1 /* 2 * clk-dfll.c - Tegra DFLL clock source common code 3 * 4 * Copyright (C) 2012-2014 NVIDIA Corporation. All rights reserved. 5 * 6 * Aleksandr Frid <afrid@nvidia.com> 7 * Paul Walmsley <pwalmsley@nvidia.com> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but WITHOUT 14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 16 * more details. 17 * 18 * This library is for the DVCO and DFLL IP blocks on the Tegra124 19 * SoC. These IP blocks together are also known at NVIDIA as 20 * "CL-DVFS". To try to avoid confusion, this code refers to them 21 * collectively as the "DFLL." 22 * 23 * The DFLL is a root clocksource which tolerates some amount of 24 * supply voltage noise. Tegra124 uses it to clock the fast CPU 25 * complex when the target CPU speed is above a particular rate. The 26 * DFLL can be operated in either open-loop mode or closed-loop mode. 27 * In open-loop mode, the DFLL generates an output clock appropriate 28 * to the supply voltage. In closed-loop mode, when configured with a 29 * target frequency, the DFLL minimizes supply voltage while 30 * delivering an average frequency equal to the target. 31 * 32 * Devices clocked by the DFLL must be able to tolerate frequency 33 * variation. In the case of the CPU, it's important to note that the 34 * CPU cycle time will vary. This has implications for 35 * performance-measurement code and any code that relies on the CPU 36 * cycle time to delay for a certain length of time. 37 * 38 */ 39 40 #include <linux/clk.h> 41 #include <linux/clk-provider.h> 42 #include <linux/debugfs.h> 43 #include <linux/device.h> 44 #include <linux/err.h> 45 #include <linux/i2c.h> 46 #include <linux/io.h> 47 #include <linux/kernel.h> 48 #include <linux/module.h> 49 #include <linux/of.h> 50 #include <linux/pm_opp.h> 51 #include <linux/pm_runtime.h> 52 #include <linux/regmap.h> 53 #include <linux/regulator/consumer.h> 54 #include <linux/reset.h> 55 #include <linux/seq_file.h> 56 57 #include "clk-dfll.h" 58 #include "cvb.h" 59 60 /* 61 * DFLL control registers - access via dfll_{readl,writel} 62 */ 63 64 /* DFLL_CTRL: DFLL control register */ 65 #define DFLL_CTRL 0x00 66 #define DFLL_CTRL_MODE_MASK 0x03 67 68 /* DFLL_CONFIG: DFLL sample rate control */ 69 #define DFLL_CONFIG 0x04 70 #define DFLL_CONFIG_DIV_MASK 0xff 71 #define DFLL_CONFIG_DIV_PRESCALE 32 72 73 /* DFLL_PARAMS: tuning coefficients for closed loop integrator */ 74 #define DFLL_PARAMS 0x08 75 #define DFLL_PARAMS_CG_SCALE (0x1 << 24) 76 #define DFLL_PARAMS_FORCE_MODE_SHIFT 22 77 #define DFLL_PARAMS_FORCE_MODE_MASK (0x3 << DFLL_PARAMS_FORCE_MODE_SHIFT) 78 #define DFLL_PARAMS_CF_PARAM_SHIFT 16 79 #define DFLL_PARAMS_CF_PARAM_MASK (0x3f << DFLL_PARAMS_CF_PARAM_SHIFT) 80 #define DFLL_PARAMS_CI_PARAM_SHIFT 8 81 #define DFLL_PARAMS_CI_PARAM_MASK (0x7 << DFLL_PARAMS_CI_PARAM_SHIFT) 82 #define DFLL_PARAMS_CG_PARAM_SHIFT 0 83 #define DFLL_PARAMS_CG_PARAM_MASK (0xff << DFLL_PARAMS_CG_PARAM_SHIFT) 84 85 /* DFLL_TUNE0: delay line configuration register 0 */ 86 #define DFLL_TUNE0 0x0c 87 88 /* DFLL_TUNE1: delay line configuration register 1 */ 89 #define DFLL_TUNE1 0x10 90 91 /* DFLL_FREQ_REQ: target DFLL frequency control */ 92 #define DFLL_FREQ_REQ 0x14 93 #define DFLL_FREQ_REQ_FORCE_ENABLE (0x1 << 28) 94 #define DFLL_FREQ_REQ_FORCE_SHIFT 16 95 #define DFLL_FREQ_REQ_FORCE_MASK (0xfff << DFLL_FREQ_REQ_FORCE_SHIFT) 96 #define FORCE_MAX 2047 97 #define FORCE_MIN -2048 98 #define DFLL_FREQ_REQ_SCALE_SHIFT 8 99 #define DFLL_FREQ_REQ_SCALE_MASK (0xff << DFLL_FREQ_REQ_SCALE_SHIFT) 100 #define DFLL_FREQ_REQ_SCALE_MAX 256 101 #define DFLL_FREQ_REQ_FREQ_VALID (0x1 << 7) 102 #define DFLL_FREQ_REQ_MULT_SHIFT 0 103 #define DFLL_FREQ_REG_MULT_MASK (0x7f << DFLL_FREQ_REQ_MULT_SHIFT) 104 #define FREQ_MAX 127 105 106 /* DFLL_DROOP_CTRL: droop prevention control */ 107 #define DFLL_DROOP_CTRL 0x1c 108 109 /* DFLL_OUTPUT_CFG: closed loop mode control registers */ 110 /* NOTE: access via dfll_i2c_{readl,writel} */ 111 #define DFLL_OUTPUT_CFG 0x20 112 #define DFLL_OUTPUT_CFG_I2C_ENABLE (0x1 << 30) 113 #define OUT_MASK 0x3f 114 #define DFLL_OUTPUT_CFG_SAFE_SHIFT 24 115 #define DFLL_OUTPUT_CFG_SAFE_MASK \ 116 (OUT_MASK << DFLL_OUTPUT_CFG_SAFE_SHIFT) 117 #define DFLL_OUTPUT_CFG_MAX_SHIFT 16 118 #define DFLL_OUTPUT_CFG_MAX_MASK \ 119 (OUT_MASK << DFLL_OUTPUT_CFG_MAX_SHIFT) 120 #define DFLL_OUTPUT_CFG_MIN_SHIFT 8 121 #define DFLL_OUTPUT_CFG_MIN_MASK \ 122 (OUT_MASK << DFLL_OUTPUT_CFG_MIN_SHIFT) 123 #define DFLL_OUTPUT_CFG_PWM_DELTA (0x1 << 7) 124 #define DFLL_OUTPUT_CFG_PWM_ENABLE (0x1 << 6) 125 #define DFLL_OUTPUT_CFG_PWM_DIV_SHIFT 0 126 #define DFLL_OUTPUT_CFG_PWM_DIV_MASK \ 127 (OUT_MASK << DFLL_OUTPUT_CFG_PWM_DIV_SHIFT) 128 129 /* DFLL_OUTPUT_FORCE: closed loop mode voltage forcing control */ 130 #define DFLL_OUTPUT_FORCE 0x24 131 #define DFLL_OUTPUT_FORCE_ENABLE (0x1 << 6) 132 #define DFLL_OUTPUT_FORCE_VALUE_SHIFT 0 133 #define DFLL_OUTPUT_FORCE_VALUE_MASK \ 134 (OUT_MASK << DFLL_OUTPUT_FORCE_VALUE_SHIFT) 135 136 /* DFLL_MONITOR_CTRL: internal monitor data source control */ 137 #define DFLL_MONITOR_CTRL 0x28 138 #define DFLL_MONITOR_CTRL_FREQ 6 139 140 /* DFLL_MONITOR_DATA: internal monitor data output */ 141 #define DFLL_MONITOR_DATA 0x2c 142 #define DFLL_MONITOR_DATA_NEW_MASK (0x1 << 16) 143 #define DFLL_MONITOR_DATA_VAL_SHIFT 0 144 #define DFLL_MONITOR_DATA_VAL_MASK (0xFFFF << DFLL_MONITOR_DATA_VAL_SHIFT) 145 146 /* 147 * I2C output control registers - access via dfll_i2c_{readl,writel} 148 */ 149 150 /* DFLL_I2C_CFG: I2C controller configuration register */ 151 #define DFLL_I2C_CFG 0x40 152 #define DFLL_I2C_CFG_ARB_ENABLE (0x1 << 20) 153 #define DFLL_I2C_CFG_HS_CODE_SHIFT 16 154 #define DFLL_I2C_CFG_HS_CODE_MASK (0x7 << DFLL_I2C_CFG_HS_CODE_SHIFT) 155 #define DFLL_I2C_CFG_PACKET_ENABLE (0x1 << 15) 156 #define DFLL_I2C_CFG_SIZE_SHIFT 12 157 #define DFLL_I2C_CFG_SIZE_MASK (0x7 << DFLL_I2C_CFG_SIZE_SHIFT) 158 #define DFLL_I2C_CFG_SLAVE_ADDR_10 (0x1 << 10) 159 #define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT 1 160 #define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT 0 161 162 /* DFLL_I2C_VDD_REG_ADDR: PMIC I2C address for closed loop mode */ 163 #define DFLL_I2C_VDD_REG_ADDR 0x44 164 165 /* DFLL_I2C_STS: I2C controller status */ 166 #define DFLL_I2C_STS 0x48 167 #define DFLL_I2C_STS_I2C_LAST_SHIFT 1 168 #define DFLL_I2C_STS_I2C_REQ_PENDING 0x1 169 170 /* DFLL_INTR_STS: DFLL interrupt status register */ 171 #define DFLL_INTR_STS 0x5c 172 173 /* DFLL_INTR_EN: DFLL interrupt enable register */ 174 #define DFLL_INTR_EN 0x60 175 #define DFLL_INTR_MIN_MASK 0x1 176 #define DFLL_INTR_MAX_MASK 0x2 177 178 /* 179 * Integrated I2C controller registers - relative to td->i2c_controller_base 180 */ 181 182 /* DFLL_I2C_CLK_DIVISOR: I2C controller clock divisor */ 183 #define DFLL_I2C_CLK_DIVISOR 0x6c 184 #define DFLL_I2C_CLK_DIVISOR_MASK 0xffff 185 #define DFLL_I2C_CLK_DIVISOR_FS_SHIFT 16 186 #define DFLL_I2C_CLK_DIVISOR_HS_SHIFT 0 187 #define DFLL_I2C_CLK_DIVISOR_PREDIV 8 188 #define DFLL_I2C_CLK_DIVISOR_HSMODE_PREDIV 12 189 190 /* 191 * Other constants 192 */ 193 194 /* MAX_DFLL_VOLTAGES: number of LUT entries in the DFLL IP block */ 195 #define MAX_DFLL_VOLTAGES 33 196 197 /* 198 * REF_CLK_CYC_PER_DVCO_SAMPLE: the number of ref_clk cycles that the hardware 199 * integrates the DVCO counter over - used for debug rate monitoring and 200 * droop control 201 */ 202 #define REF_CLK_CYC_PER_DVCO_SAMPLE 4 203 204 /* 205 * REF_CLOCK_RATE: the DFLL reference clock rate currently supported by this 206 * driver, in Hz 207 */ 208 #define REF_CLOCK_RATE 51000000UL 209 210 #define DVCO_RATE_TO_MULT(rate, ref_rate) ((rate) / ((ref_rate) / 2)) 211 #define MULT_TO_DVCO_RATE(mult, ref_rate) ((mult) * ((ref_rate) / 2)) 212 213 /** 214 * enum dfll_ctrl_mode - DFLL hardware operating mode 215 * @DFLL_UNINITIALIZED: (uninitialized state - not in hardware bitfield) 216 * @DFLL_DISABLED: DFLL not generating an output clock 217 * @DFLL_OPEN_LOOP: DVCO running, but DFLL not adjusting voltage 218 * @DFLL_CLOSED_LOOP: DVCO running, and DFLL adjusting voltage to match 219 * the requested rate 220 * 221 * The integer corresponding to the last two states, minus one, is 222 * written to the DFLL hardware to change operating modes. 223 */ 224 enum dfll_ctrl_mode { 225 DFLL_UNINITIALIZED = 0, 226 DFLL_DISABLED = 1, 227 DFLL_OPEN_LOOP = 2, 228 DFLL_CLOSED_LOOP = 3, 229 }; 230 231 /** 232 * enum dfll_tune_range - voltage range that the driver believes it's in 233 * @DFLL_TUNE_UNINITIALIZED: DFLL tuning not yet programmed 234 * @DFLL_TUNE_LOW: DFLL in the low-voltage range (or open-loop mode) 235 * 236 * Some DFLL tuning parameters may need to change depending on the 237 * DVCO's voltage; these states represent the ranges that the driver 238 * supports. These are software states; these values are never 239 * written into registers. 240 */ 241 enum dfll_tune_range { 242 DFLL_TUNE_UNINITIALIZED = 0, 243 DFLL_TUNE_LOW = 1, 244 }; 245 246 /** 247 * struct dfll_rate_req - target DFLL rate request data 248 * @rate: target frequency, after the postscaling 249 * @dvco_target_rate: target frequency, after the postscaling 250 * @lut_index: LUT index at which voltage the dvco_target_rate will be reached 251 * @mult_bits: value to program to the MULT bits of the DFLL_FREQ_REQ register 252 * @scale_bits: value to program to the SCALE bits of the DFLL_FREQ_REQ register 253 */ 254 struct dfll_rate_req { 255 unsigned long rate; 256 unsigned long dvco_target_rate; 257 int lut_index; 258 u8 mult_bits; 259 u8 scale_bits; 260 }; 261 262 struct tegra_dfll { 263 struct device *dev; 264 struct tegra_dfll_soc_data *soc; 265 266 void __iomem *base; 267 void __iomem *i2c_base; 268 void __iomem *i2c_controller_base; 269 void __iomem *lut_base; 270 271 struct regulator *vdd_reg; 272 struct clk *soc_clk; 273 struct clk *ref_clk; 274 struct clk *i2c_clk; 275 struct clk *dfll_clk; 276 struct reset_control *dvco_rst; 277 unsigned long ref_rate; 278 unsigned long i2c_clk_rate; 279 unsigned long dvco_rate_min; 280 281 enum dfll_ctrl_mode mode; 282 enum dfll_tune_range tune_range; 283 struct dentry *debugfs_dir; 284 struct clk_hw dfll_clk_hw; 285 const char *output_clock_name; 286 struct dfll_rate_req last_req; 287 unsigned long last_unrounded_rate; 288 289 /* Parameters from DT */ 290 u32 droop_ctrl; 291 u32 sample_rate; 292 u32 force_mode; 293 u32 cf; 294 u32 ci; 295 u32 cg; 296 bool cg_scale; 297 298 /* I2C interface parameters */ 299 u32 i2c_fs_rate; 300 u32 i2c_reg; 301 u32 i2c_slave_addr; 302 303 /* i2c_lut array entries are regulator framework selectors */ 304 unsigned i2c_lut[MAX_DFLL_VOLTAGES]; 305 int i2c_lut_size; 306 u8 lut_min, lut_max, lut_safe; 307 }; 308 309 #define clk_hw_to_dfll(_hw) container_of(_hw, struct tegra_dfll, dfll_clk_hw) 310 311 /* mode_name: map numeric DFLL modes to names for friendly console messages */ 312 static const char * const mode_name[] = { 313 [DFLL_UNINITIALIZED] = "uninitialized", 314 [DFLL_DISABLED] = "disabled", 315 [DFLL_OPEN_LOOP] = "open_loop", 316 [DFLL_CLOSED_LOOP] = "closed_loop", 317 }; 318 319 /* 320 * Register accessors 321 */ 322 323 static inline u32 dfll_readl(struct tegra_dfll *td, u32 offs) 324 { 325 return __raw_readl(td->base + offs); 326 } 327 328 static inline void dfll_writel(struct tegra_dfll *td, u32 val, u32 offs) 329 { 330 WARN_ON(offs >= DFLL_I2C_CFG); 331 __raw_writel(val, td->base + offs); 332 } 333 334 static inline void dfll_wmb(struct tegra_dfll *td) 335 { 336 dfll_readl(td, DFLL_CTRL); 337 } 338 339 /* I2C output control registers - for addresses above DFLL_I2C_CFG */ 340 341 static inline u32 dfll_i2c_readl(struct tegra_dfll *td, u32 offs) 342 { 343 return __raw_readl(td->i2c_base + offs); 344 } 345 346 static inline void dfll_i2c_writel(struct tegra_dfll *td, u32 val, u32 offs) 347 { 348 __raw_writel(val, td->i2c_base + offs); 349 } 350 351 static inline void dfll_i2c_wmb(struct tegra_dfll *td) 352 { 353 dfll_i2c_readl(td, DFLL_I2C_CFG); 354 } 355 356 /** 357 * dfll_is_running - is the DFLL currently generating a clock? 358 * @td: DFLL instance 359 * 360 * If the DFLL is currently generating an output clock signal, return 361 * true; otherwise return false. 362 */ 363 static bool dfll_is_running(struct tegra_dfll *td) 364 { 365 return td->mode >= DFLL_OPEN_LOOP; 366 } 367 368 /* 369 * Runtime PM suspend/resume callbacks 370 */ 371 372 /** 373 * tegra_dfll_runtime_resume - enable all clocks needed by the DFLL 374 * @dev: DFLL device * 375 * 376 * Enable all clocks needed by the DFLL. Assumes that clk_prepare() 377 * has already been called on all the clocks. 