1 /* 2 * clk-dfll.c - Tegra DFLL clock source common code 3 * 4 * Copyright (C) 2012-2014 NVIDIA Corporation. All rights reserved. 5 * 6 * Aleksandr Frid <afrid@nvidia.com> 7 * Paul Walmsley <pwalmsley@nvidia.com> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but WITHOUT 14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 16 * more details. 17 * 18 * This library is for the DVCO and DFLL IP blocks on the Tegra124 19 * SoC. These IP blocks together are also known at NVIDIA as 20 * "CL-DVFS". To try to avoid confusion, this code refers to them 21 * collectively as the "DFLL." 22 * 23 * The DFLL is a root clocksource which tolerates some amount of 24 * supply voltage noise. Tegra124 uses it to clock the fast CPU 25 * complex when the target CPU speed is above a particular rate. The 26 * DFLL can be operated in either open-loop mode or closed-loop mode. 27 * In open-loop mode, the DFLL generates an output clock appropriate 28 * to the supply voltage. In closed-loop mode, when configured with a 29 * target frequency, the DFLL minimizes supply voltage while 30 * delivering an average frequency equal to the target. 31 * 32 * Devices clocked by the DFLL must be able to tolerate frequency 33 * variation. In the case of the CPU, it's important to note that the 34 * CPU cycle time will vary. This has implications for 35 * performance-measurement code and any code that relies on the CPU 36 * cycle time to delay for a certain length of time. 37 * 38 */ 39 40 #include <linux/clk.h> 41 #include <linux/clk-provider.h> 42 #include <linux/debugfs.h> 43 #include <linux/device.h> 44 #include <linux/err.h> 45 #include <linux/i2c.h> 46 #include <linux/io.h> 47 #include <linux/kernel.h> 48 #include <linux/module.h> 49 #include <linux/of.h> 50 #include <linux/pm_opp.h> 51 #include <linux/pm_runtime.h> 52 #include <linux/regmap.h> 53 #include <linux/regulator/consumer.h> 54 #include <linux/reset.h> 55 #include <linux/seq_file.h> 56 57 #include "clk-dfll.h" 58 #include "cvb.h" 59 60 /* 61 * DFLL control registers - access via dfll_{readl,writel} 62 */ 63 64 /* DFLL_CTRL: DFLL control register */ 65 #define DFLL_CTRL 0x00 66 #define DFLL_CTRL_MODE_MASK 0x03 67 68 /* DFLL_CONFIG: DFLL sample rate control */ 69 #define DFLL_CONFIG 0x04 70 #define DFLL_CONFIG_DIV_MASK 0xff 71 #define DFLL_CONFIG_DIV_PRESCALE 32 72 73 /* DFLL_PARAMS: tuning coefficients for closed loop integrator */ 74 #define DFLL_PARAMS 0x08 75 #define DFLL_PARAMS_CG_SCALE (0x1 << 24) 76 #define DFLL_PARAMS_FORCE_MODE_SHIFT 22 77 #define DFLL_PARAMS_FORCE_MODE_MASK (0x3 << DFLL_PARAMS_FORCE_MODE_SHIFT) 78 #define DFLL_PARAMS_CF_PARAM_SHIFT 16 79 #define DFLL_PARAMS_CF_PARAM_MASK (0x3f << DFLL_PARAMS_CF_PARAM_SHIFT) 80 #define DFLL_PARAMS_CI_PARAM_SHIFT 8 81 #define DFLL_PARAMS_CI_PARAM_MASK (0x7 << DFLL_PARAMS_CI_PARAM_SHIFT) 82 #define DFLL_PARAMS_CG_PARAM_SHIFT 0 83 #define DFLL_PARAMS_CG_PARAM_MASK (0xff << DFLL_PARAMS_CG_PARAM_SHIFT) 84 85 /* DFLL_TUNE0: delay line configuration register 0 */ 86 #define DFLL_TUNE0 0x0c 87 88 /* DFLL_TUNE1: delay line configuration register 1 */ 89 #define DFLL_TUNE1 0x10 90 91 /* DFLL_FREQ_REQ: target DFLL frequency control */ 92 #define DFLL_FREQ_REQ 0x14 93 #define DFLL_FREQ_REQ_FORCE_ENABLE (0x1 << 28) 94 #define DFLL_FREQ_REQ_FORCE_SHIFT 16 95 #define DFLL_FREQ_REQ_FORCE_MASK (0xfff << DFLL_FREQ_REQ_FORCE_SHIFT) 96 #define FORCE_MAX 2047 97 #define FORCE_MIN -2048 98 #define DFLL_FREQ_REQ_SCALE_SHIFT 8 99 #define DFLL_FREQ_REQ_SCALE_MASK (0xff << DFLL_FREQ_REQ_SCALE_SHIFT) 100 #define DFLL_FREQ_REQ_SCALE_MAX 256 101 #define DFLL_FREQ_REQ_FREQ_VALID (0x1 << 7) 102 #define DFLL_FREQ_REQ_MULT_SHIFT 0 103 #define DFLL_FREQ_REG_MULT_MASK (0x7f << DFLL_FREQ_REQ_MULT_SHIFT) 104 #define FREQ_MAX 127 105 106 /* DFLL_DROOP_CTRL: droop prevention control */ 107 #define DFLL_DROOP_CTRL 0x1c 108 109 /* DFLL_OUTPUT_CFG: closed loop mode control registers */ 110 /* NOTE: access via dfll_i2c_{readl,writel} */ 111 #define DFLL_OUTPUT_CFG 0x20 112 #define DFLL_OUTPUT_CFG_I2C_ENABLE (0x1 << 30) 113 #define OUT_MASK 0x3f 114 #define DFLL_OUTPUT_CFG_SAFE_SHIFT 24 115 #define DFLL_OUTPUT_CFG_SAFE_MASK \ 116 (OUT_MASK << DFLL_OUTPUT_CFG_SAFE_SHIFT) 117 #define DFLL_OUTPUT_CFG_MAX_SHIFT 16 118 #define DFLL_OUTPUT_CFG_MAX_MASK \ 119 (OUT_MASK << DFLL_OUTPUT_CFG_MAX_SHIFT) 120 #define DFLL_OUTPUT_CFG_MIN_SHIFT 8 121 #define DFLL_OUTPUT_CFG_MIN_MASK \ 122 (OUT_MASK << DFLL_OUTPUT_CFG_MIN_SHIFT) 123 #define DFLL_OUTPUT_CFG_PWM_DELTA (0x1 << 7) 124 #define DFLL_OUTPUT_CFG_PWM_ENABLE (0x1 << 6) 125 #define DFLL_OUTPUT_CFG_PWM_DIV_SHIFT 0 126 #define DFLL_OUTPUT_CFG_PWM_DIV_MASK \ 127 (OUT_MASK << DFLL_OUTPUT_CFG_PWM_DIV_SHIFT) 128 129 /* DFLL_OUTPUT_FORCE: closed loop mode voltage forcing control */ 130 #define DFLL_OUTPUT_FORCE 0x24 131 #define DFLL_OUTPUT_FORCE_ENABLE (0x1 << 6) 132 #define DFLL_OUTPUT_FORCE_VALUE_SHIFT 0 133 #define DFLL_OUTPUT_FORCE_VALUE_MASK \ 134 (OUT_MASK << DFLL_OUTPUT_FORCE_VALUE_SHIFT) 135 136 /* DFLL_MONITOR_CTRL: internal monitor data source control */ 137 #define DFLL_MONITOR_CTRL 0x28 138 #define DFLL_MONITOR_CTRL_FREQ 6 139 140 /* DFLL_MONITOR_DATA: internal monitor data output */ 141 #define DFLL_MONITOR_DATA 0x2c 142 #define DFLL_MONITOR_DATA_NEW_MASK (0x1 << 16) 143 #define DFLL_MONITOR_DATA_VAL_SHIFT 0 144 #define DFLL_MONITOR_DATA_VAL_MASK (0xFFFF << DFLL_MONITOR_DATA_VAL_SHIFT) 145 146 /* 147 * I2C output control registers - access via dfll_i2c_{readl,writel} 148 */ 149 150 /* DFLL_I2C_CFG: I2C controller configuration register */ 151 #define DFLL_I2C_CFG 0x40 152 #define DFLL_I2C_CFG_ARB_ENABLE (0x1 << 20) 153 #define DFLL_I2C_CFG_HS_CODE_SHIFT 16 154 #define DFLL_I2C_CFG_HS_CODE_MASK (0x7 << DFLL_I2C_CFG_HS_CODE_SHIFT) 155 #define DFLL_I2C_CFG_PACKET_ENABLE (0x1 << 15) 156 #define DFLL_I2C_CFG_SIZE_SHIFT 12 157 #define DFLL_I2C_CFG_SIZE_MASK (0x7 << DFLL_I2C_CFG_SIZE_SHIFT) 158 #define DFLL_I2C_CFG_SLAVE_ADDR_10 (0x1 << 10) 159 #define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT 1 160 #define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT 0 161 162 /* DFLL_I2C_VDD_REG_ADDR: PMIC I2C address for closed loop mode */ 163 #define DFLL_I2C_VDD_REG_ADDR 0x44 164 165 /* DFLL_I2C_STS: I2C controller status */ 166 #define DFLL_I2C_STS 0x48 167 #define DFLL_I2C_STS_I2C_LAST_SHIFT 1 168 #define DFLL_I2C_STS_I2C_REQ_PENDING 0x1 169 170 /* DFLL_INTR_STS: DFLL interrupt status register */ 171 #define DFLL_INTR_STS 0x5c 172 173 /* DFLL_INTR_EN: DFLL interrupt enable register */ 174 #define DFLL_INTR_EN 0x60 175 #define