	 * the output rate will be voltage controlled anyway, and cpufreq
971 	 * freaks out if any rounding happens.
972 	 */
973 
974 	return 0;
975 }
976 
977 static int dfll_clk_set_rate(struct clk_hw *hw, unsigned long rate,
978 			     unsigned long parent_rate)
979 {
980 	struct tegra_dfll *td = clk_hw_to_dfll(hw);
981 
982 	return dfll_request_rate(td, rate);
983 }
984 
985 static const struct clk_ops dfll_clk_ops = {
986 	.is_enabled	= dfll_clk_is_enabled,
987 	.enable		= dfll_clk_enable,
988 	.disable	= dfll_clk_disable,
989 	.recalc_rate	= dfll_clk_recalc_rate,
990 	.determine_rate	= dfll_clk_determine_rate,
991 	.set_rate	= dfll_clk_set_rate,
992 };
993 
994 static struct clk_init_data dfll_clk_init_data = {
995 	.ops		= &dfll_clk_ops,
996 	.num_parents	= 0,
997 };
998 
999 /**
1000  * dfll_register_clk - register the DFLL output clock with the clock framework
1001  * @td: DFLL instance
1002  *
1003  * Register the DFLL's output clock with the Linux clock framework and register
1004  * the DFLL driver as an OF clock provider. Returns 0 upon success or -EINVAL
1005  * or -ENOMEM upon failure.
1006  */
1007 static int dfll_register_clk(struct tegra_dfll *td)
1008 {
1009 	int ret;
1010 
1011 	dfll_clk_init_data.name = td->output_clock_name;
1012 	td->dfll_clk_hw.init = &dfll_clk_init_data;
1013 
1014 	td->dfll_clk = clk_register(td->dev, &td->dfll_clk_hw);
1015 	if (IS_ERR(td->dfll_clk)) {
1016 		dev_err(td->dev, "DFLL clock registration error\n");
1017 		return -EINVAL;
1018 	}
1019 
1020 	ret = of_clk_add_provider(td->dev->of_node, of_clk_src_simple_get,
1021 				  td->dfll_clk);
1022 	if (ret) {
1023 		dev_err(td->dev, "of_clk_add_provider() failed\n");
1024 
1025 		clk_unregister(td->dfll_clk);
1026 		return ret;
1027 	}
1028 
1029 	return 0;
1030 }
1031 
1032 /**
1033  * dfll_unregister_clk - unregister the DFLL output clock
1034  * @td: DFLL instance
1035  *
1036  * Unregister the DFLL's output clock from the Linux clock framework
1037  * and from clkdev. No return value.
1038  */
1039 static void dfll_unregister_clk(struct tegra_dfll *td)
1040 {
1041 	of_clk_del_provider(td->dev->of_node);
1042 	clk_unregister(td->dfll_clk);
1043 	td->dfll_clk = NULL;
1044 }
1045 
1046 /*
1047  * Debugfs interface
1048  */
1049 
1050 #ifdef CONFIG_DEBUG_FS
1051 /*
1052  * Monitor control
1053  */
1054 
1055 /**
1056  * dfll_calc_monitored_rate - convert DFLL_MONITOR_DATA_VAL rate into real freq
1057  * @monitor_data: value read from the DFLL_MONITOR_DATA_VAL bitfield
1058  * @ref_rate: DFLL reference clock rate
1059  *
1060  * Convert @monitor_data from DFLL_MONITOR_DATA_VAL units into cycles
1061  * per second. Returns the converted value.
1062  */
1063 static u64 dfll_calc_monitored_rate(u32 monitor_data,
1064 				    unsigned long ref_rate)
1065 {
1066 	return monitor_data * (ref_rate / REF_CLK_CYC_PER_DVCO_SAMPLE);
1067 }
1068 
1069 /**
1070  * dfll_read_monitor_rate - return the DFLL's output rate from internal monitor
1071  * @td: DFLL instance
1072  *
1073  * If the DFLL is enabled, return the last rate reported by the DFLL's
1074  * internal monitoring hardware. This works in both open-loop and
1075  * closed-loop mode, and takes the output scaler setting into account.
1076  * Assumes that the monitor was programmed to monitor frequency before
1077  * the sample period started. If the driver believes that the DFLL is
1078  * currently uninitialized or disabled, it will return 0, since
1079  * otherwise the DFLL monitor data register will return the last
1080  * measured rate from when the DFLL was active.