378 * 379 * XXX Should also handle context restore when returning from off. 380 */ 381 int tegra_dfll_runtime_resume(struct device *dev) 382 { 383 struct tegra_dfll *td = dev_get_drvdata(dev); 384 int ret; 385 386 ret = clk_enable(td->ref_clk); 387 if (ret) { 388 dev_err(dev, "could not enable ref clock: %d\n", ret); 389 return ret; 390 } 391 392 ret = clk_enable(td->soc_clk); 393 if (ret) { 394 dev_err(dev, "could not enable register clock: %d\n", ret); 395 clk_disable(td->ref_clk); 396 return ret; 397 } 398 399 ret = clk_enable(td->i2c_clk); 400 if (ret) { 401 dev_err(dev, "could not enable i2c clock: %d\n", ret); 402 clk_disable(td->soc_clk); 403 clk_disable(td->ref_clk); 404 return ret; 405 } 406 407 return 0; 408 } 409 EXPORT_SYMBOL(tegra_dfll_runtime_resume); 410 411 /** 412 * tegra_dfll_runtime_suspend - disable all clocks needed by the DFLL 413 * @dev: DFLL device * 414 * 415 * Disable all clocks needed by the DFLL. Assumes that other code 416 * will later call clk_unprepare(). 417 */ 418 int tegra_dfll_runtime_suspend(struct device *dev) 419 { 420 struct tegra_dfll *td = dev_get_drvdata(dev); 421 422 clk_disable(td->ref_clk); 423 clk_disable(td->soc_clk); 424 clk_disable(td->i2c_clk); 425 426 return 0; 427 } 428 EXPORT_SYMBOL(tegra_dfll_runtime_suspend); 429 430 /* 431 * DFLL tuning operations (per-voltage-range tuning settings) 432 */ 433 434 /** 435 * dfll_tune_low - tune to DFLL and CPU settings valid for any voltage 436 * @td: DFLL instance 437 * 438 * Tune the DFLL oscillator parameters and the CPU clock shaper for 439 * the low-voltage range. These settings are valid for any voltage, 440 * but may not be optimal. 441 */ 442 static void dfll_tune_low(struct tegra_dfll *td) 443 { 444 td->tune_range = DFLL_TUNE_LOW; 445 446 dfll_writel(td, td->soc->cvb->cpu_dfll_data.tune0_low, DFLL_TUNE0); 447 dfll_writel(td, td->soc->cvb->cpu_dfll_data.tune1, DFLL_TUNE1); 448 dfll_wmb(td); 449 450 if (td->soc->set_clock_trimmers_low) 451 td->soc->set_clock_trimmers_low(); 452 } 453 454 /* 455 * Output clock scaler helpers 456 */ 457 458 /** 459 * dfll_scale_dvco_rate - calculate scaled rate from the DVCO rate 460 * @scale_bits: clock scaler value (bits in the DFLL_FREQ_REQ_SCALE field) 461 * @dvco_rate: the DVCO rate 462 * 463 * Apply the same scaling formula that the DFLL hardware uses to scale 464 * the DVCO rate. 465 */ 466 static unsigned long dfll_scale_dvco_rate(int scale_bits, 467 unsigned long dvco_rate) 468 { 469 return (u64)dvco_rate * (scale_bits + 1) / DFLL_FREQ_REQ_SCALE_MAX; 470 } 471 472 /* 473 * DFLL mode switching 474 */ 475 476 /** 477 * dfll_set_mode - change the DFLL control mode 478 * @td: DFLL instance 479 * @mode: DFLL control mode (see enum dfll_ctrl_mode) 480 * 481 * Change the DFLL's operating mode between disabled, open-loop mode, 482 * and closed-loop mode, or vice versa. 483 */ 484 static void dfll_set_mode(struct tegra_dfll *td, 485 enum dfll_ctrl_mode mode) 486 { 487 td->mode = mode; 488 dfll_writel(td, mode - 1, DFLL_CTRL); 489 dfll_wmb(td); 490 } 491 492 /* 493 * DFLL-to-I2C controller interface 494 */ 495 496 /** 497 * dfll_i2c_set_output_enabled - enable/disable I2C PMIC voltage requests 498 * @td: DFLL instance 499 * @enable: whether to enable or disable the I2C voltage requests 500 * 501 * Set the master enable control for I2C control value updates. If disabled, 502 * then I2C control messages are inhibited, regardless of the DFLL mode. 503 */ 504 static int dfll_i2c_set_output_enabled(struct tegra_dfll *td, bool enable) 505 { 506 u32 val; 507 508 val = dfll_i2c_readl(td, DFLL_OUTPUT_CFG); 509 510 if (enable) 511 val |= DFLL_OUTPUT_CFG_I2C_ENABLE; 512 else 513 val &= ~DFLL_OUTPUT_CFG_I2C_ENABLE; 514 515 dfll_i2c_writel(td, val, DFLL_OUTPUT_CFG); 516 dfll_i2c_wmb(td); 517 518 return 0; 519 } 520 521 /** 522 * dfll_load_lut - load the voltage lookup table 523 * @td: struct tegra_dfll * 524 * 525 * Load the voltage-to-PMIC register value lookup table into the DFLL 526 * IP block memory. Look-up tables can be loaded at any time. 527 */ 528 static void dfll_load_i2c_lut(struct tegra_dfll *td) 529 { 530 int i, lut_index; 531 u32 val; 532 533 for (i = 0; i < MAX_DFLL_VOLTAGES; i++) { 534 if (i < td->lut_min) 535 lut_index = td->lut_min; 536 else if (i > td->lut_max) 537 lut_index = td->lut_max; 538 else 539 lut_index = i; 540 541 val = regulator_list_hardware_vsel(td->vdd_reg, 542 td->i2c_lut[lut_index]); 543 __raw_writel(val, td->lut_base + i * 4); 544 } 545 546 dfll_i2c_wmb(td); 547 } 548 549 /** 550 * dfll_init_i2c_if - set up the DFLL's DFLL-I2C interface 551 * @td: DFLL instance 552 * 553 * During DFLL driver initialization, program the DFLL-I2C interface 554 * with the PMU slave address, vdd register offset, and transfer mode. 555 * This data is used by the DFLL to automatically construct I2C 556 * voltage-set commands, which are then passed to the DFLL's internal 557 * I2C controller. 558 */ 559 static void dfll_init_i2c_if(struct tegra_dfll *td) 560 { 561 u32 val; 562 563 if (td->i2c_slave_addr > 0x7f) { 564 val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT; 565 val |= DFLL_I2C_CFG_SLAVE_ADDR_10; 566 } else { 567 val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT; 568 } 569 val |= DFLL_I2C_CFG_SIZE_MASK; 570 val |= DFLL_I2C_CFG_ARB_ENABLE; 571 dfll_i2c_writel(td, val, DFLL_I2C_CFG); 572 573 dfll_i2c_writel(td, td->i2c_reg, DFLL_I2C_VDD_REG_ADDR); 574 575 val = DIV_ROUND_UP(td->i2c_clk_rate, td->i2c_fs_rate * 8); 576 BUG_ON(!val || (val > DFLL_I2C_CLK_DIVISOR_MASK)); 577 val = (val - 1) << DFLL_I2C_CLK_DIVISOR_FS_SHIFT; 578 579 /* default hs divisor just in case */ 580 val |= 1 << DFLL_I2C_CLK_DIVISOR_HS_SHIFT; 581 __raw_writel(val, td->i2c_controller_base + DFLL_I2C_CLK_DIVISOR); 582 dfll_i2c_wmb(td); 583 } 584 585 /** 586 * dfll_init_out_if - prepare DFLL-to-PMIC interface 587 * @td: DFLL instance 588 * 589 * During DFLL driver initialization or resume from context loss, 590 * disable the I2C command output to the PMIC, set safe voltage and 591 * output limits, and disable and clear limit interrupts. 592 */ 593 static void dfll_init_out_if(struct tegra_dfll *td) 594 { 595 u32 val; 596 597 td->lut_min = 0; 598 td->lut_max = td->i2c_lut_size - 1; 599 td->lut_safe = td->lut_min + 1; 600 601 dfll_i2c_writel(td, 0, DFLL_OUTPUT_CFG); 602 val = (td->lut_safe << DFLL_OUTPUT_CFG_SAFE_SHIFT) | 603 (td->lut_max << DFLL_OUTPUT_CFG_MAX_SHIFT) | 604 (td->lut_min << DFLL_OUTPUT_CFG_MIN_SHIFT); 605 dfll_i2c_writel(td, val, DFLL_OUTPUT_CFG); 606 dfll_i2c_wmb(td); 607 608 dfll_writel(td, 0, DFLL_OUTPUT_FORCE); 609 dfll_i2c_writel(td, 0, DFLL_INTR_EN); 610 dfll_i2c_writel(td, DFLL_INTR_MAX_MASK | DFLL_INTR_MIN_MASK, 611 DFLL_INTR_STS); 612 613 dfll_load_i2c_lut(td); 614 dfll_init_i2c_if(td); 615 } 616 617 /* 618 * Set/get the DFLL's targeted output clock rate 619 */ 620 621 /** 622 * find_lut_index_for_rate - determine I2C LUT index for given DFLL rate 623 * @td: DFLL instance 624 * @rate: clock rate 625 * 626 * Determines the index of a I2C LUT entry for a voltage that approximately 627 * produces the given DFLL clock rate. This is used when forcing a value 628 * to the integrator during rate changes. Returns -ENOENT if a suitable 629 * LUT index is not found. 