DFLL_INTR_MIN_MASK 0x1 176 #define DFLL_INTR_MAX_MASK 0x2 177 178 /* 179 * Integrated I2C controller registers - relative to td->i2c_controller_base 180 */ 181 182 /* DFLL_I2C_CLK_DIVISOR: I2C controller clock divisor */ 183 #define DFLL_I2C_CLK_DIVISOR 0x6c 184 #define DFLL_I2C_CLK_DIVISOR_MASK 0xffff 185 #define DFLL_I2C_CLK_DIVISOR_FS_SHIFT 16 186 #define DFLL_I2C_CLK_DIVISOR_HS_SHIFT 0 187 #define DFLL_I2C_CLK_DIVISOR_PREDIV 8 188 #define DFLL_I2C_CLK_DIVISOR_HSMODE_PREDIV 12 189 190 /* 191 * Other constants 192 */ 193 194 /* MAX_DFLL_VOLTAGES: number of LUT entries in the DFLL IP block */ 195 #define MAX_DFLL_VOLTAGES 33 196 197 /* 198 * REF_CLK_CYC_PER_DVCO_SAMPLE: the number of ref_clk cycles that the hardware 199 * integrates the DVCO counter over - used for debug rate monitoring and 200 * droop control 201 */ 202 #define REF_CLK_CYC_PER_DVCO_SAMPLE 4 203 204 /* 205 * REF_CLOCK_RATE: the DFLL reference clock rate currently supported by this 206 * driver, in Hz 207 */ 208 #define REF_CLOCK_RATE 51000000UL 209 210 #define DVCO_RATE_TO_MULT(rate, ref_rate) ((rate) / ((ref_rate) / 2)) 211 #define MULT_TO_DVCO_RATE(mult, ref_rate) ((mult) * ((ref_rate) / 2)) 212 213 /** 214 * enum dfll_ctrl_mode - DFLL hardware operating mode 215 * @DFLL_UNINITIALIZED: (uninitialized state - not in hardware bitfield) 216 * @DFLL_DISABLED: DFLL not generating an output clock 217 * @DFLL_OPEN_LOOP: DVCO running, but DFLL not adjusting voltage 218 * @DFLL_CLOSED_LOOP: DVCO running, and DFLL adjusting voltage to match 219 * the requested rate 220 * 221 * The integer corresponding to the last two states, minus one, is 222 * written to the DFLL hardware to change operating modes. 223 */ 224 enum dfll_ctrl_mode { 225 DFLL_UNINITIALIZED = 0, 226 DFLL_DISABLED = 1, 227 DFLL_OPEN_LOOP = 2, 228 DFLL_CLOSED_LOOP = 3, 229 }; 230 231 /** 232 * enum dfll_tune_range - voltage range that the driver believes it's in 233 * @DFLL_TUNE_UNINITIALIZED: DFLL tuning not yet programmed 234 * @DFLL_TUNE_LOW: DFLL in the low-voltage range (or open-loop mode) 235 * 236 * Some DFLL tuning parameters may need to change depending on the 237 * DVCO's voltage; these states represent the ranges that the driver 238 * supports. These are software states; these values are never 239 * written into registers. 240 */ 241 enum dfll_tune_range { 242 DFLL_TUNE_UNINITIALIZED = 0, 243 DFLL_TUNE_LOW = 1, 244 }; 245 246 /** 247 * struct dfll_rate_req - target DFLL rate request data 248 * @rate: target frequency, after the postscaling 249 * @dvco_target_rate: target frequency, after the postscaling 250 * @lut_index: LUT index at which voltage the dvco_target_rate will be reached 251 * @mult_bits: value to program to the MULT bits of the DFLL_FREQ_REQ register 252 * @scale_bits: value to program to the SCALE bits of the DFLL_FREQ_REQ register 253 */ 254 struct dfll_rate_req { 255 unsigned long rate; 256 unsigned long dvco_target_rate; 257 int lut_index; 258 u8 mult_bits; 259 u8 scale_bits; 260 }; 261 262 struct tegra_dfll { 263 struct device *dev; 264 struct tegra_dfll_soc_data *soc; 265 266 void __iomem *base; 267 void __iomem *i2c_base; 268 void __iomem *i2c_controller_base; 269 void __iomem *lut_base; 270 271 struct regulator *vdd_reg; 272 struct clk *soc_clk; 273 struct clk *ref_clk; 274 struct clk *i2c_clk; 275 struct clk *dfll_clk; 276 struct reset_control *dvco_rst; 277 unsigned long ref_rate; 278 unsigned long i2c_clk_rate; 279 unsigned long dvco_rate_min; 280 281 enum dfll_ctrl_mode mode; 282 enum dfll_tune_range tune_range; 283 struct dentry *debugfs_dir; 284 struct clk_hw dfll_clk_hw; 285 const char *output_clock_name; 286 struct dfll_rate_req last_req; 287 unsigned long last_unrounded_rate; 288 289 /* Parameters from DT */ 290 u32 droop_ctrl; 291 u32 sample_rate; 292 u32 force_mode; 293 u32 cf; 294 u32 ci; 295 u32 cg; 296 bool cg_scale; 297 298 /* I2C interface parameters */ 299 u32 i2c_fs_rate; 300 u32 i2c_reg; 301 u32 i2c_slave_addr; 302 303 /* i2c_lut array entries are regulator framework selectors */ 304 unsigned i2c_lut[MAX_DFLL_VOLTAGES]; 305 int i2c_lut_size; 306 u8 lut_min, lut_max, lut_safe; 307 }; 308 309 #define clk_hw_to_dfll(_hw) container_of(_hw, struct tegra_dfll, dfll_clk_hw) 310 311 /* mode_name: map numeric DFLL modes to names for friendly console messages */ 312 static const char * const mode_name[] = { 313 [DFLL_UNINITIALIZED] = "uninitialized", 314 [DFLL_DISABLED] = "disabled", 315 [DFLL_OPEN_LOOP] = "open_loop", 316 [DFLL_CLOSED_LOOP] = "closed_loop", 317 }; 318 319 /* 320 * Register accessors 321 */ 322 323 static inline u32 dfll_readl(struct tegra_dfll *td, u32 offs) 324 { 325 return __raw_readl(td->base + offs); 326 } 327 328 static inline void dfll_writel(struct tegra_dfll *td, u32 val, u32 offs) 329 { 330 WARN_ON(offs >= DFLL_I2C_CFG); 331 __raw_writel(val, td->base + offs); 332 } 333 334 static inline void dfll_wmb(struct tegra_dfll *td) 335 { 336 dfll_readl(td, DFLL_CTRL); 337 } 338 339 /* I2C output control registers - for addresses above DFLL_I2C_CFG */ 340 341 static inline u32 dfll_i2c_readl(struct tegra_dfll *td, u32 offs) 342 { 343 return __raw_readl(td->i2c_base + offs); 344 } 345 346 static inline void dfll_i2c_writel(struct tegra_dfll *td, u32 val, u32 offs) 347 { 348 __raw_writel(val, td->i2c_base + offs); 349 } 350 351 static inline void dfll_i2c_wmb(struct tegra_dfll *td) 352 { 353 dfll_i2c_readl(td, DFLL_I2C_CFG); 354 } 355 356 /** 357 * dfll_is_running - is the DFLL currently generating a clock? 358 * @td: DFLL instance 359 * 360 * If the DFLL is currently generating an output clock signal, return 361 * true; otherwise return false. 362 */ 363 static bool dfll_is_running(struct tegra_dfll *td) 364 { 365 return td->mode >= DFLL_OPEN_LOOP; 366 } 367 368 /* 369 * Runtime PM suspend/resume callbacks 370 */ 371 372 /** 373 * tegra_dfll_runtime_resume - enable all clocks needed by the DFLL 374 * @dev: DFLL device * 375 * 376 * Enable all clocks needed by the DFLL. Assumes that clk_prepare() 377 * has already been called on all the clocks. 378 * 379 * XXX Should also handle context restore when returning from off. 380 */ 381 int tegra_dfll_runtime_resume(struct device *dev) 382 { 383 struct tegra_dfll *td = dev_get_drvdata(dev); 384 int ret; 385 386 ret = clk_enable(td->ref_clk); 387 if (ret) { 388 dev_err(dev, "could not enable ref clock: %d\n", ret); 389 return ret; 390 } 391 392 ret = clk_enable(td->soc_clk); 393 if (ret) { 394 dev_err(dev, "could not enable register clock: %d\n", ret); 395 clk_disable(td->ref_clk); 396 return ret; 397 } 398 399 ret = clk_enable(td->i2c_clk); 400 if (ret) { 401 dev_err(dev, "could not enable i2c clock: %d\n", ret); 402 clk_disable(td->soc_clk); 403 clk_disable(td->ref_clk); 404 return ret; 405 } 406 407 return 0; 408 } 409 EXPORT_SYMBOL(tegra_dfll_runtime_resume); 410 411 /** 412 * tegra_dfll_runtime_suspend - disable all clocks needed by the DFLL 413 * @dev: DFLL device * 414 * 415 * Disable all clocks needed by the DFLL. Assumes that other code 416 * will later call clk_unprepare(). 