1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * clk-dfll.c - Tegra DFLL clock source common code 4 * 5 * Copyright (C) 2012-2019 NVIDIA Corporation. All rights reserved. 6 * 7 * Aleksandr Frid <afrid@nvidia.com> 8 * Paul Walmsley <pwalmsley@nvidia.com> 9 * 10 * This library is for the DVCO and DFLL IP blocks on the Tegra124 11 * SoC. These IP blocks together are also known at NVIDIA as 12 * "CL-DVFS". To try to avoid confusion, this code refers to them 13 * collectively as the "DFLL." 14 * 15 * The DFLL is a root clocksource which tolerates some amount of 16 * supply voltage noise. Tegra124 uses it to clock the fast CPU 17 * complex when the target CPU speed is above a particular rate. The 18 * DFLL can be operated in either open-loop mode or closed-loop mode. 19 * In open-loop mode, the DFLL generates an output clock appropriate 20 * to the supply voltage. In closed-loop mode, when configured with a 21 * target frequency, the DFLL minimizes supply voltage while 22 * delivering an average frequency equal to the target. 23 * 24 * Devices clocked by the DFLL must be able to tolerate frequency 25 * variation. In the case of the CPU, it's important to note that the 26 * CPU cycle time will vary. This has implications for 27 * performance-measurement code and any code that relies on the CPU 28 * cycle time to delay for a certain length of time. 29 */ 30 31 #include <linux/clk.h> 32 #include <linux/clk-provider.h> 33 #include <linux/debugfs.h> 34 #include <linux/device.h> 35 #include <linux/err.h> 36 #include <linux/i2c.h> 37 #include <linux/io.h> 38 #include <linux/kernel.h> 39 #include <linux/module.h> 40 #include <linux/of.h> 41 #include <linux/pinctrl/consumer.h> 42 #include <linux/pm_opp.h> 43 #include <linux/pm_runtime.h> 44 #include <linux/regmap.h> 45 #include <linux/regulator/consumer.h> 46 #include <linux/reset.h> 47 #include <linux/seq_file.h> 48 49 #include "clk-dfll.h" 50 #include "cvb.h" 51 52 /* 53 * DFLL control registers - access via dfll_{readl,writel} 54 */ 55 56 /* DFLL_CTRL: DFLL control register */ 57 #define DFLL_CTRL 0x00 58 #define DFLL_CTRL_MODE_MASK 0x03 59 60 /* DFLL_CONFIG: DFLL sample rate control */ 61 #define DFLL_CONFIG 0x04 62 #define DFLL_CONFIG_DIV_MASK 0xff 63 #define DFLL_CONFIG_DIV_PRESCALE 32 64 65 /* DFLL_PARAMS: tuning coefficients for closed loop integrator */ 66 #define DFLL_PARAMS 0x08 67 #define DFLL_PARAMS_CG_SCALE (0x1 << 24) 68 #define DFLL_PARAMS_FORCE_MODE_SHIFT 22 69 #define DFLL_PARAMS_FORCE_MODE_MASK (0x3 << DFLL_PARAMS_FORCE_MODE_SHIFT) 70 #define DFLL_PARAMS_CF_PARAM_SHIFT 16 71 #define DFLL_PARAMS_CF_PARAM_MASK (0x3f << DFLL_PARAMS_CF_PARAM_SHIFT) 72 #define DFLL_PARAMS_CI_PARAM_SHIFT 8 73 #define DFLL_PARAMS_CI_PARAM_MASK (0x7 << DFLL_PARAMS_CI_PARAM_SHIFT) 74 #define DFLL_PARAMS_CG_PARAM_SHIFT 0 75 #define DFLL_PARAMS_CG_PARAM_MASK (0xff << DFLL_PARAMS_CG_PARAM_SHIFT) 76 77 /* DFLL_TUNE0: delay line configuration register 0 */ 78 #define DFLL_TUNE0 0x0c 79 80 /* DFLL_TUNE1: delay line configuration register 1 */ 81 #define DFLL_TUNE1 0x10 82 83 /* DFLL_FREQ_REQ: target DFLL frequency control */ 84 #define DFLL_FREQ_REQ 0x14 85 #define DFLL_FREQ_REQ_FORCE_ENABLE (0x1 << 28) 86 #define DFLL_FREQ_REQ_FORCE_SHIFT 16 87 #define DFLL_FREQ_REQ_FORCE_MASK (0xfff << DFLL_FREQ_REQ_FORCE_SHIFT) 88 #define FORCE_MAX 2047 89 #define FORCE_MIN -2048 90 #define DFLL_FREQ_REQ_SCALE_SHIFT 8 91 #define DFLL_FREQ_REQ_SCALE_MASK (0xff << DFLL_FREQ_REQ_SCALE_SHIFT) 92 #define DFLL_FREQ_REQ_SCALE_MAX 256 93 #define DFLL_FREQ_REQ_FREQ_VALID (0x1 << 7) 94 #define DFLL_FREQ_REQ_MULT_SHIFT 0 95 #define DFLL_FREQ_REG_MULT_MASK (0x7f << DFLL_FREQ_REQ_MULT_SHIFT) 96 #define FREQ_MAX 127 97 98 /* DFLL_DROOP_CTRL: droop prevention control */ 99 #define DFLL_DROOP_CTRL 0x1c 100 101 /* DFLL_OUTPUT_CFG: closed loop mode control registers */ 102 /* NOTE: access via dfll_i2c_{readl,writel} */ 103 #define DFLL_OUTPUT_CFG 0x20 104 #define DFLL_OUTPUT_CFG_I2C_ENABLE (0x1 << 30) 105 #define OUT_MASK 0x3f 106 #define DFLL_OUTPUT_CFG_SAFE_SHIFT 24 107 #define DFLL_OUTPUT_CFG_SAFE_MASK \ 108 (OUT_MASK << DFLL_OUTPUT_CFG_SAFE_SHIFT) 109 #define DFLL_OUTPUT_CFG_MAX_SHIFT 16 110 #define DFLL_OUTPUT_CFG_MAX_MASK \ 111 (OUT_MASK << DFLL_OUTPUT_CFG_MAX_SHIFT) 112 #define DFLL_OUTPUT_CFG_MIN_SHIFT 8 113 #define DFLL_OUTPUT_CFG_MIN_MASK \ 114 (OUT_MASK << DFLL_OUTPUT_CFG_MIN_SHIFT) 115 #define DFLL_OUTPUT_CFG_PWM_DELTA (0x1 << 7) 116 #define DFLL_OUTPUT_CFG_PWM_ENABLE (0x1 << 6) 117 #define DFLL_OUTPUT_CFG_PWM_DIV_SHIFT 0 118 #define DFLL_OUTPUT_CFG_PWM_DIV_MASK \ 119 (OUT_MASK << DFLL_OUTPUT_CFG_PWM_DIV_SHIFT) 120 121 /* DFLL_OUTPUT_FORCE: closed loop mode voltage forcing control */ 122 #define DFLL_OUTPUT_FORCE 0x24 123 #define DFLL_OUTPUT_FORCE_ENABLE (0x1 << 6) 124 #define DFLL_OUTPUT_FORCE_VALUE_SHIFT 0 125 #define DFLL_OUTPUT_FORCE_VALUE_MASK \ 126 (OUT_MASK << DFLL_OUTPUT_FORCE_VALUE_SHIFT) 127 128 /* DFLL_MONITOR_CTRL: internal monitor data source control */ 129 #define DFLL_MONITOR_CTRL 0x28 130 #define DFLL_MONITOR_CTRL_FREQ 6 131 132 /* DFLL_MONITOR_DATA: internal monitor data output */ 133 #define DFLL_MONITOR_DATA 0x2c 134 #define DFLL_MONITOR_DATA_NEW_MASK (0x1 << 16) 135 #define DFLL_MONITOR_DATA_VAL_SHIFT 0 136 #define DFLL_MONITOR_DATA_VAL_MASK (0xFFFF << DFLL_MONITOR_DATA_VAL_SHIFT) 137 138 /* 139 * I2C output control registers - access via dfll_i2c_{readl,writel} 140 */ 141 142 /* DFLL_I2C_CFG: I2C controller configuration register */ 143 #define DFLL_I2C_CFG 0x40 144 #define DFLL_I2C_CFG_ARB_ENABLE (0x1 << 20) 145 #define DFLL_I2C_CFG_HS_CODE_SHIFT 16 146 #define DFLL_I2C_CFG_HS_CODE_MASK (0x7 << DFLL_I2C_CFG_HS_CODE_SHIFT) 147 #define DFLL_I2C_CFG_PACKET_ENABLE (0x1 << 15) 148 #define DFLL_I2C_CFG_SIZE_SHIFT 12 149 #define DFLL_I2C_CFG_SIZE_MASK (0x7 << DFLL_I2C_CFG_SIZE_SHIFT) 150 #define DFLL_I2C_CFG_SLAVE_ADDR_10 (0x1 << 10) 151 #define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT 1 152 #define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT 0 153 154 /* DFLL_I2C_VDD_REG_ADDR: PMIC I2C address for closed loop mode */ 155 #define DFLL_I2C_VDD_REG_ADDR 0x44 156 157 /* DFLL_I2C_STS: I2C controller status */ 158 #define DFLL_I2C_STS 0x48 159 #define DFLL_I2C_STS_I2C_LAST_SHIFT 1 160 #define DFLL_I2C_STS_I2C_REQ_PENDING 0x1 161 162 /* DFLL_INTR_STS: DFLL interrupt status register */ 163 #define DFLL_INTR_STS 0x5c 164 165 /* DFLL_INTR_EN: DFLL interrupt enable register */ 166 #define DFLL_INTR_EN 0x60 167 #define DFLL_INTR_MIN_MASK 0x1 168 #define DFLL_INTR_MAX_MASK 0x2 169 170 /* 171 * Integrated I2C controller registers - relative to td->i2c_controller_base 172 */ 173 174 /* DFLL_I2C_CLK_DIVISOR: I2C controller clock divisor */ 175 #define DFLL_I2C_CLK_DIVISOR 0x6c 176 #define DFLL_I2C_CLK_DIVISOR_MASK 0xffff 177 #define DFLL_I2C_CLK_DIVISOR_FS_SHIFT 16 178 #define DFLL_I2C_CLK_DIVISOR_HS_SHIFT 0 179 #define DFLL_I2C_CLK_DIVISOR_PREDIV 8 180 #define DFLL_I2C_CLK_DIVISOR_HSMODE_PREDIV 12 181 182 /* 183 * Other constants 184 */ 185 186 /* MAX_DFLL_VOLTAGES: number of LUT entries in the DFLL IP block */ 187 #define MAX_DFLL_VOLTAGES 33 188 189 /* 190 * REF_CLK_CYC_PER_DVCO_SAMPLE: the number of ref_clk cycles that the hardware 191 * integrates the DVCO counter over - used for debug rate monitoring and 192 * droop control 193 */ 194 #define REF_CLK_CYC_PER_DVCO_SAMPLE 4 195 196 /* 197 * REF_CLOCK_RATE: the DFLL reference clock rate currently supported by this 198 * driver, in Hz 199 */ 200 #define REF_CLOCK_RATE 51000000UL 201 202 #define DVCO_RATE_TO_MULT(rate, ref_rate) ((rate) / ((ref_rate) / 2)) 203 #define MULT_TO_DVCO_RATE(mult, ref_rate) ((mult) * ((ref_rate) / 2)) 204 205 /** 206 * enum dfll_ctrl_mode - DFLL hardware operating mode 207 * @DFLL_UNINITIALIZED: (uninitialized state - not in hardware bitfield) 208 * @DFLL_DISABLED: DFLL not generating an output clock 209 * @DFLL_OPEN_LOOP: DVCO running, but DFLL not adjusting voltage 210 * @DFLL_CLOSED_LOOP: DVCO running, and DFLL adjusting voltage to match 211 * the requested rate 212 * 213 * The integer corresponding to the last two states, minus one, is 214 * written to the DFLL hardware to change operating modes. 