xref: /openbmc/linux/drivers/clk/tegra/clk-dfll.c (revision 36541f04)
1 /*
2  * clk-dfll.c - Tegra DFLL clock source common code
3  *
4  * Copyright (C) 2012-2019 NVIDIA Corporation. All rights reserved.
5  *
6  * Aleksandr Frid <afrid@nvidia.com>
7  * Paul Walmsley <pwalmsley@nvidia.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but WITHOUT
14  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16  * more details.
17  *
18  * This library is for the DVCO and DFLL IP blocks on the Tegra124
19  * SoC. These IP blocks together are also known at NVIDIA as
20  * "CL-DVFS". To try to avoid confusion, this code refers to them
21  * collectively as the "DFLL."
22  *
23  * The DFLL is a root clocksource which tolerates some amount of
24  * supply voltage noise. Tegra124 uses it to clock the fast CPU
25  * complex when the target CPU speed is above a particular rate. The
26  * DFLL can be operated in either open-loop mode or closed-loop mode.
27  * In open-loop mode, the DFLL generates an output clock appropriate
28  * to the supply voltage. In closed-loop mode, when configured with a
29  * target frequency, the DFLL minimizes supply voltage while
30  * delivering an average frequency equal to the target.
31  *
32  * Devices clocked by the DFLL must be able to tolerate frequency
33  * variation. In the case of the CPU, it's important to note that the
34  * CPU cycle time will vary. This has implications for
35  * performance-measurement code and any code that relies on the CPU
36  * cycle time to delay for a certain length of time.
37  *
38  */
39 
40 #include <linux/clk.h>
41 #include <linux/clk-provider.h>
42 #include <linux/debugfs.h>
43 #include <linux/device.h>
44 #include <linux/err.h>
45 #include <linux/i2c.h>
46 #include <linux/io.h>
47 #include <linux/kernel.h>
48 #include <linux/module.h>
49 #include <linux/of.h>
50 #include <linux/pinctrl/consumer.h>
51 #include <linux/pm_opp.h>
52 #include <linux/pm_runtime.h>
53 #include <linux/regmap.h>
54 #include <linux/regulator/consumer.h>
55 #include <linux/reset.h>
56 #include <linux/seq_file.h>
57 
58 #include "clk-dfll.h"
59 #include "cvb.h"
60 
61 /*
62  * DFLL control registers - access via dfll_{readl,writel}
63  */
64 
65 /* DFLL_CTRL: DFLL control register */
66 #define DFLL_CTRL			0x00
67 #define DFLL_CTRL_MODE_MASK		0x03
68 
69 /* DFLL_CONFIG: DFLL sample rate control */
70 #define DFLL_CONFIG			0x04
71 #define DFLL_CONFIG_DIV_MASK		0xff
72 #define DFLL_CONFIG_DIV_PRESCALE	32
73 
74 /* DFLL_PARAMS: tuning coefficients for closed loop integrator */
75 #define DFLL_PARAMS			0x08
76 #define DFLL_PARAMS_CG_SCALE		(0x1 << 24)
77 #define DFLL_PARAMS_FORCE_MODE_SHIFT	22
78 #define DFLL_PARAMS_FORCE_MODE_MASK	(0x3 << DFLL_PARAMS_FORCE_MODE_SHIFT)
79 #define DFLL_PARAMS_CF_PARAM_SHIFT	16
80 #define DFLL_PARAMS_CF_PARAM_MASK	(0x3f << DFLL_PARAMS_CF_PARAM_SHIFT)
81 #define DFLL_PARAMS_CI_PARAM_SHIFT	8
82 #define DFLL_PARAMS_CI_PARAM_MASK	(0x7 << DFLL_PARAMS_CI_PARAM_SHIFT)
83 #define DFLL_PARAMS_CG_PARAM_SHIFT	0
84 #define DFLL_PARAMS_CG_PARAM_MASK	(0xff << DFLL_PARAMS_CG_PARAM_SHIFT)
85 
86 /* DFLL_TUNE0: delay line configuration register 0 */
87 #define DFLL_TUNE0			0x0c
88 
89 /* DFLL_TUNE1: delay line configuration register 1 */
90 #define DFLL_TUNE1			0x10
91 
92 /* DFLL_FREQ_REQ: target DFLL frequency control */
93 #define DFLL_FREQ_REQ			0x14
94 #define DFLL_FREQ_REQ_FORCE_ENABLE	(0x1 << 28)
95 #define DFLL_FREQ_REQ_FORCE_SHIFT	16
96 #define DFLL_FREQ_REQ_FORCE_MASK	(0xfff << DFLL_FREQ_REQ_FORCE_SHIFT)
97 #define FORCE_MAX			2047
98 #define FORCE_MIN			-2048
99 #define DFLL_FREQ_REQ_SCALE_SHIFT	8
100 #define DFLL_FREQ_REQ_SCALE_MASK	(0xff << DFLL_FREQ_REQ_SCALE_SHIFT)
101 #define DFLL_FREQ_REQ_SCALE_MAX		256
102 #define DFLL_FREQ_REQ_FREQ_VALID	(0x1 << 7)
103 #define DFLL_FREQ_REQ_MULT_SHIFT	0
104 #define DFLL_FREQ_REG_MULT_MASK		(0x7f << DFLL_FREQ_REQ_MULT_SHIFT)
105 #define FREQ_MAX			127
106 
107 /* DFLL_DROOP_CTRL: droop prevention control */
108 #define DFLL_DROOP_CTRL			0x1c
109 
110 /* DFLL_OUTPUT_CFG: closed loop mode control registers */
111 /* NOTE: access via dfll_i2c_{readl,writel} */
112 #define DFLL_OUTPUT_CFG			0x20
113 #define DFLL_OUTPUT_CFG_I2C_ENABLE	(0x1 << 30)
114 #define OUT_MASK			0x3f
115 #define DFLL_OUTPUT_CFG_SAFE_SHIFT	24
116 #define DFLL_OUTPUT_CFG_SAFE_MASK	\
117 		(OUT_MASK << DFLL_OUTPUT_CFG_SAFE_SHIFT)
118 #define DFLL_OUTPUT_CFG_MAX_SHIFT	16
119 #define DFLL_OUTPUT_CFG_MAX_MASK	\
120 		(OUT_MASK << DFLL_OUTPUT_CFG_MAX_SHIFT)
121 #define DFLL_OUTPUT_CFG_MIN_SHIFT	8
122 #define DFLL_OUTPUT_CFG_MIN_MASK	\
123 		(OUT_MASK << DFLL_OUTPUT_CFG_MIN_SHIFT)
124 #define DFLL_OUTPUT_CFG_PWM_DELTA	(0x1 << 7)
125 #define DFLL_OUTPUT_CFG_PWM_ENABLE	(0x1 << 6)
126 #define DFLL_OUTPUT_CFG_PWM_DIV_SHIFT	0
127 #define DFLL_OUTPUT_CFG_PWM_DIV_MASK	\
128 		(OUT_MASK << DFLL_OUTPUT_CFG_PWM_DIV_SHIFT)
129 
130 /* DFLL_OUTPUT_FORCE: closed loop mode voltage forcing control */
131 #define DFLL_OUTPUT_FORCE		0x24
132 #define DFLL_OUTPUT_FORCE_ENABLE	(0x1 << 6)
133 #define DFLL_OUTPUT_FORCE_VALUE_SHIFT	0
134 #define DFLL_OUTPUT_FORCE_VALUE_MASK	\
135 		(OUT_MASK << DFLL_OUTPUT_FORCE_VALUE_SHIFT)
136 
137 /* DFLL_MONITOR_CTRL: internal monitor data source control */
138 #define DFLL_MONITOR_CTRL		0x28
139 #define DFLL_MONITOR_CTRL_FREQ		6
140 
141 /* DFLL_MONITOR_DATA: internal monitor data output */
142 #define DFLL_MONITOR_DATA		0x2c
143 #define DFLL_MONITOR_DATA_NEW_MASK	(0x1 << 16)
144 #define DFLL_MONITOR_DATA_VAL_SHIFT	0
145 #define DFLL_MONITOR_DATA_VAL_MASK	(0xFFFF << DFLL_MONITOR_DATA_VAL_SHIFT)
146 
147 /*
148  * I2C output control registers - access via dfll_i2c_{readl,writel}
149  */
150 
151 /* DFLL_I2C_CFG: I2C controller configuration register */
152 #define DFLL_I2C_CFG			0x40
153 #define DFLL_I2C_CFG_ARB_ENABLE		(0x1 << 20)
154 #define DFLL_I2C_CFG_HS_CODE_SHIFT	16
155 #define DFLL_I2C_CFG_HS_CODE_MASK	(0x7 << DFLL_I2C_CFG_HS_CODE_SHIFT)
156 #define DFLL_I2C_CFG_PACKET_ENABLE	(0x1 << 15)
157 #define DFLL_I2C_CFG_SIZE_SHIFT		12
158 #define DFLL_I2C_CFG_SIZE_MASK		(0x7 << DFLL_I2C_CFG_SIZE_SHIFT)
159 #define DFLL_I2C_CFG_SLAVE_ADDR_10	(0x1 << 10)
160 #define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT	1
161 #define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT	0
162 
163 /* DFLL_I2C_VDD_REG_ADDR: PMIC I2C address for closed loop mode */
164 #define DFLL_I2C_VDD_REG_ADDR		0x44
165 
166 /* DFLL_I2C_STS: I2C controller status */
167 #define DFLL_I2C_STS			0x48
168 #define DFLL_I2C_STS_I2C_LAST_SHIFT	1
169 #define DFLL_I2C_STS_I2C_REQ_PENDING	0x1
170 
171 /* DFLL_INTR_STS: DFLL interrupt status register */
172 #define DFLL_INTR_STS			0x5c
173 
174 /* DFLL_INTR_EN: DFLL interrupt enable register */
175 #define DFLL_INTR_EN			0x60
176 #define DFLL_INTR_MIN_MASK		0x1
177 #define DFLL_INTR_MAX_MASK		0x2
178 
179 /*
180  * Integrated I2C controller registers - relative to td->i2c_controller_base
181  */
182 
183 /* DFLL_I2C_CLK_DIVISOR: I2C controller clock divisor */
184 #define DFLL_I2C_CLK_DIVISOR		0x6c
185 #define DFLL_I2C_CLK_DIVISOR_MASK	0xffff
186 #define DFLL_I2C_CLK_DIVISOR_FS_SHIFT	16
187 #define DFLL_I2C_CLK_DIVISOR_HS_SHIFT	0
188 #define DFLL_I2C_CLK_DIVISOR_PREDIV	8
189 #define DFLL_I2C_CLK_DIVISOR_HSMODE_PREDIV	12
190 
191 /*
192  * Other constants
193  */
194 
195 /* MAX_DFLL_VOLTAGES: number of LUT entries in the DFLL IP block */
196 #define MAX_DFLL_VOLTAGES		33
197 
198 /*
199  * REF_CLK_CYC_PER_DVCO_SAMPLE: the number of ref_clk cycles that the hardware
200  *    integrates the DVCO counter over - used for debug rate monitoring and
201  *    droop control
202  */
203 #define REF_CLK_CYC_PER_DVCO_SAMPLE	4
204 
205 /*
206  * REF_CLOCK_RATE: the DFLL reference clock rate currently supported by this
207  * driver, in Hz
208  */
209 #define REF_CLOCK_RATE			51000000UL
210 
211 #define DVCO_RATE_TO_MULT(rate, ref_rate)	((rate) / ((ref_rate) / 2))
212 #define MULT_TO_DVCO_RATE(mult, ref_rate)	((mult) * ((ref_rate) / 2))
213 
214 /**
215  * enum dfll_ctrl_mode - DFLL hardware operating mode
216  * @DFLL_UNINITIALIZED: (uninitialized state - not in hardware bitfield)
217  * @DFLL_DISABLED: DFLL not generating an output clock
218  * @DFLL_OPEN_LOOP: DVCO running, but DFLL not adjusting voltage
219  * @DFLL_CLOSED_LOOP: DVCO running, and DFLL adjusting voltage to match
220  *		      the requested rate
221  *
222  * The integer corresponding to the last two states, minus one, is
223  * written to the DFLL hardware to change operating modes.