417 */ 418 int tegra_dfll_runtime_suspend(struct device *dev) 419 { 420 struct tegra_dfll *td = dev_get_drvdata(dev); 421 422 clk_disable(td->ref_clk); 423 clk_disable(td->soc_clk); 424 clk_disable(td->i2c_clk); 425 426 return 0; 427 } 428 EXPORT_SYMBOL(tegra_dfll_runtime_suspend); 429 430 /* 431 * DFLL tuning operations (per-voltage-range tuning settings) 432 */ 433 434 /** 435 * dfll_tune_low - tune to DFLL and CPU settings valid for any voltage 436 * @td: DFLL instance 437 * 438 * Tune the DFLL oscillator parameters and the CPU clock shaper for 439 * the low-voltage range. These settings are valid for any voltage, 440 * but may not be optimal. 441 */ 442 static void dfll_tune_low(struct tegra_dfll *td) 443 { 444 td->tune_range = DFLL_TUNE_LOW; 445 446 dfll_writel(td, td->soc->cvb->cpu_dfll_data.tune0_low, DFLL_TUNE0); 447 dfll_writel(td, td->soc->cvb->cpu_dfll_data.tune1, DFLL_TUNE1); 448 dfll_wmb(td); 449 450 if (td->soc->set_clock_trimmers_low) 451 td->soc->set_clock_trimmers_low(); 452 } 453 454 /* 455 * Output clock scaler helpers 456 */ 457 458 /** 459 * dfll_scale_dvco_rate - calculate scaled rate from the DVCO rate 460 * @scale_bits: clock scaler value (bits in the DFLL_FREQ_REQ_SCALE field) 461 * @dvco_rate: the DVCO rate 462 * 463 * Apply the same scaling formula that the DFLL hardware uses to scale 464 * the DVCO rate. 465 */ 466 static unsigned long dfll_scale_dvco_rate(int scale_bits, 467 unsigned long dvco_rate) 468 { 469 return (u64)dvco_rate * (scale_bits + 1) / DFLL_FREQ_REQ_SCALE_MAX; 470 } 471 472 /* 473 * DFLL mode switching 474 */ 475 476 /** 477 * dfll_set_mode - change the DFLL control mode 478 * @td: DFLL instance 479 * @mode: DFLL control mode (see enum dfll_ctrl_mode) 480 * 481 * Change the DFLL's operating mode between disabled, open-loop mode, 482 * and closed-loop mode, or vice versa. 483 */ 484 static void dfll_set_mode(struct tegra_dfll *td, 485 enum dfll_ctrl_mode mode) 486 { 487 td->mode = mode; 488 dfll_writel(td, mode - 1, DFLL_CTRL); 489 dfll_wmb(td); 490 } 491 492 /* 493 * DFLL-to-I2C controller interface 494 */ 495 496 /** 497 * dfll_i2c_set_output_enabled - enable/disable I2C PMIC voltage requests 498 * @td: DFLL instance 499 * @enable: whether to enable or disable the I2C voltage requests 500 * 501 * Set the master enable control for I2C control value updates. If disabled, 502 * then I2C control messages are inhibited, regardless of the DFLL mode. 503 */ 504 static int dfll_i2c_set_output_enabled(struct tegra_dfll *td, bool enable) 505 { 506 u32 val; 507 508 val = dfll_i2c_readl(td, DFLL_OUTPUT_CFG); 509 510 if (enable) 511 val |= DFLL_OUTPUT_CFG_I2C_ENABLE; 512 else 513 val &= ~DFLL_OUTPUT_CFG_I2C_ENABLE; 514 515 dfll_i2c_writel(td, val, DFLL_OUTPUT_CFG); 516 dfll_i2c_wmb(td); 517 518 return 0; 519 } 520 521 /** 522 * dfll_load_lut - load the voltage lookup table 523 * @td: struct tegra_dfll * 524 * 525 * Load the voltage-to-PMIC register value lookup table into the DFLL 526 * IP block memory. Look-up tables can be loaded at any time. 527 */ 528 static void dfll_load_i2c_lut(struct tegra_dfll *td) 529 { 530 int i, lut_index; 531 u32 val; 532 533 for (i = 0; i < MAX_DFLL_VOLTAGES; i++) { 534 if (i < td->lut_min) 535 lut_index = td->lut_min; 536 else if (i > td->lut_max) 537 lut_index = td->lut_max; 538 else 539 lut_index = i; 540 541 val = regulator_list_hardware_vsel(td->vdd_reg, 542 td->i2c_lut[lut_index]); 543 __raw_writel(val, td->lut_base + i * 4); 544 } 545 546 dfll_i2c_wmb(td); 547 } 548 549 /** 550 * dfll_init_i2c_if - set up the DFLL's DFLL-I2C interface 551 * @td: DFLL instance 552 * 553 * During DFLL driver initialization, program the DFLL-I2C interface 554 * with the PMU slave address, vdd register offset, and transfer mode. 555 * This data is used by the DFLL to automatically construct I2C 556 * voltage-set commands, which are then passed to the DFLL's internal 557 * I2C controller. 558 */ 559 static void dfll_init_i2c_if(struct tegra_dfll *td) 560 { 561 u32 val; 562 563 if (td->i2c_slave_addr > 0x7f) { 564 val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT; 565 val |= DFLL_I2C_CFG_SLAVE_ADDR_10; 566 } else { 567 val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT; 568 } 569 val |= DFLL_I2C_CFG_SIZE_MASK; 570 val |= DFLL_I2C_CFG_ARB_ENABLE; 571 dfll_i2c_writel(td, val, DFLL_I2C_CFG); 572 573 dfll_i2c_writel(td, td->i2c_reg, DFLL_I2C_VDD_REG_ADDR); 574 575 val = DIV_ROUND_UP(td->i2c_clk_rate, td->i2c_fs_rate * 8); 576 BUG_ON(!val || (val > DFLL_I2C_CLK_DIVISOR_MASK)); 577 val = (val - 1) << DFLL_I2C_CLK_DIVISOR_FS_SHIFT; 578 579 /* default hs divisor just in case */ 580 val |= 1 << DFLL_I2C_CLK_DIVISOR_HS_SHIFT; 581 __raw_writel(val, td->i2c_controller_base + DFLL_I2C_CLK_DIVISOR); 582 dfll_i2c_wmb(td); 583 } 584 585 /** 586 * dfll_init_out_if - prepare DFLL-to-PMIC interface 587 * @td: DFLL instance 588 * 589 * During DFLL driver initialization or resume from context loss, 590 * disable the I2C command output to the PMIC, set safe voltage and 591 * output limits, and disable and clear limit interrupts. 592 */ 593 static void dfll_init_out_if(struct tegra_dfll *td) 594 { 595 u32 val; 596 597 td->lut_min = 0; 598 td->lut_max = td->i2c_lut_size - 1; 599 td->lut_safe = td->lut_min + 1; 600 601 dfll_i2c_writel(td, 0, DFLL_OUTPUT_CFG); 602 val = (td->lut_safe << DFLL_OUTPUT_CFG_SAFE_SHIFT) | 603 (td->lut_max << DFLL_OUTPUT_CFG_MAX_SHIFT) | 604 (td->lut_min << DFLL_OUTPUT_CFG_MIN_SHIFT); 605 dfll_i2c_writel(td, val, DFLL_OUTPUT_CFG); 606 dfll_i2c_wmb(td); 607 608 dfll_writel(td, 0, DFLL_OUTPUT_FORCE); 609 dfll_i2c_writel(td, 0, DFLL_INTR_EN); 610 dfll_i2c_writel(td, DFLL_INTR_MAX_MASK | DFLL_INTR_MIN_MASK, 611 DFLL_INTR_STS); 612 613 dfll_load_i2c_lut(td); 614 dfll_init_i2c_if(td); 615 } 616 617 /* 618 * Set/get the DFLL's targeted output clock rate 619 */ 620 621 /** 622 * find_lut_index_for_rate - determine I2C LUT index for given DFLL rate 623 * @td: DFLL instance 624 * @rate: clock rate 625 * 626 * Determines the index of a I2C LUT entry for a voltage that approximately 627 * produces the given DFLL clock rate. This is used when forcing a value 628 * to the integrator during rate changes. Returns -ENOENT if a suitable 629 * LUT index is not found. 