xref: /openbmc/linux/drivers/clk/tegra/clk-dfll.c (revision 87fcfa7b7fe6bf819033fe827a27f710e38639b5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * clk-dfll.c - Tegra DFLL clock source common code
4  *
5  * Copyright (C) 2012-2019 NVIDIA Corporation. All rights reserved.
6  *
7  * Aleksandr Frid <afrid@nvidia.com>
8  * Paul Walmsley <pwalmsley@nvidia.com>
9  *
10  * This library is for the DVCO and DFLL IP blocks on the Tegra124
11  * SoC. These IP blocks together are also known at NVIDIA as
12  * "CL-DVFS". To try to avoid confusion, this code refers to them
13  * collectively as the "DFLL."
14  *
15  * The DFLL is a root clocksource which tolerates some amount of
16  * supply voltage noise. Tegra124 uses it to clock the fast CPU
17  * complex when the target CPU speed is above a particular rate. The
18  * DFLL can be operated in either open-loop mode or closed-loop mode.
19  * In open-loop mode, the DFLL generates an output clock appropriate
20  * to the supply voltage. In closed-loop mode, when configured with a
21  * target frequency, the DFLL minimizes supply voltage while
22  * delivering an average frequency equal to the target.
23  *
24  * Devices clocked by the DFLL must be able to tolerate frequency
25  * variation. In the case of the CPU, it's important to note that the
26  * CPU cycle time will vary. This has implications for
27  * performance-measurement code and any code that relies on the CPU
28  * cycle time to delay for a certain length of time.
29  */
30 
31 #include <linux/clk.h>
32 #include <linux/clk-provider.h>
33 #include <linux/debugfs.h>
34 #include <linux/device.h>
35 #include <linux/err.h>
36 #include <linux/i2c.h>
37 #include <linux/io.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/of.h>
41 #include <linux/pinctrl/consumer.h>
42 #include <linux/pm_opp.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/regmap.h>
45 #include <linux/regulator/consumer.h>
46 #include <linux/reset.h>
47 #include <linux/seq_file.h>
48 
49 #include "clk-dfll.h"
50 #include "cvb.h"
51 
52 /*
53  * DFLL control registers - access via dfll_{readl,writel}
54  */
55 
56 /* DFLL_CTRL: DFLL control register */
57 #define DFLL_CTRL			0x00
58 #define DFLL_CTRL_MODE_MASK		0x03
59 
60 /* DFLL_CONFIG: DFLL sample rate control */
61 #define DFLL_CONFIG			0x04
62 #define DFLL_CONFIG_DIV_MASK		0xff
63 #define DFLL_CONFIG_DIV_PRESCALE	32
64 
65 /* DFLL_PARAMS: tuning coefficients for closed loop integrator */
66 #define DFLL_PARAMS			0x08
67 #define DFLL_PARAMS_CG_SCALE		(0x1 << 24)
68 #define DFLL_PARAMS_FORCE_MODE_SHIFT	22
69 #define DFLL_PARAMS_FORCE_MODE_MASK	(0x3 << DFLL_PARAMS_FORCE_MODE_SHIFT)
70 #define DFLL_PARAMS_CF_PARAM_SHIFT	16
71 #define DFLL_PARAMS_CF_PARAM_MASK	(0x3f << DFLL_PARAMS_CF_PARAM_SHIFT)
72 #define DFLL_PARAMS_CI_PARAM_SHIFT	8
73 #define DFLL_PARAMS_CI_PARAM_MASK	(0x7 << DFLL_PARAMS_CI_PARAM_SHIFT)
74 #define DFLL_PARAMS_CG_PARAM_SHIFT	0
75 #define DFLL_PARAMS_CG_PARAM_MASK	(0xff << DFLL_PARAMS_CG_PARAM_SHIFT)
76 
77 /* DFLL_TUNE0: delay line configuration register 0 */
78 #define DFLL_TUNE0			0x0c
79 
80 /* DFLL_TUNE1: delay line configuration register 1 */
81 #define DFLL_TUNE1			0x10
82 
83 /* DFLL_FREQ_REQ: target DFLL frequency control */
84 #define DFLL_FREQ_REQ			0x14
85 #define DFLL_FREQ_REQ_FORCE_ENABLE	(0x1 << 28)
86 #define DFLL_FREQ_REQ_FORCE_SHIFT	16
87 #define DFLL_FREQ_REQ_FORCE_MASK	(0xfff << DFLL_FREQ_REQ_FORCE_SHIFT)
88 #define FORCE_MAX			2047
89 #define FORCE_MIN			-2048
90 #define DFLL_FREQ_REQ_SCALE_SHIFT	8
91 #define DFLL_FREQ_REQ_SCALE_MASK	(0xff << DFLL_FREQ_REQ_SCALE_SHIFT)
92 #define DFLL_FREQ_REQ_SCALE_MAX		256
93 #define DFLL_FREQ_REQ_FREQ_VALID	(0x1 << 7)
94 #define DFLL_FREQ_REQ_MULT_SHIFT	0
95 #define DFLL_FREQ_REG_MULT_MASK		(0x7f << DFLL_FREQ_REQ_MULT_SHIFT)
96 #define FREQ_MAX			127
97 
98 /* DFLL_DROOP_CTRL: droop prevention control */
99 #define DFLL_DROOP_CTRL			0x1c
100 
101 /* DFLL_OUTPUT_CFG: closed loop mode control registers */
102 /* NOTE: access via dfll_i2c_{readl,writel} */
103 #define DFLL_OUTPUT_CFG			0x20
104 #define DFLL_OUTPUT_CFG_I2C_ENABLE	(0x1 << 30)
105 #define OUT_MASK			0x3f
106 #define DFLL_OUTPUT_CFG_SAFE_SHIFT	24
107 #define DFLL_OUTPUT_CFG_SAFE_MASK	\
108 		(OUT_MASK << DFLL_OUTPUT_CFG_SAFE_SHIFT)
109 #define DFLL_OUTPUT_CFG_MAX_SHIFT	16
110 #define DFLL_OUTPUT_CFG_MAX_MASK	\
111 		(OUT_MASK << DFLL_OUTPUT_CFG_MAX_SHIFT)
112 #define DFLL_OUTPUT_CFG_MIN_SHIFT	8
113 #define DFLL_OUTPUT_CFG_MIN_MASK	\
114 		(OUT_MASK << DFLL_OUTPUT_CFG_MIN_SHIFT)
115 #define DFLL_OUTPUT_CFG_PWM_DELTA	(0x1 << 7)
116 #define DFLL_OUTPUT_CFG_PWM_ENABLE	(0x1 << 6)
117 #define DFLL_OUTPUT_CFG_PWM_DIV_SHIFT	0
118 #define DFLL_OUTPUT_CFG_PWM_DIV_MASK	\
119 		(OUT_MASK << DFLL_OUTPUT_CFG_PWM_DIV_SHIFT)
120 
121 /* DFLL_OUTPUT_FORCE: closed loop mode voltage forcing control */
122 #define DFLL_OUTPUT_FORCE		0x24
123 #define DFLL_OUTPUT_FORCE_ENABLE	(0x1 << 6)
124 #define DFLL_OUTPUT_FORCE_VALUE_SHIFT	0
125 #define DFLL_OUTPUT_FORCE_VALUE_MASK	\
126 		(OUT_MASK << DFLL_OUTPUT_FORCE_VALUE_SHIFT)
127 
128 /* DFLL_MONITOR_CTRL: internal monitor data source control */
129 #define DFLL_MONITOR_CTRL		0x28
130 #define DFLL_MONITOR_CTRL_FREQ		6
131 
132 /* DFLL_MONITOR_DATA: internal monitor data output */
133 #define DFLL_MONITOR_DATA		0x2c
134 #define DFLL_MONITOR_DATA_NEW_MASK	(0x1 << 16)
135 #define DFLL_MONITOR_DATA_VAL_SHIFT	0
136 #define DFLL_MONITOR_DATA_VAL_MASK	(0xFFFF << DFLL_MONITOR_DATA_VAL_SHIFT)
137 
138 /*
139  * I2C output control registers - access via dfll_i2c_{readl,writel}
140  */
141 
142 /* DFLL_I2C_CFG: I2C controller configuration register */
143 #define DFLL_I2C_CFG			0x40
144 #define DFLL_I2C_CFG_ARB_ENABLE		(0x1 << 20)
145 #define DFLL_I2C_CFG_HS_CODE_SHIFT	16
146 #define DFLL_I2C_CFG_HS_CODE_MASK	(0x7 << DFLL_I2C_CFG_HS_CODE_SHIFT)
147 #define DFLL_I2C_CFG_PACKET_ENABLE	(0x1 << 15)
148 #define DFLL_I2C_CFG_SIZE_SHIFT		12
149 #define DFLL_I2C_CFG_SIZE_MASK		(0x7 << DFLL_I2C_CFG_SIZE_SHIFT)
150 #define DFLL_I2C_CFG_SLAVE_ADDR_10	(0x1 << 10)
151 #define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT	1
152 #define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT	0
153 
154 /* DFLL_I2C_VDD_REG_ADDR: PMIC I2C address for closed loop mode */
155 #define DFLL_I2C_VDD_REG_ADDR		0x44
156 
157 /* DFLL_I2C_STS: I2C controller status */
158 #define DFLL_I2C_STS			0x48
159 #define DFLL_I2C_STS_I2C_LAST_SHIFT	1
160 #define DFLL_I2C_STS_I2C_REQ_PENDING	0x1
161 
162 /* DFLL_INTR_STS: DFLL interrupt status register */
163 #define DFLL_INTR_STS			0x5c
164 
165 /* DFLL_INTR_EN: DFLL interrupt enable register */
166 #define DFLL_INTR_EN			0x60
167 #define DFLL_INTR_MIN_MASK		0x1
168 #define DFLL_INTR_MAX_MASK		0x2
169 
170 /*
171  * Integrated I2C controller registers - relative to td->i2c_controller_base
172  */
173 
174 /* DFLL_I2C_CLK_DIVISOR: I2C controller clock divisor */
175 #define DFLL_I2C_CLK_DIVISOR		0x6c
176 #define DFLL_I2C_CLK_DIVISOR_MASK	0xffff
177 #define DFLL_I2C_CLK_DIVISOR_FS_SHIFT	16
178 #define DFLL_I2C_CLK_DIVISOR_HS_SHIFT	0
179 #define DFLL_I2C_CLK_DIVISOR_PREDIV	8
180 #define DFLL_I2C_CLK_DIVISOR_HSMODE_PREDIV	12
181 
182 /*
183  * Other constants
184  */
185 
186 /* MAX_DFLL_VOLTAGES: number of LUT entries in the DFLL IP block */
187 #define MAX_DFLL_VOLTAGES		33
188 
189 /*
190  * REF_CLK_CYC_PER_DVCO_SAMPLE: the number of ref_clk cycles that the hardware
191  *    integrates the DVCO counter over - used for debug rate monitoring and
192  *    droop control
193  */
194 #define REF_CLK_CYC_PER_DVCO_SAMPLE	4
195 
196 /*
197  * REF_CLOCK_RATE: the DFLL reference clock rate currently supported by this
198  * driver, in Hz
199  */
200 #define REF_CLOCK_RATE			51000000UL
201 
202 #define DVCO_RATE_TO_MULT(rate, ref_rate)	((rate) / ((ref_rate) / 2))
203 #define MULT_TO_DVCO_RATE(mult, ref_rate)	((mult) * ((ref_rate) / 2))
204 
205 /**
206  * enum dfll_ctrl_mode - DFLL hardware operating mode
207  * @DFLL_UNINITIALIZED: (uninitialized state - not in hardware bitfield)
208  * @DFLL_DISABLED: DFLL not generating an output clock
209  * @DFLL_OPEN_LOOP: DVCO running, but DFLL not adjusting voltage
210  * @DFLL_CLOSED_LOOP: DVCO running, and DFLL adjusting voltage to match
211  *		      the requested rate
212  *
213  * The integer corresponding to the last two states, minus one, is
214  * written to the DFLL hardware to change operating modes.