224  */
225 enum dfll_ctrl_mode {
226 	DFLL_UNINITIALIZED = 0,
227 	DFLL_DISABLED = 1,
228 	DFLL_OPEN_LOOP = 2,
229 	DFLL_CLOSED_LOOP = 3,
230 };
231 
232 /**
233  * enum dfll_tune_range - voltage range that the driver believes it's in
234  * @DFLL_TUNE_UNINITIALIZED: DFLL tuning not yet programmed
235  * @DFLL_TUNE_LOW: DFLL in the low-voltage range (or open-loop mode)
236  *
237  * Some DFLL tuning parameters may need to change depending on the
238  * DVCO's voltage; these states represent the ranges that the driver
239  * supports. These are software states; these values are never
240  * written into registers.
241  */
242 enum dfll_tune_range {
243 	DFLL_TUNE_UNINITIALIZED = 0,
244 	DFLL_TUNE_LOW = 1,
245 };
246 
247 
248 enum tegra_dfll_pmu_if {
249 	TEGRA_DFLL_PMU_I2C = 0,
250 	TEGRA_DFLL_PMU_PWM = 1,
251 };
252 
253 /**
254  * struct dfll_rate_req - target DFLL rate request data
255  * @rate: target frequency, after the postscaling
256  * @dvco_target_rate: target frequency, after the postscaling
257  * @lut_index: LUT index at which voltage the dvco_target_rate will be reached
258  * @mult_bits: value to program to the MULT bits of the DFLL_FREQ_REQ register
259  * @scale_bits: value to program to the SCALE bits of the DFLL_FREQ_REQ register
260  */
261 struct dfll_rate_req {
262 	unsigned long rate;
263 	unsigned long dvco_target_rate;
264 	int lut_index;
265 	u8 mult_bits;
266 	u8 scale_bits;
267 };
268 
269 struct tegra_dfll {
270 	struct device			*dev;
271 	struct tegra_dfll_soc_data	*soc;
272 
273 	void __iomem			*base;
274 	void __iomem			*i2c_base;
275 	void __iomem			*i2c_controller_base;
276 	void __iomem			*lut_base;
277 
278 	struct regulator		*vdd_reg;
279 	struct clk			*soc_clk;
280 	struct clk			*ref_clk;
281 	struct clk			*i2c_clk;
282 	struct clk			*dfll_clk;
283 	struct reset_control		*dvco_rst;
284 	unsigned long			ref_rate;
285 	unsigned long			i2c_clk_rate;
286 	unsigned long			dvco_rate_min;
287 
288 	enum dfll_ctrl_mode		mode;
289 	enum dfll_tune_range		tune_range;
290 	struct dentry			*debugfs_dir;
291 	struct clk_hw			dfll_clk_hw;
292 	const char			*output_clock_name;
293 	struct dfll_rate_req		last_req;
294 	unsigned long			last_unrounded_rate;
295 
296 	/* Parameters from DT */
297 	u32				droop_ctrl;
298 	u32				sample_rate;
299 	u32				force_mode;
300 	u32				cf;
301 	u32				ci;
302 	u32				cg;
303 	bool				cg_scale;
304 
305 	/* I2C interface parameters */
306 	u32				i2c_fs_rate;
307 	u32				i2c_reg;
308 	u32				i2c_slave_addr;
309 
310 	/* lut array entries are regulator framework selectors or PWM values*/
311 	unsigned			lut[MAX_DFLL_VOLTAGES];
312 	unsigned long			lut_uv[MAX_DFLL_VOLTAGES];
313 	int				lut_size;
314 	u8				lut_bottom, lut_min, lut_max, lut_safe;
315 
316 	/* PWM interface */
317 	enum tegra_dfll_pmu_if		pmu_if;
318 	unsigned long			pwm_rate;
319 	struct pinctrl			*pwm_pin;
320 	struct pinctrl_state		*pwm_enable_state;
321 	struct pinctrl_state		*pwm_disable_state;
322 	u32				reg_init_uV;
323 };
324 
325 #define clk_hw_to_dfll(_hw) container_of(_hw, struct tegra_dfll, dfll_clk_hw)
326 
327 /* mode_name: map numeric DFLL modes to names for friendly console messages */
328 static const char * const mode_name[] = {
329 	[DFLL_UNINITIALIZED] = "uninitialized",
330 	[DFLL_DISABLED] = "disabled",
331 	[DFLL_OPEN_LOOP] = "open_loop",
332 	[DFLL_CLOSED_LOOP] = "closed_loop",
333 };
334 
335 /*
336  * Register accessors
337  */
338 
339 static inline u32 dfll_readl(struct tegra_dfll *td, u32 offs)
340 {
341 	return __raw_readl(td->base + offs);
342 }
343 
344 static inline void dfll_writel(struct tegra_dfll *td, u32 val, u32 offs)
345 {
346 	WARN_ON(offs >= DFLL_I2C_CFG);
347 	__raw_writel(val, td->base + offs);
348 }
349 
350 static inline void dfll_wmb(struct tegra_dfll *td)
351 {
352 	dfll_readl(td, DFLL_CTRL);
353 }
354 
355 /* I2C output control registers - for addresses above DFLL_I2C_CFG */
356 
357 static inline u32 dfll_i2c_readl(struct tegra_dfll *td, u32 offs)
358 {
359 	return __raw_readl(td->i2c_base + offs);
360 }
361 
362 static inline void dfll_i2c_writel(struct tegra_dfll *td, u32 val, u32 offs)
363 {
364 	__raw_writel(val, td->i2c_base + offs);
365 }
366 
367 static inline void dfll_i2c_wmb(struct tegra_dfll *td)
368 {
369 	dfll_i2c_readl(td, DFLL_I2C_CFG);
370 }
371 
372 /**
373  * dfll_is_running - is the DFLL currently generating a clock?
374  * @td: DFLL instance
375  *
376  * If the DFLL is currently generating an output clock signal, return
377  * true; otherwise return false.
378  */
379 static bool dfll_is_running(struct tegra_dfll *td)
380 {
381 	return td->mode >= DFLL_OPEN_LOOP;
382 }
383 
384 /*
385  * Runtime PM suspend/resume callbacks
386  */
387 
388 /**
389  * tegra_dfll_runtime_resume - enable all clocks needed by the DFLL
390  * @dev: DFLL device *
391  *
392  * Enable all clocks needed by the DFLL. Assumes that clk_prepare()
393  * has already been called on all the clocks.
394  *
395  * XXX Should also handle context restore when returning from off.
396  */
397 int tegra_dfll_runtime_resume(struct device *dev)
398 {
399 	struct tegra_dfll *td = dev_get_drvdata(dev);
400 	int ret;
401 
402 	ret = clk_enable(td->ref_clk);
403 	if (ret) {
404 		dev_err(dev, "could not enable ref clock: %d\n", ret);
405 		return ret;
406 	}
407 
408 	ret = clk_enable(td->soc_clk);
409 	if (ret) {
410 		dev_err(dev, "could not enable register clock: %d\n", ret);
411 		clk_disable(td->ref_clk);
412 		return ret;
413 	}
414 
415 	ret = clk_enable(td->i2c_clk);
416 	if (ret) {
417 		dev_err(dev, "could not enable i2c clock: %d\n", ret);
418 		clk_disable(td->soc_clk);
419 		clk_disable(td->ref_clk);
420 		return ret;
421 	}
422 
423 	return 0;
424 }
425 EXPORT_SYMBOL(tegra_dfll_runtime_resume);
426 
427 /**
428  * tegra_dfll_runtime_suspend - disable all clocks needed by the DFLL
429  * @dev: DFLL device *
430  *
431  * Disable all clocks needed by the DFLL. Assumes that other code
432  * will later call clk_unprepare().
433  */
434 int tegra_dfll_runtime_suspend(struct device *dev)
435 {
436 	struct tegra_dfll *td = dev_get_drvdata(dev);
437 
438 	clk_disable(td->ref_clk);
439 	clk_disable(td->soc_clk);
440 	clk_disable(td->i2c_clk);
441 
442 	return 0;
443 }
444 EXPORT_SYMBOL(tegra_dfll_runtime_suspend);
445 
446 /*
447  * DFLL tuning operations (per-voltage-range tuning settings)
448  */
449 
450 /**
451  * dfll_tune_low - tune to DFLL and CPU settings valid for any voltage
452  * @td: DFLL instance
453  *
454  * Tune the DFLL oscillator parameters and the CPU clock shaper for
455  * the low-voltage range. These settings are valid for any voltage,
456  * but may not be optimal.