630 */ 631 static int find_lut_index_for_rate(struct tegra_dfll *td, unsigned long rate) 632 { 633 struct dev_pm_opp *opp; 634 int i, uv; 635 636 opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate); 637 if (IS_ERR(opp)) 638 return PTR_ERR(opp); 639 640 uv = dev_pm_opp_get_voltage(opp); 641 dev_pm_opp_put(opp); 642 643 for (i = 0; i < td->i2c_lut_size; i++) { 644 if (regulator_list_voltage(td->vdd_reg, td->i2c_lut[i]) == uv) 645 return i; 646 } 647 648 return -ENOENT; 649 } 650 651 /** 652 * dfll_calculate_rate_request - calculate DFLL parameters for a given rate 653 * @td: DFLL instance 654 * @req: DFLL-rate-request structure 655 * @rate: the desired DFLL rate 656 * 657 * Populate the DFLL-rate-request record @req fields with the scale_bits 658 * and mult_bits fields, based on the target input rate. Returns 0 upon 659 * success, or -EINVAL if the requested rate in req->rate is too high 660 * or low for the DFLL to generate. 661 */ 662 static int dfll_calculate_rate_request(struct tegra_dfll *td, 663 struct dfll_rate_req *req, 664 unsigned long rate) 665 { 666 u32 val; 667 668 /* 669 * If requested rate is below the minimum DVCO rate, active the scaler. 670 * In the future the DVCO minimum voltage should be selected based on 671 * chip temperature and the actual minimum rate should be calibrated 672 * at runtime. 673 */ 674 req->scale_bits = DFLL_FREQ_REQ_SCALE_MAX - 1; 675 if (rate < td->dvco_rate_min) { 676 int scale; 677 678 scale = DIV_ROUND_CLOSEST(rate / 1000 * DFLL_FREQ_REQ_SCALE_MAX, 679 td->dvco_rate_min / 1000); 680 if (!scale) { 681 dev_err(td->dev, "%s: Rate %lu is too low\n", 682 __func__, rate); 683 return -EINVAL; 684 } 685 req->scale_bits = scale - 1; 686 rate = td->dvco_rate_min; 687 } 688 689 /* Convert requested rate into frequency request and scale settings */ 690 val = DVCO_RATE_TO_MULT(rate, td->ref_rate); 691 if (val > FREQ_MAX) { 692 dev_err(td->dev, "%s: Rate %lu is above dfll range\n", 693 __func__, rate); 694 return -EINVAL; 695 } 696 req->mult_bits = val; 697 req->dvco_target_rate = MULT_TO_DVCO_RATE(req->mult_bits, td->ref_rate); 698 req->rate = dfll_scale_dvco_rate(req->scale_bits, 699 req->dvco_target_rate); 700 req->lut_index = find_lut_index_for_rate(td, req->dvco_target_rate); 701 if (req->lut_index < 0) 702 return req->lut_index; 703 704 return 0; 705 } 706 707 /** 708 * dfll_set_frequency_request - start the frequency change operation 709 * @td: DFLL instance 710 * @req: rate request structure 711 * 712 * Tell the DFLL to try to change its output frequency to the 713 * frequency represented by @req. DFLL must be in closed-loop mode. 714 */ 715 static void dfll_set_frequency_request(struct tegra_dfll *td, 716 struct dfll_rate_req *req) 717 { 718 u32 val = 0; 719 int force_val; 720 int coef = 128; /* FIXME: td->cg_scale? */; 721 722 force_val = (req->lut_index - td->lut_safe) * coef / td->cg; 723 force_val = clamp(force_val, FORCE_MIN, FORCE_MAX); 724 725 val |= req->mult_bits << DFLL_FREQ_REQ_MULT_SHIFT; 726 val |= req->scale_bits << DFLL_FREQ_REQ_SCALE_SHIFT; 727 val |= ((u32)force_val << DFLL_FREQ_REQ_FORCE_SHIFT) & 728 DFLL_FREQ_REQ_FORCE_MASK; 729 val |= DFLL_FREQ_REQ_FREQ_VALID | DFLL_FREQ_REQ_FORCE_ENABLE; 730 731 dfll_writel(td, val, DFLL_FREQ_REQ); 732 dfll_wmb(td); 733 } 734 735 /** 736 * tegra_dfll_request_rate - set the next rate for the DFLL to tune to 737 * @td: DFLL instance 738 * @rate: clock rate to target 739 * 740 * Convert the requested clock rate @rate into the DFLL control logic 741 * settings. In closed-loop mode, update new settings immediately to 742 * adjust DFLL output rate accordingly. Otherwise, just save them 743 * until the next switch to closed loop. Returns 0 upon success, 744 * -EPERM if the DFLL driver has not yet been initialized, or -EINVAL 745 * if @rate is outside the DFLL's tunable range. 746 */ 747 static int dfll_request_rate(struct tegra_dfll *td, unsigned long rate) 748 { 749 int ret; 750 struct dfll_rate_req req; 751 752 if (td->mode == DFLL_UNINITIALIZED) { 753 dev_err(td->dev, "%s: Cannot set DFLL rate in %s mode\n", 754 __func__, mode_name[td->mode]); 755 return -EPERM; 756 } 757 758 ret = dfll_calculate_rate_request(td, &req, rate); 759 if (ret) 760 return ret; 761 762 td->last_unrounded_rate = rate; 763 td->last_req = req; 764 765 if (td->mode == DFLL_CLOSED_LOOP) 766 dfll_set_frequency_request(td, &td->last_req); 767 768 return 0; 769 } 770 771 /* 772 * DFLL enable/disable & open-loop <-> closed-loop transitions 773 */ 774 775 /** 776 * dfll_disable - switch from open-loop mode to disabled mode 777 * @td: DFLL instance 778 * 779 * Switch from OPEN_LOOP state to DISABLED state. Returns 0 upon success 780 * or -EPERM if the DFLL is not currently in open-loop mode. 781 */ 782 static int dfll_disable(struct tegra_dfll *td) 783 { 784 if (td->mode != DFLL_OPEN_LOOP) { 785 dev_err(td->dev, "cannot disable DFLL in %s mode\n", 786 mode_name[td->mode]); 787 return -EINVAL; 788 } 789 790 dfll_set_mode(td, DFLL_DISABLED); 791 pm_runtime_put_sync(td->dev); 792 793 return 0; 794 } 795 796 /** 797 * dfll_enable - switch a disabled DFLL to open-loop mode 798 * @td: DFLL instance 799 * 800 * Switch from DISABLED state to OPEN_LOOP state. Returns 0 upon success 801 * or -EPERM if the DFLL is not currently disabled. 802 */ 803 static int dfll_enable(struct tegra_dfll *td) 804 { 805 if (td->mode != DFLL_DISABLED) { 806 dev_err(td->dev, "cannot enable DFLL in %s mode\n", 807 mode_name[td->mode]); 808 return -EPERM; 809 } 810 811 pm_runtime_get_sync(td->dev); 812 dfll_set_mode(td, DFLL_OPEN_LOOP); 813 814 return 0; 815 } 816 817 /** 818 * dfll_set_open_loop_config - prepare to switch to open-loop mode 819 * @td: DFLL instance 820 * 821 * Prepare to switch the DFLL to open-loop mode. This switches the 822 * DFLL to the low-voltage tuning range, ensures that I2C output 823 * forcing is disabled, and disables the output clock rate scaler. 824 * The DFLL's low-voltage tuning range parameters must be 825 * characterized to keep the downstream device stable at any DVCO 826 * input voltage. No return value. 