630 */ 631 static int find_lut_index_for_rate(struct tegra_dfll *td, unsigned long rate) 632 { 633 struct dev_pm_opp *opp; 634 int i, uv; 635 636 rcu_read_lock(); 637 638 opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate); 639 if (IS_ERR(opp)) { 640 rcu_read_unlock(); 641 return PTR_ERR(opp); 642 } 643 uv = dev_pm_opp_get_voltage(opp); 644 645 rcu_read_unlock(); 646 647 for (i = 0; i < td->i2c_lut_size; i++) { 648 if (regulator_list_voltage(td->vdd_reg, td->i2c_lut[i]) == uv) 649 return i; 650 } 651 652 return -ENOENT; 653 } 654 655 /** 656 * dfll_calculate_rate_request - calculate DFLL parameters for a given rate 657 * @td: DFLL instance 658 * @req: DFLL-rate-request structure 659 * @rate: the desired DFLL rate 660 * 661 * Populate the DFLL-rate-request record @req fields with the scale_bits 662 * and mult_bits fields, based on the target input rate. Returns 0 upon 663 * success, or -EINVAL if the requested rate in req->rate is too high 664 * or low for the DFLL to generate. 665 */ 666 static int dfll_calculate_rate_request(struct tegra_dfll *td, 667 struct dfll_rate_req *req, 668 unsigned long rate) 669 { 670 u32 val; 671 672 /* 673 * If requested rate is below the minimum DVCO rate, active the scaler. 674 * In the future the DVCO minimum voltage should be selected based on 675 * chip temperature and the actual minimum rate should be calibrated 676 * at runtime. 677 */ 678 req->scale_bits = DFLL_FREQ_REQ_SCALE_MAX - 1; 679 if (rate < td->dvco_rate_min) { 680 int scale; 681 682 scale = DIV_ROUND_CLOSEST(rate / 1000 * DFLL_FREQ_REQ_SCALE_MAX, 683 td->dvco_rate_min / 1000); 684 if (!scale) { 685 dev_err(td->dev, "%s: Rate %lu is too low\n", 686 __func__, rate); 687 return -EINVAL; 688 } 689 req->scale_bits = scale - 1; 690 rate = td->dvco_rate_min; 691 } 692 693 /* Convert requested rate into frequency request and scale settings */ 694 val = DVCO_RATE_TO_MULT(rate, td->ref_rate); 695 if (val > FREQ_MAX) { 696 dev_err(td->dev, "%s: Rate %lu is above dfll range\n", 697 __func__, rate); 698 return -EINVAL; 699 } 700 req->mult_bits = val; 701 req->dvco_target_rate = MULT_TO_DVCO_RATE(req->mult_bits, td->ref_rate); 702 req->rate = dfll_scale_dvco_rate(req->scale_bits, 703 req->dvco_target_rate); 704 req->lut_index = find_lut_index_for_rate(td, req->dvco_target_rate); 705 if (req->lut_index < 0) 706 return req->lut_index; 707 708 return 0; 709 } 710 711 /** 712 * dfll_set_frequency_request - start the frequency change operation 713 * @td: DFLL instance 714 * @req: rate request structure 715 * 716 * Tell the DFLL to try to change its output frequency to the 717 * frequency represented by @req. DFLL must be in closed-loop mode. 718 */ 719 static void dfll_set_frequency_request(struct tegra_dfll *td, 720 struct dfll_rate_req *req) 721 { 722 u32 val = 0; 723 int force_val; 724 int coef = 128; /* FIXME: td->cg_scale? */; 725 726 force_val = (req->lut_index - td->lut_safe) * coef / td->cg; 727 force_val = clamp(force_val, FORCE_MIN, FORCE_MAX); 728 729 val |= req->mult_bits << DFLL_FREQ_REQ_MULT_SHIFT; 730 val |= req->scale_bits << DFLL_FREQ_REQ_SCALE_SHIFT; 731 val |= ((u32)force_val << DFLL_FREQ_REQ_FORCE_SHIFT) & 732 DFLL_FREQ_REQ_FORCE_MASK; 733 val |= DFLL_FREQ_REQ_FREQ_VALID | DFLL_FREQ_REQ_FORCE_ENABLE; 734 735 dfll_writel(td, val, DFLL_FREQ_REQ); 736 dfll_wmb(td); 737 } 738 739 /** 740 * tegra_dfll_request_rate - set the next rate for the DFLL to tune to 741 * @td: DFLL instance 742 * @rate: clock rate to target 743 * 744 * Convert the requested clock rate @rate into the DFLL control logic 745 * settings. In closed-loop mode, update new settings immediately to 746 * adjust DFLL output rate accordingly. Otherwise, just save them 747 * until the next switch to closed loop. Returns 0 upon success, 748 * -EPERM if the DFLL driver has not yet been initialized, or -EINVAL 749 * if @rate is outside the DFLL's tunable range. 750 */ 751 static int dfll_request_rate(struct tegra_dfll *td, unsigned long rate) 752 { 753 int ret; 754 struct dfll_rate_req req; 755 756 if (td->mode == DFLL_UNINITIALIZED) { 757 dev_err(td->dev, "%s: Cannot set DFLL rate in %s mode\n", 758 __func__, mode_name[td->mode]); 759 return -EPERM; 760 } 761 762 ret = dfll_calculate_rate_request(td, &req, rate); 763 if (ret) 764 return ret; 765 766 td->last_unrounded_rate = rate; 767 td->last_req = req; 768 769 if (td->mode == DFLL_CLOSED_LOOP) 770 dfll_set_frequency_request(td, &td->last_req); 771 772 return 0; 773 } 774 775 /* 776 * DFLL enable/disable & open-loop <-> closed-loop transitions 777 */ 778 779 /** 780 * dfll_disable - switch from open-loop mode to disabled mode 781 * @td: DFLL instance 782 * 783 * Switch from OPEN_LOOP state to DISABLED state. Returns 0 upon success 784 * or -EPERM if the DFLL is not currently in open-loop mode. 785 */ 786 static int dfll_disable(struct tegra_dfll *td) 787 { 788 if (td->mode != DFLL_OPEN_LOOP) { 789 dev_err(td->dev, "cannot disable DFLL in %s mode\n", 790 mode_name[td->mode]); 791 return -EINVAL; 792 } 793 794 dfll_set_mode(td, DFLL_DISABLED); 795 pm_runtime_put_sync(td->dev); 796 797 return 0; 798 } 799 800 /** 801 * dfll_enable - switch a disabled DFLL to open-loop mode 802 * @td: DFLL instance 803 * 804 * Switch from DISABLED state to OPEN_LOOP state. Returns 0 upon success 805 * or -EPERM if the DFLL is not currently disabled. 806 */ 807 static int dfll_enable(struct tegra_dfll *td) 808 { 809 if (td->mode != DFLL_DISABLED) { 810 dev_err(td->dev, "cannot enable DFLL in %s mode\n", 811 mode_name[td->mode]); 812 return -EPERM; 813 } 814 815 pm_runtime_get_sync(td->dev); 816 dfll_set_mode(td, DFLL_OPEN_LOOP); 817 818 return 0; 819 } 820 821 /** 822 * dfll_set_open_loop_config - prepare to switch to open-loop mode 823 * @td: DFLL instance 824 * 825 * Prepare to switch the DFLL to open-loop mode. This switches the 826 * DFLL to the low-voltage tuning range, ensures that I2C output 827 * forcing is disabled, and disables the output clock rate scaler. 828 * The DFLL's low-voltage tuning range parameters must be 829 * characterized to keep the downstream device stable at any DVCO 830 * input voltage. No return value. 