215  */
216 enum dfll_ctrl_mode {
217 	DFLL_UNINITIALIZED = 0,
218 	DFLL_DISABLED = 1,
219 	DFLL_OPEN_LOOP = 2,
220 	DFLL_CLOSED_LOOP = 3,
221 };
222 
223 /**
224  * enum dfll_tune_range - voltage range that the driver believes it's in
225  * @DFLL_TUNE_UNINITIALIZED: DFLL tuning not yet programmed
226  * @DFLL_TUNE_LOW: DFLL in the low-voltage range (or open-loop mode)
227  *
228  * Some DFLL tuning parameters may need to change depending on the
229  * DVCO's voltage; these states represent the ranges that the driver
230  * supports. These are software states; these values are never
231  * written into registers.
232  */
233 enum dfll_tune_range {
234 	DFLL_TUNE_UNINITIALIZED = 0,
235 	DFLL_TUNE_LOW = 1,
236 };
237 
238 
239 enum tegra_dfll_pmu_if {
240 	TEGRA_DFLL_PMU_I2C = 0,
241 	TEGRA_DFLL_PMU_PWM = 1,
242 };
243 
244 /**
245  * struct dfll_rate_req - target DFLL rate request data
246  * @rate: target frequency, after the postscaling
247  * @dvco_target_rate: target frequency, after the postscaling
248  * @lut_index: LUT index at which voltage the dvco_target_rate will be reached
249  * @mult_bits: value to program to the MULT bits of the DFLL_FREQ_REQ register
250  * @scale_bits: value to program to the SCALE bits of the DFLL_FREQ_REQ register
251  */
252 struct dfll_rate_req {
253 	unsigned long rate;
254 	unsigned long dvco_target_rate;
255 	int lut_index;
256 	u8 mult_bits;
257 	u8 scale_bits;
258 };
259 
260 struct tegra_dfll {
261 	struct device			*dev;
262 	struct tegra_dfll_soc_data	*soc;
263 
264 	void __iomem			*base;
265 	void __iomem			*i2c_base;
266 	void __iomem			*i2c_controller_base;
267 	void __iomem			*lut_base;
268 
269 	struct regulator		*vdd_reg;
270 	struct clk			*soc_clk;
271 	struct clk			*ref_clk;
272 	struct clk			*i2c_clk;
273 	struct clk			*dfll_clk;
274 	struct reset_control		*dvco_rst;
275 	unsigned long			ref_rate;
276 	unsigned long			i2c_clk_rate;
277 	unsigned long			dvco_rate_min;
278 
279 	enum dfll_ctrl_mode		mode;
280 	enum dfll_tune_range		tune_range;
281 	struct dentry			*debugfs_dir;
282 	struct clk_hw			dfll_clk_hw;
283 	const char			*output_clock_name;
284 	struct dfll_rate_req		last_req;
285 	unsigned long			last_unrounded_rate;
286 
287 	/* Parameters from DT */
288 	u32				droop_ctrl;
289 	u32				sample_rate;
290 	u32				force_mode;
291 	u32				cf;
292 	u32				ci;
293 	u32				cg;
294 	bool				cg_scale;
295 
296 	/* I2C interface parameters */
297 	u32				i2c_fs_rate;
298 	u32				i2c_reg;
299 	u32				i2c_slave_addr;
300 
301 	/* lut array entries are regulator framework selectors or PWM values*/
302 	unsigned			lut[MAX_DFLL_VOLTAGES];
303 	unsigned long			lut_uv[MAX_DFLL_VOLTAGES];
304 	int				lut_size;
305 	u8				lut_bottom, lut_min, lut_max, lut_safe;
306 
307 	/* PWM interface */
308 	enum tegra_dfll_pmu_if		pmu_if;
309 	unsigned long			pwm_rate;
310 	struct pinctrl			*pwm_pin;
311 	struct pinctrl_state		*pwm_enable_state;
312 	struct pinctrl_state		*pwm_disable_state;
313 	u32				reg_init_uV;
314 };
315 
316 #define clk_hw_to_dfll(_hw) container_of(_hw, struct tegra_dfll, dfll_clk_hw)
317 
318 /* mode_name: map numeric DFLL modes to names for friendly console messages */
319 static const char * const mode_name[] = {
320 	[DFLL_UNINITIALIZED] = "uninitialized",
321 	[DFLL_DISABLED] = "disabled",
322 	[DFLL_OPEN_LOOP] = "open_loop",
323 	[DFLL_CLOSED_LOOP] = "closed_loop",
324 };
325 
326 /*
327  * Register accessors
328  */
329 
330 static inline u32 dfll_readl(struct tegra_dfll *td, u32 offs)
331 {
332 	return __raw_readl(td->base + offs);
333 }
334 
335 static inline void dfll_writel(struct tegra_dfll *td, u32 val, u32 offs)
336 {
337 	WARN_ON(offs >= DFLL_I2C_CFG);
338 	__raw_writel(val, td->base + offs);
339 }
340 
341 static inline void dfll_wmb(struct tegra_dfll *td)
342 {
343 	dfll_readl(td, DFLL_CTRL);
344 }
345 
346 /* I2C output control registers - for addresses above DFLL_I2C_CFG */
347 
348 static inline u32 dfll_i2c_readl(struct tegra_dfll *td, u32 offs)
349 {
350 	return __raw_readl(td->i2c_base + offs);
351 }
352 
353 static inline void dfll_i2c_writel(struct tegra_dfll *td, u32 val, u32 offs)
354 {
355 	__raw_writel(val, td->i2c_base + offs);
356 }
357 
358 static inline void dfll_i2c_wmb(struct tegra_dfll *td)
359 {
360 	dfll_i2c_readl(td, DFLL_I2C_CFG);
361 }
362 
363 /**
364  * dfll_is_running - is the DFLL currently generating a clock?
365  * @td: DFLL instance
366  *
367  * If the DFLL is currently generating an output clock signal, return
368  * true; otherwise return false.
369  */
370 static bool dfll_is_running(struct tegra_dfll *td)
371 {
372 	return td->mode >= DFLL_OPEN_LOOP;
373 }
374 
375 /*
376  * Runtime PM suspend/resume callbacks
377  */
378 
379 /**
380  * tegra_dfll_runtime_resume - enable all clocks needed by the DFLL
381  * @dev: DFLL device *
382  *
383  * Enable all clocks needed by the DFLL. Assumes that clk_prepare()
384  * has already been called on all the clocks.
385  *
386  * XXX Should also handle context restore when returning from off.
387  */
388 int tegra_dfll_runtime_resume(struct device *dev)
389 {
390 	struct tegra_dfll *td = dev_get_drvdata(dev);
391 	int ret;
392 
393 	ret = clk_enable(td->ref_clk);
394 	if (ret) {
395 		dev_err(dev, "could not enable ref clock: %d\n", ret);
396 		return ret;
397 	}
398 
399 	ret = clk_enable(td->soc_clk);
400 	if (ret) {
401 		dev_err(dev, "could not enable register clock: %d\n", ret);
402 		clk_disable(td->ref_clk);
403 		return ret;
404 	}
405 
406 	ret = clk_enable(td->i2c_clk);
407 	if (ret) {
408 		dev_err(dev, "could not enable i2c clock: %d\n", ret);
409 		clk_disable(td->soc_clk);
410 		clk_disable(td->ref_clk);
411 		return ret;
412 	}
413 
414 	return 0;
415 }
416 EXPORT_SYMBOL(tegra_dfll_runtime_resume);
417 
418 /**
419  * tegra_dfll_runtime_suspend - disable all clocks needed by the DFLL
420  * @dev: DFLL device *
421  *
422  * Disable all clocks needed by the DFLL. Assumes that other code
423  * will later call clk_unprepare().
424  */
425 int tegra_dfll_runtime_suspend(struct device *dev)
426 {
427 	struct tegra_dfll *td = dev_get_drvdata(dev);
428 
429 	clk_disable(td->ref_clk);
430 	clk_disable(td->soc_clk);
431 	clk_disable(td->i2c_clk);
432 
433 	return 0;
434 }
435 EXPORT_SYMBOL(tegra_dfll_runtime_suspend);
436 
437 /*
438  * DFLL tuning operations (per-voltage-range tuning settings)
439  */
440 
441 /**
442  * dfll_tune_low - tune to DFLL and CPU settings valid for any voltage
443  * @td: DFLL instance
444  *
445  * Tune the DFLL oscillator parameters and the CPU clock shaper for
446  * the low-voltage range. These settings are valid for any voltage,
447  * but may not be optimal.
448  */
449 static void dfll_tune_low(struct tegra_dfll *td)
450 {
451 	td->tune_range = DFLL_TUNE_LOW;
452 
453 	dfll_writel(td, td->soc->cvb->cpu_dfll_data.tune0_low, DFLL_TUNE0);
454 	dfll_writel(td, td->soc->cvb->cpu_dfll_data.tune1, DFLL_TUNE1);
455 	dfll_wmb(td);
456 
457 	if (td->soc->set_clock_trimmers_low)
458 		td->soc->set_clock_trimmers_low();
459 }
460 
461 /*
462  * Output clock scaler helpers
463  */
464 
465 /**
466  * dfll_scale_dvco_rate - calculate scaled rate from the DVCO rate
467  * @scale_bits: clock scaler value (bits in the DFLL_FREQ_REQ_SCALE field)
468  * @dvco_rate: the DVCO rate
469  *
470  * Apply the same scaling formula that the DFLL hardware uses to scale
471  * the DVCO rate.