1081  */
1082 static u64 dfll_read_monitor_rate(struct tegra_dfll *td)
1083 {
1084 	u32 v, s;
1085 	u64 pre_scaler_rate, post_scaler_rate;
1086 
1087 	if (!dfll_is_running(td))
1088 		return 0;
1089 
1090 	v = dfll_readl(td, DFLL_MONITOR_DATA);
1091 	v = (v & DFLL_MONITOR_DATA_VAL_MASK) >> DFLL_MONITOR_DATA_VAL_SHIFT;
1092 	pre_scaler_rate = dfll_calc_monitored_rate(v, td->ref_rate);
1093 
1094 	s = dfll_readl(td, DFLL_FREQ_REQ);
1095 	s = (s & DFLL_FREQ_REQ_SCALE_MASK) >> DFLL_FREQ_REQ_SCALE_SHIFT;
1096 	post_scaler_rate = dfll_scale_dvco_rate(s, pre_scaler_rate);
1097 
1098 	return post_scaler_rate;
1099 }
1100 
1101 static int attr_enable_get(void *data, u64 *val)
1102 {
1103 	struct tegra_dfll *td = data;
1104 
1105 	*val = dfll_is_running(td);
1106 
1107 	return 0;
1108 }
1109 static int attr_enable_set(void *data, u64 val)
1110 {
1111 	struct tegra_dfll *td = data;
1112 
1113 	return val ? dfll_enable(td) : dfll_disable(td);
1114 }
1115 DEFINE_SIMPLE_ATTRIBUTE(enable_fops, attr_enable_get, attr_enable_set,
1116 			"%llu\n");
1117 
1118 static int attr_lock_get(void *data, u64 *val)
1119 {
1120 	struct tegra_dfll *td = data;
1121 
1122 	*val = (td->mode == DFLL_CLOSED_LOOP);
1123 
1124 	return 0;
1125 }
1126 static int attr_lock_set(void *data, u64 val)
1127 {
1128 	struct tegra_dfll *td = data;
1129 
1130 	return val ? dfll_lock(td) :  dfll_unlock(td);
1131 }
1132 DEFINE_SIMPLE_ATTRIBUTE(lock_fops, attr_lock_get, attr_lock_set,
1133 			"%llu\n");
1134 
1135 static int attr_rate_get(void *data, u64 *val)
1136 {
1137 	struct tegra_dfll *td = data;
1138 
1139 	*val = dfll_read_monitor_rate(td);
1140 
1141 	return 0;
1142 }
1143 
1144 static int attr_rate_set(void *data, u64 val)
1145 {
1146 	struct tegra_dfll *td = data;
1147 
1148 	return dfll_request_rate(td, val);
1149 }
1150 DEFINE_SIMPLE_ATTRIBUTE(rate_fops, attr_rate_get, attr_rate_set, "%llu\n");
1151 
1152 static int attr_registers_show(struct seq_file *s, void *data)
1153 {
1154 	u32 val, offs;
1155 	struct tegra_dfll *td = s->private;
1156 
1157 	seq_puts(s, "CONTROL REGISTERS:\n");
1158 	for (offs = 0; offs <= DFLL_MONITOR_DATA; offs += 4) {
1159 		if (offs == DFLL_OUTPUT_CFG)
1160 			val = dfll_i2c_readl(td, offs);
1161 		else
1162 			val = dfll_readl(td, offs);
1163 		seq_printf(s, "[0x%02x] = 0x%08x\n", offs, val);
1164 	}
1165 
1166 	seq_puts(s, "\nI2C and INTR REGISTERS:\n");
1167 	for (offs = DFLL_I2C_CFG; offs <= DFLL_I2C_STS; offs += 4)
1168 		seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1169 			   dfll_i2c_readl(td, offs));
1170 	for (offs = DFLL_INTR_STS; offs <= DFLL_INTR_EN; offs += 4)
1171 		seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1172 			   dfll_i2c_readl(td, offs));
1173 
1174 	seq_puts(s, "\nINTEGRATED I2C CONTROLLER REGISTERS:\n");
1175 	offs = DFLL_I2C_CLK_DIVISOR;
1176 	seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1177 		   __raw_readl(td->i2c_controller_base + offs));
1178 
1179 	seq_puts(s, "\nLUT:\n");
1180 	for (offs = 0; offs <  4 * MAX_DFLL_VOLTAGES; offs += 4)
1181 		seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1182 			   __raw_readl(td->lut_base + offs));