831 */ 832 static void dfll_set_open_loop_config(struct tegra_dfll *td) 833 { 834 u32 val; 835 836 /* always tune low (safe) in open loop */ 837 if (td->tune_range != DFLL_TUNE_LOW) 838 dfll_tune_low(td); 839 840 val = dfll_readl(td, DFLL_FREQ_REQ); 841 val |= DFLL_FREQ_REQ_SCALE_MASK; 842 val &= ~DFLL_FREQ_REQ_FORCE_ENABLE; 843 dfll_writel(td, val, DFLL_FREQ_REQ); 844 dfll_wmb(td); 845 } 846 847 /** 848 * tegra_dfll_lock - switch from open-loop to closed-loop mode 849 * @td: DFLL instance 850 * 851 * Switch from OPEN_LOOP state to CLOSED_LOOP state. Returns 0 upon success, 852 * -EINVAL if the DFLL's target rate hasn't been set yet, or -EPERM if the 853 * DFLL is not currently in open-loop mode. 854 */ 855 static int dfll_lock(struct tegra_dfll *td) 856 { 857 struct dfll_rate_req *req = &td->last_req; 858 859 switch (td->mode) { 860 case DFLL_CLOSED_LOOP: 861 return 0; 862 863 case DFLL_OPEN_LOOP: 864 if (req->rate == 0) { 865 dev_err(td->dev, "%s: Cannot lock DFLL at rate 0\n", 866 __func__); 867 return -EINVAL; 868 } 869 870 dfll_i2c_set_output_enabled(td, true); 871 dfll_set_mode(td, DFLL_CLOSED_LOOP); 872 dfll_set_frequency_request(td, req); 873 return 0; 874 875 default: 876 BUG_ON(td->mode > DFLL_CLOSED_LOOP); 877 dev_err(td->dev, "%s: Cannot lock DFLL in %s mode\n", 878 __func__, mode_name[td->mode]); 879 return -EPERM; 880 } 881 } 882 883 /** 884 * tegra_dfll_unlock - switch from closed-loop to open-loop mode 885 * @td: DFLL instance 886 * 887 * Switch from CLOSED_LOOP state to OPEN_LOOP state. Returns 0 upon success, 888 * or -EPERM if the DFLL is not currently in open-loop mode. 889 */ 890 static int dfll_unlock(struct tegra_dfll *td) 891 { 892 switch (td->mode) { 893 case DFLL_CLOSED_LOOP: 894 dfll_set_open_loop_config(td); 895 dfll_set_mode(td, DFLL_OPEN_LOOP); 896 dfll_i2c_set_output_enabled(td, false); 897 return 0; 898 899 case DFLL_OPEN_LOOP: 900 return 0; 901 902 default: 903 BUG_ON(td->mode > DFLL_CLOSED_LOOP); 904 dev_err(td->dev, "%s: Cannot unlock DFLL in %s mode\n", 905 __func__, mode_name[td->mode]); 906 return -EPERM; 907 } 908 } 909 910 /* 911 * Clock framework integration 912 * 913 * When the DFLL is being controlled by the CCF, always enter closed loop 914 * mode when the clk is enabled. This requires that a DFLL rate request 915 * has been set beforehand, which implies that a clk_set_rate() call is 916 * always required before a clk_enable(). 917 */ 918 919 static int dfll_clk_is_enabled(struct clk_hw *hw) 920 { 921 struct tegra_dfll *td = clk_hw_to_dfll(hw); 922 923 return dfll_is_running(td); 924 } 925 926 static int dfll_clk_enable(struct clk_hw *hw) 927 { 928 struct tegra_dfll *td = clk_hw_to_dfll(hw); 929 int ret; 930 931 ret = dfll_enable(td); 932 if (ret) 933 return ret; 934 935 ret = dfll_lock(td); 936 if (ret) 937 dfll_disable(td); 938 939 return ret; 940 } 941 942 static void dfll_clk_disable(struct clk_hw *hw) 943 { 944 struct tegra_dfll *td = clk_hw_to_dfll(hw); 945 int ret; 946 947 ret = dfll_unlock(td); 948 if (!ret) 949 dfll_disable(td); 950 } 951 952 static unsigned long dfll_clk_recalc_rate(struct clk_hw *hw, 953 unsigned long parent_rate) 954 { 955 struct tegra_dfll *td = clk_hw_to_dfll(hw); 956 957 return td->last_unrounded_rate; 958 } 959 960 /* Must use determine_rate since it allows for rates exceeding 2^31-1 */ 961 static int dfll_clk_determine_rate(struct clk_hw *hw, 962 struct clk_rate_request *clk_req) 963 { 964 struct tegra_dfll *td = clk_hw_to_dfll(hw); 965 struct dfll_rate_req req; 966 int ret; 967 968 ret = dfll_calculate_rate_request(td, &req, clk_req->rate); 969 if (ret) 970 return ret; 971 972 /* 973 * Don't set the rounded rate, since it doesn't really matter as 974 * the output rate will be voltage controlled anyway, and cpufreq 975 * freaks out if any rounding happens. 976 */ 977 978 return 0; 979 } 980 981 static int dfll_clk_set_rate(struct clk_hw *hw, unsigned long rate, 982 unsigned long parent_rate) 983 { 984 struct tegra_dfll *td = clk_hw_to_dfll(hw); 985 986 return dfll_request_rate(td, rate); 987 } 988 989 static const struct clk_ops dfll_clk_ops = { 990 .is_enabled = dfll_clk_is_enabled, 991 .enable = dfll_clk_enable, 992 .disable = dfll_clk_disable, 993 .recalc_rate = dfll_clk_recalc_rate, 994 .determine_rate = dfll_clk_determine_rate, 995 .set_rate = dfll_clk_set_rate, 996 }; 997 998 static struct clk_init_data dfll_clk_init_data = { 999 .ops = &dfll_clk_ops, 1000 .num_parents = 0, 1001 }; 1002 1003 /** 1004 * dfll_register_clk - register the DFLL output clock with the clock framework 1005 * @td: DFLL instance 1006 * 1007 * Register the DFLL's output clock with the Linux clock framework and register 1008 * the DFLL driver as an OF clock provider. Returns 0 upon success or -EINVAL 1009 * or -ENOMEM upon failure. 1010 */ 1011 static int dfll_register_clk(struct tegra_dfll *td) 1012 { 1013 int ret; 1014 1015 dfll_clk_init_data.name = td->output_clock_name; 1016 td->dfll_clk_hw.init = &dfll_clk_init_data; 1017 1018 td->dfll_clk = clk_register(td->dev, &td->dfll_clk_hw); 1019 if (IS_ERR(td->dfll_clk)) { 1020 dev_err(td->dev, "DFLL clock registration error\n"); 1021 return -EINVAL; 1022 } 1023 1024 ret = of_clk_add_provider(td->dev->of_node, of_clk_src_simple_get, 1025 td->dfll_clk); 1026 if (ret) { 1027 dev_err(td->dev, "of_clk_add_provider() failed\n"); 1028 1029 clk_unregister(td->dfll_clk); 1030 return ret; 1031 } 1032 1033 return 0; 1034 } 1035 1036 /** 1037 * dfll_unregister_clk - unregister the DFLL output clock 1038 * @td: DFLL instance 1039 * 1040 * Unregister the DFLL's output clock from the Linux clock framework 1041 * and from clkdev. No return value. 1042 */ 1043 static void dfll_unregister_clk(struct tegra_dfll *td) 1044 { 1045 of_clk_del_provider(td->dev->of_node); 1046 clk_unregister(td->dfll_clk); 1047 td->dfll_clk = NULL; 1048 } 1049 1050 /* 1051 * Debugfs interface 1052 */ 1053 1054 #ifdef CONFIG_DEBUG_FS 1055 /* 1056 * Monitor control 1057 */ 1058 1059 /** 1060 * dfll_calc_monitored_rate - convert DFLL_MONITOR_DATA_VAL rate into real freq 1061 * @monitor_data: value read from the DFLL_MONITOR_DATA_VAL bitfield 1062 * @ref_rate: DFLL reference clock rate 1063 * 1064 * Convert @monitor_data from DFLL_MONITOR_DATA_VAL units into cycles 1065 * per second. Returns the converted value. 1066 */ 1067 static u64 dfll_calc_monitored_rate(u32 monitor_data, 1068 unsigned long ref_rate) 1069 { 1070 return monitor_data * (ref_rate / REF_CLK_CYC_PER_DVCO_SAMPLE); 1071 } 1072 1073 /** 1074 * dfll_read_monitor_rate - return the DFLL's output rate from internal monitor 1075 * @td: DFLL instance 1076 * 1077 * If the DFLL is enabled, return the last rate reported by the DFLL's 1078 * internal monitoring hardware. This works in both open-loop and 1079 * closed-loop mode, and takes the output scaler setting into account. 