827 */ 828 static void dfll_set_open_loop_config(struct tegra_dfll *td) 829 { 830 u32 val; 831 832 /* always tune low (safe) in open loop */ 833 if (td->tune_range != DFLL_TUNE_LOW) 834 dfll_tune_low(td); 835 836 val = dfll_readl(td, DFLL_FREQ_REQ); 837 val |= DFLL_FREQ_REQ_SCALE_MASK; 838 val &= ~DFLL_FREQ_REQ_FORCE_ENABLE; 839 dfll_writel(td, val, DFLL_FREQ_REQ); 840 dfll_wmb(td); 841 } 842 843 /** 844 * tegra_dfll_lock - switch from open-loop to closed-loop mode 845 * @td: DFLL instance 846 * 847 * Switch from OPEN_LOOP state to CLOSED_LOOP state. Returns 0 upon success, 848 * -EINVAL if the DFLL's target rate hasn't been set yet, or -EPERM if the 849 * DFLL is not currently in open-loop mode. 850 */ 851 static int dfll_lock(struct tegra_dfll *td) 852 { 853 struct dfll_rate_req *req = &td->last_req; 854 855 switch (td->mode) { 856 case DFLL_CLOSED_LOOP: 857 return 0; 858 859 case DFLL_OPEN_LOOP: 860 if (req->rate == 0) { 861 dev_err(td->dev, "%s: Cannot lock DFLL at rate 0\n", 862 __func__); 863 return -EINVAL; 864 } 865 866 dfll_i2c_set_output_enabled(td, true); 867 dfll_set_mode(td, DFLL_CLOSED_LOOP); 868 dfll_set_frequency_request(td, req); 869 return 0; 870 871 default: 872 BUG_ON(td->mode > DFLL_CLOSED_LOOP); 873 dev_err(td->dev, "%s: Cannot lock DFLL in %s mode\n", 874 __func__, mode_name[td->mode]); 875 return -EPERM; 876 } 877 } 878 879 /** 880 * tegra_dfll_unlock - switch from closed-loop to open-loop mode 881 * @td: DFLL instance 882 * 883 * Switch from CLOSED_LOOP state to OPEN_LOOP state. Returns 0 upon success, 884 * or -EPERM if the DFLL is not currently in open-loop mode. 885 */ 886 static int dfll_unlock(struct tegra_dfll *td) 887 { 888 switch (td->mode) { 889 case DFLL_CLOSED_LOOP: 890 dfll_set_open_loop_config(td); 891 dfll_set_mode(td, DFLL_OPEN_LOOP); 892 dfll_i2c_set_output_enabled(td, false); 893 return 0; 894 895 case DFLL_OPEN_LOOP: 896 return 0; 897 898 default: 899 BUG_ON(td->mode > DFLL_CLOSED_LOOP); 900 dev_err(td->dev, "%s: Cannot unlock DFLL in %s mode\n", 901 __func__, mode_name[td->mode]); 902 return -EPERM; 903 } 904 } 905 906 /* 907 * Clock framework integration 908 * 909 * When the DFLL is being controlled by the CCF, always enter closed loop 910 * mode when the clk is enabled. This requires that a DFLL rate request 911 * has been set beforehand, which implies that a clk_set_rate() call is 912 * always required before a clk_enable(). 913 */ 914 915 static int dfll_clk_is_enabled(struct clk_hw *hw) 916 { 917 struct tegra_dfll *td = clk_hw_to_dfll(hw); 918 919 return dfll_is_running(td); 920 } 921 922 static int dfll_clk_enable(struct clk_hw *hw) 923 { 924 struct tegra_dfll *td = clk_hw_to_dfll(hw); 925 int ret; 926 927 ret = dfll_enable(td); 928 if (ret) 929 return ret; 930 931 ret = dfll_lock(td); 932 if (ret) 933 dfll_disable(td); 934 935 return ret; 936 } 937 938 static void dfll_clk_disable(struct clk_hw *hw) 939 { 940 struct tegra_dfll *td = clk_hw_to_dfll(hw); 941 int ret; 942 943 ret = dfll_unlock(td); 944 if (!ret) 945 dfll_disable(td); 946 } 947 948 static unsigned long dfll_clk_recalc_rate(struct clk_hw *hw, 949 unsigned long parent_rate) 950 { 951 struct tegra_dfll *td = clk_hw_to_dfll(hw); 952 953 return td->last_unrounded_rate; 954 } 955 956 /* Must use determine_rate since it allows for rates exceeding 2^31-1 */ 957 static int dfll_clk_determine_rate(struct clk_hw *hw, 958 struct clk_rate_request *clk_req) 959 { 960 struct tegra_dfll *td = clk_hw_to_dfll(hw); 961 struct dfll_rate_req req; 962 int ret; 963 964 ret = dfll_calculate_rate_request(td, &req, clk_req->rate); 965 if (ret) 966 return ret; 967 968 /* 969 * Don't set the rounded rate, since it doesn't really matter as 970 * the output rate will be voltage controlled anyway, and cpufreq 971 * freaks out if any rounding happens. 972 */ 973 974 return 0; 975 } 976 977 static int dfll_clk_set_rate(struct clk_hw *hw, unsigned long rate, 978 unsigned long parent_rate) 979 { 980 struct tegra_dfll *td = clk_hw_to_dfll(hw); 981 982 return dfll_request_rate(td, rate); 983 } 984 985 static const struct clk_ops dfll_clk_ops = { 986 .is_enabled = dfll_clk_is_enabled, 987 .enable = dfll_clk_enable, 988 .disable = dfll_clk_disable, 989 .recalc_rate = dfll_clk_recalc_rate, 990 .determine_rate = dfll_clk_determine_rate, 991 .set_rate = dfll_clk_set_rate, 992 }; 993 994 static struct clk_init_data dfll_clk_init_data = { 995 .ops = &dfll_clk_ops, 996 .num_parents = 0, 997 }; 998 999 /** 1000 * dfll_register_clk - register the DFLL output clock with the clock framework 1001 * @td: DFLL instance 1002 * 1003 * Register the DFLL's output clock with the Linux clock framework and register 1004 * the DFLL driver as an OF clock provider. Returns 0 upon success or -EINVAL 1005 * or -ENOMEM upon failure. 1006 */ 1007 static int dfll_register_clk(struct tegra_dfll *td) 1008 { 1009 int ret; 1010 1011 dfll_clk_init_data.name = td->output_clock_name; 1012 td->dfll_clk_hw.init = &dfll_clk_init_data; 1013 1014 td->dfll_clk = clk_register(td->dev, &td->dfll_clk_hw); 1015 if (IS_ERR(td->dfll_clk)) { 1016 dev_err(td->dev, "DFLL clock registration error\n"); 1017 return -EINVAL; 1018 } 1019 1020 ret = of_clk_add_provider(td->dev->of_node, of_clk_src_simple_get, 1021 td->dfll_clk); 1022 if (ret) { 1023 dev_err(td->dev, "of_clk_add_provider() failed\n"); 1024 1025 clk_unregister(td->dfll_clk); 1026 return ret; 1027 } 1028 1029 return 0; 1030 } 1031 1032 /** 1033 * dfll_unregister_clk - unregister the DFLL output clock 1034 * @td: DFLL instance 1035 * 1036 * Unregister the DFLL's output clock from the Linux clock framework 1037 * and from clkdev. No return value. 1038 */ 1039 static void dfll_unregister_clk(struct tegra_dfll *td) 1040 { 1041 of_clk_del_provider(td->dev->of_node); 1042 clk_unregister(td->dfll_clk); 1043 td->dfll_clk = NULL; 1044 } 1045 1046 /* 1047 * Debugfs interface 1048 */ 1049 1050 #ifdef CONFIG_DEBUG_FS 1051 /* 1052 * Monitor control 1053 */ 1054 1055 /** 1056 * dfll_calc_monitored_rate - convert DFLL_MONITOR_DATA_VAL rate into real freq 1057 * @monitor_data: value read from the DFLL_MONITOR_DATA_VAL bitfield 1058 * @ref_rate: DFLL reference clock rate 1059 * 1060 * Convert @monitor_data from DFLL_MONITOR_DATA_VAL units into cycles 1061 * per second. Returns the converted value. 1062 */ 1063 static u64 dfll_calc_monitored_rate(u32 monitor_data, 1064 unsigned long ref_rate) 1065 { 1066 return monitor_data * (ref_rate / REF_CLK_CYC_PER_DVCO_SAMPLE); 1067 } 1068 1069 /** 1070 * dfll_read_monitor_rate - return the DFLL's output rate from internal monitor 1071 * @td: DFLL instance 1072 * 1073 * If the DFLL is enabled, return the last rate reported by the DFLL's 1074 * internal monitoring hardware. This works in both open-loop and 1075 * closed-loop mode, and takes the output scaler setting into account. 