457  */
458 static void dfll_tune_low(struct tegra_dfll *td)
459 {
460 	td->tune_range = DFLL_TUNE_LOW;
461 
462 	dfll_writel(td, td->soc->cvb->cpu_dfll_data.tune0_low, DFLL_TUNE0);
463 	dfll_writel(td, td->soc->cvb->cpu_dfll_data.tune1, DFLL_TUNE1);
464 	dfll_wmb(td);
465 
466 	if (td->soc->set_clock_trimmers_low)
467 		td->soc->set_clock_trimmers_low();
468 }
469 
470 /*
471  * Output clock scaler helpers
472  */
473 
474 /**
475  * dfll_scale_dvco_rate - calculate scaled rate from the DVCO rate
476  * @scale_bits: clock scaler value (bits in the DFLL_FREQ_REQ_SCALE field)
477  * @dvco_rate: the DVCO rate
478  *
479  * Apply the same scaling formula that the DFLL hardware uses to scale
480  * the DVCO rate.
481  */
482 static unsigned long dfll_scale_dvco_rate(int scale_bits,
483 					  unsigned long dvco_rate)
484 {
485 	return (u64)dvco_rate * (scale_bits + 1) / DFLL_FREQ_REQ_SCALE_MAX;
486 }
487 
488 /*
489  * DFLL mode switching
490  */
491 
492 /**
493  * dfll_set_mode - change the DFLL control mode
494  * @td: DFLL instance
495  * @mode: DFLL control mode (see enum dfll_ctrl_mode)
496  *
497  * Change the DFLL's operating mode between disabled, open-loop mode,
498  * and closed-loop mode, or vice versa.
499  */
500 static void dfll_set_mode(struct tegra_dfll *td,
501 			  enum dfll_ctrl_mode mode)
502 {
503 	td->mode = mode;
504 	dfll_writel(td, mode - 1, DFLL_CTRL);
505 	dfll_wmb(td);
506 }
507 
508 /*
509  * DVCO rate control
510  */
511 
512 static unsigned long get_dvco_rate_below(struct tegra_dfll *td, u8 out_min)
513 {
514 	struct dev_pm_opp *opp;
515 	unsigned long rate, prev_rate;
516 	unsigned long uv, min_uv;
517 
518 	min_uv = td->lut_uv[out_min];
519 	for (rate = 0, prev_rate = 0; ; rate++) {
520 		opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate);
521 		if (IS_ERR(opp))
522 			break;
523 
524 		uv = dev_pm_opp_get_voltage(opp);
525 		dev_pm_opp_put(opp);
526 
527 		if (uv && uv > min_uv)
528 			return prev_rate;
529 
530 		prev_rate = rate;
531 	}
532 
533 	return prev_rate;
534 }
535 
536 /*
537  * DFLL-to-I2C controller interface
538  */
539 
540 /**
541  * dfll_i2c_set_output_enabled - enable/disable I2C PMIC voltage requests
542  * @td: DFLL instance
543  * @enable: whether to enable or disable the I2C voltage requests
544  *
545  * Set the master enable control for I2C control value updates. If disabled,
546  * then I2C control messages are inhibited, regardless of the DFLL mode.
547  */
548 static int dfll_i2c_set_output_enabled(struct tegra_dfll *td, bool enable)
549 {
550 	u32 val;
551 
552 	val = dfll_i2c_readl(td, DFLL_OUTPUT_CFG);
553 
554 	if (enable)
555 		val |= DFLL_OUTPUT_CFG_I2C_ENABLE;
556 	else
557 		val &= ~DFLL_OUTPUT_CFG_I2C_ENABLE;
558 
559 	dfll_i2c_writel(td, val, DFLL_OUTPUT_CFG);
560 	dfll_i2c_wmb(td);
561 
562 	return 0;
563 }
564 
565 
566 /*
567  * DFLL-to-PWM controller interface
568  */
569 
570 /**
571  * dfll_pwm_set_output_enabled - enable/disable PWM voltage requests
572  * @td: DFLL instance
573  * @enable: whether to enable or disable the PWM voltage requests
574  *
575  * Set the master enable control for PWM control value updates. If disabled,
576  * then the PWM signal is not driven. Also configure the PWM output pad
577  * to the appropriate state.
578  */
579 static int dfll_pwm_set_output_enabled(struct tegra_dfll *td, bool enable)
580 {
581 	int ret;
582 	u32 val, div;
583 
584 	if (enable) {
585 		ret = pinctrl_select_state(td->pwm_pin, td->pwm_enable_state);
586 		if (ret < 0) {
587 			dev_err(td->dev, "setting enable state failed\n");
588 			return -EINVAL;
589 		}
590 		val = dfll_readl(td, DFLL_OUTPUT_CFG);
591 		val &= ~DFLL_OUTPUT_CFG_PWM_DIV_MASK;
592 		div = DIV_ROUND_UP(td->ref_rate, td->pwm_rate);
593 		val |= (div << DFLL_OUTPUT_CFG_PWM_DIV_SHIFT)
594 				& DFLL_OUTPUT_CFG_PWM_DIV_MASK;
595 		dfll_writel(td, val, DFLL_OUTPUT_CFG);
596 		dfll_wmb(td);
597 
598 		val |= DFLL_OUTPUT_CFG_PWM_ENABLE;
599 		dfll_writel(td, val, DFLL_OUTPUT_CFG);
600 		dfll_wmb(td);
601 	} else {
602 		ret = pinctrl_select_state(td->pwm_pin, td->pwm_disable_state);
603 		if (ret < 0)
604 			dev_warn(td->dev, "setting disable state failed\n");
605 
606 		val = dfll_readl(td, DFLL_OUTPUT_CFG);
607 		val &= ~DFLL_OUTPUT_CFG_PWM_ENABLE;
608 		dfll_writel(td, val, DFLL_OUTPUT_CFG);
609 		dfll_wmb(td);
610 	}
611 
612 	return 0;
613 }
614 
615 /**
616  * dfll_set_force_output_value - set fixed value for force output
617  * @td: DFLL instance
618  * @out_val: value to force output
619  *
620  * Set the fixed value for force output, DFLL will output this value when
621  * force output is enabled.
622  */
623 static u32 dfll_set_force_output_value(struct tegra_dfll *td, u8 out_val)
624 {
625 	u32 val = dfll_readl(td, DFLL_OUTPUT_FORCE);
626 
627 	val = (val & DFLL_OUTPUT_FORCE_ENABLE) | (out_val & OUT_MASK);
628 	dfll_writel(td, val, DFLL_OUTPUT_FORCE);
629 	dfll_wmb(td);
630 
631 	return dfll_readl(td, DFLL_OUTPUT_FORCE);
632 }
633 
634 /**
635  * dfll_set_force_output_enabled - enable/disable force output
636  * @td: DFLL instance
637  * @enable: whether to enable or disable the force output
638  *
639  * Set the enable control for fouce output with fixed value.
640  */
641 static void dfll_set_force_output_enabled(struct tegra_dfll *td, bool enable)
642 {
643 	u32 val = dfll_readl(td, DFLL_OUTPUT_FORCE);
644 
645 	if (enable)
646 		val |= DFLL_OUTPUT_FORCE_ENABLE;
647 	else
648 		val &= ~DFLL_OUTPUT_FORCE_ENABLE;
649 
650 	dfll_writel(td, val, DFLL_OUTPUT_FORCE);
651 	dfll_wmb(td);
652 }
653 
654 /**
655  * dfll_force_output - force output a fixed value
656  * @td: DFLL instance
657  * @out_sel: value to force output
658  *
659  * Set the fixed value for force output, DFLL will output this value.
660  */
661 static int dfll_force_output(struct tegra_dfll *td, unsigned int out_sel)
662 {
663 	u32 val;
664 
665 	if (out_sel > OUT_MASK)
666 		return -EINVAL;
667 
668 	val = dfll_set_force_output_value(td, out_sel);
669 	if ((td->mode < DFLL_CLOSED_LOOP) &&
670 	    !(val & DFLL_OUTPUT_FORCE_ENABLE)) {
671 		dfll_set_force_output_enabled(td, true);
672 	}
673 
674 	return 0;
675 }
676 
677 /**
678  * dfll_load_lut - load the voltage lookup table
679  * @td: struct tegra_dfll *
680  *
681  * Load the voltage-to-PMIC register value lookup table into the DFLL
682  * IP block memory. Look-up tables can be loaded at any time.
683  */
684 static void dfll_load_i2c_lut(struct tegra_dfll *td)
685 {
686 	int i, lut_index;
687 	u32 val;
688 
689 	for (i = 0; i < MAX_DFLL_VOLTAGES; i++) {
690 		if (i < td->lut_min)
691 			lut_index = td->lut_min;
692 		else if (i > td->lut_max)
693 			lut_index = td->lut_max;
694 		else
695 			lut_index = i;
696 
697 		val = regulator_list_hardware_vsel(td->vdd_reg,
698 						     td->lut[lut_index]);
699 		__raw_writel(val, td->lut_base + i * 4);
700 	}
701 
702 	dfll_i2c_wmb(td);
703 }
704 
705 /**
706  * dfll_init_i2c_if - set up the DFLL's DFLL-I2C interface
707  * @td: DFLL instance
708  *
709  * During DFLL driver initialization, program the DFLL-I2C interface
710  * with the PMU slave address, vdd register offset, and transfer mode.
711  * This data is used by the DFLL to automatically construct I2C
712  * voltage-set commands, which are then passed to the DFLL's internal
713  * I2C controller.
714  */
715 static void dfll_init_i2c_if(struct tegra_dfll *td)
716 {
717 	u32 val;
718 
719 	if (td->i2c_slave_addr > 0x7f) {
720 		val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT;
721 		val |= DFLL_I2C_CFG_SLAVE_ADDR_10;
722 	} else {
723 		val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT;
724 	}
725 	val |= DFLL_I2C_CFG_SIZE_MASK;
726 	val |= DFLL_I2C_CFG_ARB_ENABLE;
727 	dfll_i2c_writel(td, val, DFLL_I2C_CFG);
728 
729 	dfll_i2c_writel(td, td->i2c_reg, DFLL_I2C_VDD_REG_ADDR);
730 
731 	val = DIV_ROUND_UP(td->i2c_clk_rate, td->i2c_fs_rate * 8);
732 	BUG_ON(!val || (val > DFLL_I2C_CLK_DIVISOR_MASK));
733 	val = (val - 1) << DFLL_I2C_CLK_DIVISOR_FS_SHIFT;
734 
735 	/* default hs divisor just in case */
736 	val |= 1 << DFLL_I2C_CLK_DIVISOR_HS_SHIFT;
737 	__raw_writel(val, td->i2c_controller_base + DFLL_I2C_CLK_DIVISOR);
738 	dfll_i2c_wmb(td);
739 }
740 
741 /**
742  * dfll_init_out_if - prepare DFLL-to-PMIC interface
743  * @td: DFLL instance
744  *
745  * During DFLL driver initialization or resume from context loss,
746  * disable the I2C command output to the PMIC, set safe voltage and
747  * output limits, and disable and clear limit interrupts.