215 */ 216 enum dfll_ctrl_mode { 217 DFLL_UNINITIALIZED = 0, 218 DFLL_DISABLED = 1, 219 DFLL_OPEN_LOOP = 2, 220 DFLL_CLOSED_LOOP = 3, 221 }; 222 223 /** 224 * enum dfll_tune_range - voltage range that the driver believes it's in 225 * @DFLL_TUNE_UNINITIALIZED: DFLL tuning not yet programmed 226 * @DFLL_TUNE_LOW: DFLL in the low-voltage range (or open-loop mode) 227 * 228 * Some DFLL tuning parameters may need to change depending on the 229 * DVCO's voltage; these states represent the ranges that the driver 230 * supports. These are software states; these values are never 231 * written into registers. 232 */ 233 enum dfll_tune_range { 234 DFLL_TUNE_UNINITIALIZED = 0, 235 DFLL_TUNE_LOW = 1, 236 }; 237 238 239 enum tegra_dfll_pmu_if { 240 TEGRA_DFLL_PMU_I2C = 0, 241 TEGRA_DFLL_PMU_PWM = 1, 242 }; 243 244 /** 245 * struct dfll_rate_req - target DFLL rate request data 246 * @rate: target frequency, after the postscaling 247 * @dvco_target_rate: target frequency, after the postscaling 248 * @lut_index: LUT index at which voltage the dvco_target_rate will be reached 249 * @mult_bits: value to program to the MULT bits of the DFLL_FREQ_REQ register 250 * @scale_bits: value to program to the SCALE bits of the DFLL_FREQ_REQ register 251 */ 252 struct dfll_rate_req { 253 unsigned long rate; 254 unsigned long dvco_target_rate; 255 int lut_index; 256 u8 mult_bits; 257 u8 scale_bits; 258 }; 259 260 struct tegra_dfll { 261 struct device *dev; 262 struct tegra_dfll_soc_data *soc; 263 264 void __iomem *base; 265 void __iomem *i2c_base; 266 void __iomem *i2c_controller_base; 267 void __iomem *lut_base; 268 269 struct regulator *vdd_reg; 270 struct clk *soc_clk; 271 struct clk *ref_clk; 272 struct clk *i2c_clk; 273 struct clk *dfll_clk; 274 struct reset_control *dvco_rst; 275 unsigned long ref_rate; 276 unsigned long i2c_clk_rate; 277 unsigned long dvco_rate_min; 278 279 enum dfll_ctrl_mode mode; 280 enum dfll_tune_range tune_range; 281 struct dentry *debugfs_dir; 282 struct clk_hw dfll_clk_hw; 283 const char *output_clock_name; 284 struct dfll_rate_req last_req; 285 unsigned long last_unrounded_rate; 286 287 /* Parameters from DT */ 288 u32 droop_ctrl; 289 u32 sample_rate; 290 u32 force_mode; 291 u32 cf; 292 u32 ci; 293 u32 cg; 294 bool cg_scale; 295 296 /* I2C interface parameters */ 297 u32 i2c_fs_rate; 298 u32 i2c_reg; 299 u32 i2c_slave_addr; 300 301 /* lut array entries are regulator framework selectors or PWM values*/ 302 unsigned lut[MAX_DFLL_VOLTAGES]; 303 unsigned long lut_uv[MAX_DFLL_VOLTAGES]; 304 int lut_size; 305 u8 lut_bottom, lut_min, lut_max, lut_safe; 306 307 /* PWM interface */ 308 enum tegra_dfll_pmu_if pmu_if; 309 unsigned long pwm_rate; 310 struct pinctrl *pwm_pin; 311 struct pinctrl_state *pwm_enable_state; 312 struct pinctrl_state *pwm_disable_state; 313 u32 reg_init_uV; 314 }; 315 316 #define clk_hw_to_dfll(_hw) container_of(_hw, struct tegra_dfll, dfll_clk_hw) 317 318 /* mode_name: map numeric DFLL modes to names for friendly console messages */ 319 static const char * const mode_name[] = { 320 [DFLL_UNINITIALIZED] = "uninitialized", 321 [DFLL_DISABLED] = "disabled", 322 [DFLL_OPEN_LOOP] = "open_loop", 323 [DFLL_CLOSED_LOOP] = "closed_loop", 324 }; 325 326 /* 327 * Register accessors 328 */ 329 330 static inline u32 dfll_readl(struct tegra_dfll *td, u32 offs) 331 { 332 return __raw_readl(td->base + offs); 333 } 334 335 static inline void dfll_writel(struct tegra_dfll *td, u32 val, u32 offs) 336 { 337 WARN_ON(offs >= DFLL_I2C_CFG); 338 __raw_writel(val, td->base + offs); 339 } 340 341 static inline void dfll_wmb(struct tegra_dfll *td) 342 { 343 dfll_readl(td, DFLL_CTRL); 344 } 345 346 /* I2C output control registers - for addresses above DFLL_I2C_CFG */ 347 348 static inline u32 dfll_i2c_readl(struct tegra_dfll *td, u32 offs) 349 { 350 return __raw_readl(td->i2c_base + offs); 351 } 352 353 static inline void dfll_i2c_writel(struct tegra_dfll *td, u32 val, u32 offs) 354 { 355 __raw_writel(val, td->i2c_base + offs); 356 } 357 358 static inline void dfll_i2c_wmb(struct tegra_dfll *td) 359 { 360 dfll_i2c_readl(td, DFLL_I2C_CFG); 361 } 362 363 /** 364 * dfll_is_running - is the DFLL currently generating a clock? 365 * @td: DFLL instance 366 * 367 * If the DFLL is currently generating an output clock signal, return 368 * true; otherwise return false. 369 */ 370 static bool dfll_is_running(struct tegra_dfll *td) 371 { 372 return td->mode >= DFLL_OPEN_LOOP; 373 } 374 375 /* 376 * Runtime PM suspend/resume callbacks 377 */ 378 379 /** 380 * tegra_dfll_runtime_resume - enable all clocks needed by the DFLL 381 * @dev: DFLL device * 382 * 383 * Enable all clocks needed by the DFLL. Assumes that clk_prepare() 384 * has already been called on all the clocks. 385 * 386 * XXX Should also handle context restore when returning from off. 387 */ 388 int tegra_dfll_runtime_resume(struct device *dev) 389 { 390 struct tegra_dfll *td = dev_get_drvdata(dev); 391 int ret; 392 393 ret = clk_enable(td->ref_clk); 394 if (ret) { 395 dev_err(dev, "could not enable ref clock: %d\n", ret); 396 return ret; 397 } 398 399 ret = clk_enable(td->soc_clk); 400 if (ret) { 401 dev_err(dev, "could not enable register clock: %d\n", ret); 402 clk_disable(td->ref_clk); 403 return ret; 404 } 405 406 ret = clk_enable(td->i2c_clk); 407 if (ret) { 408 dev_err(dev, "could not enable i2c clock: %d\n", ret); 409 clk_disable(td->soc_clk); 410 clk_disable(td->ref_clk); 411 return ret; 412 } 413 414 return 0; 415 } 416 EXPORT_SYMBOL(tegra_dfll_runtime_resume); 417 418 /** 419 * tegra_dfll_runtime_suspend - disable all clocks needed by the DFLL 420 * @dev: DFLL device * 421 * 422 * Disable all clocks needed by the DFLL. Assumes that other code 423 * will later call clk_unprepare(). 424 */ 425 int tegra_dfll_runtime_suspend(struct device *dev) 426 { 427 struct tegra_dfll *td = dev_get_drvdata(dev); 428 429 clk_disable(td->ref_clk); 430 clk_disable(td->soc_clk); 431 clk_disable(td->i2c_clk); 432 433 return 0; 434 } 435 EXPORT_SYMBOL(tegra_dfll_runtime_suspend); 436 437 /* 438 * DFLL tuning operations (per-voltage-range tuning settings) 439 */ 440 441 /** 442 * dfll_tune_low - tune to DFLL and CPU settings valid for any voltage 443 * @td: DFLL instance 444 * 445 * Tune the DFLL oscillator parameters and the CPU clock shaper for 446 * the low-voltage range. These settings are valid for any voltage, 447 * but may not be optimal. 448 */ 449 static void dfll_tune_low(struct tegra_dfll *td) 450 { 451 td->tune_range = DFLL_TUNE_LOW; 452 453 dfll_writel(td, td->soc->cvb->cpu_dfll_data.tune0_low, DFLL_TUNE0); 454 dfll_writel(td, td->soc->cvb->cpu_dfll_data.tune1, DFLL_TUNE1); 455 dfll_wmb(td); 456 457 if (td->soc->set_clock_trimmers_low) 458 td->soc->set_clock_trimmers_low(); 459 } 460 461 /* 462 * Output clock scaler helpers 463 */ 464 465 /** 466 * dfll_scale_dvco_rate - calculate scaled rate from the DVCO rate 467 * @scale_bits: clock scaler value (bits in the DFLL_FREQ_REQ_SCALE field) 468 * @dvco_rate: the DVCO rate 469 * 470 * Apply the same scaling formula that the DFLL hardware uses to scale 471 * the DVCO rate. 472 */ 473 static unsigned long dfll_scale_dvco_rate(int scale_bits, 474 unsigned long dvco_rate) 475 { 476 return (u64)dvco_rate * (scale_bits + 1) / DFLL_FREQ_REQ_SCALE_MAX; 477 } 478 479 /* 480 * DFLL mode switching 481 */ 482 483 /** 484 * dfll_set_mode - change the DFLL control mode 485 * @td: DFLL instance 486 * @mode: DFLL control mode (see enum dfll_ctrl_mode) 487 * 488 * Change the DFLL's operating mode between disabled, open-loop mode, 489 * and closed-loop mode, or vice versa. 