1183 
1184 	return 0;
1185 }
1186 
1187 DEFINE_SHOW_ATTRIBUTE(attr_registers);
1188 
1189 static void dfll_debug_init(struct tegra_dfll *td)
1190 {
1191 	struct dentry *root;
1192 
1193 	if (!td || (td->mode == DFLL_UNINITIALIZED))
1194 		return;
1195 
1196 	root = debugfs_create_dir("tegra_dfll_fcpu", NULL);
1197 	td->debugfs_dir = root;
1198 
1199 	debugfs_create_file("enable", S_IRUGO | S_IWUSR, root, td, &enable_fops);
1200 	debugfs_create_file("lock", S_IRUGO, root, td, &lock_fops);
1201 	debugfs_create_file("rate", S_IRUGO, root, td, &rate_fops);
1202 	debugfs_create_file("registers", S_IRUGO, root, td, &attr_registers_fops);
1203 }
1204 
1205 #else
1206 static void inline dfll_debug_init(struct tegra_dfll *td) { }
1207 #endif /* CONFIG_DEBUG_FS */
1208 
1209 /*
1210  * DFLL initialization
1211  */
1212 
1213 /**
1214  * dfll_set_default_params - program non-output related DFLL parameters
1215  * @td: DFLL instance
1216  *
1217  * During DFLL driver initialization or resume from context loss,
1218  * program parameters for the closed loop integrator, DVCO tuning,
1219  * voltage droop control and monitor control.
1220  */
1221 static void dfll_set_default_params(struct tegra_dfll *td)
1222 {
1223 	u32 val;
1224 
1225 	val = DIV_ROUND_UP(td->ref_rate, td->sample_rate * 32);
1226 	BUG_ON(val > DFLL_CONFIG_DIV_MASK);
1227 	dfll_writel(td, val, DFLL_CONFIG);
1228 
1229 	val = (td->force_mode << DFLL_PARAMS_FORCE_MODE_SHIFT) |
1230 		(td->cf << DFLL_PARAMS_CF_PARAM_SHIFT) |
1231 		(td->ci << DFLL_PARAMS_CI_PARAM_SHIFT) |
1232 		(td->cg << DFLL_PARAMS_CG_PARAM_SHIFT) |
1233 		(td->cg_scale ? DFLL_PARAMS_CG_SCALE : 0);
1234 	dfll_writel(td, val, DFLL_PARAMS);
1235 
1236 	dfll_tune_low(td);
1237 	dfll_writel(td, td->droop_ctrl, DFLL_DROOP_CTRL);
1238 	dfll_writel(td, DFLL_MONITOR_CTRL_FREQ, DFLL_MONITOR_CTRL);
1239 }
1240 
1241 /**
1242  * dfll_init_clks - clk_get() the DFLL source clocks
1243  * @td: DFLL instance
1244  *
1245  * Call clk_get() on the DFLL source clocks and save the pointers for later
1246  * use. Returns 0 upon success or error (see devm_clk_get) if one or more
1247  * of the clocks couldn't be looked up.
1248  */
1249 static int dfll_init_clks(struct tegra_dfll *td)
1250 {
1251 	td->ref_clk = devm_clk_get(td->dev, "ref");
1252 	if (IS_ERR(td->ref_clk)) {
1253 		dev_err(td->dev, "missing ref clock\n");
1254 		return PTR_ERR(td->ref_clk);
1255 	}
1256 
1257 	td->soc_clk = devm_clk_get(td->dev, "soc");
1258 	if (IS_ERR(td->soc_clk)) {
1259 		dev_err(td->dev, "missing soc clock\n");
1260 		return PTR_ERR(td->soc_clk);
1261 	}
1262 
1263 	td->i2c_clk = devm_clk_get(td->dev, "i2c");
1264 	if (IS_ERR(td->i2c_clk)) {
1265 		dev_err(td->dev, "missing i2c clock\n");
1266 		return PTR_ERR(td->i2c_clk);
1267 	}
1268 	td->i2c_clk_rate = clk_get_rate(td->i2c_clk);
1269 
1270 	return 0;
1271 }
1272 
1273 /**
1274  * dfll_init - Prepare the DFLL IP block for use
1275  * @td: DFLL instance
1276  *
1277  * Do everything necessary to prepare the DFLL IP block for use. The
1278  * DFLL will be left in DISABLED state. Called by dfll_probe().