748  */
749 static void dfll_init_out_if(struct tegra_dfll *td)
750 {
751 	u32 val;
752 
753 	td->lut_min = td->lut_bottom;
754 	td->lut_max = td->lut_size - 1;
755 	td->lut_safe = td->lut_min + (td->lut_min < td->lut_max ? 1 : 0);
756 
757 	/* clear DFLL_OUTPUT_CFG before setting new value */
758 	dfll_writel(td, 0, DFLL_OUTPUT_CFG);
759 	dfll_wmb(td);
760 
761 	val = (td->lut_safe << DFLL_OUTPUT_CFG_SAFE_SHIFT) |
762 	      (td->lut_max << DFLL_OUTPUT_CFG_MAX_SHIFT) |
763 	      (td->lut_min << DFLL_OUTPUT_CFG_MIN_SHIFT);
764 	dfll_writel(td, val, DFLL_OUTPUT_CFG);
765 	dfll_wmb(td);
766 
767 	dfll_writel(td, 0, DFLL_OUTPUT_FORCE);
768 	dfll_i2c_writel(td, 0, DFLL_INTR_EN);
769 	dfll_i2c_writel(td, DFLL_INTR_MAX_MASK | DFLL_INTR_MIN_MASK,
770 			DFLL_INTR_STS);
771 
772 	if (td->pmu_if == TEGRA_DFLL_PMU_PWM) {
773 		u32 vinit = td->reg_init_uV;
774 		int vstep = td->soc->alignment.step_uv;
775 		unsigned long vmin = td->lut_uv[0];
776 
777 		/* set initial voltage */
778 		if ((vinit >= vmin) && vstep) {
779 			unsigned int vsel;
780 
781 			vsel = DIV_ROUND_UP((vinit - vmin), vstep);
782 			dfll_force_output(td, vsel);
783 		}
784 	} else {
785 		dfll_load_i2c_lut(td);
786 		dfll_init_i2c_if(td);
787 	}
788 }
789 
790 /*
791  * Set/get the DFLL's targeted output clock rate
792  */
793 
794 /**
795  * find_lut_index_for_rate - determine I2C LUT index for given DFLL rate
796  * @td: DFLL instance
797  * @rate: clock rate
798  *
799  * Determines the index of a I2C LUT entry for a voltage that approximately
800  * produces the given DFLL clock rate. This is used when forcing a value
801  * to the integrator during rate changes. Returns -ENOENT if a suitable
802  * LUT index is not found.
803  */
804 static int find_lut_index_for_rate(struct tegra_dfll *td, unsigned long rate)
805 {
806 	struct dev_pm_opp *opp;
807 	unsigned long uv;
808 	int i;
809 
810 	opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate);
811 	if (IS_ERR(opp))
812 		return PTR_ERR(opp);
813 
814 	uv = dev_pm_opp_get_voltage(opp);
815 	dev_pm_opp_put(opp);
816 
817 	for (i = td->lut_bottom; i < td->lut_size; i++) {
818 		if (td->lut_uv[i] >= uv)
819 			return i;
820 	}
821 
822 	return -ENOENT;
823 }
824 
825 /**
826  * dfll_calculate_rate_request - calculate DFLL parameters for a given rate
827  * @td: DFLL instance
828  * @req: DFLL-rate-request structure
829  * @rate: the desired DFLL rate
830  *
831  * Populate the DFLL-rate-request record @req fields with the scale_bits
832  * and mult_bits fields, based on the target input rate. Returns 0 upon
833  * success, or -EINVAL if the requested rate in req->rate is too high
834  * or low for the DFLL to generate.
835  */
836 static int dfll_calculate_rate_request(struct tegra_dfll *td,
837 				       struct dfll_rate_req *req,
838 				       unsigned long rate)
839 {
840 	u32 val;
841 
842 	/*
843 	 * If requested rate is below the minimum DVCO rate, active the scaler.
844 	 * In the future the DVCO minimum voltage should be selected based on
845 	 * chip temperature and the actual minimum rate should be calibrated
846 	 * at runtime.
847 	 */
848 	req->scale_bits = DFLL_FREQ_REQ_SCALE_MAX - 1;
849 	if (rate < td->dvco_rate_min) {
850 		int scale;
851 
852 		scale = DIV_ROUND_CLOSEST(rate / 1000 * DFLL_FREQ_REQ_SCALE_MAX,
853 					  td->dvco_rate_min / 1000);
854 		if (!scale) {
855 			dev_err(td->dev, "%s: Rate %lu is too low\n",
856 				__func__, rate);
857 			return -EINVAL;
858 		}
859 		req->scale_bits = scale - 1;
860 		rate = td->dvco_rate_min;
861 	}
862 
863 	/* Convert requested rate into frequency request and scale settings */
864 	val = DVCO_RATE_TO_MULT(rate, td->ref_rate);
865 	if (val > FREQ_MAX) {
866 		dev_err(td->dev, "%s: Rate %lu is above dfll range\n",
867 			__func__, rate);
868 		return -EINVAL;
869 	}
870 	req->mult_bits = val;
871 	req->dvco_target_rate = MULT_TO_DVCO_RATE(req->mult_bits, td->ref_rate);
872 	req->rate = dfll_scale_dvco_rate(req->scale_bits,
873 					 req->dvco_target_rate);
874 	req->lut_index = find_lut_index_for_rate(td, req->dvco_target_rate);
875 	if (req->lut_index < 0)
876 		return req->lut_index;
877 
878 	return 0;
879 }
880 
881 /**
882  * dfll_set_frequency_request - start the frequency change operation
883  * @td: DFLL instance
884  * @req: rate request structure
885  *
886  * Tell the DFLL to try to change its output frequency to the
887  * frequency represented by @req. DFLL must be in closed-loop mode.
888  */
889 static void dfll_set_frequency_request(struct tegra_dfll *td,
890 				       struct dfll_rate_req *req)
891 {
892 	u32 val = 0;
893 	int force_val;
894 	int coef = 128; /* FIXME: td->cg_scale? */;
895 
896 	force_val = (req->lut_index - td->lut_safe) * coef / td->cg;
897 	force_val = clamp(force_val, FORCE_MIN, FORCE_MAX);
898 
899 	val |= req->mult_bits << DFLL_FREQ_REQ_MULT_SHIFT;
900 	val |= req->scale_bits << DFLL_FREQ_REQ_SCALE_SHIFT;
901 	val |= ((u32)force_val << DFLL_FREQ_REQ_FORCE_SHIFT) &
902 		DFLL_FREQ_REQ_FORCE_MASK;
903 	val |= DFLL_FREQ_REQ_FREQ_VALID | DFLL_FREQ_REQ_FORCE_ENABLE;
904 
905 	dfll_writel(td, val, DFLL_FREQ_REQ);
906 	dfll_wmb(td);
907 }
908 
909 /**
910  * tegra_dfll_request_rate - set the next rate for the DFLL to tune to
911  * @td: DFLL instance
912  * @rate: clock rate to target
913  *
914  * Convert the requested clock rate @rate into the DFLL control logic
915  * settings. In closed-loop mode, update new settings immediately to
916  * adjust DFLL output rate accordingly. Otherwise, just save them
917  * until the next switch to closed loop. Returns 0 upon success,
918  * -EPERM if the DFLL driver has not yet been initialized, or -EINVAL
919  * if @rate is outside the DFLL's tunable range.
920  */
921 static int dfll_request_rate(struct tegra_dfll *td, unsigned long rate)
922 {
923 	int ret;
924 	struct dfll_rate_req req;
925 
926 	if (td->mode == DFLL_UNINITIALIZED) {
927 		dev_err(td->dev, "%s: Cannot set DFLL rate in %s mode\n",
928 			__func__, mode_name[td->mode]);
929 		return -EPERM;
930 	}
931 
932 	ret = dfll_calculate_rate_request(td, &req, rate);
933 	if (ret)
934 		return ret;
935 
936 	td->last_unrounded_rate = rate;
937 	td->last_req = req;
938 
939 	if (td->mode == DFLL_CLOSED_LOOP)
940 		dfll_set_frequency_request(td, &td->last_req);
941 
942 	return 0;
943 }
944 
945 /*
946  * DFLL enable/disable & open-loop <-> closed-loop transitions
947  */
948 
949 /**
950  * dfll_disable - switch from open-loop mode to disabled mode
951  * @td: DFLL instance
952  *
953  * Switch from OPEN_LOOP state to DISABLED state. Returns 0 upon success
954  * or -EPERM if the DFLL is not currently in open-loop mode.
955  */
956 static int dfll_disable(struct tegra_dfll *td)
957 {
958 	if (td->mode != DFLL_OPEN_LOOP) {
959 		dev_err(td->dev, "cannot disable DFLL in %s mode\n",
960 			mode_name[td->mode]);
961 		return -EINVAL;
962 	}
963 
964 	dfll_set_mode(td, DFLL_DISABLED);
965 	pm_runtime_put_sync(td->dev);
966 
967 	return 0;
968 }
969 
970 /**
971  * dfll_enable - switch a disabled DFLL to open-loop mode
972  * @td: DFLL instance
973  *
974  * Switch from DISABLED state to OPEN_LOOP state. Returns 0 upon success
975  * or -EPERM if the DFLL is not currently disabled.
976  */
977 static int dfll_enable(struct tegra_dfll *td)
978 {
979 	if (td->mode != DFLL_DISABLED) {
980 		dev_err(td->dev, "cannot enable DFLL in %s mode\n",
981 			mode_name[td->mode]);
982 		return -EPERM;
983 	}
984 
985 	pm_runtime_get_sync(td->dev);
986 	dfll_set_mode(td, DFLL_OPEN_LOOP);
987 
988 	return 0;
989 }
990 
991 /**
992  * dfll_set_open_loop_config - prepare to switch to open-loop mode
993  * @td: DFLL instance
994  *
995  * Prepare to switch the DFLL to open-loop mode. This switches the
996  * DFLL to the low-voltage tuning range, ensures that I2C output
997  * forcing is disabled, and disables the output clock rate scaler.
998  * The DFLL's low-voltage tuning range parameters must be
999  * characterized to keep the downstream device stable at any DVCO
1000  * input voltage. No return value.