490 */ 491 static void dfll_set_mode(struct tegra_dfll *td, 492 enum dfll_ctrl_mode mode) 493 { 494 td->mode = mode; 495 dfll_writel(td, mode - 1, DFLL_CTRL); 496 dfll_wmb(td); 497 } 498 499 /* 500 * DVCO rate control 501 */ 502 503 static unsigned long get_dvco_rate_below(struct tegra_dfll *td, u8 out_min) 504 { 505 struct dev_pm_opp *opp; 506 unsigned long rate, prev_rate; 507 unsigned long uv, min_uv; 508 509 min_uv = td->lut_uv[out_min]; 510 for (rate = 0, prev_rate = 0; ; rate++) { 511 opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate); 512 if (IS_ERR(opp)) 513 break; 514 515 uv = dev_pm_opp_get_voltage(opp); 516 dev_pm_opp_put(opp); 517 518 if (uv && uv > min_uv) 519 return prev_rate; 520 521 prev_rate = rate; 522 } 523 524 return prev_rate; 525 } 526 527 /* 528 * DFLL-to-I2C controller interface 529 */ 530 531 /** 532 * dfll_i2c_set_output_enabled - enable/disable I2C PMIC voltage requests 533 * @td: DFLL instance 534 * @enable: whether to enable or disable the I2C voltage requests 535 * 536 * Set the master enable control for I2C control value updates. If disabled, 537 * then I2C control messages are inhibited, regardless of the DFLL mode. 538 */ 539 static int dfll_i2c_set_output_enabled(struct tegra_dfll *td, bool enable) 540 { 541 u32 val; 542 543 val = dfll_i2c_readl(td, DFLL_OUTPUT_CFG); 544 545 if (enable) 546 val |= DFLL_OUTPUT_CFG_I2C_ENABLE; 547 else 548 val &= ~DFLL_OUTPUT_CFG_I2C_ENABLE; 549 550 dfll_i2c_writel(td, val, DFLL_OUTPUT_CFG); 551 dfll_i2c_wmb(td); 552 553 return 0; 554 } 555 556 557 /* 558 * DFLL-to-PWM controller interface 559 */ 560 561 /** 562 * dfll_pwm_set_output_enabled - enable/disable PWM voltage requests 563 * @td: DFLL instance 564 * @enable: whether to enable or disable the PWM voltage requests 565 * 566 * Set the master enable control for PWM control value updates. If disabled, 567 * then the PWM signal is not driven. Also configure the PWM output pad 568 * to the appropriate state. 569 */ 570 static int dfll_pwm_set_output_enabled(struct tegra_dfll *td, bool enable) 571 { 572 int ret; 573 u32 val, div; 574 575 if (enable) { 576 ret = pinctrl_select_state(td->pwm_pin, td->pwm_enable_state); 577 if (ret < 0) { 578 dev_err(td->dev, "setting enable state failed\n"); 579 return -EINVAL; 580 } 581 val = dfll_readl(td, DFLL_OUTPUT_CFG); 582 val &= ~DFLL_OUTPUT_CFG_PWM_DIV_MASK; 583 div = DIV_ROUND_UP(td->ref_rate, td->pwm_rate); 584 val |= (div << DFLL_OUTPUT_CFG_PWM_DIV_SHIFT) 585 & DFLL_OUTPUT_CFG_PWM_DIV_MASK; 586 dfll_writel(td, val, DFLL_OUTPUT_CFG); 587 dfll_wmb(td); 588 589 val |= DFLL_OUTPUT_CFG_PWM_ENABLE; 590 dfll_writel(td, val, DFLL_OUTPUT_CFG); 591 dfll_wmb(td); 592 } else { 593 ret = pinctrl_select_state(td->pwm_pin, td->pwm_disable_state); 594 if (ret < 0) 595 dev_warn(td->dev, "setting disable state failed\n"); 596 597 val = dfll_readl(td, DFLL_OUTPUT_CFG); 598 val &= ~DFLL_OUTPUT_CFG_PWM_ENABLE; 599 dfll_writel(td, val, DFLL_OUTPUT_CFG); 600 dfll_wmb(td); 601 } 602 603 return 0; 604 } 605 606 /** 607 * dfll_set_force_output_value - set fixed value for force output 608 * @td: DFLL instance 609 * @out_val: value to force output 610 * 611 * Set the fixed value for force output, DFLL will output this value when 612 * force output is enabled. 613 */ 614 static u32 dfll_set_force_output_value(struct tegra_dfll *td, u8 out_val) 615 { 616 u32 val = dfll_readl(td, DFLL_OUTPUT_FORCE); 617 618 val = (val & DFLL_OUTPUT_FORCE_ENABLE) | (out_val & OUT_MASK); 619 dfll_writel(td, val, DFLL_OUTPUT_FORCE); 620 dfll_wmb(td); 621 622 return dfll_readl(td, DFLL_OUTPUT_FORCE); 623 } 624 625 /** 626 * dfll_set_force_output_enabled - enable/disable force output 627 * @td: DFLL instance 628 * @enable: whether to enable or disable the force output 629 * 630 * Set the enable control for fouce output with fixed value. 631 */ 632 static void dfll_set_force_output_enabled(struct tegra_dfll *td, bool enable) 633 { 634 u32 val = dfll_readl(td, DFLL_OUTPUT_FORCE); 635 636 if (enable) 637 val |= DFLL_OUTPUT_FORCE_ENABLE; 638 else 639 val &= ~DFLL_OUTPUT_FORCE_ENABLE; 640 641 dfll_writel(td, val, DFLL_OUTPUT_FORCE); 642 dfll_wmb(td); 643 } 644 645 /** 646 * dfll_force_output - force output a fixed value 647 * @td: DFLL instance 648 * @out_sel: value to force output 649 * 650 * Set the fixed value for force output, DFLL will output this value. 651 */ 652 static int dfll_force_output(struct tegra_dfll *td, unsigned int out_sel) 653 { 654 u32 val; 655 656 if (out_sel > OUT_MASK) 657 return -EINVAL; 658 659 val = dfll_set_force_output_value(td, out_sel); 660 if ((td->mode < DFLL_CLOSED_LOOP) && 661 !(val & DFLL_OUTPUT_FORCE_ENABLE)) { 662 dfll_set_force_output_enabled(td, true); 663 } 664 665 return 0; 666 } 667 668 /** 669 * dfll_load_lut - load the voltage lookup table 670 * @td: struct tegra_dfll * 671 * 672 * Load the voltage-to-PMIC register value lookup table into the DFLL 673 * IP block memory. Look-up tables can be loaded at any time. 674 */ 675 static void dfll_load_i2c_lut(struct tegra_dfll *td) 676 { 677 int i, lut_index; 678 u32 val; 679 680 for (i = 0; i < MAX_DFLL_VOLTAGES; i++) { 681 if (i < td->lut_min) 682 lut_index = td->lut_min; 683 else if (i > td->lut_max) 684 lut_index = td->lut_max; 685 else 686 lut_index = i; 687 688 val = regulator_list_hardware_vsel(td->vdd_reg, 689 td->lut[lut_index]); 690 __raw_writel(val, td->lut_base + i * 4); 691 } 692 693 dfll_i2c_wmb(td); 694 } 695 696 /** 697 * dfll_init_i2c_if - set up the DFLL's DFLL-I2C interface 698 * @td: DFLL instance 699 * 700 * During DFLL driver initialization, program the DFLL-I2C interface 701 * with the PMU slave address, vdd register offset, and transfer mode. 702 * This data is used by the DFLL to automatically construct I2C 703 * voltage-set commands, which are then passed to the DFLL's internal 704 * I2C controller. 705 */ 706 static void dfll_init_i2c_if(struct tegra_dfll *td) 707 { 708 u32 val; 709 710 if (td->i2c_slave_addr > 0x7f) { 711 val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT; 712 val |= DFLL_I2C_CFG_SLAVE_ADDR_10; 713 } else { 714 val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT; 715 } 716 val |= DFLL_I2C_CFG_SIZE_MASK; 717 val |= DFLL_I2C_CFG_ARB_ENABLE; 718 dfll_i2c_writel(td, val, DFLL_I2C_CFG); 719 720 dfll_i2c_writel(td, td->i2c_reg, DFLL_I2C_VDD_REG_ADDR); 721 722 val = DIV_ROUND_UP(td->i2c_clk_rate, td->i2c_fs_rate * 8); 723 BUG_ON(!val || (val > DFLL_I2C_CLK_DIVISOR_MASK)); 724 val = (val - 1) << DFLL_I2C_CLK_DIVISOR_FS_SHIFT; 725 726 /* default hs divisor just in case */ 727 val |= 1 << DFLL_I2C_CLK_DIVISOR_HS_SHIFT; 728 __raw_writel(val, td->i2c_controller_base + DFLL_I2C_CLK_DIVISOR); 729 dfll_i2c_wmb(td); 730 } 731 732 /** 733 * dfll_init_out_if - prepare DFLL-to-PMIC interface 734 * @td: DFLL instance 735 * 736 * During DFLL driver initialization or resume from context loss, 737 * disable the I2C command output to the PMIC, set safe voltage and 738 * output limits, and disable and clear limit interrupts. 739 */ 740 static void dfll_init_out_if(struct tegra_dfll *td) 741 { 742 u32 val; 743 744 td->lut_min = td->lut_bottom; 745 td->lut_max = td->lut_size - 1; 746 td->lut_safe = td->lut_min + (td->lut_min < td->lut_max ? 