1080 * Assumes that the monitor was programmed to monitor frequency before 1081 * the sample period started. If the driver believes that the DFLL is 1082 * currently uninitialized or disabled, it will return 0, since 1083 * otherwise the DFLL monitor data register will return the last 1084 * measured rate from when the DFLL was active. 1085 */ 1086 static u64 dfll_read_monitor_rate(struct tegra_dfll *td) 1087 { 1088 u32 v, s; 1089 u64 pre_scaler_rate, post_scaler_rate; 1090 1091 if (!dfll_is_running(td)) 1092 return 0; 1093 1094 v = dfll_readl(td, DFLL_MONITOR_DATA); 1095 v = (v & DFLL_MONITOR_DATA_VAL_MASK) >> DFLL_MONITOR_DATA_VAL_SHIFT; 1096 pre_scaler_rate = dfll_calc_monitored_rate(v, td->ref_rate); 1097 1098 s = dfll_readl(td, DFLL_FREQ_REQ); 1099 s = (s & DFLL_FREQ_REQ_SCALE_MASK) >> DFLL_FREQ_REQ_SCALE_SHIFT; 1100 post_scaler_rate = dfll_scale_dvco_rate(s, pre_scaler_rate); 1101 1102 return post_scaler_rate; 1103 } 1104 1105 static int attr_enable_get(void *data, u64 *val) 1106 { 1107 struct tegra_dfll *td = data; 1108 1109 *val = dfll_is_running(td); 1110 1111 return 0; 1112 } 1113 static int attr_enable_set(void *data, u64 val) 1114 { 1115 struct tegra_dfll *td = data; 1116 1117 return val ? dfll_enable(td) : dfll_disable(td); 1118 } 1119 DEFINE_SIMPLE_ATTRIBUTE(enable_fops, attr_enable_get, attr_enable_set, 1120 "%llu\n"); 1121 1122 static int attr_lock_get(void *data, u64 *val) 1123 { 1124 struct tegra_dfll *td = data; 1125 1126 *val = (td->mode == DFLL_CLOSED_LOOP); 1127 1128 return 0; 1129 } 1130 static int attr_lock_set(void *data, u64 val) 1131 { 1132 struct tegra_dfll *td = data; 1133 1134 return val ? dfll_lock(td) : dfll_unlock(td); 1135 } 1136 DEFINE_SIMPLE_ATTRIBUTE(lock_fops, attr_lock_get, attr_lock_set, 1137 "%llu\n"); 1138 1139 static int attr_rate_get(void *data, u64 *val) 1140 { 1141 struct tegra_dfll *td = data; 1142 1143 *val = dfll_read_monitor_rate(td); 1144 1145 return 0; 1146 } 1147 1148 static int attr_rate_set(void *data, u64 val) 1149 { 1150 struct tegra_dfll *td = data; 1151 1152 return dfll_request_rate(td, val); 1153 } 1154 DEFINE_SIMPLE_ATTRIBUTE(rate_fops, attr_rate_get, attr_rate_set, "%llu\n"); 1155 1156 static int attr_registers_show(struct seq_file *s, void *data) 1157 { 1158 u32 val, offs; 1159 struct tegra_dfll *td = s->private; 1160 1161 seq_puts(s, "CONTROL REGISTERS:\n"); 1162 for (offs = 0; offs <= DFLL_MONITOR_DATA; offs += 4) { 1163 if (offs == DFLL_OUTPUT_CFG) 1164 val = dfll_i2c_readl(td, offs); 1165 else 1166 val = dfll_readl(td, offs); 1167 seq_printf(s, "[0x%02x] = 0x%08x\n", offs, val); 1168 } 1169 1170 seq_puts(s, "\nI2C and INTR REGISTERS:\n"); 1171 for (offs = DFLL_I2C_CFG; offs <= DFLL_I2C_STS; offs += 4) 1172 seq_printf(s, "[0x%02x] = 0x%08x\n", offs, 1173 dfll_i2c_readl(td, offs)); 1174 for (offs = DFLL_INTR_STS; offs <= DFLL_INTR_EN; offs += 4) 1175 seq_printf(s, "[0x%02x] = 0x%08x\n", offs, 1176 dfll_i2c_readl(td, offs)); 1177 1178 seq_puts(s, "\nINTEGRATED I2C CONTROLLER REGISTERS:\n"); 1179 offs = DFLL_I2C_CLK_DIVISOR; 1180 seq_printf(s, "[0x%02x] = 0x%08x\n", offs, 1181 __raw_readl(td->i2c_controller_base + offs)); 1182 1183 seq_puts(s, "\nLUT:\n"); 1184 for (offs = 0; offs < 4 * MAX_DFLL_VOLTAGES; offs += 4) 1185 seq_printf(s, "[0x%02x] = 0x%08x\n", offs, 1186 __raw_readl(td->lut_base + offs)); 1187 1188 return 0; 1189 } 1190 1191 static int attr_registers_open(struct inode *inode, struct file *file) 1192 { 1193 return single_open(file, attr_registers_show, inode->i_private); 1194 } 1195 1196 static const struct file_operations attr_registers_fops = { 1197 .open = attr_registers_open, 1198 .read = seq_read, 1199 .llseek = seq_lseek, 1200 .release = single_release, 1201 }; 1202 1203 static int dfll_debug_init(struct tegra_dfll *td) 1204 { 1205 int ret; 1206 1207 if (!td || (td->mode == DFLL_UNINITIALIZED)) 1208 return 0; 1209 1210 td->debugfs_dir = debugfs_create_dir("tegra_dfll_fcpu", NULL); 1211 if (!td->debugfs_dir) 1212 return -ENOMEM; 1213 1214 ret = -ENOMEM; 1215 1216 if (!debugfs_create_file("enable", S_IRUGO | S_IWUSR, 1217 td->debugfs_dir, td, &enable_fops)) 1218 goto err_out; 1219 1220 if (!debugfs_create_file("lock", S_IRUGO, 1221 td->debugfs_dir, td, &lock_fops)) 1222 goto err_out; 1223 1224 if (!debugfs_create_file("rate", S_IRUGO, 1225 td->debugfs_dir, td, &rate_fops)) 1226 goto err_out; 1227 1228 if (!debugfs_create_file("registers", S_IRUGO, 1229 td->debugfs_dir, td, &attr_registers_fops)) 1230 goto err_out; 1231 1232 return 0; 1233 1234 err_out: 1235 debugfs_remove_recursive(td->debugfs_dir); 1236 return ret; 1237 } 1238 1239 #endif /* CONFIG_DEBUG_FS */ 1240 1241 /* 1242 * DFLL initialization 1243 */ 1244 1245 /** 1246 * dfll_set_default_params - program non-output related DFLL parameters 1247 * @td: DFLL instance 1248 * 1249 * During DFLL driver initialization or resume from context loss, 1250 * program parameters for the closed loop integrator, DVCO tuning, 1251 * voltage droop control and monitor control. 1252 */ 1253 static void dfll_set_default_params(struct tegra_dfll *td) 1254 { 1255 u32 val; 1256 1257 val = DIV_ROUND_UP(td->ref_rate, td->sample_rate * 32); 1258 BUG_ON(val > DFLL_CONFIG_DIV_MASK); 1259 dfll_writel(td, val, DFLL_CONFIG); 1260 1261 val = (td->force_mode << DFLL_PARAMS_FORCE_MODE_SHIFT) | 1262 (td->cf << DFLL_PARAMS_CF_PARAM_SHIFT) | 1263 (td->ci << DFLL_PARAMS_CI_PARAM_SHIFT) | 1264 (td->cg << DFLL_PARAMS_CG_PARAM_SHIFT) | 1265 (td->cg_scale ? DFLL_PARAMS_CG_SCALE : 0); 1266 dfll_writel(td, val, DFLL_PARAMS); 1267 1268 dfll_tune_low(td); 1269 dfll_writel(td, td->droop_ctrl, DFLL_DROOP_CTRL); 1270 dfll_writel(td, DFLL_MONITOR_CTRL_FREQ, DFLL_MONITOR_CTRL); 1271 } 1272 1273 /** 1274 * dfll_init_clks - clk_get() the DFLL source clocks 1275 * @td: DFLL instance 1276 * 1277 * Call clk_get() on the DFLL source clocks and save the pointers for later 1278 * use. Returns 0 upon success or error (see devm_clk_get) if one or more 1279 * of the clocks couldn't be looked up. 1280 */ 1281 static int dfll_init_clks(struct tegra_dfll *td) 1282 { 1283 td->ref_clk = devm_clk_get(td->dev, "ref"); 1284 if (IS_ERR(td->ref_clk)) { 1285 dev_err(td->dev, "missing ref clock\n"); 1286 return PTR_ERR(td->ref_clk); 1287 } 1288 1289 td->soc_clk = devm_clk_get(td->dev, "soc"); 1290 if (IS_ERR(td->soc_clk)) { 1291 dev_err(td->dev, "missing soc clock\n"); 1292 return PTR_ERR(td->soc_clk); 1293 } 1294 1295 td->i2c_clk = devm_clk_get(td->dev, "i2c"); 1296 if (IS_ERR(td->i2c_clk)) { 1297 dev_err(td->dev, "missing i2c clock\n"); 1298 return PTR_ERR(td->i2c_clk); 1299 } 1300 td->i2c_clk_rate = clk_get_rate(td->i2c_clk); 1301 1302 return 0; 1303 } 1304 1305 /** 1306 * dfll_init - Prepare the DFLL IP block for use 1307 * @td: DFLL instance 1308 * 1309 * Do everything necessary to prepare the DFLL IP block for use. The 1310 * DFLL will be left in DISABLED state. Called by dfll_probe(). 