1001  */
1002 static void dfll_set_open_loop_config(struct tegra_dfll *td)
1003 {
1004 	u32 val;
1005 
1006 	/* always tune low (safe) in open loop */
1007 	if (td->tune_range != DFLL_TUNE_LOW)
1008 		dfll_tune_low(td);
1009 
1010 	val = dfll_readl(td, DFLL_FREQ_REQ);
1011 	val |= DFLL_FREQ_REQ_SCALE_MASK;
1012 	val &= ~DFLL_FREQ_REQ_FORCE_ENABLE;
1013 	dfll_writel(td, val, DFLL_FREQ_REQ);
1014 	dfll_wmb(td);
1015 }
1016 
1017 /**
1018  * tegra_dfll_lock - switch from open-loop to closed-loop mode
1019  * @td: DFLL instance
1020  *
1021  * Switch from OPEN_LOOP state to CLOSED_LOOP state. Returns 0 upon success,
1022  * -EINVAL if the DFLL's target rate hasn't been set yet, or -EPERM if the
1023  * DFLL is not currently in open-loop mode.
1024  */
1025 static int dfll_lock(struct tegra_dfll *td)
1026 {
1027 	struct dfll_rate_req *req = &td->last_req;
1028 
1029 	switch (td->mode) {
1030 	case DFLL_CLOSED_LOOP:
1031 		return 0;
1032 
1033 	case DFLL_OPEN_LOOP:
1034 		if (req->rate == 0) {
1035 			dev_err(td->dev, "%s: Cannot lock DFLL at rate 0\n",
1036 				__func__);
1037 			return -EINVAL;
1038 		}
1039 
1040 		if (td->pmu_if == TEGRA_DFLL_PMU_PWM)
1041 			dfll_pwm_set_output_enabled(td, true);
1042 		else
1043 			dfll_i2c_set_output_enabled(td, true);
1044 
1045 		dfll_set_mode(td, DFLL_CLOSED_LOOP);
1046 		dfll_set_frequency_request(td, req);
1047 		dfll_set_force_output_enabled(td, false);
1048 		return 0;
1049 
1050 	default:
1051 		BUG_ON(td->mode > DFLL_CLOSED_LOOP);
1052 		dev_err(td->dev, "%s: Cannot lock DFLL in %s mode\n",
1053 			__func__, mode_name[td->mode]);
1054 		return -EPERM;
1055 	}
1056 }
1057 
1058 /**
1059  * tegra_dfll_unlock - switch from closed-loop to open-loop mode
1060  * @td: DFLL instance
1061  *
1062  * Switch from CLOSED_LOOP state to OPEN_LOOP state. Returns 0 upon success,
1063  * or -EPERM if the DFLL is not currently in open-loop mode.
1064  */
1065 static int dfll_unlock(struct tegra_dfll *td)
1066 {
1067 	switch (td->mode) {
1068 	case DFLL_CLOSED_LOOP:
1069 		dfll_set_open_loop_config(td);
1070 		dfll_set_mode(td, DFLL_OPEN_LOOP);
1071 		if (td->pmu_if == TEGRA_DFLL_PMU_PWM)
1072 			dfll_pwm_set_output_enabled(td, false);
1073 		else
1074 			dfll_i2c_set_output_enabled(td, false);
1075 		return 0;
1076 
1077 	case DFLL_OPEN_LOOP:
1078 		return 0;
1079 
1080 	default:
1081 		BUG_ON(td->mode > DFLL_CLOSED_LOOP);
1082 		dev_err(td->dev, "%s: Cannot unlock DFLL in %s mode\n",
1083 			__func__, mode_name[td->mode]);
1084 		return -EPERM;
1085 	}
1086 }
1087 
1088 /*
1089  * Clock framework integration
1090  *
1091  * When the DFLL is being controlled by the CCF, always enter closed loop
1092  * mode when the clk is enabled. This requires that a DFLL rate request
1093  * has been set beforehand, which implies that a clk_set_rate() call is
1094  * always required before a clk_enable().
1095  */
1096 
1097 static int dfll_clk_is_enabled(struct clk_hw *hw)
1098 {
1099 	struct tegra_dfll *td = clk_hw_to_dfll(hw);
1100 
1101 	return dfll_is_running(td);
1102 }
1103 
1104 static int dfll_clk_enable(struct clk_hw *hw)
1105 {
1106 	struct tegra_dfll *td = clk_hw_to_dfll(hw);
1107 	int ret;
1108 
1109 	ret = dfll_enable(td);
1110 	if (ret)
1111 		return ret;
1112 
1113 	ret = dfll_lock(td);
1114 	if (ret)
1115 		dfll_disable(td);
1116 
1117 	return ret;
1118 }
1119 
1120 static void dfll_clk_disable(struct clk_hw *hw)
1121 {
1122 	struct tegra_dfll *td = clk_hw_to_dfll(hw);
1123 	int ret;
1124 
1125 	ret = dfll_unlock(td);
1126 	if (!ret)
1127 		dfll_disable(td);
1128 }
1129 
1130 static unsigned long dfll_clk_recalc_rate(struct clk_hw *hw,
1131 					  unsigned long parent_rate)
1132 {
1133 	struct tegra_dfll *td = clk_hw_to_dfll(hw);
1134 
1135 	return td->last_unrounded_rate;
1136 }
1137 
1138 /* Must use determine_rate since it allows for rates exceeding 2^31-1 */
1139 static int dfll_clk_determine_rate(struct clk_hw *hw,
1140 				   struct clk_rate_request *clk_req)
1141 {
1142 	struct tegra_dfll *td = clk_hw_to_dfll(hw);
1143 	struct dfll_rate_req req;
1144 	int ret;
1145 
1146 	ret = dfll_calculate_rate_request(td, &req, clk_req->rate);
1147 	if (ret)
1148 		return ret;
1149 
1150 	/*
1151 	 * Don't set the rounded rate, since it doesn't really matter as
1152 	 * the output rate will be voltage controlled anyway, and cpufreq
1153 	 * freaks out if any rounding happens.
1154 	 */
1155 
1156 	return 0;
1157 }
1158 
1159 static int dfll_clk_set_rate(struct clk_hw *hw, unsigned long rate,
1160 			     unsigned long parent_rate)
1161 {
1162 	struct tegra_dfll *td = clk_hw_to_dfll(hw);
1163 
1164 	return dfll_request_rate(td, rate);
1165 }
1166 
1167 static const struct clk_ops dfll_clk_ops = {
1168 	.is_enabled	= dfll_clk_is_enabled,
1169 	.enable		= dfll_clk_enable,
1170 	.disable	= dfll_clk_disable,
1171 	.recalc_rate	= dfll_clk_recalc_rate,
1172 	.determine_rate	= dfll_clk_determine_rate,
1173 	.set_rate	= dfll_clk_set_rate,
1174 };
1175 
1176 static struct clk_init_data dfll_clk_init_data = {
1177 	.ops		= &dfll_clk_ops,
1178 	.num_parents	= 0,
1179 };
1180 
1181 /**
1182  * dfll_register_clk - register the DFLL output clock with the clock framework
1183  * @td: DFLL instance
1184  *
1185  * Register the DFLL's output clock with the Linux clock framework and register
1186  * the DFLL driver as an OF clock provider. Returns 0 upon success or -EINVAL
1187  * or -ENOMEM upon failure.
1188  */
1189 static int dfll_register_clk(struct tegra_dfll *td)
1190 {
1191 	int ret;
1192 
1193 	dfll_clk_init_data.name = td->output_clock_name;
1194 	td->dfll_clk_hw.init = &dfll_clk_init_data;
1195 
1196 	td->dfll_clk = clk_register(td->dev, &td->dfll_clk_hw);
1197 	if (IS_ERR(td->dfll_clk)) {
1198 		dev_err(td->dev, "DFLL clock registration error\n");
1199 		return -EINVAL;
1200 	}
1201 
1202 	ret = of_clk_add_provider(td->dev->of_node, of_clk_src_simple_get,
1203 				  td->dfll_clk);
1204 	if (ret) {
1205 		dev_err(td->dev, "of_clk_add_provider() failed\n");
1206 
1207 		clk_unregister(td->dfll_clk);
1208 		return ret;
1209 	}
1210 
1211 	return 0;
1212 }
1213 
1214 /**
1215  * dfll_unregister_clk - unregister the DFLL output clock
1216  * @td: DFLL instance
1217  *
1218  * Unregister the DFLL's output clock from the Linux clock framework
1219  * and from clkdev. No return value.
1220  */
1221 static void dfll_unregister_clk(struct tegra_dfll *td)
1222 {
1223 	of_clk_del_provider(td->dev->of_node);
1224 	clk_unregister(td->dfll_clk);
1225 	td->dfll_clk = NULL;
1226 }
1227 
1228 /*
1229  * Debugfs interface
1230  */
1231 
1232 #ifdef CONFIG_DEBUG_FS
1233 /*
1234  * Monitor control
1235  */
1236 
1237 /**
1238  * dfll_calc_monitored_rate - convert DFLL_MONITOR_DATA_VAL rate into real freq
1239  * @monitor_data: value read from the DFLL_MONITOR_DATA_VAL bitfield
1240  * @ref_rate: DFLL reference clock rate
1241  *
1242  * Convert @monitor_data from DFLL_MONITOR_DATA_VAL units into cycles
1243  * per second. Returns the converted value.
1244  */
1245 static u64 dfll_calc_monitored_rate(u32 monitor_data,
1246 				    unsigned long ref_rate)
1247 {
1248 	return monitor_data * (ref_rate / REF_CLK_CYC_PER_DVCO_SAMPLE);
1249 }
1250 
1251 /**
1252  * dfll_read_monitor_rate - return the DFLL's output rate from internal monitor
1253  * @td: DFLL instance
1254  *
1255  * If the DFLL is enabled, return the last rate reported by the DFLL's
1256  * internal monitoring hardware. This works in both open-loop and
1257  * closed-loop mode, and takes the output scaler setting into account.
1258  * Assumes that the monitor was programmed to monitor frequency before
1259  * the sample period started. If the driver believes that the DFLL is
1260  * currently uninitialized or disabled, it will return 0, since
1261  * otherwise the DFLL monitor data register will return the last
1262  * measured rate from when the DFLL was active.