1 : 0); 747 748 /* clear DFLL_OUTPUT_CFG before setting new value */ 749 dfll_writel(td, 0, DFLL_OUTPUT_CFG); 750 dfll_wmb(td); 751 752 val = (td->lut_safe << DFLL_OUTPUT_CFG_SAFE_SHIFT) | 753 (td->lut_max << DFLL_OUTPUT_CFG_MAX_SHIFT) | 754 (td->lut_min << DFLL_OUTPUT_CFG_MIN_SHIFT); 755 dfll_writel(td, val, DFLL_OUTPUT_CFG); 756 dfll_wmb(td); 757 758 dfll_writel(td, 0, DFLL_OUTPUT_FORCE); 759 dfll_i2c_writel(td, 0, DFLL_INTR_EN); 760 dfll_i2c_writel(td, DFLL_INTR_MAX_MASK | DFLL_INTR_MIN_MASK, 761 DFLL_INTR_STS); 762 763 if (td->pmu_if == TEGRA_DFLL_PMU_PWM) { 764 u32 vinit = td->reg_init_uV; 765 int vstep = td->soc->alignment.step_uv; 766 unsigned long vmin = td->lut_uv[0]; 767 768 /* set initial voltage */ 769 if ((vinit >= vmin) && vstep) { 770 unsigned int vsel; 771 772 vsel = DIV_ROUND_UP((vinit - vmin), vstep); 773 dfll_force_output(td, vsel); 774 } 775 } else { 776 dfll_load_i2c_lut(td); 777 dfll_init_i2c_if(td); 778 } 779 } 780 781 /* 782 * Set/get the DFLL's targeted output clock rate 783 */ 784 785 /** 786 * find_lut_index_for_rate - determine I2C LUT index for given DFLL rate 787 * @td: DFLL instance 788 * @rate: clock rate 789 * 790 * Determines the index of a I2C LUT entry for a voltage that approximately 791 * produces the given DFLL clock rate. This is used when forcing a value 792 * to the integrator during rate changes. Returns -ENOENT if a suitable 793 * LUT index is not found. 794 */ 795 static int find_lut_index_for_rate(struct tegra_dfll *td, unsigned long rate) 796 { 797 struct dev_pm_opp *opp; 798 int i, align_step; 799 800 opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate); 801 if (IS_ERR(opp)) 802 return PTR_ERR(opp); 803 804 align_step = dev_pm_opp_get_voltage(opp) / td->soc->alignment.step_uv; 805 dev_pm_opp_put(opp); 806 807 for (i = td->lut_bottom; i < td->lut_size; i++) { 808 if ((td->lut_uv[i] / td->soc->alignment.step_uv) >= align_step) 809 return i; 810 } 811 812 return -ENOENT; 813 } 814 815 /** 816 * dfll_calculate_rate_request - calculate DFLL parameters for a given rate 817 * @td: DFLL instance 818 * @req: DFLL-rate-request structure 819 * @rate: the desired DFLL rate 820 * 821 * Populate the DFLL-rate-request record @req fields with the scale_bits 822 * and mult_bits fields, based on the target input rate. Returns 0 upon 823 * success, or -EINVAL if the requested rate in req->rate is too high 824 * or low for the DFLL to generate. 825 */ 826 static int dfll_calculate_rate_request(struct tegra_dfll *td, 827 struct dfll_rate_req *req, 828 unsigned long rate) 829 { 830 u32 val; 831 832 /* 833 * If requested rate is below the minimum DVCO rate, active the scaler. 834 * In the future the DVCO minimum voltage should be selected based on 835 * chip temperature and the actual minimum rate should be calibrated 836 * at runtime. 837 */ 838 req->scale_bits = DFLL_FREQ_REQ_SCALE_MAX - 1; 839 if (rate < td->dvco_rate_min) { 840 int scale; 841 842 scale = DIV_ROUND_CLOSEST(rate / 1000 * DFLL_FREQ_REQ_SCALE_MAX, 843 td->dvco_rate_min / 1000); 844 if (!scale) { 845 dev_err(td->dev, "%s: Rate %lu is too low\n", 846 __func__, rate); 847 return -EINVAL; 848 } 849 req->scale_bits = scale - 1; 850 rate = td->dvco_rate_min; 851 } 852 853 /* Convert requested rate into frequency request and scale settings */ 854 val = DVCO_RATE_TO_MULT(rate, td->ref_rate); 855 if (val > FREQ_MAX) { 856 dev_err(td->dev, "%s: Rate %lu is above dfll range\n", 857 __func__, rate); 858 return -EINVAL; 859 } 860 req->mult_bits = val; 861 req->dvco_target_rate = MULT_TO_DVCO_RATE(req->mult_bits, td->ref_rate); 862 req->rate = dfll_scale_dvco_rate(req->scale_bits, 863 req->dvco_target_rate); 864 req->lut_index = find_lut_index_for_rate(td, req->dvco_target_rate); 865 if (req->lut_index < 0) 866 return req->lut_index; 867 868 return 0; 869 } 870 871 /** 872 * dfll_set_frequency_request - start the frequency change operation 873 * @td: DFLL instance 874 * @req: rate request structure 875 * 876 * Tell the DFLL to try to change its output frequency to the 877 * frequency represented by @req. DFLL must be in closed-loop mode. 878 */ 879 static void dfll_set_frequency_request(struct tegra_dfll *td, 880 struct dfll_rate_req *req) 881 { 882 u32 val = 0; 883 int force_val; 884 int coef = 128; /* FIXME: td->cg_scale? */; 885 886 force_val = (req->lut_index - td->lut_safe) * coef / td->cg; 887 force_val = clamp(force_val, FORCE_MIN, FORCE_MAX); 888 889 val |= req->mult_bits << DFLL_FREQ_REQ_MULT_SHIFT; 890 val |= req->scale_bits << DFLL_FREQ_REQ_SCALE_SHIFT; 891 val |= ((u32)force_val << DFLL_FREQ_REQ_FORCE_SHIFT) & 892 DFLL_FREQ_REQ_FORCE_MASK; 893 val |= DFLL_FREQ_REQ_FREQ_VALID | DFLL_FREQ_REQ_FORCE_ENABLE; 894 895 dfll_writel(td, val, DFLL_FREQ_REQ); 896 dfll_wmb(td); 897 } 898 899 /** 900 * tegra_dfll_request_rate - set the next rate for the DFLL to tune to 901 * @td: DFLL instance 902 * @rate: clock rate to target 903 * 904 * Convert the requested clock rate @rate into the DFLL control logic 905 * settings. In closed-loop mode, update new settings immediately to 906 * adjust DFLL output rate accordingly. Otherwise, just save them 907 * until the next switch to closed loop. Returns 0 upon success, 908 * -EPERM if the DFLL driver has not yet been initialized, or -EINVAL 909 * if @rate is outside the DFLL's tunable range. 910 */ 911 static int dfll_request_rate(struct tegra_dfll *td, unsigned long rate) 912 { 913 int ret; 914 struct dfll_rate_req req; 915 916 if (td->mode == DFLL_UNINITIALIZED) { 917 dev_err(td->dev, "%s: Cannot set DFLL rate in %s mode\n", 918 __func__, mode_name[td->mode]); 919 return -EPERM; 920 } 921 922 ret = dfll_calculate_rate_request(td, &req, rate); 923 if (ret) 924 return ret; 925 926 td->last_unrounded_rate = rate; 927 td->last_req = req; 928 929 if (td->mode == DFLL_CLOSED_LOOP) 930 dfll_set_frequency_request(td, &td->last_req); 931 932 return 0; 933 } 934 935 /* 936 * DFLL enable/disable & open-loop <-> closed-loop transitions 937 */ 938 939 /** 940 * dfll_disable - switch from open-loop mode to disabled mode 941 * @td: DFLL instance 942 * 943 * Switch from OPEN_LOOP state to DISABLED state. Returns 0 upon success 944 * or -EPERM if the DFLL is not currently in open-loop mode. 945 */ 946 static int dfll_disable(struct tegra_dfll *td) 947 { 948 if (td->mode != DFLL_OPEN_LOOP) { 949 dev_err(td->dev, "cannot disable DFLL in %s mode\n", 950 mode_name[td->mode]); 951 return -EINVAL; 952 } 953 954 dfll_set_mode(td, DFLL_DISABLED); 955 pm_runtime_put_sync(td->dev); 956 957 return 0; 958 } 959 960 /** 961 * dfll_enable - switch a disabled DFLL to open-loop mode 962 * @td: DFLL instance 963 * 964 * Switch from DISABLED state to OPEN_LOOP state. Returns 0 upon success 965 * or -EPERM if the DFLL is not currently disabled. 966 */ 967 static int dfll_enable(struct tegra_dfll *td) 968 { 969 if (td->mode != DFLL_DISABLED) { 970 dev_err(td->dev, "cannot enable DFLL in %s mode\n", 971 mode_name[td->mode]); 972 return -EPERM; 973 } 974 975 pm_runtime_get_sync(td->dev); 976 dfll_set_mode(td, DFLL_OPEN_LOOP); 977 978 return 0; 979 } 980 981 /** 982 * dfll_set_open_loop_config - prepare to switch to open-loop mode 983 * @td: DFLL instance 984 * 985 * Prepare to switch the DFLL to open-loop mode. This switches the 986 * DFLL to the low-voltage tuning range, ensures that I2C output 987 * forcing is disabled, and disables the output clock rate scaler. 988 * The DFLL's low-voltage tuning range parameters must be 989 * characterized to keep the downstream device stable at any DVCO 990 * input voltage. No return value. 