472  */
473 static unsigned long dfll_scale_dvco_rate(int scale_bits,
474 					  unsigned long dvco_rate)
475 {
476 	return (u64)dvco_rate * (scale_bits + 1) / DFLL_FREQ_REQ_SCALE_MAX;
477 }
478 
479 /*
480  * DFLL mode switching
481  */
482 
483 /**
484  * dfll_set_mode - change the DFLL control mode
485  * @td: DFLL instance
486  * @mode: DFLL control mode (see enum dfll_ctrl_mode)
487  *
488  * Change the DFLL's operating mode between disabled, open-loop mode,
489  * and closed-loop mode, or vice versa.
490  */
491 static void dfll_set_mode(struct tegra_dfll *td,
492 			  enum dfll_ctrl_mode mode)
493 {
494 	td->mode = mode;
495 	dfll_writel(td, mode - 1, DFLL_CTRL);
496 	dfll_wmb(td);
497 }
498 
499 /*
500  * DVCO rate control
501  */
502 
503 static unsigned long get_dvco_rate_below(struct tegra_dfll *td, u8 out_min)
504 {
505 	struct dev_pm_opp *opp;
506 	unsigned long rate, prev_rate;
507 	unsigned long uv, min_uv;
508 
509 	min_uv = td->lut_uv[out_min];
510 	for (rate = 0, prev_rate = 0; ; rate++) {
511 		opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate);
512 		if (IS_ERR(opp))
513 			break;
514 
515 		uv = dev_pm_opp_get_voltage(opp);
516 		dev_pm_opp_put(opp);
517 
518 		if (uv && uv > min_uv)
519 			return prev_rate;
520 
521 		prev_rate = rate;
522 	}
523 
524 	return prev_rate;
525 }
526 
527 /*
528  * DFLL-to-I2C controller interface
529  */
530 
531 /**
532  * dfll_i2c_set_output_enabled - enable/disable I2C PMIC voltage requests
533  * @td: DFLL instance
534  * @enable: whether to enable or disable the I2C voltage requests
535  *
536  * Set the master enable control for I2C control value updates. If disabled,
537  * then I2C control messages are inhibited, regardless of the DFLL mode.
538  */
539 static int dfll_i2c_set_output_enabled(struct tegra_dfll *td, bool enable)
540 {
541 	u32 val;
542 
543 	val = dfll_i2c_readl(td, DFLL_OUTPUT_CFG);
544 
545 	if (enable)
546 		val |= DFLL_OUTPUT_CFG_I2C_ENABLE;
547 	else
548 		val &= ~DFLL_OUTPUT_CFG_I2C_ENABLE;
549 
550 	dfll_i2c_writel(td, val, DFLL_OUTPUT_CFG);
551 	dfll_i2c_wmb(td);
552 
553 	return 0;
554 }
555 
556 
557 /*
558  * DFLL-to-PWM controller interface
559  */
560 
561 /**
562  * dfll_pwm_set_output_enabled - enable/disable PWM voltage requests
563  * @td: DFLL instance
564  * @enable: whether to enable or disable the PWM voltage requests
565  *
566  * Set the master enable control for PWM control value updates. If disabled,
567  * then the PWM signal is not driven. Also configure the PWM output pad
568  * to the appropriate state.
569  */
570 static int dfll_pwm_set_output_enabled(struct tegra_dfll *td, bool enable)
571 {
572 	int ret;
573 	u32 val, div;
574 
575 	if (enable) {
576 		ret = pinctrl_select_state(td->pwm_pin, td->pwm_enable_state);
577 		if (ret < 0) {
578 			dev_err(td->dev, "setting enable state failed\n");
579 			return -EINVAL;
580 		}
581 		val = dfll_readl(td, DFLL_OUTPUT_CFG);
582 		val &= ~DFLL_OUTPUT_CFG_PWM_DIV_MASK;
583 		div = DIV_ROUND_UP(td->ref_rate, td->pwm_rate);
584 		val |= (div << DFLL_OUTPUT_CFG_PWM_DIV_SHIFT)
585 				& DFLL_OUTPUT_CFG_PWM_DIV_MASK;
586 		dfll_writel(td, val, DFLL_OUTPUT_CFG);
587 		dfll_wmb(td);
588 
589 		val |= DFLL_OUTPUT_CFG_PWM_ENABLE;
590 		dfll_writel(td, val, DFLL_OUTPUT_CFG);
591 		dfll_wmb(td);
592 	} else {
593 		ret = pinctrl_select_state(td->pwm_pin, td->pwm_disable_state);
594 		if (ret < 0)
595 			dev_warn(td->dev, "setting disable state failed\n");
596 
597 		val = dfll_readl(td, DFLL_OUTPUT_CFG);
598 		val &= ~DFLL_OUTPUT_CFG_PWM_ENABLE;
599 		dfll_writel(td, val, DFLL_OUTPUT_CFG);
600 		dfll_wmb(td);
601 	}
602 
603 	return 0;
604 }
605 
606 /**
607  * dfll_set_force_output_value - set fixed value for force output
608  * @td: DFLL instance
609  * @out_val: value to force output
610  *
611  * Set the fixed value for force output, DFLL will output this value when
612  * force output is enabled.
613  */
614 static u32 dfll_set_force_output_value(struct tegra_dfll *td, u8 out_val)
615 {
616 	u32 val = dfll_readl(td, DFLL_OUTPUT_FORCE);
617 
618 	val = (val & DFLL_OUTPUT_FORCE_ENABLE) | (out_val & OUT_MASK);
619 	dfll_writel(td, val, DFLL_OUTPUT_FORCE);
620 	dfll_wmb(td);
621 
622 	return dfll_readl(td, DFLL_OUTPUT_FORCE);
623 }
624 
625 /**
626  * dfll_set_force_output_enabled - enable/disable force output
627  * @td: DFLL instance
628  * @enable: whether to enable or disable the force output
629  *
630  * Set the enable control for fouce output with fixed value.
631  */
632 static void dfll_set_force_output_enabled(struct tegra_dfll *td, bool enable)
633 {
634 	u32 val = dfll_readl(td, DFLL_OUTPUT_FORCE);
635 
636 	if (enable)
637 		val |= DFLL_OUTPUT_FORCE_ENABLE;
638 	else
639 		val &= ~DFLL_OUTPUT_FORCE_ENABLE;
640 
641 	dfll_writel(td, val, DFLL_OUTPUT_FORCE);
642 	dfll_wmb(td);
643 }
644 
645 /**
646  * dfll_force_output - force output a fixed value
647  * @td: DFLL instance
648  * @out_sel: value to force output
649  *
650  * Set the fixed value for force output, DFLL will output this value.
651  */
652 static int dfll_force_output(struct tegra_dfll *td, unsigned int out_sel)
653 {
654 	u32 val;
655 
656 	if (out_sel > OUT_MASK)
657 		return -EINVAL;
658 
659 	val = dfll_set_force_output_value(td, out_sel);
660 	if ((td->mode < DFLL_CLOSED_LOOP) &&
661 	    !(val & DFLL_OUTPUT_FORCE_ENABLE)) {
662 		dfll_set_force_output_enabled(td, true);
663 	}
664 
665 	return 0;
666 }
667 
668 /**
669  * dfll_load_lut - load the voltage lookup table
670  * @td: struct tegra_dfll *
671  *
672  * Load the voltage-to-PMIC register value lookup table into the DFLL
673  * IP block memory. Look-up tables can be loaded at any time.
674  */
675 static void dfll_load_i2c_lut(struct tegra_dfll *td)
676 {
677 	int i, lut_index;
678 	u32 val;
679 
680 	for (i = 0; i < MAX_DFLL_VOLTAGES; i++) {
681 		if (i < td->lut_min)
682 			lut_index = td->lut_min;
683 		else if (i > td->lut_max)
684 			lut_index = td->lut_max;
685 		else
686 			lut_index = i;
687 
688 		val = regulator_list_hardware_vsel(td->vdd_reg,
689 						     td->lut[lut_index]);
690 		__raw_writel(val, td->lut_base + i * 4);
691 	}
692 
693 	dfll_i2c_wmb(td);
694 }
695 
696 /**
697  * dfll_init_i2c_if - set up the DFLL's DFLL-I2C interface
698  * @td: DFLL instance
699  *
700  * During DFLL driver initialization, program the DFLL-I2C interface
701  * with the PMU slave address, vdd register offset, and transfer mode.
702  * This data is used by the DFLL to automatically construct I2C
703  * voltage-set commands, which are then passed to the DFLL's internal
704  * I2C controller.
705  */
706 static void dfll_init_i2c_if(struct tegra_dfll *td)
707 {
708 	u32 val;
709 
710 	if (td->i2c_slave_addr > 0x7f) {
711 		val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT;
712 		val |= DFLL_I2C_CFG_SLAVE_ADDR_10;
713 	} else {
714 		val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT;
715 	}
716 	val |= DFLL_I2C_CFG_SIZE_MASK;
717 	val |= DFLL_I2C_CFG_ARB_ENABLE;
718 	dfll_i2c_writel(td, val, DFLL_I2C_CFG);
719 
720 	dfll_i2c_writel(td, td->i2c_reg, DFLL_I2C_VDD_REG_ADDR);
721 
722 	val = DIV_ROUND_UP(td->i2c_clk_rate, td->i2c_fs_rate * 8);
723 	BUG_ON(!val || (val > DFLL_I2C_CLK_DIVISOR_MASK));
724 	val = (val - 1) << DFLL_I2C_CLK_DIVISOR_FS_SHIFT;
725 
726 	/* default hs divisor just in case */
727 	val |= 1 << DFLL_I2C_CLK_DIVISOR_HS_SHIFT;
728 	__raw_writel(val, td->i2c_controller_base + DFLL_I2C_CLK_DIVISOR);
729 	dfll_i2c_wmb(td);
730 }
731 
732 /**
733  * dfll_init_out_if - prepare DFLL-to-PMIC interface
734  * @td: DFLL instance
735  *
736  * During DFLL driver initialization or resume from context loss,
737  * disable the I2C command output to the PMIC, set safe voltage and
738  * output limits, and disable and clear limit interrupts.