1263  */
1264 static u64 dfll_read_monitor_rate(struct tegra_dfll *td)
1265 {
1266 	u32 v, s;
1267 	u64 pre_scaler_rate, post_scaler_rate;
1268 
1269 	if (!dfll_is_running(td))
1270 		return 0;
1271 
1272 	v = dfll_readl(td, DFLL_MONITOR_DATA);
1273 	v = (v & DFLL_MONITOR_DATA_VAL_MASK) >> DFLL_MONITOR_DATA_VAL_SHIFT;
1274 	pre_scaler_rate = dfll_calc_monitored_rate(v, td->ref_rate);
1275 
1276 	s = dfll_readl(td, DFLL_FREQ_REQ);
1277 	s = (s & DFLL_FREQ_REQ_SCALE_MASK) >> DFLL_FREQ_REQ_SCALE_SHIFT;
1278 	post_scaler_rate = dfll_scale_dvco_rate(s, pre_scaler_rate);
1279 
1280 	return post_scaler_rate;
1281 }
1282 
1283 static int attr_enable_get(void *data, u64 *val)
1284 {
1285 	struct tegra_dfll *td = data;
1286 
1287 	*val = dfll_is_running(td);
1288 
1289 	return 0;
1290 }
1291 static int attr_enable_set(void *data, u64 val)
1292 {
1293 	struct tegra_dfll *td = data;
1294 
1295 	return val ? dfll_enable(td) : dfll_disable(td);
1296 }
1297 DEFINE_SIMPLE_ATTRIBUTE(enable_fops, attr_enable_get, attr_enable_set,
1298 			"%llu\n");
1299 
1300 static int attr_lock_get(void *data, u64 *val)
1301 {
1302 	struct tegra_dfll *td = data;
1303 
1304 	*val = (td->mode == DFLL_CLOSED_LOOP);
1305 
1306 	return 0;
1307 }
1308 static int attr_lock_set(void *data, u64 val)
1309 {
1310 	struct tegra_dfll *td = data;
1311 
1312 	return val ? dfll_lock(td) :  dfll_unlock(td);
1313 }
1314 DEFINE_SIMPLE_ATTRIBUTE(lock_fops, attr_lock_get, attr_lock_set,
1315 			"%llu\n");
1316 
1317 static int attr_rate_get(void *data, u64 *val)
1318 {
1319 	struct tegra_dfll *td = data;
1320 
1321 	*val = dfll_read_monitor_rate(td);
1322 
1323 	return 0;
1324 }
1325 
1326 static int attr_rate_set(void *data, u64 val)
1327 {
1328 	struct tegra_dfll *td = data;
1329 
1330 	return dfll_request_rate(td, val);
1331 }
1332 DEFINE_SIMPLE_ATTRIBUTE(rate_fops, attr_rate_get, attr_rate_set, "%llu\n");
1333 
1334 static int attr_registers_show(struct seq_file *s, void *data)
1335 {
1336 	u32 val, offs;
1337 	struct tegra_dfll *td = s->private;
1338 
1339 	seq_puts(s, "CONTROL REGISTERS:\n");
1340 	for (offs = 0; offs <= DFLL_MONITOR_DATA; offs += 4) {
1341 		if (offs == DFLL_OUTPUT_CFG)
1342 			val = dfll_i2c_readl(td, offs);
1343 		else
1344 			val = dfll_readl(td, offs);
1345 		seq_printf(s, "[0x%02x] = 0x%08x\n", offs, val);
1346 	}
1347 
1348 	seq_puts(s, "\nI2C and INTR REGISTERS:\n");
1349 	for (offs = DFLL_I2C_CFG; offs <= DFLL_I2C_STS; offs += 4)
1350 		seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1351 			   dfll_i2c_readl(td, offs));
1352 	for (offs = DFLL_INTR_STS; offs <= DFLL_INTR_EN; offs += 4)
1353 		seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1354 			   dfll_i2c_readl(td, offs));
1355 
1356 	if (td->pmu_if == TEGRA_DFLL_PMU_I2C) {
1357 		seq_puts(s, "\nINTEGRATED I2C CONTROLLER REGISTERS:\n");
1358 		offs = DFLL_I2C_CLK_DIVISOR;
1359 		seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1360 			   __raw_readl(td->i2c_controller_base + offs));
1361 
1362 		seq_puts(s, "\nLUT:\n");
1363 		for (offs = 0; offs <  4 * MAX_DFLL_VOLTAGES; offs += 4)
1364 			seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1365 				   __raw_readl(td->lut_base + offs));
1366 	}
1367 
1368 	return 0;
1369 }
1370 
1371 DEFINE_SHOW_ATTRIBUTE(attr_registers);
1372 
1373 static void dfll_debug_init(struct tegra_dfll *td)
1374 {
1375 	struct dentry *root;
1376 
1377 	if (!td || (td->mode == DFLL_UNINITIALIZED))
1378 		return;
1379 
1380 	root = debugfs_create_dir("tegra_dfll_fcpu", NULL);
1381 	td->debugfs_dir = root;
1382 
1383 	debugfs_create_file("enable", S_IRUGO | S_IWUSR, root, td, &enable_fops);
1384 	debugfs_create_file("lock", S_IRUGO, root, td, &lock_fops);
1385 	debugfs_create_file("rate", S_IRUGO, root, td, &rate_fops);
1386 	debugfs_create_file("registers", S_IRUGO, root, td, &attr_registers_fops);
1387 }
1388 
1389 #else
1390 static void inline dfll_debug_init(struct tegra_dfll *td) { }
1391 #endif /* CONFIG_DEBUG_FS */
1392 
1393 /*
1394  * DFLL initialization
1395  */
1396 
1397 /**
1398  * dfll_set_default_params - program non-output related DFLL parameters
1399  * @td: DFLL instance
1400  *
1401  * During DFLL driver initialization or resume from context loss,
1402  * program parameters for the closed loop integrator, DVCO tuning,
1403  * voltage droop control and monitor control.
1404  */
1405 static void dfll_set_default_params(struct tegra_dfll *td)
1406 {
1407 	u32 val;
1408 
1409 	val = DIV_ROUND_UP(td->ref_rate, td->sample_rate * 32);
1410 	BUG_ON(val > DFLL_CONFIG_DIV_MASK);
1411 	dfll_writel(td, val, DFLL_CONFIG);
1412 
1413 	val = (td->force_mode << DFLL_PARAMS_FORCE_MODE_SHIFT) |
1414 		(td->cf << DFLL_PARAMS_CF_PARAM_SHIFT) |
1415 		(td->ci << DFLL_PARAMS_CI_PARAM_SHIFT) |
1416 		(td->cg << DFLL_PARAMS_CG_PARAM_SHIFT) |
1417 		(td->cg_scale ? DFLL_PARAMS_CG_SCALE : 0);
1418 	dfll_writel(td, val, DFLL_PARAMS);
1419 
1420 	dfll_tune_low(td);
1421 	dfll_writel(td, td->droop_ctrl, DFLL_DROOP_CTRL);
1422 	dfll_writel(td, DFLL_MONITOR_CTRL_FREQ, DFLL_MONITOR_CTRL);
1423 }
1424 
1425 /**
1426  * dfll_init_clks - clk_get() the DFLL source clocks
1427  * @td: DFLL instance
1428  *
1429  * Call clk_get() on the DFLL source clocks and save the pointers for later
1430  * use. Returns 0 upon success or error (see devm_clk_get) if one or more
1431  * of the clocks couldn't be looked up.
1432  */
1433 static int dfll_init_clks(struct tegra_dfll *td)
1434 {
1435 	td->ref_clk = devm_clk_get(td->dev, "ref");
1436 	if (IS_ERR(td->ref_clk)) {
1437 		dev_err(td->dev, "missing ref clock\n");
1438 		return PTR_ERR(td->ref_clk);
1439 	}
1440 
1441 	td->soc_clk = devm_clk_get(td->dev, "soc");
1442 	if (IS_ERR(td->soc_clk)) {
1443 		dev_err(td->dev, "missing soc clock\n");
1444 		return PTR_ERR(td->soc_clk);
1445 	}
1446 
1447 	td->i2c_clk = devm_clk_get(td->dev, "i2c");
1448 	if (IS_ERR(td->i2c_clk)) {
1449 		dev_err(td->dev, "missing i2c clock\n");
1450 		return PTR_ERR(td->i2c_clk);
1451 	}
1452 	td->i2c_clk_rate = clk_get_rate(td->i2c_clk);
1453 
1454 	return 0;
1455 }
1456 
1457 /**
1458  * dfll_init - Prepare the DFLL IP block for use
1459  * @td: DFLL instance
1460  *
1461  * Do everything necessary to prepare the DFLL IP block for use. The
1462  * DFLL will be left in DISABLED state. Called by dfll_probe().
1463  * Returns 0 upon success, or passes along the error from whatever
1464  * function returned it.
1465  */
1466 static int dfll_init(struct tegra_dfll *td)
1467 {
1468 	int ret;
1469 
1470 	td->ref_rate = clk_get_rate(td->ref_clk);
1471 	if (td->ref_rate != REF_CLOCK_RATE) {
1472 		dev_err(td->dev, "unexpected ref clk rate %lu, expecting %lu",
1473 			td->ref_rate, REF_CLOCK_RATE);
1474 		return -EINVAL;
1475 	}
1476 
1477 	reset_control_deassert(td->dvco_rst);
1478 
1479 	ret = clk_prepare(td->ref_clk);
1480 	if (ret) {
1481 		dev_err(td->dev, "failed to prepare ref_clk\n");
1482 		return ret;
1483 	}
1484 
1485 	ret = clk_prepare(td->soc_clk);
1486 	if (ret) {
1487 		dev_err(td->dev, "failed to prepare soc_clk\n");
1488 		goto di_err1;
1489 	}
1490 
1491 	ret = clk_prepare(td->i2c_clk);
1492 	if (ret) {
1493 		dev_err(td->dev, "failed to prepare i2c_clk\n");
1494 		goto di_err2;
1495 	}
1496 
1497 	td->last_unrounded_rate = 0;
1498 
1499 	pm_runtime_enable(td->dev);
1500 	pm_runtime_get_sync(td->dev);
1501 
1502 	dfll_set_mode(td, DFLL_DISABLED);
1503 	dfll_set_default_params(td);
1504 
1505 	if (td->soc->init_clock_trimmers)
1506 		td->soc->init_clock_trimmers();
1507 
1508 	dfll_set_open_loop_config(td);
1509 
1510 	dfll_init_out_if(td);
1511 
1512 	pm_runtime_put_sync(td->dev);
1513 
1514 	return 0;
1515 
1516 di_err2:
1517 	clk_unprepare(td->soc_clk);
1518 di_err1:
1519 	clk_unprepare(td->ref_clk);
1520 
1521 	reset_control_assert(td->dvco_rst);
1522 
1523 	return ret;
1524 }
1525 
1526 /*
1527  * DT data fetch
1528  */
1529 
1530 /*
1531  * Find a PMIC voltage register-to-voltage mapping for the given voltage.