1279  * Returns 0 upon success, or passes along the error from whatever
1280  * function returned it.
1281  */
1282 static int dfll_init(struct tegra_dfll *td)
1283 {
1284 	int ret;
1285 
1286 	td->ref_rate = clk_get_rate(td->ref_clk);
1287 	if (td->ref_rate != REF_CLOCK_RATE) {
1288 		dev_err(td->dev, "unexpected ref clk rate %lu, expecting %lu",
1289 			td->ref_rate, REF_CLOCK_RATE);
1290 		return -EINVAL;
1291 	}
1292 
1293 	reset_control_deassert(td->dvco_rst);
1294 
1295 	ret = clk_prepare(td->ref_clk);
1296 	if (ret) {
1297 		dev_err(td->dev, "failed to prepare ref_clk\n");
1298 		return ret;
1299 	}
1300 
1301 	ret = clk_prepare(td->soc_clk);
1302 	if (ret) {
1303 		dev_err(td->dev, "failed to prepare soc_clk\n");
1304 		goto di_err1;
1305 	}
1306 
1307 	ret = clk_prepare(td->i2c_clk);
1308 	if (ret) {
1309 		dev_err(td->dev, "failed to prepare i2c_clk\n");
1310 		goto di_err2;
1311 	}
1312 
1313 	td->last_unrounded_rate = 0;
1314 
1315 	pm_runtime_enable(td->dev);
1316 	pm_runtime_get_sync(td->dev);
1317 
1318 	dfll_set_mode(td, DFLL_DISABLED);
1319 	dfll_set_default_params(td);
1320 
1321 	if (td->soc->init_clock_trimmers)
1322 		td->soc->init_clock_trimmers();
1323 
1324 	dfll_set_open_loop_config(td);
1325 
1326 	dfll_init_out_if(td);
1327 
1328 	pm_runtime_put_sync(td->dev);
1329 
1330 	return 0;
1331 
1332 di_err2:
1333 	clk_unprepare(td->soc_clk);
1334 di_err1:
1335 	clk_unprepare(td->ref_clk);
1336 
1337 	reset_control_assert(td->dvco_rst);
1338 
1339 	return ret;
1340 }
1341 
1342 /*
1343  * DT data fetch
1344  */
1345 
1346 /*
1347  * Find a PMIC voltage register-to-voltage mapping for the given voltage.
1348  * An exact voltage match is required.
1349  */
1350 static int find_vdd_map_entry_exact(struct tegra_dfll *td, int uV)
1351 {
1352 	int i, n_voltages, reg_uV;
1353 
1354 	n_voltages = regulator_count_voltages(td->vdd_reg);
1355 	for (i = 0; i < n_voltages; i++) {
1356 		reg_uV = regulator_list_voltage(td->vdd_reg, i);
1357 		if (reg_uV < 0)
1358 			break;
1359 
1360 		if (uV == reg_uV)
1361 			return i;
1362 	}
1363 
1364 	dev_err(td->dev, "no voltage map entry for %d uV\n", uV);
1365 	return -EINVAL;
1366 }
1367 
1368 /*
1369  * Find a PMIC voltage register-to-voltage mapping for the given voltage,
1370  * rounding up to the closest supported voltage.
1371  * */
1372 static int find_vdd_map_entry_min(struct tegra_dfll *td, int uV)
1373 {
1374 	int i, n_voltages, reg_uV;
1375 
1376 	n_voltages = regulator_count_voltages(td->vdd_reg);
1377 	for (i = 0; i < n_voltages; i++) {
1378 		reg_uV = regulator_list_voltage(td->vdd_reg, i);
1379 		if (reg_uV < 0)
1380 			break;
1381 
1382 		if (uV <= reg_uV)
1383 			return i;
1384 	}
1385 
1386 	dev_err(td->dev, "no voltage map entry rounding to %d uV\n", uV);
1387 	return -EINVAL;
1388 }
1389 
1390 /**
1391  * dfll_build_i2c_lut - build the I2C voltage register lookup table
1392  * @td: DFLL instance
1393  *
1394  * The DFLL hardware has 33 bytes of look-up table RAM that must be filled with
1395  * PMIC voltage register values that span the entire DFLL operating range.
1396  * This function builds the look-up table based on the OPP table provided by
1397  * the soc-specific platform driver (td->soc->opp_dev) and the PMIC
1398  * register-to-voltage mapping queried from the regulator framework.