1311 * Returns 0 upon success, or passes along the error from whatever 1312 * function returned it. 1313 */ 1314 static int dfll_init(struct tegra_dfll *td) 1315 { 1316 int ret; 1317 1318 td->ref_rate = clk_get_rate(td->ref_clk); 1319 if (td->ref_rate != REF_CLOCK_RATE) { 1320 dev_err(td->dev, "unexpected ref clk rate %lu, expecting %lu", 1321 td->ref_rate, REF_CLOCK_RATE); 1322 return -EINVAL; 1323 } 1324 1325 reset_control_deassert(td->dvco_rst); 1326 1327 ret = clk_prepare(td->ref_clk); 1328 if (ret) { 1329 dev_err(td->dev, "failed to prepare ref_clk\n"); 1330 return ret; 1331 } 1332 1333 ret = clk_prepare(td->soc_clk); 1334 if (ret) { 1335 dev_err(td->dev, "failed to prepare soc_clk\n"); 1336 goto di_err1; 1337 } 1338 1339 ret = clk_prepare(td->i2c_clk); 1340 if (ret) { 1341 dev_err(td->dev, "failed to prepare i2c_clk\n"); 1342 goto di_err2; 1343 } 1344 1345 td->last_unrounded_rate = 0; 1346 1347 pm_runtime_enable(td->dev); 1348 pm_runtime_get_sync(td->dev); 1349 1350 dfll_set_mode(td, DFLL_DISABLED); 1351 dfll_set_default_params(td); 1352 1353 if (td->soc->init_clock_trimmers) 1354 td->soc->init_clock_trimmers(); 1355 1356 dfll_set_open_loop_config(td); 1357 1358 dfll_init_out_if(td); 1359 1360 pm_runtime_put_sync(td->dev); 1361 1362 return 0; 1363 1364 di_err2: 1365 clk_unprepare(td->soc_clk); 1366 di_err1: 1367 clk_unprepare(td->ref_clk); 1368 1369 reset_control_assert(td->dvco_rst); 1370 1371 return ret; 1372 } 1373 1374 /* 1375 * DT data fetch 1376 */ 1377 1378 /* 1379 * Find a PMIC voltage register-to-voltage mapping for the given voltage. 1380 * An exact voltage match is required. 1381 */ 1382 static int find_vdd_map_entry_exact(struct tegra_dfll *td, int uV) 1383 { 1384 int i, n_voltages, reg_uV; 1385 1386 n_voltages = regulator_count_voltages(td->vdd_reg); 1387 for (i = 0; i < n_voltages; i++) { 1388 reg_uV = regulator_list_voltage(td->vdd_reg, i); 1389 if (reg_uV < 0) 1390 break; 1391 1392 if (uV == reg_uV) 1393 return i; 1394 } 1395 1396 dev_err(td->dev, "no voltage map entry for %d uV\n", uV); 1397 return -EINVAL; 1398 } 1399 1400 /* 1401 * Find a PMIC voltage register-to-voltage mapping for the given voltage, 1402 * rounding up to the closest supported voltage. 1403 * */ 1404 static int find_vdd_map_entry_min(struct tegra_dfll *td, int uV) 1405 { 1406 int i, n_voltages, reg_uV; 1407 1408 n_voltages = regulator_count_voltages(td->vdd_reg); 1409 for (i = 0; i < n_voltages; i++) { 1410 reg_uV = regulator_list_voltage(td->vdd_reg, i); 1411 if (reg_uV < 0) 1412 break; 1413 1414 if (uV <= reg_uV) 1415 return i; 1416 } 1417 1418 dev_err(td->dev, "no voltage map entry rounding to %d uV\n", uV); 1419 return -EINVAL; 1420 } 1421 1422 /** 1423 * dfll_build_i2c_lut - build the I2C voltage register lookup table 1424 * @td: DFLL instance 1425 * 1426 * The DFLL hardware has 33 bytes of look-up table RAM that must be filled with 1427 * PMIC voltage register values that span the entire DFLL operating range. 1428 * This function builds the look-up table based on the OPP table provided by 1429 * the soc-specific platform driver (td->soc->opp_dev) and the PMIC 1430 * register-to-voltage mapping queried from the regulator framework. 1431 * 1432 * On success, fills in td->i2c_lut and returns 0, or -err on failure. 1433 */ 1434 static int dfll_build_i2c_lut(struct tegra_dfll *td) 1435 { 1436 int ret = -EINVAL; 1437 int j, v, v_max, v_opp; 1438 int selector; 1439 unsigned long rate; 1440 struct dev_pm_opp *opp; 1441 int lut; 1442 1443 rcu_read_lock(); 1444 1445 rate = ULONG_MAX; 1446 opp = dev_pm_opp_find_freq_floor(td->soc->dev, &rate); 1447 if (IS_ERR(opp)) { 1448 dev_err(td->dev, "couldn't get vmax opp, empty opp table?\n"); 1449 goto out; 1450 } 1451 v_max = dev_pm_opp_get_voltage(opp); 1452 1453 v = td->soc->cvb->min_millivolts * 1000; 1454 lut = find_vdd_map_entry_exact(td, v); 1455 if (lut < 0) 1456 goto out; 1457 td->i2c_lut[0] = lut; 1458 1459 for (j = 1, rate = 0; ; rate++) { 1460 opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate); 1461 if (IS_ERR(opp)) 1462 break; 1463 v_opp = dev_pm_opp_get_voltage(opp); 1464 1465 if (v_opp <= td->soc->cvb->min_millivolts * 1000) 1466 td->dvco_rate_min = dev_pm_opp_get_freq(opp); 1467 1468 for (;;) { 1469 v += max(1, (v_max - v) / (MAX_DFLL_VOLTAGES - j)); 1470 if (v >= v_opp) 1471 break; 1472 1473 selector = find_vdd_map_entry_min(td, v); 1474 if (selector < 0) 1475 goto out; 1476 if (selector != td->i2c_lut[j - 1]) 1477 td->i2c_lut[j++] = selector; 1478 } 1479 1480 v = (j == MAX_DFLL_VOLTAGES - 1) ? v_max : v_opp; 1481 selector = find_vdd_map_entry_exact(td, v); 1482 if (selector < 0) 1483 goto out; 1484 if (selector != td->i2c_lut[j - 1]) 1485 td->i2c_lut[j++] = selector; 1486 1487 if (v >= v_max) 1488 break; 1489 } 1490 td->i2c_lut_size = j; 1491 1492 if (!td->dvco_rate_min) 1493 dev_err(td->dev, "no opp above DFLL minimum voltage %d mV\n", 1494 td->soc->cvb->min_millivolts); 1495 else 1496 ret = 0; 1497 1498 out: 1499 rcu_read_unlock(); 1500 1501 return ret; 1502 } 1503 1504 /** 1505 * read_dt_param - helper function for reading required parameters from the DT 1506 * @td: DFLL instance 1507 * @param: DT property name 1508 * @dest: output pointer for the value read 1509 * 1510 * Read a required numeric parameter from the DFLL device node, or complain 1511 * if the property doesn't exist. Returns a boolean indicating success for 1512 * easy chaining of multiple calls to this function. 1513 */ 1514 static bool read_dt_param(struct tegra_dfll *td, const char *param, u32 *dest) 1515 { 1516 int err = of_property_read_u32(td->dev->of_node, param, dest); 1517 1518 if (err < 0) { 1519 dev_err(td->dev, "failed to read DT parameter %s: %d\n", 1520 param, err); 1521 return false; 1522 } 1523 1524 return true; 1525 } 1526 1527 /** 1528 * dfll_fetch_i2c_params - query PMIC I2C params from DT & regulator subsystem 1529 * @td: DFLL instance 1530 * 1531 * Read all the parameters required for operation in I2C mode. The parameters 1532 * can originate from the device tree or the regulator subsystem. 1533 * Returns 0 on success or -err on failure. 