991 */ 992 static void dfll_set_open_loop_config(struct tegra_dfll *td) 993 { 994 u32 val; 995 996 /* always tune low (safe) in open loop */ 997 if (td->tune_range != DFLL_TUNE_LOW) 998 dfll_tune_low(td); 999 1000 val = dfll_readl(td, DFLL_FREQ_REQ); 1001 val |= DFLL_FREQ_REQ_SCALE_MASK; 1002 val &= ~DFLL_FREQ_REQ_FORCE_ENABLE; 1003 dfll_writel(td, val, DFLL_FREQ_REQ); 1004 dfll_wmb(td); 1005 } 1006 1007 /** 1008 * tegra_dfll_lock - switch from open-loop to closed-loop mode 1009 * @td: DFLL instance 1010 * 1011 * Switch from OPEN_LOOP state to CLOSED_LOOP state. Returns 0 upon success, 1012 * -EINVAL if the DFLL's target rate hasn't been set yet, or -EPERM if the 1013 * DFLL is not currently in open-loop mode. 1014 */ 1015 static int dfll_lock(struct tegra_dfll *td) 1016 { 1017 struct dfll_rate_req *req = &td->last_req; 1018 1019 switch (td->mode) { 1020 case DFLL_CLOSED_LOOP: 1021 return 0; 1022 1023 case DFLL_OPEN_LOOP: 1024 if (req->rate == 0) { 1025 dev_err(td->dev, "%s: Cannot lock DFLL at rate 0\n", 1026 __func__); 1027 return -EINVAL; 1028 } 1029 1030 if (td->pmu_if == TEGRA_DFLL_PMU_PWM) 1031 dfll_pwm_set_output_enabled(td, true); 1032 else 1033 dfll_i2c_set_output_enabled(td, true); 1034 1035 dfll_set_mode(td, DFLL_CLOSED_LOOP); 1036 dfll_set_frequency_request(td, req); 1037 dfll_set_force_output_enabled(td, false); 1038 return 0; 1039 1040 default: 1041 BUG_ON(td->mode > DFLL_CLOSED_LOOP); 1042 dev_err(td->dev, "%s: Cannot lock DFLL in %s mode\n", 1043 __func__, mode_name[td->mode]); 1044 return -EPERM; 1045 } 1046 } 1047 1048 /** 1049 * tegra_dfll_unlock - switch from closed-loop to open-loop mode 1050 * @td: DFLL instance 1051 * 1052 * Switch from CLOSED_LOOP state to OPEN_LOOP state. Returns 0 upon success, 1053 * or -EPERM if the DFLL is not currently in open-loop mode. 1054 */ 1055 static int dfll_unlock(struct tegra_dfll *td) 1056 { 1057 switch (td->mode) { 1058 case DFLL_CLOSED_LOOP: 1059 dfll_set_open_loop_config(td); 1060 dfll_set_mode(td, DFLL_OPEN_LOOP); 1061 if (td->pmu_if == TEGRA_DFLL_PMU_PWM) 1062 dfll_pwm_set_output_enabled(td, false); 1063 else 1064 dfll_i2c_set_output_enabled(td, false); 1065 return 0; 1066 1067 case DFLL_OPEN_LOOP: 1068 return 0; 1069 1070 default: 1071 BUG_ON(td->mode > DFLL_CLOSED_LOOP); 1072 dev_err(td->dev, "%s: Cannot unlock DFLL in %s mode\n", 1073 __func__, mode_name[td->mode]); 1074 return -EPERM; 1075 } 1076 } 1077 1078 /* 1079 * Clock framework integration 1080 * 1081 * When the DFLL is being controlled by the CCF, always enter closed loop 1082 * mode when the clk is enabled. This requires that a DFLL rate request 1083 * has been set beforehand, which implies that a clk_set_rate() call is 1084 * always required before a clk_enable(). 1085 */ 1086 1087 static int dfll_clk_is_enabled(struct clk_hw *hw) 1088 { 1089 struct tegra_dfll *td = clk_hw_to_dfll(hw); 1090 1091 return dfll_is_running(td); 1092 } 1093 1094 static int dfll_clk_enable(struct clk_hw *hw) 1095 { 1096 struct tegra_dfll *td = clk_hw_to_dfll(hw); 1097 int ret; 1098 1099 ret = dfll_enable(td); 1100 if (ret) 1101 return ret; 1102 1103 ret = dfll_lock(td); 1104 if (ret) 1105 dfll_disable(td); 1106 1107 return ret; 1108 } 1109 1110 static void dfll_clk_disable(struct clk_hw *hw) 1111 { 1112 struct tegra_dfll *td = clk_hw_to_dfll(hw); 1113 int ret; 1114 1115 ret = dfll_unlock(td); 1116 if (!ret) 1117 dfll_disable(td); 1118 } 1119 1120 static unsigned long dfll_clk_recalc_rate(struct clk_hw *hw, 1121 unsigned long parent_rate) 1122 { 1123 struct tegra_dfll *td = clk_hw_to_dfll(hw); 1124 1125 return td->last_unrounded_rate; 1126 } 1127 1128 /* Must use determine_rate since it allows for rates exceeding 2^31-1 */ 1129 static int dfll_clk_determine_rate(struct clk_hw *hw, 1130 struct clk_rate_request *clk_req) 1131 { 1132 struct tegra_dfll *td = clk_hw_to_dfll(hw); 1133 struct dfll_rate_req req; 1134 int ret; 1135 1136 ret = dfll_calculate_rate_request(td, &req, clk_req->rate); 1137 if (ret) 1138 return ret; 1139 1140 /* 1141 * Don't set the rounded rate, since it doesn't really matter as 1142 * the output rate will be voltage controlled anyway, and cpufreq 1143 * freaks out if any rounding happens. 1144 */ 1145 1146 return 0; 1147 } 1148 1149 static int dfll_clk_set_rate(struct clk_hw *hw, unsigned long rate, 1150 unsigned long parent_rate) 1151 { 1152 struct tegra_dfll *td = clk_hw_to_dfll(hw); 1153 1154 return dfll_request_rate(td, rate); 1155 } 1156 1157 static const struct clk_ops dfll_clk_ops = { 1158 .is_enabled = dfll_clk_is_enabled, 1159 .enable = dfll_clk_enable, 1160 .disable = dfll_clk_disable, 1161 .recalc_rate = dfll_clk_recalc_rate, 1162 .determine_rate = dfll_clk_determine_rate, 1163 .set_rate = dfll_clk_set_rate, 1164 }; 1165 1166 static struct clk_init_data dfll_clk_init_data = { 1167 .ops = &dfll_clk_ops, 1168 .num_parents = 0, 1169 }; 1170 1171 /** 1172 * dfll_register_clk - register the DFLL output clock with the clock framework 1173 * @td: DFLL instance 1174 * 1175 * Register the DFLL's output clock with the Linux clock framework and register 1176 * the DFLL driver as an OF clock provider. Returns 0 upon success or -EINVAL 1177 * or -ENOMEM upon failure. 1178 */ 1179 static int dfll_register_clk(struct tegra_dfll *td) 1180 { 1181 int ret; 1182 1183 dfll_clk_init_data.name = td->output_clock_name; 1184 td->dfll_clk_hw.init = &dfll_clk_init_data; 1185 1186 td->dfll_clk = clk_register(td->dev, &td->dfll_clk_hw); 1187 if (IS_ERR(td->dfll_clk)) { 1188 dev_err(td->dev, "DFLL clock registration error\n"); 1189 return -EINVAL; 1190 } 1191 1192 ret = of_clk_add_provider(td->dev->of_node, of_clk_src_simple_get, 1193 td->dfll_clk); 1194 if (ret) { 1195 dev_err(td->dev, "of_clk_add_provider() failed\n"); 1196 1197 clk_unregister(td->dfll_clk); 1198 return ret; 1199 } 1200 1201 return 0; 1202 } 1203 1204 /** 1205 * dfll_unregister_clk - unregister the DFLL output clock 1206 * @td: DFLL instance 1207 * 1208 * Unregister the DFLL's output clock from the Linux clock framework 1209 * and from clkdev. No return value. 1210 */ 1211 static void dfll_unregister_clk(struct tegra_dfll *td) 1212 { 1213 of_clk_del_provider(td->dev->of_node); 1214 clk_unregister(td->dfll_clk); 1215 td->dfll_clk = NULL; 1216 } 1217 1218 /* 1219 * Debugfs interface 1220 */ 1221 1222 #ifdef CONFIG_DEBUG_FS 1223 /* 1224 * Monitor control 1225 */ 1226 1227 /** 1228 * dfll_calc_monitored_rate - convert DFLL_MONITOR_DATA_VAL rate into real freq 1229 * @monitor_data: value read from the DFLL_MONITOR_DATA_VAL bitfield 1230 * @ref_rate: DFLL reference clock rate 1231 * 1232 * Convert @monitor_data from DFLL_MONITOR_DATA_VAL units into cycles 1233 * per second. Returns the converted value. 1234 */ 1235 static u64 dfll_calc_monitored_rate(u32 monitor_data, 1236 unsigned long ref_rate) 1237 { 1238 return monitor_data * (ref_rate / REF_CLK_CYC_PER_DVCO_SAMPLE); 1239 } 1240 1241 /** 1242 * dfll_read_monitor_rate - return the DFLL's output rate from internal monitor 1243 * @td: DFLL instance 1244 * 1245 * If the DFLL is enabled, return the last rate reported by the DFLL's 1246 * internal monitoring hardware. This works in both open-loop and 1247 * closed-loop mode, and takes the output scaler setting into account. 1248 * Assumes that the monitor was programmed to monitor frequency before 1249 * the sample period started. If the driver believes that the DFLL is 1250 * currently uninitialized or disabled, it will return 0, since 1251 * otherwise the DFLL monitor data register will return the last 1252 * measured rate from when the DFLL was active. 