1399  *
1400  * On success, fills in td->i2c_lut and returns 0, or -err on failure.
1401  */
1402 static int dfll_build_i2c_lut(struct tegra_dfll *td)
1403 {
1404 	int ret = -EINVAL;
1405 	int j, v, v_max, v_opp;
1406 	int selector;
1407 	unsigned long rate;
1408 	struct dev_pm_opp *opp;
1409 	int lut;
1410 
1411 	rate = ULONG_MAX;
1412 	opp = dev_pm_opp_find_freq_floor(td->soc->dev, &rate);
1413 	if (IS_ERR(opp)) {
1414 		dev_err(td->dev, "couldn't get vmax opp, empty opp table?\n");
1415 		goto out;
1416 	}
1417 	v_max = dev_pm_opp_get_voltage(opp);
1418 	dev_pm_opp_put(opp);
1419 
1420 	v = td->soc->cvb->min_millivolts * 1000;
1421 	lut = find_vdd_map_entry_exact(td, v);
1422 	if (lut < 0)
1423 		goto out;
1424 	td->i2c_lut[0] = lut;
1425 
1426 	for (j = 1, rate = 0; ; rate++) {
1427 		opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate);
1428 		if (IS_ERR(opp))
1429 			break;
1430 		v_opp = dev_pm_opp_get_voltage(opp);
1431 
1432 		if (v_opp <= td->soc->cvb->min_millivolts * 1000)
1433 			td->dvco_rate_min = dev_pm_opp_get_freq(opp);
1434 
1435 		dev_pm_opp_put(opp);
1436 
1437 		for (;;) {
1438 			v += max(1, (v_max - v) / (MAX_DFLL_VOLTAGES - j));
1439 			if (v >= v_opp)
1440 				break;
1441 
1442 			selector = find_vdd_map_entry_min(td, v);
1443 			if (selector < 0)
1444 				goto out;
1445 			if (selector != td->i2c_lut[j - 1])
1446 				td->i2c_lut[j++] = selector;
1447 		}
1448 
1449 		v = (j == MAX_DFLL_VOLTAGES - 1) ? v_max : v_opp;
1450 		selector = find_vdd_map_entry_exact(td, v);
1451 		if (selector < 0)
1452 			goto out;
1453 		if (selector != td->i2c_lut[j - 1])
1454 			td->i2c_lut[j++] = selector;
1455 
1456 		if (v >= v_max)
1457 			break;
1458 	}
1459 	td->i2c_lut_size = j;
1460 
1461 	if (!td->dvco_rate_min)
1462 		dev_err(td->dev, "no opp above DFLL minimum voltage %d mV\n",
1463 			td->soc->cvb->min_millivolts);
1464 	else
1465 		ret = 0;
1466 
1467 out:
1468 	return ret;
1469 }
1470 
1471 /**
1472  * read_dt_param - helper function for reading required parameters from the DT
1473  * @td: DFLL instance
1474  * @param: DT property name
1475  * @dest: output pointer for the value read
1476  *
1477  * Read a required numeric parameter from the DFLL device node, or complain
1478  * if the property doesn't exist. Returns a boolean indicating success for
1479  * easy chaining of multiple calls to this function.
1480  */
1481 static bool read_dt_param(struct tegra_dfll *td, const char *param, u32 *dest)
1482 {
1483 	int err = of_property_read_u32(td->dev->of_node, param, dest);
1484 
1485 	if (err < 0) {
1486 		dev_err(td->dev, "failed to read DT parameter %s: %d\n",
1487 			param, err);
1488 		return false;
1489 	}
1490 
1491 	return true;
1492 }
1493 
1494 /**
1495  * dfll_fetch_i2c_params - query PMIC I2C params from DT & regulator subsystem
1496  * @td: DFLL instance
1497  *
1498  * Read all the parameters required for operation in I2C mode. The parameters
1499  * can originate from the device tree or the regulator subsystem.
1500  * Returns 0 on success or -err on failure.