1532  * An exact voltage match is required.
1533  */
1534 static int find_vdd_map_entry_exact(struct tegra_dfll *td, int uV)
1535 {
1536 	int i, n_voltages, reg_uV;
1537 
1538 	if (WARN_ON(td->pmu_if == TEGRA_DFLL_PMU_PWM))
1539 		return -EINVAL;
1540 
1541 	n_voltages = regulator_count_voltages(td->vdd_reg);
1542 	for (i = 0; i < n_voltages; i++) {
1543 		reg_uV = regulator_list_voltage(td->vdd_reg, i);
1544 		if (reg_uV < 0)
1545 			break;
1546 
1547 		if (uV == reg_uV)
1548 			return i;
1549 	}
1550 
1551 	dev_err(td->dev, "no voltage map entry for %d uV\n", uV);
1552 	return -EINVAL;
1553 }
1554 
1555 /*
1556  * Find a PMIC voltage register-to-voltage mapping for the given voltage,
1557  * rounding up to the closest supported voltage.
1558  * */
1559 static int find_vdd_map_entry_min(struct tegra_dfll *td, int uV)
1560 {
1561 	int i, n_voltages, reg_uV;
1562 
1563 	if (WARN_ON(td->pmu_if == TEGRA_DFLL_PMU_PWM))
1564 		return -EINVAL;
1565 
1566 	n_voltages = regulator_count_voltages(td->vdd_reg);
1567 	for (i = 0; i < n_voltages; i++) {
1568 		reg_uV = regulator_list_voltage(td->vdd_reg, i);
1569 		if (reg_uV < 0)
1570 			break;
1571 
1572 		if (uV <= reg_uV)
1573 			return i;
1574 	}
1575 
1576 	dev_err(td->dev, "no voltage map entry rounding to %d uV\n", uV);
1577 	return -EINVAL;
1578 }
1579 
1580 /*
1581  * dfll_build_pwm_lut - build the PWM regulator lookup table
1582  * @td: DFLL instance
1583  * @v_max: Vmax from OPP table
1584  *
1585  * Look-up table in h/w is ignored when PWM is used as DFLL interface to PMIC.
1586  * In this case closed loop output is controlling duty cycle directly. The s/w
1587  * look-up that maps PWM duty cycle to voltage is still built by this function.
1588  */
1589 static int dfll_build_pwm_lut(struct tegra_dfll *td, unsigned long v_max)
1590 {
1591 	int i;
1592 	unsigned long rate, reg_volt;
1593 	u8 lut_bottom = MAX_DFLL_VOLTAGES;
1594 	int v_min = td->soc->cvb->min_millivolts * 1000;
1595 
1596 	for (i = 0; i < MAX_DFLL_VOLTAGES; i++) {
1597 		reg_volt = td->lut_uv[i];
1598 
1599 		/* since opp voltage is exact mv */
1600 		reg_volt = (reg_volt / 1000) * 1000;
1601 		if (reg_volt > v_max)
1602 			break;
1603 
1604 		td->lut[i] = i;
1605 		if ((lut_bottom == MAX_DFLL_VOLTAGES) && (reg_volt >= v_min))
1606 			lut_bottom = i;
1607 	}
1608 
1609 	/* determine voltage boundaries */
1610 	td->lut_size = i;
1611 	if ((lut_bottom == MAX_DFLL_VOLTAGES) ||
1612 	    (lut_bottom + 1 >= td->lut_size)) {
1613 		dev_err(td->dev, "no voltage above DFLL minimum %d mV\n",
1614 			td->soc->cvb->min_millivolts);
1615 		return -EINVAL;
1616 	}
1617 	td->lut_bottom = lut_bottom;
1618 
1619 	/* determine rate boundaries */
1620 	rate = get_dvco_rate_below(td, td->lut_bottom);
1621 	if (!rate) {
1622 		dev_err(td->dev, "no opp below DFLL minimum voltage %d mV\n",
1623 			td->soc->cvb->min_millivolts);
1624 		return -EINVAL;
1625 	}
1626 	td->dvco_rate_min = rate;
1627 
1628 	return 0;
1629 }
1630 
1631 /**
1632  * dfll_build_i2c_lut - build the I2C voltage register lookup table
1633  * @td: DFLL instance
1634  * @v_max: Vmax from OPP table
1635  *
1636  * The DFLL hardware has 33 bytes of look-up table RAM that must be filled with
1637  * PMIC voltage register values that span the entire DFLL operating range.
1638  * This function builds the look-up table based on the OPP table provided by
1639  * the soc-specific platform driver (td->soc->opp_dev) and the PMIC
1640  * register-to-voltage mapping queried from the regulator framework.
1641  *
1642  * On success, fills in td->lut and returns 0, or -err on failure.
1643  */
1644 static int dfll_build_i2c_lut(struct tegra_dfll *td, unsigned long v_max)
1645 {
1646 	unsigned long rate, v, v_opp;
1647 	int ret = -EINVAL;
1648 	int j, selector, lut;
1649 
1650 	v = td->soc->cvb->min_millivolts * 1000;
1651 	lut = find_vdd_map_entry_exact(td, v);
1652 	if (lut < 0)
1653 		goto out;
1654 	td->lut[0] = lut;
1655 	td->lut_bottom = 0;
1656 
1657 	for (j = 1, rate = 0; ; rate++) {
1658 		struct dev_pm_opp *opp;
1659 
1660 		opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate);
1661 		if (IS_ERR(opp))
1662 			break;
1663 		v_opp = dev_pm_opp_get_voltage(opp);
1664 
1665 		if (v_opp <= td->soc->cvb->min_millivolts * 1000)
1666 			td->dvco_rate_min = dev_pm_opp_get_freq(opp);
1667 
1668 		dev_pm_opp_put(opp);
1669 
1670 		for (;;) {
1671 			v += max(1UL, (v_max - v) / (MAX_DFLL_VOLTAGES - j));
1672 			if (v >= v_opp)
1673 				break;
1674 
1675 			selector = find_vdd_map_entry_min(td, v);
1676 			if (selector < 0)
1677 				goto out;
1678 			if (selector != td->lut[j - 1])
1679 				td->lut[j++] = selector;
1680 		}
1681 
1682 		v = (j == MAX_DFLL_VOLTAGES - 1) ? v_max : v_opp;
1683 		selector = find_vdd_map_entry_exact(td, v);
1684 		if (selector < 0)
1685 			goto out;
1686 		if (selector != td->lut[j - 1])
1687 			td->lut[j++] = selector;
1688 
1689 		if (v >= v_max)
1690 			break;
1691 	}
1692 	td->lut_size = j;
1693 
1694 	if (!td->dvco_rate_min)
1695 		dev_err(td->dev, "no opp above DFLL minimum voltage %d mV\n",
1696 			td->soc->cvb->min_millivolts);
1697 	else {
1698 		ret = 0;
1699 		for (j = 0; j < td->lut_size; j++)
1700 			td->lut_uv[j] =
1701 				regulator_list_voltage(td->vdd_reg,
1702 						       td->lut[j]);
1703 	}
1704 
1705 out:
1706 	return ret;
1707 }
1708 
1709 static int dfll_build_lut(struct tegra_dfll *td)
1710 {
1711 	unsigned long rate, v_max;
1712 	struct dev_pm_opp *opp;
1713 
1714 	rate = ULONG_MAX;
1715 	opp = dev_pm_opp_find_freq_floor(td->soc->dev, &rate);
1716 	if (IS_ERR(opp)) {
1717 		dev_err(td->dev, "couldn't get vmax opp, empty opp table?\n");
1718 		return -EINVAL;
1719 	}
1720 	v_max = dev_pm_opp_get_voltage(opp);
1721 	dev_pm_opp_put(opp);
1722 
1723 	if (td->pmu_if == TEGRA_DFLL_PMU_PWM)
1724 		return dfll_build_pwm_lut(td, v_max);
1725 	else
1726 		return dfll_build_i2c_lut(td, v_max);
1727 }
1728 
1729 /**
1730  * read_dt_param - helper function for reading required parameters from the DT
1731  * @td: DFLL instance
1732  * @param: DT property name
1733  * @dest: output pointer for the value read
1734  *
1735  * Read a required numeric parameter from the DFLL device node, or complain
1736  * if the property doesn't exist. Returns a boolean indicating success for
1737  * easy chaining of multiple calls to this function.
1738  */
1739 static bool read_dt_param(struct tegra_dfll *td, const char *param, u32 *dest)
1740 {
1741 	int err = of_property_read_u32(td->dev->of_node, param, dest);
1742 
1743 	if (err < 0) {
1744 		dev_err(td->dev, "failed to read DT parameter %s: %d\n",
1745 			param, err);
1746 		return false;
1747 	}
1748 
1749 	return true;
1750 }
1751 
1752 /**
1753  * dfll_fetch_i2c_params - query PMIC I2C params from DT & regulator subsystem
1754  * @td: DFLL instance
1755  *
1756  * Read all the parameters required for operation in I2C mode. The parameters
1757  * can originate from the device tree or the regulator subsystem.
1758  * Returns 0 on success or -err on failure.