739  */
740 static void dfll_init_out_if(struct tegra_dfll *td)
741 {
742 	u32 val;
743 
744 	td->lut_min = td->lut_bottom;
745 	td->lut_max = td->lut_size - 1;
746 	td->lut_safe = td->lut_min + (td->lut_min < td->lut_max ? 1 : 0);
747 
748 	/* clear DFLL_OUTPUT_CFG before setting new value */
749 	dfll_writel(td, 0, DFLL_OUTPUT_CFG);
750 	dfll_wmb(td);
751 
752 	val = (td->lut_safe << DFLL_OUTPUT_CFG_SAFE_SHIFT) |
753 	      (td->lut_max << DFLL_OUTPUT_CFG_MAX_SHIFT) |
754 	      (td->lut_min << DFLL_OUTPUT_CFG_MIN_SHIFT);
755 	dfll_writel(td, val, DFLL_OUTPUT_CFG);
756 	dfll_wmb(td);
757 
758 	dfll_writel(td, 0, DFLL_OUTPUT_FORCE);
759 	dfll_i2c_writel(td, 0, DFLL_INTR_EN);
760 	dfll_i2c_writel(td, DFLL_INTR_MAX_MASK | DFLL_INTR_MIN_MASK,
761 			DFLL_INTR_STS);
762 
763 	if (td->pmu_if == TEGRA_DFLL_PMU_PWM) {
764 		u32 vinit = td->reg_init_uV;
765 		int vstep = td->soc->alignment.step_uv;
766 		unsigned long vmin = td->lut_uv[0];
767 
768 		/* set initial voltage */
769 		if ((vinit >= vmin) && vstep) {
770 			unsigned int vsel;
771 
772 			vsel = DIV_ROUND_UP((vinit - vmin), vstep);
773 			dfll_force_output(td, vsel);
774 		}
775 	} else {
776 		dfll_load_i2c_lut(td);
777 		dfll_init_i2c_if(td);
778 	}
779 }
780 
781 /*
782  * Set/get the DFLL's targeted output clock rate
783  */
784 
785 /**
786  * find_lut_index_for_rate - determine I2C LUT index for given DFLL rate
787  * @td: DFLL instance
788  * @rate: clock rate
789  *
790  * Determines the index of a I2C LUT entry for a voltage that approximately
791  * produces the given DFLL clock rate. This is used when forcing a value
792  * to the integrator during rate changes. Returns -ENOENT if a suitable
793  * LUT index is not found.
794  */
795 static int find_lut_index_for_rate(struct tegra_dfll *td, unsigned long rate)
796 {
797 	struct dev_pm_opp *opp;
798 	int i, align_step;
799 
800 	opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate);
801 	if (IS_ERR(opp))
802 		return PTR_ERR(opp);
803 
804 	align_step = dev_pm_opp_get_voltage(opp) / td->soc->alignment.step_uv;
805 	dev_pm_opp_put(opp);
806 
807 	for (i = td->lut_bottom; i < td->lut_size; i++) {
808 		if ((td->lut_uv[i] / td->soc->alignment.step_uv) >= align_step)
809 			return i;
810 	}
811 
812 	return -ENOENT;
813 }
814 
815 /**
816  * dfll_calculate_rate_request - calculate DFLL parameters for a given rate
817  * @td: DFLL instance
818  * @req: DFLL-rate-request structure
819  * @rate: the desired DFLL rate
820  *
821  * Populate the DFLL-rate-request record @req fields with the scale_bits
822  * and mult_bits fields, based on the target input rate. Returns 0 upon
823  * success, or -EINVAL if the requested rate in req->rate is too high
824  * or low for the DFLL to generate.
825  */
826 static int dfll_calculate_rate_request(struct tegra_dfll *td,
827 				       struct dfll_rate_req *req,
828 				       unsigned long rate)
829 {
830 	u32 val;
831 
832 	/*
833 	 * If requested rate is below the minimum DVCO rate, active the scaler.
834 	 * In the future the DVCO minimum voltage should be selected based on
835 	 * chip temperature and the actual minimum rate should be calibrated
836 	 * at runtime.
837 	 */
838 	req->scale_bits = DFLL_FREQ_REQ_SCALE_MAX - 1;
839 	if (rate < td->dvco_rate_min) {
840 		int scale;
841 
842 		scale = DIV_ROUND_CLOSEST(rate / 1000 * DFLL_FREQ_REQ_SCALE_MAX,
843 					  td->dvco_rate_min / 1000);
844 		if (!scale) {
845 			dev_err(td->dev, "%s: Rate %lu is too low\n",
846 				__func__, rate);
847 			return -EINVAL;
848 		}
849 		req->scale_bits = scale - 1;
850 		rate = td->dvco_rate_min;
851 	}
852 
853 	/* Convert requested rate into frequency request and scale settings */
854 	val = DVCO_RATE_TO_MULT(rate, td->ref_rate);
855 	if (val > FREQ_MAX) {
856 		dev_err(td->dev, "%s: Rate %lu is above dfll range\n",
857 			__func__, rate);
858 		return -EINVAL;
859 	}
860 	req->mult_bits = val;
861 	req->dvco_target_rate = MULT_TO_DVCO_RATE(req->mult_bits, td->ref_rate);
862 	req->rate = dfll_scale_dvco_rate(req->scale_bits,
863 					 req->dvco_target_rate);
864 	req->lut_index = find_lut_index_for_rate(td, req->dvco_target_rate);
865 	if (req->lut_index < 0)
866 		return req->lut_index;
867 
868 	return 0;
869 }
870 
871 /**
872  * dfll_set_frequency_request - start the frequency change operation
873  * @td: DFLL instance
874  * @req: rate request structure
875  *
876  * Tell the DFLL to try to change its output frequency to the
877  * frequency represented by @req. DFLL must be in closed-loop mode.
878  */
879 static void dfll_set_frequency_request(struct tegra_dfll *td,
880 				       struct dfll_rate_req *req)
881 {
882 	u32 val = 0;
883 	int force_val;
884 	int coef = 128; /* FIXME: td->cg_scale? */;
885 
886 	force_val = (req->lut_index - td->lut_safe) * coef / td->cg;
887 	force_val = clamp(force_val, FORCE_MIN, FORCE_MAX);
888 
889 	val |= req->mult_bits << DFLL_FREQ_REQ_MULT_SHIFT;
890 	val |= req->scale_bits << DFLL_FREQ_REQ_SCALE_SHIFT;
891 	val |= ((u32)force_val << DFLL_FREQ_REQ_FORCE_SHIFT) &
892 		DFLL_FREQ_REQ_FORCE_MASK;
893 	val |= DFLL_FREQ_REQ_FREQ_VALID | DFLL_FREQ_REQ_FORCE_ENABLE;
894 
895 	dfll_writel(td, val, DFLL_FREQ_REQ);
896 	dfll_wmb(td);
897 }
898 
899 /**
900  * tegra_dfll_request_rate - set the next rate for the DFLL to tune to
901  * @td: DFLL instance
902  * @rate: clock rate to target
903  *
904  * Convert the requested clock rate @rate into the DFLL control logic
905  * settings. In closed-loop mode, update new settings immediately to
906  * adjust DFLL output rate accordingly. Otherwise, just save them
907  * until the next switch to closed loop. Returns 0 upon success,
908  * -EPERM if the DFLL driver has not yet been initialized, or -EINVAL
909  * if @rate is outside the DFLL's tunable range.
910  */
911 static int dfll_request_rate(struct tegra_dfll *td, unsigned long rate)
912 {
913 	int ret;
914 	struct dfll_rate_req req;
915 
916 	if (td->mode == DFLL_UNINITIALIZED) {
917 		dev_err(td->dev, "%s: Cannot set DFLL rate in %s mode\n",
918 			__func__, mode_name[td->mode]);
919 		return -EPERM;
920 	}
921 
922 	ret = dfll_calculate_rate_request(td, &req, rate);
923 	if (ret)
924 		return ret;
925 
926 	td->last_unrounded_rate = rate;
927 	td->last_req = req;
928 
929 	if (td->mode == DFLL_CLOSED_LOOP)
930 		dfll_set_frequency_request(td, &td->last_req);
931 
932 	return 0;
933 }
934 
935 /*
936  * DFLL enable/disable & open-loop <-> closed-loop transitions
937  */
938 
939 /**
940  * dfll_disable - switch from open-loop mode to disabled mode
941  * @td: DFLL instance
942  *
943  * Switch from OPEN_LOOP state to DISABLED state. Returns 0 upon success
944  * or -EPERM if the DFLL is not currently in open-loop mode.
945  */
946 static int dfll_disable(struct tegra_dfll *td)
947 {
948 	if (td->mode != DFLL_OPEN_LOOP) {
949 		dev_err(td->dev, "cannot disable DFLL in %s mode\n",
950 			mode_name[td->mode]);
951 		return -EINVAL;
952 	}
953 
954 	dfll_set_mode(td, DFLL_DISABLED);
955 	pm_runtime_put_sync(td->dev);
956 
957 	return 0;
958 }
959 
960 /**
961  * dfll_enable - switch a disabled DFLL to open-loop mode
962  * @td: DFLL instance
963  *
964  * Switch from DISABLED state to OPEN_LOOP state. Returns 0 upon success
965  * or -EPERM if the DFLL is not currently disabled.
966  */
967 static int dfll_enable(struct tegra_dfll *td)
968 {
969 	if (td->mode != DFLL_DISABLED) {
970 		dev_err(td->dev, "cannot enable DFLL in %s mode\n",
971 			mode_name[td->mode]);
972 		return -EPERM;
973 	}
974 
975 	pm_runtime_get_sync(td->dev);
976 	dfll_set_mode(td, DFLL_OPEN_LOOP);
977 
978 	return 0;
979 }
980 
981 /**
982  * dfll_set_open_loop_config - prepare to switch to open-loop mode
983  * @td: DFLL instance
984  *
985  * Prepare to switch the DFLL to open-loop mode. This switches the
986  * DFLL to the low-voltage tuning range, ensures that I2C output
987  * forcing is disabled, and disables the output clock rate scaler.
988  * The DFLL's low-voltage tuning range parameters must be
989  * characterized to keep the downstream device stable at any DVCO
990  * input voltage. No return value.
991  */
992 static void dfll_set_open_loop_config(struct tegra_dfll *td)
993 {
994 	u32 val;
995 
996 	/* always tune low (safe) in open loop */
997 	if (td->tune_range != DFLL_TUNE_LOW)
998 		dfll_tune_low(td);
999 
1000 	val = dfll_readl(td, DFLL_FREQ_REQ);
1001 	val |= DFLL_FREQ_REQ_SCALE_MASK;
1002 	val &= ~DFLL_FREQ_REQ_FORCE_ENABLE;
1003 	dfll_writel(td, val, DFLL_FREQ_REQ);
1004 	dfll_wmb(td);
1005 }
1006 
1007 /**
1008  * tegra_dfll_lock - switch from open-loop to closed-loop mode
1009  * @td: DFLL instance
1010  *
1011  * Switch from OPEN_LOOP state to CLOSED_LOOP state. Returns 0 upon success,
1012  * -EINVAL if the DFLL's target rate hasn't been set yet, or -EPERM if the
1013  * DFLL is not currently in open-loop mode.