1534 */ 1535 static int dfll_fetch_i2c_params(struct tegra_dfll *td) 1536 { 1537 struct regmap *regmap; 1538 struct device *i2c_dev; 1539 struct i2c_client *i2c_client; 1540 int vsel_reg, vsel_mask; 1541 int ret; 1542 1543 if (!read_dt_param(td, "nvidia,i2c-fs-rate", &td->i2c_fs_rate)) 1544 return -EINVAL; 1545 1546 regmap = regulator_get_regmap(td->vdd_reg); 1547 i2c_dev = regmap_get_device(regmap); 1548 i2c_client = to_i2c_client(i2c_dev); 1549 1550 td->i2c_slave_addr = i2c_client->addr; 1551 1552 ret = regulator_get_hardware_vsel_register(td->vdd_reg, 1553 &vsel_reg, 1554 &vsel_mask); 1555 if (ret < 0) { 1556 dev_err(td->dev, 1557 "regulator unsuitable for DFLL I2C operation\n"); 1558 return -EINVAL; 1559 } 1560 td->i2c_reg = vsel_reg; 1561 1562 ret = dfll_build_i2c_lut(td); 1563 if (ret) { 1564 dev_err(td->dev, "couldn't build I2C LUT\n"); 1565 return ret; 1566 } 1567 1568 return 0; 1569 } 1570 1571 /** 1572 * dfll_fetch_common_params - read DFLL parameters from the device tree 1573 * @td: DFLL instance 1574 * 1575 * Read all the DT parameters that are common to both I2C and PWM operation. 1576 * Returns 0 on success or -EINVAL on any failure. 1577 */ 1578 static int dfll_fetch_common_params(struct tegra_dfll *td) 1579 { 1580 bool ok = true; 1581 1582 ok &= read_dt_param(td, "nvidia,droop-ctrl", &td->droop_ctrl); 1583 ok &= read_dt_param(td, "nvidia,sample-rate", &td->sample_rate); 1584 ok &= read_dt_param(td, "nvidia,force-mode", &td->force_mode); 1585 ok &= read_dt_param(td, "nvidia,cf", &td->cf); 1586 ok &= read_dt_param(td, "nvidia,ci", &td->ci); 1587 ok &= read_dt_param(td, "nvidia,cg", &td->cg); 1588 td->cg_scale = of_property_read_bool(td->dev->of_node, 1589 "nvidia,cg-scale"); 1590 1591 if (of_property_read_string(td->dev->of_node, "clock-output-names", 1592 &td->output_clock_name)) { 1593 dev_err(td->dev, "missing clock-output-names property\n"); 1594 ok = false; 1595 } 1596 1597 return ok ? 0 : -EINVAL; 1598 } 1599 1600 /* 1601 * API exported to per-SoC platform drivers 1602 */ 1603 1604 /** 1605 * tegra_dfll_register - probe a Tegra DFLL device 1606 * @pdev: DFLL platform_device * 1607 * @soc: Per-SoC integration and characterization data for this DFLL instance 1608 * 1609 * Probe and initialize a DFLL device instance. Intended to be called 1610 * by a SoC-specific shim driver that passes in per-SoC integration 1611 * and configuration data via @soc. Returns 0 on success or -err on failure. 1612 */ 1613 int tegra_dfll_register(struct platform_device *pdev, 1614 struct tegra_dfll_soc_data *soc) 1615 { 1616 struct resource *mem; 1617 struct tegra_dfll *td; 1618 int ret; 1619 1620 if (!soc) { 1621 dev_err(&pdev->dev, "no tegra_dfll_soc_data provided\n"); 1622 return -EINVAL; 1623 } 1624 1625 td = devm_kzalloc(&pdev->dev, sizeof(*td), GFP_KERNEL); 1626 if (!td) 1627 return -ENOMEM; 1628 td->dev = &pdev->dev; 1629 platform_set_drvdata(pdev, td); 1630 1631 td->soc = soc; 1632 1633 td->vdd_reg = devm_regulator_get(td->dev, "vdd-cpu"); 1634 if (IS_ERR(td->vdd_reg)) { 1635 dev_err(td->dev, "couldn't get vdd_cpu regulator\n"); 1636 return PTR_ERR(td->vdd_reg); 1637 } 1638 1639 td->dvco_rst = devm_reset_control_get(td->dev, "dvco"); 1640 if (IS_ERR(td->dvco_rst)) { 1641 dev_err(td->dev, "couldn't get dvco reset\n"); 1642 return PTR_ERR(td->dvco_rst); 1643 } 1644 1645 ret = dfll_fetch_common_params(td); 1646 if (ret) { 1647 dev_err(td->dev, "couldn't parse device tree parameters\n"); 1648 return ret; 1649 } 1650 1651 ret = dfll_fetch_i2c_params(td); 1652 if (ret) 1653 return ret; 1654 1655 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1656 if (!mem) { 1657 dev_err(td->dev, "no control register resource\n"); 1658 return -ENODEV; 1659 } 1660 1661 td->base = devm_ioremap(td->dev, mem->start, resource_size(mem)); 1662 if (!td->base) { 1663 dev_err(td->dev, "couldn't ioremap DFLL control registers\n"); 1664 return -ENODEV; 1665 } 1666 1667 mem = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1668 if (!mem) { 1669 dev_err(td->dev, "no i2c_base resource\n"); 1670 return -ENODEV; 1671 } 1672 1673 td->i2c_base = devm_ioremap(td->dev, mem->start, resource_size(mem)); 1674 if (!td->i2c_base) { 1675 dev_err(td->dev, "couldn't ioremap i2c_base resource\n"); 1676 return -ENODEV; 1677 } 1678 1679 mem = platform_get_resource(pdev, IORESOURCE_MEM, 2); 1680 if (!mem) { 1681 dev_err(td->dev, "no i2c_controller_base resource\n"); 1682 return -ENODEV; 1683 } 1684 1685 td->i2c_controller_base = devm_ioremap(td->dev, mem->start, 1686 resource_size(mem)); 1687 if (!td->i2c_controller_base) { 1688 dev_err(td->dev, 1689 "couldn't ioremap i2c_controller_base resource\n"); 1690 return -ENODEV; 1691 } 1692 1693 mem = platform_get_resource(pdev, IORESOURCE_MEM, 3); 1694 if (!mem) { 1695 dev_err(td->dev, "no lut_base resource\n"); 1696 return -ENODEV; 1697 } 1698 1699 td->lut_base = devm_ioremap(td->dev, mem->start, resource_size(mem)); 1700 if (!td->lut_base) { 1701 dev_err(td->dev, 1702 "couldn't ioremap lut_base resource\n"); 1703 return -ENODEV; 1704 } 1705 1706 ret = dfll_init_clks(td); 1707 if (ret) { 1708 dev_err(&pdev->dev, "DFLL clock init error\n"); 1709 return ret; 1710 } 1711 1712 /* Enable the clocks and set the device up */ 1713 ret = dfll_init(td); 1714 if (ret) 1715 return ret; 1716 1717 ret = dfll_register_clk(td); 1718 if (ret) { 1719 dev_err(&pdev->dev, "DFLL clk registration failed\n"); 1720 return ret; 1721 } 1722 1723 #ifdef CONFIG_DEBUG_FS 1724 dfll_debug_init(td); 1725 #endif 1726 1727 return 0; 1728 } 1729 EXPORT_SYMBOL(tegra_dfll_register); 1730 1731 /** 1732 * tegra_dfll_unregister - release all of the DFLL driver resources for a device 1733 * @pdev: DFLL platform_device * 1734 * 1735 * Unbind this driver from the DFLL hardware device represented by 1736 * @pdev. The DFLL must be disabled for this to succeed. Returns 0 1737 * upon success or -EBUSY if the DFLL is still active. 1738 */ 1739 int tegra_dfll_unregister(struct platform_device *pdev) 1740 { 1741 struct tegra_dfll *td = platform_get_drvdata(pdev); 1742 1743 /* Try to prevent removal while the DFLL is active */ 1744 if (td->mode != DFLL_DISABLED) { 1745 dev_err(&pdev->dev, 1746 "must disable DFLL before removing driver\n"); 1747 return -EBUSY; 1748 } 1749 1750 debugfs_remove_recursive(td->debugfs_dir); 1751 1752 dfll_unregister_clk(td); 1753 pm_runtime_disable(&pdev->dev); 1754 1755 clk_unprepare(td->ref_clk); 1756 clk_unprepare(td->soc_clk); 1757 clk_unprepare(td->i2c_clk); 1758 1759 reset_control_assert(td->dvco_rst); 1760 1761 return 0; 1762 } 1763 EXPORT_SYMBOL(tegra_dfll_unregister); 1764