1253 */ 1254 static u64 dfll_read_monitor_rate(struct tegra_dfll *td) 1255 { 1256 u32 v, s; 1257 u64 pre_scaler_rate, post_scaler_rate; 1258 1259 if (!dfll_is_running(td)) 1260 return 0; 1261 1262 v = dfll_readl(td, DFLL_MONITOR_DATA); 1263 v = (v & DFLL_MONITOR_DATA_VAL_MASK) >> DFLL_MONITOR_DATA_VAL_SHIFT; 1264 pre_scaler_rate = dfll_calc_monitored_rate(v, td->ref_rate); 1265 1266 s = dfll_readl(td, DFLL_FREQ_REQ); 1267 s = (s & DFLL_FREQ_REQ_SCALE_MASK) >> DFLL_FREQ_REQ_SCALE_SHIFT; 1268 post_scaler_rate = dfll_scale_dvco_rate(s, pre_scaler_rate); 1269 1270 return post_scaler_rate; 1271 } 1272 1273 static int attr_enable_get(void *data, u64 *val) 1274 { 1275 struct tegra_dfll *td = data; 1276 1277 *val = dfll_is_running(td); 1278 1279 return 0; 1280 } 1281 static int attr_enable_set(void *data, u64 val) 1282 { 1283 struct tegra_dfll *td = data; 1284 1285 return val ? dfll_enable(td) : dfll_disable(td); 1286 } 1287 DEFINE_DEBUGFS_ATTRIBUTE(enable_fops, attr_enable_get, attr_enable_set, 1288 "%llu\n"); 1289 1290 static int attr_lock_get(void *data, u64 *val) 1291 { 1292 struct tegra_dfll *td = data; 1293 1294 *val = (td->mode == DFLL_CLOSED_LOOP); 1295 1296 return 0; 1297 } 1298 static int attr_lock_set(void *data, u64 val) 1299 { 1300 struct tegra_dfll *td = data; 1301 1302 return val ? dfll_lock(td) : dfll_unlock(td); 1303 } 1304 DEFINE_DEBUGFS_ATTRIBUTE(lock_fops, attr_lock_get, attr_lock_set, "%llu\n"); 1305 1306 static int attr_rate_get(void *data, u64 *val) 1307 { 1308 struct tegra_dfll *td = data; 1309 1310 *val = dfll_read_monitor_rate(td); 1311 1312 return 0; 1313 } 1314 1315 static int attr_rate_set(void *data, u64 val) 1316 { 1317 struct tegra_dfll *td = data; 1318 1319 return dfll_request_rate(td, val); 1320 } 1321 DEFINE_DEBUGFS_ATTRIBUTE(rate_fops, attr_rate_get, attr_rate_set, "%llu\n"); 1322 1323 static int attr_registers_show(struct seq_file *s, void *data) 1324 { 1325 u32 val, offs; 1326 struct tegra_dfll *td = s->private; 1327 1328 seq_puts(s, "CONTROL REGISTERS:\n"); 1329 for (offs = 0; offs <= DFLL_MONITOR_DATA; offs += 4) { 1330 if (offs == DFLL_OUTPUT_CFG) 1331 val = dfll_i2c_readl(td, offs); 1332 else 1333 val = dfll_readl(td, offs); 1334 seq_printf(s, "[0x%02x] = 0x%08x\n", offs, val); 1335 } 1336 1337 seq_puts(s, "\nI2C and INTR REGISTERS:\n"); 1338 for (offs = DFLL_I2C_CFG; offs <= DFLL_I2C_STS; offs += 4) 1339 seq_printf(s, "[0x%02x] = 0x%08x\n", offs, 1340 dfll_i2c_readl(td, offs)); 1341 for (offs = DFLL_INTR_STS; offs <= DFLL_INTR_EN; offs += 4) 1342 seq_printf(s, "[0x%02x] = 0x%08x\n", offs, 1343 dfll_i2c_readl(td, offs)); 1344 1345 if (td->pmu_if == TEGRA_DFLL_PMU_I2C) { 1346 seq_puts(s, "\nINTEGRATED I2C CONTROLLER REGISTERS:\n"); 1347 offs = DFLL_I2C_CLK_DIVISOR; 1348 seq_printf(s, "[0x%02x] = 0x%08x\n", offs, 1349 __raw_readl(td->i2c_controller_base + offs)); 1350 1351 seq_puts(s, "\nLUT:\n"); 1352 for (offs = 0; offs < 4 * MAX_DFLL_VOLTAGES; offs += 4) 1353 seq_printf(s, "[0x%02x] = 0x%08x\n", offs, 1354 __raw_readl(td->lut_base + offs)); 1355 } 1356 1357 return 0; 1358 } 1359 1360 DEFINE_SHOW_ATTRIBUTE(attr_registers); 1361 1362 static void dfll_debug_init(struct tegra_dfll *td) 1363 { 1364 struct dentry *root; 1365 1366 if (!td || (td->mode == DFLL_UNINITIALIZED)) 1367 return; 1368 1369 root = debugfs_create_dir("tegra_dfll_fcpu", NULL); 1370 td->debugfs_dir = root; 1371 1372 debugfs_create_file_unsafe("enable", 0644, root, td, 1373 &enable_fops); 1374 debugfs_create_file_unsafe("lock", 0444, root, td, &lock_fops); 1375 debugfs_create_file_unsafe("rate", 0444, root, td, &rate_fops); 1376 debugfs_create_file("registers", 0444, root, td, &attr_registers_fops); 1377 } 1378 1379 #else 1380 static void inline dfll_debug_init(struct tegra_dfll *td) { } 1381 #endif /* CONFIG_DEBUG_FS */ 1382 1383 /* 1384 * DFLL initialization 1385 */ 1386 1387 /** 1388 * dfll_set_default_params - program non-output related DFLL parameters 1389 * @td: DFLL instance 1390 * 1391 * During DFLL driver initialization or resume from context loss, 1392 * program parameters for the closed loop integrator, DVCO tuning, 1393 * voltage droop control and monitor control. 1394 */ 1395 static void dfll_set_default_params(struct tegra_dfll *td) 1396 { 1397 u32 val; 1398 1399 val = DIV_ROUND_UP(td->ref_rate, td->sample_rate * 32); 1400 BUG_ON(val > DFLL_CONFIG_DIV_MASK); 1401 dfll_writel(td, val, DFLL_CONFIG); 1402 1403 val = (td->force_mode << DFLL_PARAMS_FORCE_MODE_SHIFT) | 1404 (td->cf << DFLL_PARAMS_CF_PARAM_SHIFT) | 1405 (td->ci << DFLL_PARAMS_CI_PARAM_SHIFT) | 1406 (td->cg << DFLL_PARAMS_CG_PARAM_SHIFT) | 1407 (td->cg_scale ? DFLL_PARAMS_CG_SCALE : 0); 1408 dfll_writel(td, val, DFLL_PARAMS); 1409 1410 dfll_tune_low(td); 1411 dfll_writel(td, td->droop_ctrl, DFLL_DROOP_CTRL); 1412 dfll_writel(td, DFLL_MONITOR_CTRL_FREQ, DFLL_MONITOR_CTRL); 1413 } 1414 1415 /** 1416 * dfll_init_clks - clk_get() the DFLL source clocks 1417 * @td: DFLL instance 1418 * 1419 * Call clk_get() on the DFLL source clocks and save the pointers for later 1420 * use. Returns 0 upon success or error (see devm_clk_get) if one or more 1421 * of the clocks couldn't be looked up. 1422 */ 1423 static int dfll_init_clks(struct tegra_dfll *td) 1424 { 1425 td->ref_clk = devm_clk_get(td->dev, "ref"); 1426 if (IS_ERR(td->ref_clk)) { 1427 dev_err(td->dev, "missing ref clock\n"); 1428 return PTR_ERR(td->ref_clk); 1429 } 1430 1431 td->soc_clk = devm_clk_get(td->dev, "soc"); 1432 if (IS_ERR(td->soc_clk)) { 1433 dev_err(td->dev, "missing soc clock\n"); 1434 return PTR_ERR(td->soc_clk); 1435 } 1436 1437 td->i2c_clk = devm_clk_get(td->dev, "i2c"); 1438 if (IS_ERR(td->i2c_clk)) { 1439 dev_err(td->dev, "missing i2c clock\n"); 1440 return PTR_ERR(td->i2c_clk); 1441 } 1442 td->i2c_clk_rate = clk_get_rate(td->i2c_clk); 1443 1444 return 0; 1445 } 1446 1447 /** 1448 * dfll_init - Prepare the DFLL IP block for use 1449 * @td: DFLL instance 1450 * 1451 * Do everything necessary to prepare the DFLL IP block for use. The 1452 * DFLL will be left in DISABLED state. Called by dfll_probe(). 1453 * Returns 0 upon success, or passes along the error from whatever 1454 * function returned it. 1455 */ 1456 static int dfll_init(struct tegra_dfll *td) 1457 { 1458 int ret; 1459 1460 td->ref_rate = clk_get_rate(td->ref_clk); 1461 if (td->ref_rate != REF_CLOCK_RATE) { 1462 dev_err(td->dev, "unexpected ref clk rate %lu, expecting %lu", 1463 td->ref_rate, REF_CLOCK_RATE); 1464 return -EINVAL; 1465 } 1466 1467 reset_control_deassert(td->dvco_rst); 1468 1469 ret = clk_prepare(td->ref_clk); 1470 if (ret) { 1471 dev_err(td->dev, "failed to prepare ref_clk\n"); 1472 return ret; 1473 } 1474 1475 ret = clk_prepare(td->soc_clk); 1476 if (ret) { 1477 dev_err(td->dev, "failed to prepare soc_clk\n"); 1478 goto di_err1; 1479 } 1480 1481 ret = clk_prepare(td->i2c_clk); 1482 if (ret) { 1483 dev_err(td->dev, "failed to prepare i2c_clk\n"); 1484 goto di_err2; 1485 } 1486 1487 td->last_unrounded_rate = 0; 1488 1489 pm_runtime_enable(td->dev); 1490 pm_runtime_get_sync(td->dev); 1491 1492 dfll_set_mode(td, DFLL_DISABLED); 1493 dfll_set_default_params(td); 1494 1495 if (td->soc->init_clock_trimmers) 1496 td->soc->init_clock_trimmers(); 1497 1498 dfll_set_open_loop_config(td); 1499 1500 dfll_init_out_if(td); 1501 1502 pm_runtime_put_sync(td->dev); 1503 1504 return 0; 1505 1506 di_err2: 1507 clk_unprepare(td->soc_clk); 1508 di_err1: 1509 clk_unprepare(td->ref_clk); 1510 1511 reset_control_assert(td->dvco_rst); 1512 1513 return ret; 1514 } 1515 1516 /** 1517 * tegra_dfll_suspend - check DFLL is disabled 1518 * @dev: DFLL instance 1519 * 1520 * DFLL clock should be disabled by the CPUFreq driver. So, make 1521 * sure it is disabled and disable all clocks needed by the DFLL. 1522 */ 1523 int tegra_dfll_suspend(struct device *dev) 1524 { 1525 struct tegra_dfll *td = dev_get_drvdata(dev); 1526 1527 if (dfll_is_running(td)) { 1528 dev_err(td->dev, "DFLL still enabled while suspending\n"); 1529 return -EBUSY; 1530 } 1531 1532 reset_control_assert(td->dvco_rst); 1533 1534 return 0; 1535 } 1536 EXPORT_SYMBOL(tegra_dfll_suspend); 1537 1538 /** 1539 * tegra_dfll_resume - reinitialize DFLL on resume 1540 * @dev: DFLL instance 1541 * 1542 * DFLL is disabled and reset during suspend and resume. 1543 * So, reinitialize the DFLL IP block back for use. 1544 * DFLL clock is enabled later in closed loop mode by CPUFreq 1545 * driver before switching its clock source to DFLL output. 1546 */ 1547 int tegra_dfll_resume(struct device *dev) 1548 { 1549 struct tegra_dfll *td = dev_get_drvdata(dev); 1550 1551 reset_control_deassert(td->dvco_rst); 1552 1553 pm_runtime_get_sync(td->dev); 1554 1555 dfll_set_mode(td, DFLL_DISABLED); 1556 dfll_set_default_params(td); 1557 1558 if (td->soc->init_clock_trimmers) 1559 td->soc->init_clock_trimmers(); 1560 1561 dfll_set_open_loop_config(td); 1562 1563 dfll_init_out_if(td); 1564 1565 pm_runtime_put_sync(td->dev); 1566 1567 return 0; 1568 } 1569 EXPORT_SYMBOL(tegra_dfll_resume); 1570 1571 /* 1572 * DT data fetch 1573 */ 1574 1575 /* 1576 * Find a PMIC voltage register-to-voltage mapping for the given voltage. 