1014  */
1015 static int dfll_lock(struct tegra_dfll *td)
1016 {
1017 	struct dfll_rate_req *req = &td->last_req;
1018 
1019 	switch (td->mode) {
1020 	case DFLL_CLOSED_LOOP:
1021 		return 0;
1022 
1023 	case DFLL_OPEN_LOOP:
1024 		if (req->rate == 0) {
1025 			dev_err(td->dev, "%s: Cannot lock DFLL at rate 0\n",
1026 				__func__);
1027 			return -EINVAL;
1028 		}
1029 
1030 		if (td->pmu_if == TEGRA_DFLL_PMU_PWM)
1031 			dfll_pwm_set_output_enabled(td, true);
1032 		else
1033 			dfll_i2c_set_output_enabled(td, true);
1034 
1035 		dfll_set_mode(td, DFLL_CLOSED_LOOP);
1036 		dfll_set_frequency_request(td, req);
1037 		dfll_set_force_output_enabled(td, false);
1038 		return 0;
1039 
1040 	default:
1041 		BUG_ON(td->mode > DFLL_CLOSED_LOOP);
1042 		dev_err(td->dev, "%s: Cannot lock DFLL in %s mode\n",
1043 			__func__, mode_name[td->mode]);
1044 		return -EPERM;
1045 	}
1046 }
1047 
1048 /**
1049  * tegra_dfll_unlock - switch from closed-loop to open-loop mode
1050  * @td: DFLL instance
1051  *
1052  * Switch from CLOSED_LOOP state to OPEN_LOOP state. Returns 0 upon success,
1053  * or -EPERM if the DFLL is not currently in open-loop mode.
1054  */
1055 static int dfll_unlock(struct tegra_dfll *td)
1056 {
1057 	switch (td->mode) {
1058 	case DFLL_CLOSED_LOOP:
1059 		dfll_set_open_loop_config(td);
1060 		dfll_set_mode(td, DFLL_OPEN_LOOP);
1061 		if (td->pmu_if == TEGRA_DFLL_PMU_PWM)
1062 			dfll_pwm_set_output_enabled(td, false);
1063 		else
1064 			dfll_i2c_set_output_enabled(td, false);
1065 		return 0;
1066 
1067 	case DFLL_OPEN_LOOP:
1068 		return 0;
1069 
1070 	default:
1071 		BUG_ON(td->mode > DFLL_CLOSED_LOOP);
1072 		dev_err(td->dev, "%s: Cannot unlock DFLL in %s mode\n",
1073 			__func__, mode_name[td->mode]);
1074 		return -EPERM;
1075 	}
1076 }
1077 
1078 /*
1079  * Clock framework integration
1080  *
1081  * When the DFLL is being controlled by the CCF, always enter closed loop
1082  * mode when the clk is enabled. This requires that a DFLL rate request
1083  * has been set beforehand, which implies that a clk_set_rate() call is
1084  * always required before a clk_enable().
1085  */
1086 
1087 static int dfll_clk_is_enabled(struct clk_hw *hw)
1088 {
1089 	struct tegra_dfll *td = clk_hw_to_dfll(hw);
1090 
1091 	return dfll_is_running(td);
1092 }
1093 
1094 static int dfll_clk_enable(struct clk_hw *hw)
1095 {
1096 	struct tegra_dfll *td = clk_hw_to_dfll(hw);
1097 	int ret;
1098 
1099 	ret = dfll_enable(td);
1100 	if (ret)
1101 		return ret;
1102 
1103 	ret = dfll_lock(td);
1104 	if (ret)
1105 		dfll_disable(td);
1106 
1107 	return ret;
1108 }
1109 
1110 static void dfll_clk_disable(struct clk_hw *hw)
1111 {
1112 	struct tegra_dfll *td = clk_hw_to_dfll(hw);
1113 	int ret;
1114 
1115 	ret = dfll_unlock(td);
1116 	if (!ret)
1117 		dfll_disable(td);
1118 }
1119 
1120 static unsigned long dfll_clk_recalc_rate(struct clk_hw *hw,
1121 					  unsigned long parent_rate)
1122 {
1123 	struct tegra_dfll *td = clk_hw_to_dfll(hw);
1124 
1125 	return td->last_unrounded_rate;
1126 }
1127 
1128 /* Must use determine_rate since it allows for rates exceeding 2^31-1 */
1129 static int dfll_clk_determine_rate(struct clk_hw *hw,
1130 				   struct clk_rate_request *clk_req)
1131 {
1132 	struct tegra_dfll *td = clk_hw_to_dfll(hw);
1133 	struct dfll_rate_req req;
1134 	int ret;
1135 
1136 	ret = dfll_calculate_rate_request(td, &req, clk_req->rate);
1137 	if (ret)
1138 		return ret;
1139 
1140 	/*
1141 	 * Don't set the rounded rate, since it doesn't really matter as
1142 	 * the output rate will be voltage controlled anyway, and cpufreq
1143 	 * freaks out if any rounding happens.
1144 	 */
1145 
1146 	return 0;
1147 }
1148 
1149 static int dfll_clk_set_rate(struct clk_hw *hw, unsigned long rate,
1150 			     unsigned long parent_rate)
1151 {
1152 	struct tegra_dfll *td = clk_hw_to_dfll(hw);
1153 
1154 	return dfll_request_rate(td, rate);
1155 }
1156 
1157 static const struct clk_ops dfll_clk_ops = {
1158 	.is_enabled	= dfll_clk_is_enabled,
1159 	.enable		= dfll_clk_enable,
1160 	.disable	= dfll_clk_disable,
1161 	.recalc_rate	= dfll_clk_recalc_rate,
1162 	.determine_rate	= dfll_clk_determine_rate,
1163 	.set_rate	= dfll_clk_set_rate,
1164 };
1165 
1166 static struct clk_init_data dfll_clk_init_data = {
1167 	.ops		= &dfll_clk_ops,
1168 	.num_parents	= 0,
1169 };
1170 
1171 /**
1172  * dfll_register_clk - register the DFLL output clock with the clock framework
1173  * @td: DFLL instance
1174  *
1175  * Register the DFLL's output clock with the Linux clock framework and register
1176  * the DFLL driver as an OF clock provider. Returns 0 upon success or -EINVAL
1177  * or -ENOMEM upon failure.
1178  */
1179 static int dfll_register_clk(struct tegra_dfll *td)
1180 {
1181 	int ret;
1182 
1183 	dfll_clk_init_data.name = td->output_clock_name;
1184 	td->dfll_clk_hw.init = &dfll_clk_init_data;
1185 
1186 	td->dfll_clk = clk_register(td->dev, &td->dfll_clk_hw);
1187 	if (IS_ERR(td->dfll_clk)) {
1188 		dev_err(td->dev, "DFLL clock registration error\n");
1189 		return -EINVAL;
1190 	}
1191 
1192 	ret = of_clk_add_provider(td->dev->of_node, of_clk_src_simple_get,
1193 				  td->dfll_clk);
1194 	if (ret) {
1195 		dev_err(td->dev, "of_clk_add_provider() failed\n");
1196 
1197 		clk_unregister(td->dfll_clk);
1198 		return ret;
1199 	}
1200 
1201 	return 0;
1202 }
1203 
1204 /**
1205  * dfll_unregister_clk - unregister the DFLL output clock
1206  * @td: DFLL instance
1207  *
1208  * Unregister the DFLL's output clock from the Linux clock framework
1209  * and from clkdev. No return value.
1210  */
1211 static void dfll_unregister_clk(struct tegra_dfll *td)
1212 {
1213 	of_clk_del_provider(td->dev->of_node);
1214 	clk_unregister(td->dfll_clk);
1215 	td->dfll_clk = NULL;
1216 }
1217 
1218 /*
1219  * Debugfs interface
1220  */
1221 
1222 #ifdef CONFIG_DEBUG_FS
1223 /*
1224  * Monitor control
1225  */
1226 
1227 /**
1228  * dfll_calc_monitored_rate - convert DFLL_MONITOR_DATA_VAL rate into real freq
1229  * @monitor_data: value read from the DFLL_MONITOR_DATA_VAL bitfield
1230  * @ref_rate: DFLL reference clock rate
1231  *
1232  * Convert @monitor_data from DFLL_MONITOR_DATA_VAL units into cycles
1233  * per second. Returns the converted value.
1234  */
1235 static u64 dfll_calc_monitored_rate(u32 monitor_data,
1236 				    unsigned long ref_rate)
1237 {
1238 	return monitor_data * (ref_rate / REF_CLK_CYC_PER_DVCO_SAMPLE);
1239 }
1240 
1241 /**
1242  * dfll_read_monitor_rate - return the DFLL's output rate from internal monitor
1243  * @td: DFLL instance
1244  *
1245  * If the DFLL is enabled, return the last rate reported by the DFLL's
1246  * internal monitoring hardware. This works in both open-loop and
1247  * closed-loop mode, and takes the output scaler setting into account.
1248  * Assumes that the monitor was programmed to monitor frequency before
1249  * the sample period started. If the driver believes that the DFLL is
1250  * currently uninitialized or disabled, it will return 0, since
1251  * otherwise the DFLL monitor data register will return the last
1252  * measured rate from when the DFLL was active.