1501  */
1502 static int dfll_fetch_i2c_params(struct tegra_dfll *td)
1503 {
1504 	struct regmap *regmap;
1505 	struct device *i2c_dev;
1506 	struct i2c_client *i2c_client;
1507 	int vsel_reg, vsel_mask;
1508 	int ret;
1509 
1510 	if (!read_dt_param(td, "nvidia,i2c-fs-rate", &td->i2c_fs_rate))
1511 		return -EINVAL;
1512 
1513 	regmap = regulator_get_regmap(td->vdd_reg);
1514 	i2c_dev = regmap_get_device(regmap);
1515 	i2c_client = to_i2c_client(i2c_dev);
1516 
1517 	td->i2c_slave_addr = i2c_client->addr;
1518 
1519 	ret = regulator_get_hardware_vsel_register(td->vdd_reg,
1520 						   &vsel_reg,
1521 						   &vsel_mask);
1522 	if (ret < 0) {
1523 		dev_err(td->dev,
1524 			"regulator unsuitable for DFLL I2C operation\n");
1525 		return -EINVAL;
1526 	}
1527 	td->i2c_reg = vsel_reg;
1528 
1529 	ret = dfll_build_i2c_lut(td);
1530 	if (ret) {
1531 		dev_err(td->dev, "couldn't build I2C LUT\n");
1532 		return ret;
1533 	}
1534 
1535 	return 0;
1536 }
1537 
1538 /**
1539  * dfll_fetch_common_params - read DFLL parameters from the device tree
1540  * @td: DFLL instance
1541  *
1542  * Read all the DT parameters that are common to both I2C and PWM operation.
1543  * Returns 0 on success or -EINVAL on any failure.
1544  */
1545 static int dfll_fetch_common_params(struct tegra_dfll *td)
1546 {
1547 	bool ok = true;
1548 
1549 	ok &= read_dt_param(td, "nvidia,droop-ctrl", &td->droop_ctrl);
1550 	ok &= read_dt_param(td, "nvidia,sample-rate", &td->sample_rate);
1551 	ok &= read_dt_param(td, "nvidia,force-mode", &td->force_mode);
1552 	ok &= read_dt_param(td, "nvidia,cf", &td->cf);
1553 	ok &= read_dt_param(td, "nvidia,ci", &td->ci);
1554 	ok &= read_dt_param(td, "nvidia,cg", &td->cg);
1555 	td->cg_scale = of_property_read_bool(td->dev->of_node,
1556 					     "nvidia,cg-scale");
1557 
1558 	if (of_property_read_string(td->dev->of_node, "clock-output-names",
1559 				    &td->output_clock_name)) {
1560 		dev_err(td->dev, "missing clock-output-names property\n");
1561 		ok = false;
1562 	}
1563 
1564 	return ok ? 0 : -EINVAL;
1565 }
1566 
1567 /*
1568  * API exported to per-SoC platform drivers
1569  */
1570 
1571 /**
1572  * tegra_dfll_register - probe a Tegra DFLL device
1573  * @pdev: DFLL platform_device *
1574  * @soc: Per-SoC integration and characterization data for this DFLL instance
1575  *
1576  * Probe and initialize a DFLL device instance. Intended to be called
1577  * by a SoC-specific shim driver that passes in per-SoC integration
1578  * and configuration data via @soc. Returns 0 on success or -err on failure.
1579  */
1580 int tegra_dfll_register(struct platform_device *pdev,
1581 			struct tegra_dfll_soc_data *soc)
1582 {
1583 	struct resource *mem;
1584 	struct tegra_dfll *td;
1585 	int ret;
1586 
1587 	if (!soc) {
1588 		dev_err(&pdev->dev, "no tegra_dfll_soc_data provided\n");
1589 		return -EINVAL;
1590 	}
1591 
1592 	td = devm_kzalloc(&pdev->dev, sizeof(*td), GFP_KERNEL);
1593 	if (!td)
1594 		return -ENOMEM;
1595 	td->dev = &pdev->dev;
1596 	platform_set_drvdata(pdev, td);
1597 
1598 	td->soc = soc;
1599 
1600 	td->vdd_reg = devm_regulator_get(td->dev, "vdd-cpu");
1601 	if (IS_ERR(td->vdd_reg)) {
1602 		ret = PTR_ERR(td->vdd_reg);
1603 		if (ret != -EPROBE_DEFER)
1604 			dev_err(td->dev, "couldn't get vdd_cpu regulator: %d\n",
1605 				ret);
1606 
1607 		return ret;
1608 	}
1609 
1610 	td->dvco_rst = devm_reset_control_get(td->dev, "dvco");
1611 	if (IS_ERR(td->dvco_rst)) {
1612 		dev_err(td->dev, "couldn't get dvco reset\n");