1577 * An exact voltage match is required. 1578 */ 1579 static int find_vdd_map_entry_exact(struct tegra_dfll *td, int uV) 1580 { 1581 int i, n_voltages, reg_uV,reg_volt_id, align_step; 1582 1583 if (WARN_ON(td->pmu_if == TEGRA_DFLL_PMU_PWM)) 1584 return -EINVAL; 1585 1586 align_step = uV / td->soc->alignment.step_uv; 1587 n_voltages = regulator_count_voltages(td->vdd_reg); 1588 for (i = 0; i < n_voltages; i++) { 1589 reg_uV = regulator_list_voltage(td->vdd_reg, i); 1590 if (reg_uV < 0) 1591 break; 1592 1593 reg_volt_id = reg_uV / td->soc->alignment.step_uv; 1594 1595 if (align_step == reg_volt_id) 1596 return i; 1597 } 1598 1599 dev_err(td->dev, "no voltage map entry for %d uV\n", uV); 1600 return -EINVAL; 1601 } 1602 1603 /* 1604 * Find a PMIC voltage register-to-voltage mapping for the given voltage, 1605 * rounding up to the closest supported voltage. 1606 * */ 1607 static int find_vdd_map_entry_min(struct tegra_dfll *td, int uV) 1608 { 1609 int i, n_voltages, reg_uV, reg_volt_id, align_step; 1610 1611 if (WARN_ON(td->pmu_if == TEGRA_DFLL_PMU_PWM)) 1612 return -EINVAL; 1613 1614 align_step = uV / td->soc->alignment.step_uv; 1615 n_voltages = regulator_count_voltages(td->vdd_reg); 1616 for (i = 0; i < n_voltages; i++) { 1617 reg_uV = regulator_list_voltage(td->vdd_reg, i); 1618 if (reg_uV < 0) 1619 break; 1620 1621 reg_volt_id = reg_uV / td->soc->alignment.step_uv; 1622 1623 if (align_step <= reg_volt_id) 1624 return i; 1625 } 1626 1627 dev_err(td->dev, "no voltage map entry rounding to %d uV\n", uV); 1628 return -EINVAL; 1629 } 1630 1631 /* 1632 * dfll_build_pwm_lut - build the PWM regulator lookup table 1633 * @td: DFLL instance 1634 * @v_max: Vmax from OPP table 1635 * 1636 * Look-up table in h/w is ignored when PWM is used as DFLL interface to PMIC. 1637 * In this case closed loop output is controlling duty cycle directly. The s/w 1638 * look-up that maps PWM duty cycle to voltage is still built by this function. 1639 */ 1640 static int dfll_build_pwm_lut(struct tegra_dfll *td, unsigned long v_max) 1641 { 1642 int i; 1643 unsigned long rate, reg_volt; 1644 u8 lut_bottom = MAX_DFLL_VOLTAGES; 1645 int v_min = td->soc->cvb->min_millivolts * 1000; 1646 1647 for (i = 0; i < MAX_DFLL_VOLTAGES; i++) { 1648 reg_volt = td->lut_uv[i]; 1649 1650 /* since opp voltage is exact mv */ 1651 reg_volt = (reg_volt / 1000) * 1000; 1652 if (reg_volt > v_max) 1653 break; 1654 1655 td->lut[i] = i; 1656 if ((lut_bottom == MAX_DFLL_VOLTAGES) && (reg_volt >= v_min)) 1657 lut_bottom = i; 1658 } 1659 1660 /* determine voltage boundaries */ 1661 td->lut_size = i; 1662 if ((lut_bottom == MAX_DFLL_VOLTAGES) || 1663 (lut_bottom + 1 >= td->lut_size)) { 1664 dev_err(td->dev, "no voltage above DFLL minimum %d mV\n", 1665 td->soc->cvb->min_millivolts); 1666 return -EINVAL; 1667 } 1668 td->lut_bottom = lut_bottom; 1669 1670 /* determine rate boundaries */ 1671 rate = get_dvco_rate_below(td, td->lut_bottom); 1672 if (!rate) { 1673 dev_err(td->dev, "no opp below DFLL minimum voltage %d mV\n", 1674 td->soc->cvb->min_millivolts); 1675 return -EINVAL; 1676 } 1677 td->dvco_rate_min = rate; 1678 1679 return 0; 1680 } 1681 1682 /** 1683 * dfll_build_i2c_lut - build the I2C voltage register lookup table 1684 * @td: DFLL instance 1685 * @v_max: Vmax from OPP table 1686 * 1687 * The DFLL hardware has 33 bytes of look-up table RAM that must be filled with 1688 * PMIC voltage register values that span the entire DFLL operating range. 1689 * This function builds the look-up table based on the OPP table provided by 1690 * the soc-specific platform driver (td->soc->opp_dev) and the PMIC 1691 * register-to-voltage mapping queried from the regulator framework. 1692 * 1693 * On success, fills in td->lut and returns 0, or -err on failure. 1694 */ 1695 static int dfll_build_i2c_lut(struct tegra_dfll *td, unsigned long v_max) 1696 { 1697 unsigned long rate, v, v_opp; 1698 int ret = -EINVAL; 1699 int j, selector, lut; 1700 1701 v = td->soc->cvb->min_millivolts * 1000; 1702 lut = find_vdd_map_entry_exact(td, v); 1703 if (lut < 0) 1704 goto out; 1705 td->lut[0] = lut; 1706 td->lut_bottom = 0; 1707 1708 for (j = 1, rate = 0; ; rate++) { 1709 struct dev_pm_opp *opp; 1710 1711 opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate); 1712 if (IS_ERR(opp)) 1713 break; 1714 v_opp = dev_pm_opp_get_voltage(opp); 1715 1716 if (v_opp <= td->soc->cvb->min_millivolts * 1000) 1717 td->dvco_rate_min = dev_pm_opp_get_freq(opp); 1718 1719 dev_pm_opp_put(opp); 1720 1721 for (;;) { 1722 v += max(1UL, (v_max - v) / (MAX_DFLL_VOLTAGES - j)); 1723 if (v >= v_opp) 1724 break; 1725 1726 selector = find_vdd_map_entry_min(td, v); 1727 if (selector < 0) 1728 goto out; 1729 if (selector != td->lut[j - 1]) 1730 td->lut[j++] = selector; 1731 } 1732 1733 v = (j == MAX_DFLL_VOLTAGES - 1) ? v_max : v_opp; 1734 selector = find_vdd_map_entry_exact(td, v); 1735 if (selector < 0) 1736 goto out; 1737 if (selector != td->lut[j - 1]) 1738 td->lut[j++] = selector; 1739 1740 if (v >= v_max) 1741 break; 1742 } 1743 td->lut_size = j; 1744 1745 if (!td->dvco_rate_min) 1746 dev_err(td->dev, "no opp above DFLL minimum voltage %d mV\n", 1747 td->soc->cvb->min_millivolts); 1748 else { 1749 ret = 0; 1750 for (j = 0; j < td->lut_size; j++) 1751 td->lut_uv[j] = 1752 regulator_list_voltage(td->vdd_reg, 1753 td->lut[j]); 1754 } 1755 1756 out: 1757 return ret; 1758 } 1759 1760 static int dfll_build_lut(struct tegra_dfll *td) 1761 { 1762 unsigned long rate, v_max; 1763 struct dev_pm_opp *opp; 1764 1765 rate = ULONG_MAX; 1766 opp = dev_pm_opp_find_freq_floor(td->soc->dev, &rate); 1767 if (IS_ERR(opp)) { 1768 dev_err(td->dev, "couldn't get vmax opp, empty opp table?\n"); 1769 return -EINVAL; 1770 } 1771 v_max = dev_pm_opp_get_voltage(opp); 1772 dev_pm_opp_put(opp); 1773 1774 if (td->pmu_if == TEGRA_DFLL_PMU_PWM) 1775 return dfll_build_pwm_lut(td, v_max); 1776 else 1777 return dfll_build_i2c_lut(td, v_max); 1778 } 1779 1780 /** 1781 * read_dt_param - helper function for reading required parameters from the DT 1782 * @td: DFLL instance 1783 * @param: DT property name 1784 * @dest: output pointer for the value read 1785 * 1786 * Read a required numeric parameter from the DFLL device node, or complain 1787 * if the property doesn't exist. Returns a boolean indicating success for 1788 * easy chaining of multiple calls to this function. 1789 */ 1790 static bool read_dt_param(struct tegra_dfll *td, const char *param, u32 *dest) 1791 { 1792 int err = of_property_read_u32(td->dev->of_node, param, dest); 1793 1794 if (err < 0) { 1795 dev_err(td->dev, "failed to read DT parameter %s: %d\n", 1796 param, err); 1797 return false; 1798 } 1799 1800 return true; 1801 } 1802 1803 /** 1804 * dfll_fetch_i2c_params - query PMIC I2C params from DT & regulator subsystem 1805 * @td: DFLL instance 1806 * 1807 * Read all the parameters required for operation in I2C mode. The parameters 1808 * can originate from the device tree or the regulator subsystem. 1809 * Returns 0 on success or -err on failure. 