1253  */
1254 static u64 dfll_read_monitor_rate(struct tegra_dfll *td)
1255 {
1256 	u32 v, s;
1257 	u64 pre_scaler_rate, post_scaler_rate;
1258 
1259 	if (!dfll_is_running(td))
1260 		return 0;
1261 
1262 	v = dfll_readl(td, DFLL_MONITOR_DATA);
1263 	v = (v & DFLL_MONITOR_DATA_VAL_MASK) >> DFLL_MONITOR_DATA_VAL_SHIFT;
1264 	pre_scaler_rate = dfll_calc_monitored_rate(v, td->ref_rate);
1265 
1266 	s = dfll_readl(td, DFLL_FREQ_REQ);
1267 	s = (s & DFLL_FREQ_REQ_SCALE_MASK) >> DFLL_FREQ_REQ_SCALE_SHIFT;
1268 	post_scaler_rate = dfll_scale_dvco_rate(s, pre_scaler_rate);
1269 
1270 	return post_scaler_rate;
1271 }
1272 
1273 static int attr_enable_get(void *data, u64 *val)
1274 {
1275 	struct tegra_dfll *td = data;
1276 
1277 	*val = dfll_is_running(td);
1278 
1279 	return 0;
1280 }
1281 static int attr_enable_set(void *data, u64 val)
1282 {
1283 	struct tegra_dfll *td = data;
1284 
1285 	return val ? dfll_enable(td) : dfll_disable(td);
1286 }
1287 DEFINE_DEBUGFS_ATTRIBUTE(enable_fops, attr_enable_get, attr_enable_set,
1288 			 "%llu\n");
1289 
1290 static int attr_lock_get(void *data, u64 *val)
1291 {
1292 	struct tegra_dfll *td = data;
1293 
1294 	*val = (td->mode == DFLL_CLOSED_LOOP);
1295 
1296 	return 0;
1297 }
1298 static int attr_lock_set(void *data, u64 val)
1299 {
1300 	struct tegra_dfll *td = data;
1301 
1302 	return val ? dfll_lock(td) :  dfll_unlock(td);
1303 }
1304 DEFINE_DEBUGFS_ATTRIBUTE(lock_fops, attr_lock_get, attr_lock_set, "%llu\n");
1305 
1306 static int attr_rate_get(void *data, u64 *val)
1307 {
1308 	struct tegra_dfll *td = data;
1309 
1310 	*val = dfll_read_monitor_rate(td);
1311 
1312 	return 0;
1313 }
1314 
1315 static int attr_rate_set(void *data, u64 val)
1316 {
1317 	struct tegra_dfll *td = data;
1318 
1319 	return dfll_request_rate(td, val);
1320 }
1321 DEFINE_DEBUGFS_ATTRIBUTE(rate_fops, attr_rate_get, attr_rate_set, "%llu\n");
1322 
1323 static int attr_registers_show(struct seq_file *s, void *data)
1324 {
1325 	u32 val, offs;
1326 	struct tegra_dfll *td = s->private;
1327 
1328 	seq_puts(s, "CONTROL REGISTERS:\n");
1329 	for (offs = 0; offs <= DFLL_MONITOR_DATA; offs += 4) {
1330 		if (offs == DFLL_OUTPUT_CFG)
1331 			val = dfll_i2c_readl(td, offs);
1332 		else
1333 			val = dfll_readl(td, offs);
1334 		seq_printf(s, "[0x%02x] = 0x%08x\n", offs, val);
1335 	}
1336 
1337 	seq_puts(s, "\nI2C and INTR REGISTERS:\n");
1338 	for (offs = DFLL_I2C_CFG; offs <= DFLL_I2C_STS; offs += 4)
1339 		seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1340 			   dfll_i2c_readl(td, offs));
1341 	for (offs = DFLL_INTR_STS; offs <= DFLL_INTR_EN; offs += 4)
1342 		seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1343 			   dfll_i2c_readl(td, offs));
1344 
1345 	if (td->pmu_if == TEGRA_DFLL_PMU_I2C) {
1346 		seq_puts(s, "\nINTEGRATED I2C CONTROLLER REGISTERS:\n");
1347 		offs = DFLL_I2C_CLK_DIVISOR;
1348 		seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1349 			   __raw_readl(td->i2c_controller_base + offs));
1350 
1351 		seq_puts(s, "\nLUT:\n");
1352 		for (offs = 0; offs <  4 * MAX_DFLL_VOLTAGES; offs += 4)
1353 			seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1354 				   __raw_readl(td->lut_base + offs));
1355 	}
1356 
1357 	return 0;
1358 }
1359 
1360 DEFINE_SHOW_ATTRIBUTE(attr_registers);
1361 
1362 static void dfll_debug_init(struct tegra_dfll *td)
1363 {
1364 	struct dentry *root;
1365 
1366 	if (!td || (td->mode == DFLL_UNINITIALIZED))
1367 		return;
1368 
1369 	root = debugfs_create_dir("tegra_dfll_fcpu", NULL);
1370 	td->debugfs_dir = root;
1371 
1372 	debugfs_create_file_unsafe("enable", 0644, root, td,
1373 				   &enable_fops);
1374 	debugfs_create_file_unsafe("lock", 0444, root, td, &lock_fops);
1375 	debugfs_create_file_unsafe("rate", 0444, root, td, &rate_fops);
1376 	debugfs_create_file("registers", 0444, root, td, &attr_registers_fops);
1377 }
1378 
1379 #else
1380 static void inline dfll_debug_init(struct tegra_dfll *td) { }
1381 #endif /* CONFIG_DEBUG_FS */
1382 
1383 /*
1384  * DFLL initialization
1385  */
1386 
1387 /**
1388  * dfll_set_default_params - program non-output related DFLL parameters
1389  * @td: DFLL instance
1390  *
1391  * During DFLL driver initialization or resume from context loss,
1392  * program parameters for the closed loop integrator, DVCO tuning,
1393  * voltage droop control and monitor control.
1394  */
1395 static void dfll_set_default_params(struct tegra_dfll *td)
1396 {
1397 	u32 val;
1398 
1399 	val = DIV_ROUND_UP(td->ref_rate, td->sample_rate * 32);
1400 	BUG_ON(val > DFLL_CONFIG_DIV_MASK);
1401 	dfll_writel(td, val, DFLL_CONFIG);
1402 
1403 	val = (td->force_mode << DFLL_PARAMS_FORCE_MODE_SHIFT) |
1404 		(td->cf << DFLL_PARAMS_CF_PARAM_SHIFT) |
1405 		(td->ci << DFLL_PARAMS_CI_PARAM_SHIFT) |
1406 		(td->cg << DFLL_PARAMS_CG_PARAM_SHIFT) |
1407 		(td->cg_scale ? DFLL_PARAMS_CG_SCALE : 0);
1408 	dfll_writel(td, val, DFLL_PARAMS);
1409 
1410 	dfll_tune_low(td);
1411 	dfll_writel(td, td->droop_ctrl, DFLL_DROOP_CTRL);
1412 	dfll_writel(td, DFLL_MONITOR_CTRL_FREQ, DFLL_MONITOR_CTRL);
1413 }
1414 
1415 /**
1416  * dfll_init_clks - clk_get() the DFLL source clocks
1417  * @td: DFLL instance
1418  *
1419  * Call clk_get() on the DFLL source clocks and save the pointers for later
1420  * use. Returns 0 upon success or error (see devm_clk_get) if one or more
1421  * of the clocks couldn't be looked up.
1422  */
1423 static int dfll_init_clks(struct tegra_dfll *td)
1424 {
1425 	td->ref_clk = devm_clk_get(td->dev, "ref");
1426 	if (IS_ERR(td->ref_clk)) {
1427 		dev_err(td->dev, "missing ref clock\n");
1428 		return PTR_ERR(td->ref_clk);
1429 	}
1430 
1431 	td->soc_clk = devm_clk_get(td->dev, "soc");
1432 	if (IS_ERR(td->soc_clk)) {
1433 		dev_err(td->dev, "missing soc clock\n");
1434 		return PTR_ERR(td->soc_clk);
1435 	}
1436 
1437 	td->i2c_clk = devm_clk_get(td->dev, "i2c");
1438 	if (IS_ERR(td->i2c_clk)) {
1439 		dev_err(td->dev, "missing i2c clock\n");
1440 		return PTR_ERR(td->i2c_clk);
1441 	}
1442 	td->i2c_clk_rate = clk_get_rate(td->i2c_clk);
1443 
1444 	return 0;
1445 }
1446 
1447 /**
1448  * dfll_init - Prepare the DFLL IP block for use
1449  * @td: DFLL instance
1450  *
1451  * Do everything necessary to prepare the DFLL IP block for use. The
1452  * DFLL will be left in DISABLED state. Called by dfll_probe().
1453  * Returns 0 upon success, or passes along the error from whatever
1454  * function returned it.
1455  */
1456 static int dfll_init(struct tegra_dfll *td)
1457 {
1458 	int ret;
1459 
1460 	td->ref_rate = clk_get_rate(td->ref_clk);
1461 	if (td->ref_rate != REF_CLOCK_RATE) {
1462 		dev_err(td->dev, "unexpected ref clk rate %lu, expecting %lu",
1463 			td->ref_rate, REF_CLOCK_RATE);
1464 		return -EINVAL;
1465 	}
1466 
1467 	reset_control_deassert(td->dvco_rst);
1468 
1469 	ret = clk_prepare(td->ref_clk);
1470 	if (ret) {
1471 		dev_err(td->dev, "failed to prepare ref_clk\n");
1472 		return ret;
1473 	}
1474 
1475 	ret = clk_prepare(td->soc_clk);
1476 	if (ret) {
1477 		dev_err(td->dev, "failed to prepare soc_clk\n");
1478 		goto di_err1;
1479 	}
1480 
1481 	ret = clk_prepare(td->i2c_clk);
1482 	if (ret) {
1483 		dev_err(td->dev, "failed to prepare i2c_clk\n");
1484 		goto di_err2;
1485 	}
1486 
1487 	td->last_unrounded_rate = 0;
1488 
1489 	pm_runtime_enable(td->dev);
1490 	pm_runtime_get_sync(td->dev);
1491 
1492 	dfll_set_mode(td, DFLL_DISABLED);
1493 	dfll_set_default_params(td);
1494 
1495 	if (td->soc->init_clock_trimmers)
1496 		td->soc->init_clock_trimmers();
1497 
1498 	dfll_set_open_loop_config(td);
1499 
1500 	dfll_init_out_if(td);
1501 
1502 	pm_runtime_put_sync(td->dev);
1503 
1504 	return 0;
1505 
1506 di_err2:
1507 	clk_unprepare(td->soc_clk);
1508 di_err1:
1509 	clk_unprepare(td->ref_clk);
1510 
1511 	reset_control_assert(td->dvco_rst);
1512 
1513 	return ret;
1514 }
1515 
1516 /**
1517  * tegra_dfll_suspend - check DFLL is disabled
1518  * @dev: DFLL instance
1519  *
1520  * DFLL clock should be disabled by the CPUFreq driver. So, make
1521  * sure it is disabled and disable all clocks needed by the DFLL.
1522  */
1523 int tegra_dfll_suspend(struct device *dev)
1524 {
1525 	struct tegra_dfll *td = dev_get_drvdata(dev);
1526 
1527 	if (dfll_is_running(td)) {
1528 		dev_err(td->dev, "DFLL still enabled while suspending\n");
1529 		return -EBUSY;
1530 	}
1531 
1532 	reset_control_assert(td->dvco_rst);
1533 
1534 	return 0;
1535 }
1536 EXPORT_SYMBOL(tegra_dfll_suspend);
1537 
1538 /**
1539  * tegra_dfll_resume - reinitialize DFLL on resume
1540  * @dev: DFLL instance
1541  *
1542  * DFLL is disabled and reset during suspend and resume.
1543  * So, reinitialize the DFLL IP block back for use.
1544  * DFLL clock is enabled later in closed loop mode by CPUFreq
1545  * driver before switching its clock source to DFLL output.