1759  */
1760 static int dfll_fetch_i2c_params(struct tegra_dfll *td)
1761 {
1762 	struct regmap *regmap;
1763 	struct device *i2c_dev;
1764 	struct i2c_client *i2c_client;
1765 	int vsel_reg, vsel_mask;
1766 	int ret;
1767 
1768 	if (!read_dt_param(td, "nvidia,i2c-fs-rate", &td->i2c_fs_rate))
1769 		return -EINVAL;
1770 
1771 	regmap = regulator_get_regmap(td->vdd_reg);
1772 	i2c_dev = regmap_get_device(regmap);
1773 	i2c_client = to_i2c_client(i2c_dev);
1774 
1775 	td->i2c_slave_addr = i2c_client->addr;
1776 
1777 	ret = regulator_get_hardware_vsel_register(td->vdd_reg,
1778 						   &vsel_reg,
1779 						   &vsel_mask);
1780 	if (ret < 0) {
1781 		dev_err(td->dev,
1782 			"regulator unsuitable for DFLL I2C operation\n");
1783 		return -EINVAL;
1784 	}
1785 	td->i2c_reg = vsel_reg;
1786 
1787 	return 0;
1788 }
1789 
1790 static int dfll_fetch_pwm_params(struct tegra_dfll *td)
1791 {
1792 	int ret, i;
1793 	u32 pwm_period;
1794 
1795 	if (!td->soc->alignment.step_uv || !td->soc->alignment.offset_uv) {
1796 		dev_err(td->dev,
1797 			"Missing step or alignment info for PWM regulator");
1798 		return -EINVAL;
1799 	}
1800 	for (i = 0; i < MAX_DFLL_VOLTAGES; i++)
1801 		td->lut_uv[i] = td->soc->alignment.offset_uv +
1802 				i * td->soc->alignment.step_uv;
1803 
1804 	ret = read_dt_param(td, "nvidia,pwm-tristate-microvolts",
1805 			    &td->reg_init_uV);
1806 	if (!ret) {
1807 		dev_err(td->dev, "couldn't get initialized voltage\n");
1808 		return ret;
1809 	}
1810 
1811 	ret = read_dt_param(td, "nvidia,pwm-period-nanoseconds", &pwm_period);
1812 	if (!ret) {
1813 		dev_err(td->dev, "couldn't get PWM period\n");
1814 		return ret;
1815 	}
1816 	td->pwm_rate = (NSEC_PER_SEC / pwm_period) * (MAX_DFLL_VOLTAGES - 1);
1817 
1818 	td->pwm_pin = devm_pinctrl_get(td->dev);
1819 	if (IS_ERR(td->pwm_pin)) {
1820 		dev_err(td->dev, "DT: missing pinctrl device\n");
1821 		return PTR_ERR(td->pwm_pin);
1822 	}
1823 
1824 	td->pwm_enable_state = pinctrl_lookup_state(td->pwm_pin,
1825 						    "dvfs_pwm_enable");
1826 	if (IS_ERR(td->pwm_enable_state)) {
1827 		dev_err(td->dev, "DT: missing pwm enabled state\n");
1828 		return PTR_ERR(td->pwm_enable_state);
1829 	}
1830 
1831 	td->pwm_disable_state = pinctrl_lookup_state(td->pwm_pin,
1832 						     "dvfs_pwm_disable");
1833 	if (IS_ERR(td->pwm_disable_state)) {
1834 		dev_err(td->dev, "DT: missing pwm disabled state\n");
1835 		return PTR_ERR(td->pwm_disable_state);
1836 	}
1837 
1838 	return 0;
1839 }
1840 
1841 /**
1842  * dfll_fetch_common_params - read DFLL parameters from the device tree
1843  * @td: DFLL instance
1844  *
1845  * Read all the DT parameters that are common to both I2C and PWM operation.
1846  * Returns 0 on success or -EINVAL on any failure.
1847  */
1848 static int dfll_fetch_common_params(struct tegra_dfll *td)
1849 {
1850 	bool ok = true;
1851 
1852 	ok &= read_dt_param(td, "nvidia,droop-ctrl", &td->droop_ctrl);
1853 	ok &= read_dt_param(td, "nvidia,sample-rate", &td->sample_rate);
1854 	ok &= read_dt_param(td, "nvidia,force-mode", &td->force_mode);
1855 	ok &= read_dt_param(td, "nvidia,cf", &td->cf);
1856 	ok &= read_dt_param(td, "nvidia,ci", &td->ci);
1857 	ok &= read_dt_param(td, "nvidia,cg", &td->cg);
1858 	td->cg_scale = of_property_read_bool(td->dev->of_node,
1859 					     "nvidia,cg-scale");
1860 
1861 	if (of_property_read_string(td->dev->of_node, "clock-output-names",
1862 				    &td->output_clock_name)) {
1863 		dev_err(td->dev, "missing clock-output-names property\n");
1864 		ok = false;
1865 	}
1866 
1867 	return ok ? 0 : -EINVAL;
1868 }
1869 
1870 /*
1871  * API exported to per-SoC platform drivers
1872  */
1873 
1874 /**
1875  * tegra_dfll_register - probe a Tegra DFLL device
1876  * @pdev: DFLL platform_device *
1877  * @soc: Per-SoC integration and characterization data for this DFLL instance
1878  *
1879  * Probe and initialize a DFLL device instance. Intended to be called
1880  * by a SoC-specific shim driver that passes in per-SoC integration
1881  * and configuration data via @soc. Returns 0 on success or -err on failure.
1882  */
1883 int tegra_dfll_register(struct platform_device *pdev,
1884 			struct tegra_dfll_soc_data *soc)
1885 {
1886 	struct resource *mem;
1887 	struct tegra_dfll *td;
1888 	int ret;
1889 
1890 	if (!soc) {
1891 		dev_err(&pdev->dev, "no tegra_dfll_soc_data provided\n");
1892 		return -EINVAL;
1893 	}
1894 
1895 	td = devm_kzalloc(&pdev->dev, sizeof(*td), GFP_KERNEL);
1896 	if (!td)
1897 		return -ENOMEM;
1898 	td->dev = &pdev->dev;
1899 	platform_set_drvdata(pdev, td);
1900 
1901 	td->soc = soc;
1902 
1903 	td->dvco_rst = devm_reset_control_get(td->dev, "dvco");
1904 	if (IS_ERR(td->dvco_rst)) {
1905 		dev_err(td->dev, "couldn't get dvco reset\n");
1906 		return PTR_ERR(td->dvco_rst);
1907 	}
1908 
1909 	ret = dfll_fetch_common_params(td);
1910 	if (ret) {
1911 		dev_err(td->dev, "couldn't parse device tree parameters\n");
1912 		return ret;
1913 	}
1914 
1915 	if (of_property_read_bool(td->dev->of_node, "nvidia,pwm-to-pmic")) {
1916 		td->pmu_if = TEGRA_DFLL_PMU_PWM;
1917 		ret = dfll_fetch_pwm_params(td);
1918 	} else  {
1919 		td->vdd_reg = devm_regulator_get(td->dev, "vdd-cpu");
1920 		if (IS_ERR(td->vdd_reg)) {
1921 			dev_err(td->dev, "couldn't get vdd_cpu regulator\n");
1922 			return PTR_ERR(td->vdd_reg);
1923 		}
1924 		td->pmu_if = TEGRA_DFLL_PMU_I2C;
1925 		ret = dfll_fetch_i2c_params(td);
1926 	}
1927 	if (ret)
1928 		return ret;
1929 
1930 	ret = dfll_build_lut(td);
1931 	if (ret) {
1932 		dev_err(td->dev, "couldn't build LUT\n");
1933 		return ret;
1934 	}
1935 
1936 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1937 	if (!mem) {
1938 		dev_err(td->dev, "no control register resource\n");
1939 		return -ENODEV;
1940 	}
1941 
1942 	td->base = devm_ioremap(td->dev, mem->start, resource_size(mem));
1943 	if (!td->base) {
1944 		dev_err(td->dev, "couldn't ioremap DFLL control registers\n");
1945 		return -ENODEV;
1946 	}
1947 
1948 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1949 	if (!mem) {
1950 		dev_err(td->dev, "no i2c_base resource\n");
1951 		return -ENODEV;
1952 	}
1953 
1954 	td->i2c_base = devm_ioremap(td->dev, mem->start, resource_size(mem));
1955 	if (!td->i2c_base) {
1956 		dev_err(td->dev, "couldn't ioremap i2c_base resource\n");
1957 		return -ENODEV;
1958 	}
1959 
1960 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1961 	if (!mem) {
1962 		dev_err(td->dev, "no i2c_controller_base resource\n");
1963 		return -ENODEV;
1964 	}
1965 
1966 	td->i2c_controller_base = devm_ioremap(td->dev, mem->start,
1967 					       resource_size(mem));
1968 	if (!td->i2c_controller_base) {
1969 		dev_err(td->dev,
1970 			"couldn't ioremap i2c_controller_base resource\n");
1971 		return -ENODEV;
1972 	}
1973 
1974 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1975 	if (!mem) {
1976 		dev_err(td->dev, "no lut_base resource\n");
1977 		return -ENODEV;
1978 	}
1979 
1980 	td->lut_base = devm_ioremap(td->dev, mem->start, resource_size(mem));
1981 	if (!td->lut_base) {
1982 		dev_err(td->dev,
1983 			"couldn't ioremap lut_base resource\n");
1984 		return -ENODEV;
1985 	}
1986 
1987 	ret = dfll_init_clks(td);
1988 	if (ret) {
1989 		dev_err(&pdev->dev, "DFLL clock init error\n");
1990 		return ret;
1991 	}
1992 
1993 	/* Enable the clocks and set the device up */
1994 	ret = dfll_init(td);
1995 	if (ret)
1996 		return ret;
1997 
1998 	ret = dfll_register_clk(td);
1999 	if (ret) {
2000 		dev_err(&pdev->dev, "DFLL clk registration failed\n");
2001 		return ret;
2002 	}
2003 
2004 	dfll_debug_init(td);
2005 
2006 	return 0;
2007 }
2008 EXPORT_SYMBOL(tegra_dfll_register);
2009 
2010 /**
2011  * tegra_dfll_unregister - release all of the DFLL driver resources for a device
2012  * @pdev: DFLL platform_device *
2013  *
2014  * Unbind this driver from the DFLL hardware device represented by
2015  * @pdev. The DFLL must be disabled for this to succeed. Returns a
2016  * soc pointer upon success or -EBUSY if the DFLL is still active.
2017  */
2018 struct tegra_dfll_soc_data *tegra_dfll_unregister(struct platform_device *pdev)
2019 {
2020 	struct tegra_dfll *td = platform_get_drvdata(pdev);
2021 
2022 	/* Try to prevent removal while the DFLL is active */
2023 	if (td->mode != DFLL_DISABLED) {
2024 		dev_err(&pdev->dev,
2025 			"must disable DFLL before removing driver\n");
2026 		return ERR_PTR(-EBUSY);
2027 	}
2028 
2029 	debugfs_remove_recursive(td->debugfs_dir);
2030 
2031 	dfll_unregister_clk(td);
2032 	pm_runtime_disable(&pdev->dev);
2033 
2034 	clk_unprepare(td->ref_clk);
2035 	clk_unprepare(td->soc_clk);
2036 	clk_unprepare(td->i2c_clk);
2037 
2038 	reset_control_assert(td->dvco_rst);
2039 
2040 	return td->soc;
2041 }
2042 EXPORT_SYMBOL(tegra_dfll_unregister);
2043