1613 		return PTR_ERR(td->dvco_rst);
1614 	}
1615 
1616 	ret = dfll_fetch_common_params(td);
1617 	if (ret) {
1618 		dev_err(td->dev, "couldn't parse device tree parameters\n");
1619 		return ret;
1620 	}
1621 
1622 	ret = dfll_fetch_i2c_params(td);
1623 	if (ret)
1624 		return ret;
1625 
1626 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1627 	if (!mem) {
1628 		dev_err(td->dev, "no control register resource\n");
1629 		return -ENODEV;
1630 	}
1631 
1632 	td->base = devm_ioremap(td->dev, mem->start, resource_size(mem));
1633 	if (!td->base) {
1634 		dev_err(td->dev, "couldn't ioremap DFLL control registers\n");
1635 		return -ENODEV;
1636 	}
1637 
1638 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1639 	if (!mem) {
1640 		dev_err(td->dev, "no i2c_base resource\n");
1641 		return -ENODEV;
1642 	}
1643 
1644 	td->i2c_base = devm_ioremap(td->dev, mem->start, resource_size(mem));
1645 	if (!td->i2c_base) {
1646 		dev_err(td->dev, "couldn't ioremap i2c_base resource\n");
1647 		return -ENODEV;
1648 	}
1649 
1650 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1651 	if (!mem) {
1652 		dev_err(td->dev, "no i2c_controller_base resource\n");
1653 		return -ENODEV;
1654 	}
1655 
1656 	td->i2c_controller_base = devm_ioremap(td->dev, mem->start,
1657 					       resource_size(mem));
1658 	if (!td->i2c_controller_base) {
1659 		dev_err(td->dev,
1660 			"couldn't ioremap i2c_controller_base resource\n");
1661 		return -ENODEV;
1662 	}
1663 
1664 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1665 	if (!mem) {
1666 		dev_err(td->dev, "no lut_base resource\n");
1667 		return -ENODEV;
1668 	}
1669 
1670 	td->lut_base = devm_ioremap(td->dev, mem->start, resource_size(mem));
1671 	if (!td->lut_base) {
1672 		dev_err(td->dev,
1673 			"couldn't ioremap lut_base resource\n");
1674 		return -ENODEV;
1675 	}
1676 
1677 	ret = dfll_init_clks(td);
1678 	if (ret) {
1679 		dev_err(&pdev->dev, "DFLL clock init error\n");
1680 		return ret;
1681 	}
1682 
1683 	/* Enable the clocks and set the device up */
1684 	ret = dfll_init(td);
1685 	if (ret)
1686 		return ret;
1687 
1688 	ret = dfll_register_clk(td);
1689 	if (ret) {
1690 		dev_err(&pdev->dev, "DFLL clk registration failed\n");
1691 		return ret;
1692 	}
1693 
1694 	dfll_debug_init(td);
1695 
1696 	return 0;
1697 }
1698 EXPORT_SYMBOL(tegra_dfll_register);
1699 
1700 /**
1701  * tegra_dfll_unregister - release all of the DFLL driver resources for a device
1702  * @pdev: DFLL platform_device *
1703  *
1704  * Unbind this driver from the DFLL hardware device represented by
1705  * @pdev. The DFLL must be disabled for this to succeed. Returns a
1706  * soc pointer upon success or -EBUSY if the DFLL is still active.
1707  */
1708 struct tegra_dfll_soc_data *tegra_dfll_unregister(struct platform_device *pdev)
1709 {
1710 	struct tegra_dfll *td = platform_get_drvdata(pdev);
1711 
1712 	/* Try to prevent removal while the DFLL is active */
1713 	if (td->mode != DFLL_DISABLED) {
1714 		dev_err(&pdev->dev,
1715 			"must disable DFLL before removing driver\n");
1716 		return ERR_PTR(-EBUSY);
1717 	}
1718 
1719 	debugfs_remove_recursive(td->debugfs_dir);
1720 
1721 	dfll_unregister_clk(td);
1722 	pm_runtime_disable(&pdev->dev);
1723 
1724 	clk_unprepare(td->ref_clk);
1725 	clk_unprepare(td->soc_clk);
1726 	clk_unprepare(td->i2c_clk);
1727 
1728 	reset_control_assert(td->dvco_rst);
1729 
1730 	return td->soc;
1731 }
1732 EXPORT_SYMBOL(tegra_dfll_unregister);
1733