1546  */
1547 int tegra_dfll_resume(struct device *dev)
1548 {
1549 	struct tegra_dfll *td = dev_get_drvdata(dev);
1550 
1551 	reset_control_deassert(td->dvco_rst);
1552 
1553 	pm_runtime_get_sync(td->dev);
1554 
1555 	dfll_set_mode(td, DFLL_DISABLED);
1556 	dfll_set_default_params(td);
1557 
1558 	if (td->soc->init_clock_trimmers)
1559 		td->soc->init_clock_trimmers();
1560 
1561 	dfll_set_open_loop_config(td);
1562 
1563 	dfll_init_out_if(td);
1564 
1565 	pm_runtime_put_sync(td->dev);
1566 
1567 	return 0;
1568 }
1569 EXPORT_SYMBOL(tegra_dfll_resume);
1570 
1571 /*
1572  * DT data fetch
1573  */
1574 
1575 /*
1576  * Find a PMIC voltage register-to-voltage mapping for the given voltage.
1577  * An exact voltage match is required.
1578  */
1579 static int find_vdd_map_entry_exact(struct tegra_dfll *td, int uV)
1580 {
1581 	int i, n_voltages, reg_uV,reg_volt_id, align_step;
1582 
1583 	if (WARN_ON(td->pmu_if == TEGRA_DFLL_PMU_PWM))
1584 		return -EINVAL;
1585 
1586 	align_step = uV / td->soc->alignment.step_uv;
1587 	n_voltages = regulator_count_voltages(td->vdd_reg);
1588 	for (i = 0; i < n_voltages; i++) {
1589 		reg_uV = regulator_list_voltage(td->vdd_reg, i);
1590 		if (reg_uV < 0)
1591 			break;
1592 
1593 		reg_volt_id = reg_uV / td->soc->alignment.step_uv;
1594 
1595 		if (align_step == reg_volt_id)
1596 			return i;
1597 	}
1598 
1599 	dev_err(td->dev, "no voltage map entry for %d uV\n", uV);
1600 	return -EINVAL;
1601 }
1602 
1603 /*
1604  * Find a PMIC voltage register-to-voltage mapping for the given voltage,
1605  * rounding up to the closest supported voltage.
1606  * */
1607 static int find_vdd_map_entry_min(struct tegra_dfll *td, int uV)
1608 {
1609 	int i, n_voltages, reg_uV, reg_volt_id, align_step;
1610 
1611 	if (WARN_ON(td->pmu_if == TEGRA_DFLL_PMU_PWM))
1612 		return -EINVAL;
1613 
1614 	align_step = uV / td->soc->alignment.step_uv;
1615 	n_voltages = regulator_count_voltages(td->vdd_reg);
1616 	for (i = 0; i < n_voltages; i++) {
1617 		reg_uV = regulator_list_voltage(td->vdd_reg, i);
1618 		if (reg_uV < 0)
1619 			break;
1620 
1621 		reg_volt_id = reg_uV / td->soc->alignment.step_uv;
1622 
1623 		if (align_step <= reg_volt_id)
1624 			return i;
1625 	}
1626 
1627 	dev_err(td->dev, "no voltage map entry rounding to %d uV\n", uV);
1628 	return -EINVAL;
1629 }
1630 
1631 /*
1632  * dfll_build_pwm_lut - build the PWM regulator lookup table
1633  * @td: DFLL instance
1634  * @v_max: Vmax from OPP table
1635  *
1636  * Look-up table in h/w is ignored when PWM is used as DFLL interface to PMIC.
1637  * In this case closed loop output is controlling duty cycle directly. The s/w
1638  * look-up that maps PWM duty cycle to voltage is still built by this function.
1639  */
1640 static int dfll_build_pwm_lut(struct tegra_dfll *td, unsigned long v_max)
1641 {
1642 	int i;
1643 	unsigned long rate, reg_volt;
1644 	u8 lut_bottom = MAX_DFLL_VOLTAGES;
1645 	int v_min = td->soc->cvb->min_millivolts * 1000;
1646 
1647 	for (i = 0; i < MAX_DFLL_VOLTAGES; i++) {
1648 		reg_volt = td->lut_uv[i];
1649 
1650 		/* since opp voltage is exact mv */
1651 		reg_volt = (reg_volt / 1000) * 1000;
1652 		if (reg_volt > v_max)
1653 			break;
1654 
1655 		td->lut[i] = i;
1656 		if ((lut_bottom == MAX_DFLL_VOLTAGES) && (reg_volt >= v_min))
1657 			lut_bottom = i;
1658 	}
1659 
1660 	/* determine voltage boundaries */
1661 	td->lut_size = i;
1662 	if ((lut_bottom == MAX_DFLL_VOLTAGES) ||
1663 	    (lut_bottom + 1 >= td->lut_size)) {
1664 		dev_err(td->dev, "no voltage above DFLL minimum %d mV\n",
1665 			td->soc->cvb->min_millivolts);
1666 		return -EINVAL;
1667 	}
1668 	td->lut_bottom = lut_bottom;
1669 
1670 	/* determine rate boundaries */
1671 	rate = get_dvco_rate_below(td, td->lut_bottom);
1672 	if (!rate) {
1673 		dev_err(td->dev, "no opp below DFLL minimum voltage %d mV\n",
1674 			td->soc->cvb->min_millivolts);
1675 		return -EINVAL;
1676 	}
1677 	td->dvco_rate_min = rate;
1678 
1679 	return 0;
1680 }
1681 
1682 /**
1683  * dfll_build_i2c_lut - build the I2C voltage register lookup table
1684  * @td: DFLL instance
1685  * @v_max: Vmax from OPP table
1686  *
1687  * The DFLL hardware has 33 bytes of look-up table RAM that must be filled with
1688  * PMIC voltage register values that span the entire DFLL operating range.
1689  * This function builds the look-up table based on the OPP table provided by
1690  * the soc-specific platform driver (td->soc->opp_dev) and the PMIC
1691  * register-to-voltage mapping queried from the regulator framework.
1692  *
1693  * On success, fills in td->lut and returns 0, or -err on failure.
1694  */
1695 static int dfll_build_i2c_lut(struct tegra_dfll *td, unsigned long v_max)
1696 {
1697 	unsigned long rate, v, v_opp;
1698 	int ret = -EINVAL;
1699 	int j, selector, lut;
1700 
1701 	v = td->soc->cvb->min_millivolts * 1000;
1702 	lut = find_vdd_map_entry_exact(td, v);
1703 	if (lut < 0)
1704 		goto out;
1705 	td->lut[0] = lut;
1706 	td->lut_bottom = 0;
1707 
1708 	for (j = 1, rate = 0; ; rate++) {
1709 		struct dev_pm_opp *opp;
1710 
1711 		opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate);
1712 		if (IS_ERR(opp))
1713 			break;
1714 		v_opp = dev_pm_opp_get_voltage(opp);
1715 
1716 		if (v_opp <= td->soc->cvb->min_millivolts * 1000)
1717 			td->dvco_rate_min = dev_pm_opp_get_freq(opp);
1718 
1719 		dev_pm_opp_put(opp);
1720 
1721 		for (;;) {
1722 			v += max(1UL, (v_max - v) / (MAX_DFLL_VOLTAGES - j));
1723 			if (v >= v_opp)
1724 				break;
1725 
1726 			selector = find_vdd_map_entry_min(td, v);
1727 			if (selector < 0)
1728 				goto out;
1729 			if (selector != td->lut[j - 1])
1730 				td->lut[j++] = selector;
1731 		}
1732 
1733 		v = (j == MAX_DFLL_VOLTAGES - 1) ? v_max : v_opp;
1734 		selector = find_vdd_map_entry_exact(td, v);
1735 		if (selector < 0)
1736 			goto out;
1737 		if (selector != td->lut[j - 1])
1738 			td->lut[j++] = selector;
1739 
1740 		if (v >= v_max)
1741 			break;
1742 	}
1743 	td->lut_size = j;
1744 
1745 	if (!td->dvco_rate_min)
1746 		dev_err(td->dev, "no opp above DFLL minimum voltage %d mV\n",
1747 			td->soc->cvb->min_millivolts);
1748 	else {
1749 		ret = 0;
1750 		for (j = 0; j < td->lut_size; j++)
1751 			td->lut_uv[j] =
1752 				regulator_list_voltage(td->vdd_reg,
1753 						       td->lut[j]);
1754 	}
1755 
1756 out:
1757 	return ret;
1758 }
1759 
1760 static int dfll_build_lut(struct tegra_dfll *td)
1761 {
1762 	unsigned long rate, v_max;
1763 	struct dev_pm_opp *opp;
1764 
1765 	rate = ULONG_MAX;
1766 	opp = dev_pm_opp_find_freq_floor(td->soc->dev, &rate);
1767 	if (IS_ERR(opp)) {
1768 		dev_err(td->dev, "couldn't get vmax opp, empty opp table?\n");
1769 		return -EINVAL;
1770 	}
1771 	v_max = dev_pm_opp_get_voltage(opp);
1772 	dev_pm_opp_put(opp);
1773 
1774 	if (td->pmu_if == TEGRA_DFLL_PMU_PWM)
1775 		return dfll_build_pwm_lut(td, v_max);
1776 	else
1777 		return dfll_build_i2c_lut(td, v_max);
1778 }
1779 
1780 /**
1781  * read_dt_param - helper function for reading required parameters from the DT
1782  * @td: DFLL instance
1783  * @param: DT property name
1784  * @dest: output pointer for the value read
1785  *
1786  * Read a required numeric parameter from the DFLL device node, or complain
1787  * if the property doesn't exist. Returns a boolean indicating success for
1788  * easy chaining of multiple calls to this function.
1789  */
1790 static bool read_dt_param(struct tegra_dfll *td, const char *param, u32 *dest)
1791 {
1792 	int err = of_property_read_u32(td->dev->of_node, param, dest);
1793 
1794 	if (err < 0) {
1795 		dev_err(td->dev, "failed to read DT parameter %s: %d\n",
1796 			param, err);
1797 		return false;
1798 	}
1799 
1800 	return true;
1801 }
1802 
1803 /**
1804  * dfll_fetch_i2c_params - query PMIC I2C params from DT & regulator subsystem
1805  * @td: DFLL instance
1806  *
1807  * Read all the parameters required for operation in I2C mode. The parameters
1808  * can originate from the device tree or the regulator subsystem.
1809  * Returns 0 on success or -err on failure.