1076 * Assumes that the monitor was programmed to monitor frequency before 1077 * the sample period started. If the driver believes that the DFLL is 1078 * currently uninitialized or disabled, it will return 0, since 1079 * otherwise the DFLL monitor data register will return the last 1080 * measured rate from when the DFLL was active. 1081 */ 1082 static u64 dfll_read_monitor_rate(struct tegra_dfll *td) 1083 { 1084 u32 v, s; 1085 u64 pre_scaler_rate, post_scaler_rate; 1086 1087 if (!dfll_is_running(td)) 1088 return 0; 1089 1090 v = dfll_readl(td, DFLL_MONITOR_DATA); 1091 v = (v & DFLL_MONITOR_DATA_VAL_MASK) >> DFLL_MONITOR_DATA_VAL_SHIFT; 1092 pre_scaler_rate = dfll_calc_monitored_rate(v, td->ref_rate); 1093 1094 s = dfll_readl(td, DFLL_FREQ_REQ); 1095 s = (s & DFLL_FREQ_REQ_SCALE_MASK) >> DFLL_FREQ_REQ_SCALE_SHIFT; 1096 post_scaler_rate = dfll_scale_dvco_rate(s, pre_scaler_rate); 1097 1098 return post_scaler_rate; 1099 } 1100 1101 static int attr_enable_get(void *data, u64 *val) 1102 { 1103 struct tegra_dfll *td = data; 1104 1105 *val = dfll_is_running(td); 1106 1107 return 0; 1108 } 1109 static int attr_enable_set(void *data, u64 val) 1110 { 1111 struct tegra_dfll *td = data; 1112 1113 return val ? dfll_enable(td) : dfll_disable(td); 1114 } 1115 DEFINE_SIMPLE_ATTRIBUTE(enable_fops, attr_enable_get, attr_enable_set, 1116 "%llu\n"); 1117 1118 static int attr_lock_get(void *data, u64 *val) 1119 { 1120 struct tegra_dfll *td = data; 1121 1122 *val = (td->mode == DFLL_CLOSED_LOOP); 1123 1124 return 0; 1125 } 1126 static int attr_lock_set(void *data, u64 val) 1127 { 1128 struct tegra_dfll *td = data; 1129 1130 return val ? dfll_lock(td) : dfll_unlock(td); 1131 } 1132 DEFINE_SIMPLE_ATTRIBUTE(lock_fops, attr_lock_get, attr_lock_set, 1133 "%llu\n"); 1134 1135 static int attr_rate_get(void *data, u64 *val) 1136 { 1137 struct tegra_dfll *td = data; 1138 1139 *val = dfll_read_monitor_rate(td); 1140 1141 return 0; 1142 } 1143 1144 static int attr_rate_set(void *data, u64 val) 1145 { 1146 struct tegra_dfll *td = data; 1147 1148 return dfll_request_rate(td, val); 1149 } 1150 DEFINE_SIMPLE_ATTRIBUTE(rate_fops, attr_rate_get, attr_rate_set, "%llu\n"); 1151 1152 static int attr_registers_show(struct seq_file *s, void *data) 1153 { 1154 u32 val, offs; 1155 struct tegra_dfll *td = s->private; 1156 1157 seq_puts(s, "CONTROL REGISTERS:\n"); 1158 for (offs = 0; offs <= DFLL_MONITOR_DATA; offs += 4) { 1159 if (offs == DFLL_OUTPUT_CFG) 1160 val = dfll_i2c_readl(td, offs); 1161 else 1162 val = dfll_readl(td, offs); 1163 seq_printf(s, "[0x%02x] = 0x%08x\n", offs, val); 1164 } 1165 1166 seq_puts(s, "\nI2C and INTR REGISTERS:\n"); 1167 for (offs = DFLL_I2C_CFG; offs <= DFLL_I2C_STS; offs += 4) 1168 seq_printf(s, "[0x%02x] = 0x%08x\n", offs, 1169 dfll_i2c_readl(td, offs)); 1170 for (offs = DFLL_INTR_STS; offs <= DFLL_INTR_EN; offs += 4) 1171 seq_printf(s, "[0x%02x] = 0x%08x\n", offs, 1172 dfll_i2c_readl(td, offs)); 1173 1174 seq_puts(s, "\nINTEGRATED I2C CONTROLLER REGISTERS:\n"); 1175 offs = DFLL_I2C_CLK_DIVISOR; 1176 seq_printf(s, "[0x%02x] = 0x%08x\n", offs, 1177 __raw_readl(td->i2c_controller_base + offs)); 1178 1179 seq_puts(s, "\nLUT:\n"); 1180 for (offs = 0; offs < 4 * MAX_DFLL_VOLTAGES; offs += 4) 1181 seq_printf(s, "[0x%02x] = 0x%08x\n", offs, 1182 __raw_readl(td->lut_base + offs)); 1183 1184 return 0; 1185 } 1186 1187 static int attr_registers_open(struct inode *inode, struct file *file) 1188 { 1189 return single_open(file, attr_registers_show, inode->i_private); 1190 } 1191 1192 static const struct file_operations attr_registers_fops = { 1193 .open = attr_registers_open, 1194 .read = seq_read, 1195 .llseek = seq_lseek, 1196 .release = single_release, 1197 }; 1198 1199 static void dfll_debug_init(struct tegra_dfll *td) 1200 { 1201 struct dentry *root; 1202 1203 if (!td || (td->mode == DFLL_UNINITIALIZED)) 1204 return; 1205 1206 root = debugfs_create_dir("tegra_dfll_fcpu", NULL); 1207 td->debugfs_dir = root; 1208 1209 debugfs_create_file("enable", S_IRUGO | S_IWUSR, root, td, &enable_fops); 1210 debugfs_create_file("lock", S_IRUGO, root, td, &lock_fops); 1211 debugfs_create_file("rate", S_IRUGO, root, td, &rate_fops); 1212 debugfs_create_file("registers", S_IRUGO, root, td, &attr_registers_fops); 1213 } 1214 1215 #else 1216 static void inline dfll_debug_init(struct tegra_dfll *td) { } 1217 #endif /* CONFIG_DEBUG_FS */ 1218 1219 /* 1220 * DFLL initialization 1221 */ 1222 1223 /** 1224 * dfll_set_default_params - program non-output related DFLL parameters 1225 * @td: DFLL instance 1226 * 1227 * During DFLL driver initialization or resume from context loss, 1228 * program parameters for the closed loop integrator, DVCO tuning, 1229 * voltage droop control and monitor control. 1230 */ 1231 static void dfll_set_default_params(struct tegra_dfll *td) 1232 { 1233 u32 val; 1234 1235 val = DIV_ROUND_UP(td->ref_rate, td->sample_rate * 32); 1236 BUG_ON(val > DFLL_CONFIG_DIV_MASK); 1237 dfll_writel(td, val, DFLL_CONFIG); 1238 1239 val = (td->force_mode << DFLL_PARAMS_FORCE_MODE_SHIFT) | 1240 (td->cf << DFLL_PARAMS_CF_PARAM_SHIFT) | 1241 (td->ci << DFLL_PARAMS_CI_PARAM_SHIFT) | 1242 (td->cg << DFLL_PARAMS_CG_PARAM_SHIFT) | 1243 (td->cg_scale ? DFLL_PARAMS_CG_SCALE : 0); 1244 dfll_writel(td, val, DFLL_PARAMS); 1245 1246 dfll_tune_low(td); 1247 dfll_writel(td, td->droop_ctrl, DFLL_DROOP_CTRL); 1248 dfll_writel(td, DFLL_MONITOR_CTRL_FREQ, DFLL_MONITOR_CTRL); 1249 } 1250 1251 /** 1252 * dfll_init_clks - clk_get() the DFLL source clocks 1253 * @td: DFLL instance 1254 * 1255 * Call clk_get() on the DFLL source clocks and save the pointers for later 1256 * use. Returns 0 upon success or error (see devm_clk_get) if one or more 1257 * of the clocks couldn't be looked up. 1258 */ 1259 static int dfll_init_clks(struct tegra_dfll *td) 1260 { 1261 td->ref_clk = devm_clk_get(td->dev, "ref"); 1262 if (IS_ERR(td->ref_clk)) { 1263 dev_err(td->dev, "missing ref clock\n"); 1264 return PTR_ERR(td->ref_clk); 1265 } 1266 1267 td->soc_clk = devm_clk_get(td->dev, "soc"); 1268 if (IS_ERR(td->soc_clk)) { 1269 dev_err(td->dev, "missing soc clock\n"); 1270 return PTR_ERR(td->soc_clk); 1271 } 1272 1273 td->i2c_clk = devm_clk_get(td->dev, "i2c"); 1274 if (IS_ERR(td->i2c_clk)) { 1275 dev_err(td->dev, "missing i2c clock\n"); 1276 return PTR_ERR(td->i2c_clk); 1277 } 1278 td->i2c_clk_rate = clk_get_rate(td->i2c_clk); 1279 1280 return 0; 1281 } 1282 1283 /** 1284 * dfll_init - Prepare the DFLL IP block for use 1285 * @td: DFLL instance 1286 * 1287 * Do everything necessary to prepare the DFLL IP block for use. The 1288 * DFLL will be left in DISABLED state. Called by dfll_probe(). 