1810 */ 1811 static int dfll_fetch_i2c_params(struct tegra_dfll *td) 1812 { 1813 struct regmap *regmap; 1814 struct device *i2c_dev; 1815 struct i2c_client *i2c_client; 1816 int vsel_reg, vsel_mask; 1817 int ret; 1818 1819 if (!read_dt_param(td, "nvidia,i2c-fs-rate", &td->i2c_fs_rate)) 1820 return -EINVAL; 1821 1822 regmap = regulator_get_regmap(td->vdd_reg); 1823 i2c_dev = regmap_get_device(regmap); 1824 i2c_client = to_i2c_client(i2c_dev); 1825 1826 td->i2c_slave_addr = i2c_client->addr; 1827 1828 ret = regulator_get_hardware_vsel_register(td->vdd_reg, 1829 &vsel_reg, 1830 &vsel_mask); 1831 if (ret < 0) { 1832 dev_err(td->dev, 1833 "regulator unsuitable for DFLL I2C operation\n"); 1834 return -EINVAL; 1835 } 1836 td->i2c_reg = vsel_reg; 1837 1838 return 0; 1839 } 1840 1841 static int dfll_fetch_pwm_params(struct tegra_dfll *td) 1842 { 1843 int ret, i; 1844 u32 pwm_period; 1845 1846 if (!td->soc->alignment.step_uv || !td->soc->alignment.offset_uv) { 1847 dev_err(td->dev, 1848 "Missing step or alignment info for PWM regulator"); 1849 return -EINVAL; 1850 } 1851 for (i = 0; i < MAX_DFLL_VOLTAGES; i++) 1852 td->lut_uv[i] = td->soc->alignment.offset_uv + 1853 i * td->soc->alignment.step_uv; 1854 1855 ret = read_dt_param(td, "nvidia,pwm-tristate-microvolts", 1856 &td->reg_init_uV); 1857 if (!ret) { 1858 dev_err(td->dev, "couldn't get initialized voltage\n"); 1859 return -EINVAL; 1860 } 1861 1862 ret = read_dt_param(td, "nvidia,pwm-period-nanoseconds", &pwm_period); 1863 if (!ret) { 1864 dev_err(td->dev, "couldn't get PWM period\n"); 1865 return -EINVAL; 1866 } 1867 td->pwm_rate = (NSEC_PER_SEC / pwm_period) * (MAX_DFLL_VOLTAGES - 1); 1868 1869 td->pwm_pin = devm_pinctrl_get(td->dev); 1870 if (IS_ERR(td->pwm_pin)) { 1871 dev_err(td->dev, "DT: missing pinctrl device\n"); 1872 return PTR_ERR(td->pwm_pin); 1873 } 1874 1875 td->pwm_enable_state = pinctrl_lookup_state(td->pwm_pin, 1876 "dvfs_pwm_enable"); 1877 if (IS_ERR(td->pwm_enable_state)) { 1878 dev_err(td->dev, "DT: missing pwm enabled state\n"); 1879 return PTR_ERR(td->pwm_enable_state); 1880 } 1881 1882 td->pwm_disable_state = pinctrl_lookup_state(td->pwm_pin, 1883 "dvfs_pwm_disable"); 1884 if (IS_ERR(td->pwm_disable_state)) { 1885 dev_err(td->dev, "DT: missing pwm disabled state\n"); 1886 return PTR_ERR(td->pwm_disable_state); 1887 } 1888 1889 return 0; 1890 } 1891 1892 /** 1893 * dfll_fetch_common_params - read DFLL parameters from the device tree 1894 * @td: DFLL instance 1895 * 1896 * Read all the DT parameters that are common to both I2C and PWM operation. 1897 * Returns 0 on success or -EINVAL on any failure. 1898 */ 1899 static int dfll_fetch_common_params(struct tegra_dfll *td) 1900 { 1901 bool ok = true; 1902 1903 ok &= read_dt_param(td, "nvidia,droop-ctrl", &td->droop_ctrl); 1904 ok &= read_dt_param(td, "nvidia,sample-rate", &td->sample_rate); 1905 ok &= read_dt_param(td, "nvidia,force-mode", &td->force_mode); 1906 ok &= read_dt_param(td, "nvidia,cf", &td->cf); 1907 ok &= read_dt_param(td, "nvidia,ci", &td->ci); 1908 ok &= read_dt_param(td, "nvidia,cg", &td->cg); 1909 td->cg_scale = of_property_read_bool(td->dev->of_node, 1910 "nvidia,cg-scale"); 1911 1912 if (of_property_read_string(td->dev->of_node, "clock-output-names", 1913 &td->output_clock_name)) { 1914 dev_err(td->dev, "missing clock-output-names property\n"); 1915 ok = false; 1916 } 1917 1918 return ok ? 0 : -EINVAL; 1919 } 1920 1921 /* 1922 * API exported to per-SoC platform drivers 1923 */ 1924 1925 /** 1926 * tegra_dfll_register - probe a Tegra DFLL device 1927 * @pdev: DFLL platform_device * 1928 * @soc: Per-SoC integration and characterization data for this DFLL instance 1929 * 1930 * Probe and initialize a DFLL device instance. Intended to be called 1931 * by a SoC-specific shim driver that passes in per-SoC integration 1932 * and configuration data via @soc. Returns 0 on success or -err on failure. 1933 */ 1934 int tegra_dfll_register(struct platform_device *pdev, 1935 struct tegra_dfll_soc_data *soc) 1936 { 1937 struct resource *mem; 1938 struct tegra_dfll *td; 1939 int ret; 1940 1941 if (!soc) { 1942 dev_err(&pdev->dev, "no tegra_dfll_soc_data provided\n"); 1943 return -EINVAL; 1944 } 1945 1946 td = devm_kzalloc(&pdev->dev, sizeof(*td), GFP_KERNEL); 1947 if (!td) 1948 return -ENOMEM; 1949 td->dev = &pdev->dev; 1950 platform_set_drvdata(pdev, td); 1951 1952 td->soc = soc; 1953 1954 td->dvco_rst = devm_reset_control_get(td->dev, "dvco"); 1955 if (IS_ERR(td->dvco_rst)) { 1956 dev_err(td->dev, "couldn't get dvco reset\n"); 1957 return PTR_ERR(td->dvco_rst); 1958 } 1959 1960 ret = dfll_fetch_common_params(td); 1961 if (ret) { 1962 dev_err(td->dev, "couldn't parse device tree parameters\n"); 1963 return ret; 1964 } 1965 1966 if (of_property_read_bool(td->dev->of_node, "nvidia,pwm-to-pmic")) { 1967 td->pmu_if = TEGRA_DFLL_PMU_PWM; 1968 ret = dfll_fetch_pwm_params(td); 1969 } else { 1970 td->vdd_reg = devm_regulator_get(td->dev, "vdd-cpu"); 1971 if (IS_ERR(td->vdd_reg)) { 1972 dev_err(td->dev, "couldn't get vdd_cpu regulator\n"); 1973 return PTR_ERR(td->vdd_reg); 1974 } 1975 td->pmu_if = TEGRA_DFLL_PMU_I2C; 1976 ret = dfll_fetch_i2c_params(td); 1977 } 1978 if (ret) 1979 return ret; 1980 1981 ret = dfll_build_lut(td); 1982 if (ret) { 1983 dev_err(td->dev, "couldn't build LUT\n"); 1984 return ret; 1985 } 1986 1987 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1988 if (!mem) { 1989 dev_err(td->dev, "no control register resource\n"); 1990 return -ENODEV; 1991 } 1992 1993 td->base = devm_ioremap(td->dev, mem->start, resource_size(mem)); 1994 if (!td->base) { 1995 dev_err(td->dev, "couldn't ioremap DFLL control registers\n"); 1996 return -ENODEV; 1997 } 1998 1999 mem = platform_get_resource(pdev, IORESOURCE_MEM, 1); 2000 if (!mem) { 2001 dev_err(td->dev, "no i2c_base resource\n"); 2002 return -ENODEV; 2003 } 2004 2005 td->i2c_base = devm_ioremap(td->dev, mem->start, resource_size(mem)); 2006 if (!td->i2c_base) { 2007 dev_err(td->dev, "couldn't ioremap i2c_base resource\n"); 2008 return -ENODEV; 2009 } 2010 2011 mem = platform_get_resource(pdev, IORESOURCE_MEM, 2); 2012 if (!mem) { 2013 dev_err(td->dev, "no i2c_controller_base resource\n"); 2014 return -ENODEV; 2015 } 2016 2017 td->i2c_controller_base = devm_ioremap(td->dev, mem->start, 2018 resource_size(mem)); 2019 if (!td->i2c_controller_base) { 2020 dev_err(td->dev, 2021 "couldn't ioremap i2c_controller_base resource\n"); 2022 return -ENODEV; 2023 } 2024 2025 mem = platform_get_resource(pdev, IORESOURCE_MEM, 3); 2026 if (!mem) { 2027 dev_err(td->dev, "no lut_base resource\n"); 2028 return -ENODEV; 2029 } 2030 2031 td->lut_base = devm_ioremap(td->dev, mem->start, resource_size(mem)); 2032 if (!td->lut_base) { 2033 dev_err(td->dev, 2034 "couldn't ioremap lut_base resource\n"); 2035 return -ENODEV; 2036 } 2037 2038 ret = dfll_init_clks(td); 2039 if (ret) { 2040 dev_err(&pdev->dev, "DFLL clock init error\n"); 2041 return ret; 2042 } 2043 2044 /* Enable the clocks and set the device up */ 2045 ret = dfll_init(td); 2046 if (ret) 2047 return ret; 2048 2049 ret = dfll_register_clk(td); 2050 if (ret) { 2051 dev_err(&pdev->dev, "DFLL clk registration failed\n"); 2052 return ret; 2053 } 2054 2055 dfll_debug_init(td); 2056 2057 return 0; 2058 } 2059 EXPORT_SYMBOL(tegra_dfll_register); 2060 2061 /** 2062 * tegra_dfll_unregister - release all of the DFLL driver resources for a device 2063 * @pdev: DFLL platform_device * 2064 * 2065 * Unbind this driver from the DFLL hardware device represented by 2066 * @pdev. The DFLL must be disabled for this to succeed. Returns a 2067 * soc pointer upon success or -EBUSY if the DFLL is still active. 2068 */ 2069 struct tegra_dfll_soc_data *tegra_dfll_unregister(struct platform_device *pdev) 2070 { 2071 struct tegra_dfll *td = platform_get_drvdata(pdev); 2072 2073 /* Try to prevent removal while the DFLL is active */ 2074 if (td->mode != DFLL_DISABLED) { 2075 dev_err(&pdev->dev, 2076 "must disable DFLL before removing driver\n"); 2077 return ERR_PTR(-EBUSY); 2078 } 2079 2080 debugfs_remove_recursive(td->debugfs_dir); 2081 2082 dfll_unregister_clk(td); 2083 pm_runtime_disable(&pdev->dev); 2084 2085 clk_unprepare(td->ref_clk); 2086 clk_unprepare(td->soc_clk); 2087 clk_unprepare(td->i2c_clk); 2088 2089 reset_control_assert(td->dvco_rst); 2090 2091 return td->soc; 2092 } 2093 EXPORT_SYMBOL(tegra_dfll_unregister); 2094