1810  */
1811 static int dfll_fetch_i2c_params(struct tegra_dfll *td)
1812 {
1813 	struct regmap *regmap;
1814 	struct device *i2c_dev;
1815 	struct i2c_client *i2c_client;
1816 	int vsel_reg, vsel_mask;
1817 	int ret;
1818 
1819 	if (!read_dt_param(td, "nvidia,i2c-fs-rate", &td->i2c_fs_rate))
1820 		return -EINVAL;
1821 
1822 	regmap = regulator_get_regmap(td->vdd_reg);
1823 	i2c_dev = regmap_get_device(regmap);
1824 	i2c_client = to_i2c_client(i2c_dev);
1825 
1826 	td->i2c_slave_addr = i2c_client->addr;
1827 
1828 	ret = regulator_get_hardware_vsel_register(td->vdd_reg,
1829 						   &vsel_reg,
1830 						   &vsel_mask);
1831 	if (ret < 0) {
1832 		dev_err(td->dev,
1833 			"regulator unsuitable for DFLL I2C operation\n");
1834 		return -EINVAL;
1835 	}
1836 	td->i2c_reg = vsel_reg;
1837 
1838 	return 0;
1839 }
1840 
1841 static int dfll_fetch_pwm_params(struct tegra_dfll *td)
1842 {
1843 	int ret, i;
1844 	u32 pwm_period;
1845 
1846 	if (!td->soc->alignment.step_uv || !td->soc->alignment.offset_uv) {
1847 		dev_err(td->dev,
1848 			"Missing step or alignment info for PWM regulator");
1849 		return -EINVAL;
1850 	}
1851 	for (i = 0; i < MAX_DFLL_VOLTAGES; i++)
1852 		td->lut_uv[i] = td->soc->alignment.offset_uv +
1853 				i * td->soc->alignment.step_uv;
1854 
1855 	ret = read_dt_param(td, "nvidia,pwm-tristate-microvolts",
1856 			    &td->reg_init_uV);
1857 	if (!ret) {
1858 		dev_err(td->dev, "couldn't get initialized voltage\n");
1859 		return ret;
1860 	}
1861 
1862 	ret = read_dt_param(td, "nvidia,pwm-period-nanoseconds", &pwm_period);
1863 	if (!ret) {
1864 		dev_err(td->dev, "couldn't get PWM period\n");
1865 		return ret;
1866 	}
1867 	td->pwm_rate = (NSEC_PER_SEC / pwm_period) * (MAX_DFLL_VOLTAGES - 1);
1868 
1869 	td->pwm_pin = devm_pinctrl_get(td->dev);
1870 	if (IS_ERR(td->pwm_pin)) {
1871 		dev_err(td->dev, "DT: missing pinctrl device\n");
1872 		return PTR_ERR(td->pwm_pin);
1873 	}
1874 
1875 	td->pwm_enable_state = pinctrl_lookup_state(td->pwm_pin,
1876 						    "dvfs_pwm_enable");
1877 	if (IS_ERR(td->pwm_enable_state)) {
1878 		dev_err(td->dev, "DT: missing pwm enabled state\n");
1879 		return PTR_ERR(td->pwm_enable_state);
1880 	}
1881 
1882 	td->pwm_disable_state = pinctrl_lookup_state(td->pwm_pin,
1883 						     "dvfs_pwm_disable");
1884 	if (IS_ERR(td->pwm_disable_state)) {
1885 		dev_err(td->dev, "DT: missing pwm disabled state\n");
1886 		return PTR_ERR(td->pwm_disable_state);
1887 	}
1888 
1889 	return 0;
1890 }
1891 
1892 /**
1893  * dfll_fetch_common_params - read DFLL parameters from the device tree
1894  * @td: DFLL instance
1895  *
1896  * Read all the DT parameters that are common to both I2C and PWM operation.
1897  * Returns 0 on success or -EINVAL on any failure.
1898  */
1899 static int dfll_fetch_common_params(struct tegra_dfll *td)
1900 {
1901 	bool ok = true;
1902 
1903 	ok &= read_dt_param(td, "nvidia,droop-ctrl", &td->droop_ctrl);
1904 	ok &= read_dt_param(td, "nvidia,sample-rate", &td->sample_rate);
1905 	ok &= read_dt_param(td, "nvidia,force-mode", &td->force_mode);
1906 	ok &= read_dt_param(td, "nvidia,cf", &td->cf);
1907 	ok &= read_dt_param(td, "nvidia,ci", &td->ci);
1908 	ok &= read_dt_param(td, "nvidia,cg", &td->cg);
1909 	td->cg_scale = of_property_read_bool(td->dev->of_node,
1910 					     "nvidia,cg-scale");
1911 
1912 	if (of_property_read_string(td->dev->of_node, "clock-output-names",
1913 				    &td->output_clock_name)) {
1914 		dev_err(td->dev, "missing clock-output-names property\n");
1915 		ok = false;
1916 	}
1917 
1918 	return ok ? 0 : -EINVAL;
1919 }
1920 
1921 /*
1922  * API exported to per-SoC platform drivers
1923  */
1924 
1925 /**
1926  * tegra_dfll_register - probe a Tegra DFLL device
1927  * @pdev: DFLL platform_device *
1928  * @soc: Per-SoC integration and characterization data for this DFLL instance
1929  *
1930  * Probe and initialize a DFLL device instance. Intended to be called
1931  * by a SoC-specific shim driver that passes in per-SoC integration
1932  * and configuration data via @soc. Returns 0 on success or -err on failure.
1933  */
1934 int tegra_dfll_register(struct platform_device *pdev,
1935 			struct tegra_dfll_soc_data *soc)
1936 {
1937 	struct resource *mem;
1938 	struct tegra_dfll *td;
1939 	int ret;
1940 
1941 	if (!soc) {
1942 		dev_err(&pdev->dev, "no tegra_dfll_soc_data provided\n");
1943 		return -EINVAL;
1944 	}
1945 
1946 	td = devm_kzalloc(&pdev->dev, sizeof(*td), GFP_KERNEL);
1947 	if (!td)
1948 		return -ENOMEM;
1949 	td->dev = &pdev->dev;
1950 	platform_set_drvdata(pdev, td);
1951 
1952 	td->soc = soc;
1953 
1954 	td->dvco_rst = devm_reset_control_get(td->dev, "dvco");
1955 	if (IS_ERR(td->dvco_rst)) {
1956 		dev_err(td->dev, "couldn't get dvco reset\n");
1957 		return PTR_ERR(td->dvco_rst);
1958 	}
1959 
1960 	ret = dfll_fetch_common_params(td);
1961 	if (ret) {
1962 		dev_err(td->dev, "couldn't parse device tree parameters\n");
1963 		return ret;
1964 	}
1965 
1966 	if (of_property_read_bool(td->dev->of_node, "nvidia,pwm-to-pmic")) {
1967 		td->pmu_if = TEGRA_DFLL_PMU_PWM;
1968 		ret = dfll_fetch_pwm_params(td);
1969 	} else  {
1970 		td->vdd_reg = devm_regulator_get(td->dev, "vdd-cpu");
1971 		if (IS_ERR(td->vdd_reg)) {
1972 			dev_err(td->dev, "couldn't get vdd_cpu regulator\n");
1973 			return PTR_ERR(td->vdd_reg);
1974 		}
1975 		td->pmu_if = TEGRA_DFLL_PMU_I2C;
1976 		ret = dfll_fetch_i2c_params(td);
1977 	}
1978 	if (ret)
1979 		return ret;
1980 
1981 	ret = dfll_build_lut(td);
1982 	if (ret) {
1983 		dev_err(td->dev, "couldn't build LUT\n");
1984 		return ret;
1985 	}
1986 
1987 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1988 	if (!mem) {
1989 		dev_err(td->dev, "no control register resource\n");
1990 		return -ENODEV;
1991 	}
1992 
1993 	td->base = devm_ioremap(td->dev, mem->start, resource_size(mem));
1994 	if (!td->base) {
1995 		dev_err(td->dev, "couldn't ioremap DFLL control registers\n");
1996 		return -ENODEV;
1997 	}
1998 
1999 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2000 	if (!mem) {
2001 		dev_err(td->dev, "no i2c_base resource\n");
2002 		return -ENODEV;
2003 	}
2004 
2005 	td->i2c_base = devm_ioremap(td->dev, mem->start, resource_size(mem));
2006 	if (!td->i2c_base) {
2007 		dev_err(td->dev, "couldn't ioremap i2c_base resource\n");
2008 		return -ENODEV;
2009 	}
2010 
2011 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 2);
2012 	if (!mem) {
2013 		dev_err(td->dev, "no i2c_controller_base resource\n");
2014 		return -ENODEV;
2015 	}
2016 
2017 	td->i2c_controller_base = devm_ioremap(td->dev, mem->start,
2018 					       resource_size(mem));
2019 	if (!td->i2c_controller_base) {
2020 		dev_err(td->dev,
2021 			"couldn't ioremap i2c_controller_base resource\n");
2022 		return -ENODEV;
2023 	}
2024 
2025 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 3);
2026 	if (!mem) {
2027 		dev_err(td->dev, "no lut_base resource\n");
2028 		return -ENODEV;
2029 	}
2030 
2031 	td->lut_base = devm_ioremap(td->dev, mem->start, resource_size(mem));
2032 	if (!td->lut_base) {
2033 		dev_err(td->dev,
2034 			"couldn't ioremap lut_base resource\n");
2035 		return -ENODEV;
2036 	}
2037 
2038 	ret = dfll_init_clks(td);
2039 	if (ret) {
2040 		dev_err(&pdev->dev, "DFLL clock init error\n");
2041 		return ret;
2042 	}
2043 
2044 	/* Enable the clocks and set the device up */
2045 	ret = dfll_init(td);
2046 	if (ret)
2047 		return ret;
2048 
2049 	ret = dfll_register_clk(td);
2050 	if (ret) {
2051 		dev_err(&pdev->dev, "DFLL clk registration failed\n");
2052 		return ret;
2053 	}
2054 
2055 	dfll_debug_init(td);
2056 
2057 	return 0;
2058 }
2059 EXPORT_SYMBOL(tegra_dfll_register);
2060 
2061 /**
2062  * tegra_dfll_unregister - release all of the DFLL driver resources for a device
2063  * @pdev: DFLL platform_device *
2064  *
2065  * Unbind this driver from the DFLL hardware device represented by
2066  * @pdev. The DFLL must be disabled for this to succeed. Returns a
2067  * soc pointer upon success or -EBUSY if the DFLL is still active.
2068  */
2069 struct tegra_dfll_soc_data *tegra_dfll_unregister(struct platform_device *pdev)
2070 {
2071 	struct tegra_dfll *td = platform_get_drvdata(pdev);
2072 
2073 	/* Try to prevent removal while the DFLL is active */
2074 	if (td->mode != DFLL_DISABLED) {
2075 		dev_err(&pdev->dev,
2076 			"must disable DFLL before removing driver\n");
2077 		return ERR_PTR(-EBUSY);
2078 	}
2079 
2080 	debugfs_remove_recursive(td->debugfs_dir);
2081 
2082 	dfll_unregister_clk(td);
2083 	pm_runtime_disable(&pdev->dev);
2084 
2085 	clk_unprepare(td->ref_clk);
2086 	clk_unprepare(td->soc_clk);
2087 	clk_unprepare(td->i2c_clk);
2088 
2089 	reset_control_assert(td->dvco_rst);
2090 
2091 	return td->soc;
2092 }
2093 EXPORT_SYMBOL(tegra_dfll_unregister);
2094