1289 * Returns 0 upon success, or passes along the error from whatever 1290 * function returned it. 1291 */ 1292 static int dfll_init(struct tegra_dfll *td) 1293 { 1294 int ret; 1295 1296 td->ref_rate = clk_get_rate(td->ref_clk); 1297 if (td->ref_rate != REF_CLOCK_RATE) { 1298 dev_err(td->dev, "unexpected ref clk rate %lu, expecting %lu", 1299 td->ref_rate, REF_CLOCK_RATE); 1300 return -EINVAL; 1301 } 1302 1303 reset_control_deassert(td->dvco_rst); 1304 1305 ret = clk_prepare(td->ref_clk); 1306 if (ret) { 1307 dev_err(td->dev, "failed to prepare ref_clk\n"); 1308 return ret; 1309 } 1310 1311 ret = clk_prepare(td->soc_clk); 1312 if (ret) { 1313 dev_err(td->dev, "failed to prepare soc_clk\n"); 1314 goto di_err1; 1315 } 1316 1317 ret = clk_prepare(td->i2c_clk); 1318 if (ret) { 1319 dev_err(td->dev, "failed to prepare i2c_clk\n"); 1320 goto di_err2; 1321 } 1322 1323 td->last_unrounded_rate = 0; 1324 1325 pm_runtime_enable(td->dev); 1326 pm_runtime_get_sync(td->dev); 1327 1328 dfll_set_mode(td, DFLL_DISABLED); 1329 dfll_set_default_params(td); 1330 1331 if (td->soc->init_clock_trimmers) 1332 td->soc->init_clock_trimmers(); 1333 1334 dfll_set_open_loop_config(td); 1335 1336 dfll_init_out_if(td); 1337 1338 pm_runtime_put_sync(td->dev); 1339 1340 return 0; 1341 1342 di_err2: 1343 clk_unprepare(td->soc_clk); 1344 di_err1: 1345 clk_unprepare(td->ref_clk); 1346 1347 reset_control_assert(td->dvco_rst); 1348 1349 return ret; 1350 } 1351 1352 /* 1353 * DT data fetch 1354 */ 1355 1356 /* 1357 * Find a PMIC voltage register-to-voltage mapping for the given voltage. 1358 * An exact voltage match is required. 1359 */ 1360 static int find_vdd_map_entry_exact(struct tegra_dfll *td, int uV) 1361 { 1362 int i, n_voltages, reg_uV; 1363 1364 n_voltages = regulator_count_voltages(td->vdd_reg); 1365 for (i = 0; i < n_voltages; i++) { 1366 reg_uV = regulator_list_voltage(td->vdd_reg, i); 1367 if (reg_uV < 0) 1368 break; 1369 1370 if (uV == reg_uV) 1371 return i; 1372 } 1373 1374 dev_err(td->dev, "no voltage map entry for %d uV\n", uV); 1375 return -EINVAL; 1376 } 1377 1378 /* 1379 * Find a PMIC voltage register-to-voltage mapping for the given voltage, 1380 * rounding up to the closest supported voltage. 1381 * */ 1382 static int find_vdd_map_entry_min(struct tegra_dfll *td, int uV) 1383 { 1384 int i, n_voltages, reg_uV; 1385 1386 n_voltages = regulator_count_voltages(td->vdd_reg); 1387 for (i = 0; i < n_voltages; i++) { 1388 reg_uV = regulator_list_voltage(td->vdd_reg, i); 1389 if (reg_uV < 0) 1390 break; 1391 1392 if (uV <= reg_uV) 1393 return i; 1394 } 1395 1396 dev_err(td->dev, "no voltage map entry rounding to %d uV\n", uV); 1397 return -EINVAL; 1398 } 1399 1400 /** 1401 * dfll_build_i2c_lut - build the I2C voltage register lookup table 1402 * @td: DFLL instance 1403 * 1404 * The DFLL hardware has 33 bytes of look-up table RAM that must be filled with 1405 * PMIC voltage register values that span the entire DFLL operating range. 1406 * This function builds the look-up table based on the OPP table provided by 1407 * the soc-specific platform driver (td->soc->opp_dev) and the PMIC 1408 * register-to-voltage mapping queried from the regulator framework. 1409 * 1410 * On success, fills in td->i2c_lut and returns 0, or -err on failure. 1411 */ 1412 static int dfll_build_i2c_lut(struct tegra_dfll *td) 1413 { 1414 int ret = -EINVAL; 1415 int j, v, v_max, v_opp; 1416 int selector; 1417 unsigned long rate; 1418 struct dev_pm_opp *opp; 1419 int lut; 1420 1421 rate = ULONG_MAX; 1422 opp = dev_pm_opp_find_freq_floor(td->soc->dev, &rate); 1423 if (IS_ERR(opp)) { 1424 dev_err(td->dev, "couldn't get vmax opp, empty opp table?\n"); 1425 goto out; 1426 } 1427 v_max = dev_pm_opp_get_voltage(opp); 1428 dev_pm_opp_put(opp); 1429 1430 v = td->soc->cvb->min_millivolts * 1000; 1431 lut = find_vdd_map_entry_exact(td, v); 1432 if (lut < 0) 1433 goto out; 1434 td->i2c_lut[0] = lut; 1435 1436 for (j = 1, rate = 0; ; rate++) { 1437 opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate); 1438 if (IS_ERR(opp)) 1439 break; 1440 v_opp = dev_pm_opp_get_voltage(opp); 1441 1442 if (v_opp <= td->soc->cvb->min_millivolts * 1000) 1443 td->dvco_rate_min = dev_pm_opp_get_freq(opp); 1444 1445 dev_pm_opp_put(opp); 1446 1447 for (;;) { 1448 v += max(1, (v_max - v) / (MAX_DFLL_VOLTAGES - j)); 1449 if (v >= v_opp) 1450 break; 1451 1452 selector = find_vdd_map_entry_min(td, v); 1453 if (selector < 0) 1454 goto out; 1455 if (selector != td->i2c_lut[j - 1]) 1456 td->i2c_lut[j++] = selector; 1457 } 1458 1459 v = (j == MAX_DFLL_VOLTAGES - 1) ? v_max : v_opp; 1460 selector = find_vdd_map_entry_exact(td, v); 1461 if (selector < 0) 1462 goto out; 1463 if (selector != td->i2c_lut[j - 1]) 1464 td->i2c_lut[j++] = selector; 1465 1466 if (v >= v_max) 1467 break; 1468 } 1469 td->i2c_lut_size = j; 1470 1471 if (!td->dvco_rate_min) 1472 dev_err(td->dev, "no opp above DFLL minimum voltage %d mV\n", 1473 td->soc->cvb->min_millivolts); 1474 else 1475 ret = 0; 1476 1477 out: 1478 return ret; 1479 } 1480 1481 /** 1482 * read_dt_param - helper function for reading required parameters from the DT 1483 * @td: DFLL instance 1484 * @param: DT property name 1485 * @dest: output pointer for the value read 1486 * 1487 * Read a required numeric parameter from the DFLL device node, or complain 1488 * if the property doesn't exist. Returns a boolean indicating success for 1489 * easy chaining of multiple calls to this function. 1490 */ 1491 static bool read_dt_param(struct tegra_dfll *td, const char *param, u32 *dest) 1492 { 1493 int err = of_property_read_u32(td->dev->of_node, param, dest); 1494 1495 if (err < 0) { 1496 dev_err(td->dev, "failed to read DT parameter %s: %d\n", 1497 param, err); 1498 return false; 1499 } 1500 1501 return true; 1502 } 1503 1504 /** 1505 * dfll_fetch_i2c_params - query PMIC I2C params from DT & regulator subsystem 1506 * @td: DFLL instance 1507 * 1508 * Read all the parameters required for operation in I2C mode. The parameters 1509 * can originate from the device tree or the regulator subsystem. 1510 * Returns 0 on success or -err on failure. 1511 */ 1512 static int dfll_fetch_i2c_params(struct tegra_dfll *td) 1513 { 1514 struct regmap *regmap; 1515 struct device *i2c_dev; 1516 struct i2c_client *i2c_client; 1517 int vsel_reg, vsel_mask; 1518 int ret; 1519 1520 if (!read_dt_param(td, "nvidia,i2c-fs-rate", &td->i2c_fs_rate)) 1521 return -EINVAL; 1522 1523 regmap = regulator_get_regmap(td->vdd_reg); 1524 i2c_dev = regmap_get_device(regmap); 1525 i2c_client = to_i2c_client(i2c_dev); 1526 1527 td->i2c_slave_addr = i2c_client->addr; 1528 1529 ret = regulator_get_hardware_vsel_register(td->vdd_reg, 1530 &vsel_reg, 1531 &vsel_mask); 1532 if (ret < 0) { 1533 dev_err(td->dev, 1534 "regulator unsuitable for DFLL I2C operation\n"); 1535 return -EINVAL; 1536 } 1537 td->i2c_reg = vsel_reg; 1538 1539 ret = dfll_build_i2c_lut(td); 1540 if (ret) { 1541 dev_err(td->dev, "couldn't build I2C LUT\n"); 1542 return ret; 1543 } 1544 1545 return 0; 1546 } 1547 1548 /** 1549 * dfll_fetch_common_params - read DFLL parameters from the device tree 1550 * @td: DFLL instance 1551 * 1552 * Read all the DT parameters that are common to both I2C and PWM operation. 1553 * Returns 0 on success or -EINVAL on any failure. 1554 */ 1555 static int dfll_fetch_common_params(struct tegra_dfll *td) 1556 { 1557 bool ok = true; 1558 1559 ok &= read_dt_param(td, "nvidia,droop-ctrl", &td->droop_ctrl); 1560 ok &= read_dt_param(td, "nvidia,sample-rate", &td->sample_rate); 1561 ok &= read_dt_param(td, "nvidia,force-mode", &td->force_mode); 1562 ok &= read_dt_param(td, "nvidia,cf", &td->cf); 1563 ok &= read_dt_param(td, "nvidia,ci", &td->ci); 1564 ok &= read_dt_param(td, "nvidia,cg", &td->cg); 1565 td->cg_scale = of_property_read_bool(td->dev->of_node, 1566 "nvidia,cg-scale"); 1567 1568 if (of_property_read_string(td->dev->of_node, "clock-output-names", 1569 &td->output_clock_name)) { 1570 dev_err(td->dev, "missing clock-output-names property\n"); 1571 ok = false; 1572 } 1573 1574 return ok ? 0 : -EINVAL; 1575 } 1576 1577 /* 1578 * API exported to per-SoC platform drivers 1579 */ 1580 1581 /** 1582 * tegra_dfll_register - probe a Tegra DFLL device 1583 * @pdev: DFLL platform_device * 1584 * @soc: Per-SoC integration and characterization data for this DFLL instance 1585 * 1586 * Probe and initialize a DFLL device instance. Intended to be called 1587 * by a SoC-specific shim driver that passes in per-SoC integration 1588 * and configuration data via @soc. Returns 0 on success or -err on failure. 1589 */ 1590 int tegra_dfll_register(struct platform_device *pdev, 1591 struct tegra_dfll_soc_data *soc) 1592 { 1593 struct resource *mem; 1594 struct tegra_dfll *td; 1595 int ret; 1596 1597 if (!soc) { 1598 dev_err(&pdev->dev, "no tegra_dfll_soc_data provided\n"); 1599 return -EINVAL; 1600 } 1601 1602 td = devm_kzalloc(&pdev->dev, sizeof(*td), GFP_KERNEL); 1603 if (!td) 1604 return -ENOMEM; 1605 td->dev = &pdev->dev; 1606 platform_set_drvdata(pdev, td); 1607 1608 td->soc = soc; 1609 1610 td->vdd_reg = devm_regulator_get(td->dev, "vdd-cpu"); 1611 if (IS_ERR(td->vdd_reg)) { 1612 dev_err(td->dev, "couldn't get vdd_cpu regulator\n"); 1613 return PTR_ERR(td->vdd_reg); 1614 } 1615 1616 td->dvco_rst = devm_reset_control_get(td->dev, "dvco"); 1617 if (IS_ERR(td->dvco_rst)) { 1618 dev_err(td->dev, "couldn't get dvco reset\n"); 1619 return PTR_ERR(td->dvco_rst); 1620 } 1621 1622 ret = dfll_fetch_common_params(td); 1623 if (ret) { 1624 dev_err(td->dev, "couldn't parse device tree parameters\n"); 1625 return ret; 1626 } 1627 1628 ret = dfll_fetch_i2c_params(td); 1629 if (ret) 1630 return ret; 1631 1632 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1633 if (!mem) { 1634 dev_err(td->dev, "no control register resource\n"); 1635 return -ENODEV; 1636 } 1637 1638 td->base = devm_ioremap(td->dev, mem->start, resource_size(mem)); 1639 if (!td->base) { 1640 dev_err(td->dev, "couldn't ioremap DFLL control registers\n"); 1641 return -ENODEV; 1642 } 1643 1644 mem = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1645 if (!mem) { 1646 dev_err(td->dev, "no i2c_base resource\n"); 1647 return -ENODEV; 1648 } 1649 1650 td->i2c_base = devm_ioremap(td->dev, mem->start, resource_size(mem)); 1651 if (!td->i2c_base) { 1652 dev_err(td->dev, "couldn't ioremap i2c_base resource\n"); 1653 return -ENODEV; 1654 } 1655 1656 mem = platform_get_resource(pdev, IORESOURCE_MEM, 2); 1657 if (!mem) { 1658 dev_err(td->dev, "no i2c_controller_base resource\n"); 1659 return -ENODEV; 1660 } 1661 1662 td->i2c_controller_base = devm_ioremap(td->dev, mem->start, 1663 resource_size(mem)); 1664 if (!td->i2c_controller_base) { 1665 dev_err(td->dev, 1666 "couldn't ioremap i2c_controller_base resource\n"); 1667 return -ENODEV; 1668 } 1669 1670 mem = platform_get_resource(pdev, IORESOURCE_MEM, 3); 1671 if (!mem) { 1672 dev_err(td->dev, "no lut_base resource\n"); 1673 return -ENODEV; 1674 } 1675 1676 td->lut_base = devm_ioremap(td->dev, mem->start, resource_size(mem)); 1677 if (!td->lut_base) { 1678 dev_err(td->dev, 1679 "couldn't ioremap lut_base resource\n"); 1680 return -ENODEV; 1681 } 1682 1683 ret = dfll_init_clks(td); 1684 if (ret) { 1685 dev_err(&pdev->dev, "DFLL clock init error\n"); 1686 return ret; 1687 } 1688 1689 /* Enable the clocks and set the device up */ 1690 ret = dfll_init(td); 1691 if (ret) 1692 return ret; 1693 1694 ret = dfll_register_clk(td); 1695 if (ret) { 1696 dev_err(&pdev->dev, "DFLL clk registration failed\n"); 1697 return ret; 1698 } 1699 1700 dfll_debug_init(td); 1701 1702 return 0; 1703 } 1704 EXPORT_SYMBOL(tegra_dfll_register); 1705 1706 /** 1707 * tegra_dfll_unregister - release all of the DFLL driver resources for a device 1708 * @pdev: DFLL platform_device * 1709 * 1710 * Unbind this driver from the DFLL hardware device represented by 1711 * @pdev. The DFLL must be disabled for this to succeed. Returns a 1712 * soc pointer upon success or -EBUSY if the DFLL is still active. 1713 */ 1714 struct tegra_dfll_soc_data *tegra_dfll_unregister(struct platform_device *pdev) 1715 { 1716 struct tegra_dfll *td = platform_get_drvdata(pdev); 1717 1718 /* Try to prevent removal while the DFLL is active */ 1719 if (td->mode != DFLL_DISABLED) { 1720 dev_err(&pdev->dev, 1721 "must disable DFLL before removing driver\n"); 1722 return ERR_PTR(-EBUSY); 1723 } 1724 1725 debugfs_remove_recursive(td->debugfs_dir); 1726 1727 dfll_unregister_clk(td); 1728 pm_runtime_disable(&pdev->dev); 1729 1730 clk_unprepare(td->ref_clk); 1731 clk_unprepare(td->soc_clk); 1732 clk_unprepare(td->i2c_clk); 1733 1734 reset_control_assert(td->dvco_rst); 1735 1736 return td->soc; 1737 } 1738 EXPORT_SYMBOL(tegra_dfll_unregister); 1739