1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * clk-dfll.c - Tegra DFLL clock source common code
4 *
5 * Copyright (C) 2012-2019 NVIDIA Corporation. All rights reserved.
6 *
7 * Aleksandr Frid <afrid@nvidia.com>
8 * Paul Walmsley <pwalmsley@nvidia.com>
9 *
10 * This library is for the DVCO and DFLL IP blocks on the Tegra124
11 * SoC. These IP blocks together are also known at NVIDIA as
12 * "CL-DVFS". To try to avoid confusion, this code refers to them
13 * collectively as the "DFLL."
14 *
15 * The DFLL is a root clocksource which tolerates some amount of
16 * supply voltage noise. Tegra124 uses it to clock the fast CPU
17 * complex when the target CPU speed is above a particular rate. The
18 * DFLL can be operated in either open-loop mode or closed-loop mode.
19 * In open-loop mode, the DFLL generates an output clock appropriate
20 * to the supply voltage. In closed-loop mode, when configured with a
21 * target frequency, the DFLL minimizes supply voltage while
22 * delivering an average frequency equal to the target.
23 *
24 * Devices clocked by the DFLL must be able to tolerate frequency
25 * variation. In the case of the CPU, it's important to note that the
26 * CPU cycle time will vary. This has implications for
27 * performance-measurement code and any code that relies on the CPU
28 * cycle time to delay for a certain length of time.
29 */
30
31 #include <linux/clk.h>
32 #include <linux/clk-provider.h>
33 #include <linux/debugfs.h>
34 #include <linux/device.h>
35 #include <linux/err.h>
36 #include <linux/i2c.h>
37 #include <linux/io.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/of.h>
41 #include <linux/pinctrl/consumer.h>
42 #include <linux/pm_opp.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/regmap.h>
45 #include <linux/regulator/consumer.h>
46 #include <linux/reset.h>
47 #include <linux/seq_file.h>
48
49 #include "clk-dfll.h"
50 #include "cvb.h"
51
52 /*
53 * DFLL control registers - access via dfll_{readl,writel}
54 */
55
56 /* DFLL_CTRL: DFLL control register */
57 #define DFLL_CTRL 0x00
58 #define DFLL_CTRL_MODE_MASK 0x03
59
60 /* DFLL_CONFIG: DFLL sample rate control */
61 #define DFLL_CONFIG 0x04
62 #define DFLL_CONFIG_DIV_MASK 0xff
63 #define DFLL_CONFIG_DIV_PRESCALE 32
64
65 /* DFLL_PARAMS: tuning coefficients for closed loop integrator */
66 #define DFLL_PARAMS 0x08
67 #define DFLL_PARAMS_CG_SCALE (0x1 << 24)
68 #define DFLL_PARAMS_FORCE_MODE_SHIFT 22
69 #define DFLL_PARAMS_FORCE_MODE_MASK (0x3 << DFLL_PARAMS_FORCE_MODE_SHIFT)
70 #define DFLL_PARAMS_CF_PARAM_SHIFT 16
71 #define DFLL_PARAMS_CF_PARAM_MASK (0x3f << DFLL_PARAMS_CF_PARAM_SHIFT)
72 #define DFLL_PARAMS_CI_PARAM_SHIFT 8
73 #define DFLL_PARAMS_CI_PARAM_MASK (0x7 << DFLL_PARAMS_CI_PARAM_SHIFT)
74 #define DFLL_PARAMS_CG_PARAM_SHIFT 0
75 #define DFLL_PARAMS_CG_PARAM_MASK (0xff << DFLL_PARAMS_CG_PARAM_SHIFT)
76
77 /* DFLL_TUNE0: delay line configuration register 0 */
78 #define DFLL_TUNE0 0x0c
79
80 /* DFLL_TUNE1: delay line configuration register 1 */
81 #define DFLL_TUNE1 0x10
82
83 /* DFLL_FREQ_REQ: target DFLL frequency control */
84 #define DFLL_FREQ_REQ 0x14
85 #define DFLL_FREQ_REQ_FORCE_ENABLE (0x1 << 28)
86 #define DFLL_FREQ_REQ_FORCE_SHIFT 16
87 #define DFLL_FREQ_REQ_FORCE_MASK (0xfff << DFLL_FREQ_REQ_FORCE_SHIFT)
88 #define FORCE_MAX 2047
89 #define FORCE_MIN -2048
90 #define DFLL_FREQ_REQ_SCALE_SHIFT 8
91 #define DFLL_FREQ_REQ_SCALE_MASK (0xff << DFLL_FREQ_REQ_SCALE_SHIFT)
92 #define DFLL_FREQ_REQ_SCALE_MAX 256
93 #define DFLL_FREQ_REQ_FREQ_VALID (0x1 << 7)
94 #define DFLL_FREQ_REQ_MULT_SHIFT 0
95 #define DFLL_FREQ_REG_MULT_MASK (0x7f << DFLL_FREQ_REQ_MULT_SHIFT)
96 #define FREQ_MAX 127
97
98 /* DFLL_DROOP_CTRL: droop prevention control */
99 #define DFLL_DROOP_CTRL 0x1c
100
101 /* DFLL_OUTPUT_CFG: closed loop mode control registers */
102 /* NOTE: access via dfll_i2c_{readl,writel} */
103 #define DFLL_OUTPUT_CFG 0x20
104 #define DFLL_OUTPUT_CFG_I2C_ENABLE (0x1 << 30)
105 #define OUT_MASK 0x3f
106 #define DFLL_OUTPUT_CFG_SAFE_SHIFT 24
107 #define DFLL_OUTPUT_CFG_SAFE_MASK \
108 (OUT_MASK << DFLL_OUTPUT_CFG_SAFE_SHIFT)
109 #define DFLL_OUTPUT_CFG_MAX_SHIFT 16
110 #define DFLL_OUTPUT_CFG_MAX_MASK \
111 (OUT_MASK << DFLL_OUTPUT_CFG_MAX_SHIFT)
112 #define DFLL_OUTPUT_CFG_MIN_SHIFT 8
113 #define DFLL_OUTPUT_CFG_MIN_MASK \
114 (OUT_MASK << DFLL_OUTPUT_CFG_MIN_SHIFT)
115 #define DFLL_OUTPUT_CFG_PWM_DELTA (0x1 << 7)
116 #define DFLL_OUTPUT_CFG_PWM_ENABLE (0x1 << 6)
117 #define DFLL_OUTPUT_CFG_PWM_DIV_SHIFT 0
118 #define DFLL_OUTPUT_CFG_PWM_DIV_MASK \
119 (OUT_MASK << DFLL_OUTPUT_CFG_PWM_DIV_SHIFT)
120
121 /* DFLL_OUTPUT_FORCE: closed loop mode voltage forcing control */
122 #define DFLL_OUTPUT_FORCE 0x24
123 #define DFLL_OUTPUT_FORCE_ENABLE (0x1 << 6)
124 #define DFLL_OUTPUT_FORCE_VALUE_SHIFT 0
125 #define DFLL_OUTPUT_FORCE_VALUE_MASK \
126 (OUT_MASK << DFLL_OUTPUT_FORCE_VALUE_SHIFT)
127
128 /* DFLL_MONITOR_CTRL: internal monitor data source control */
129 #define DFLL_MONITOR_CTRL 0x28
130 #define DFLL_MONITOR_CTRL_FREQ 6
131
132 /* DFLL_MONITOR_DATA: internal monitor data output */
133 #define DFLL_MONITOR_DATA 0x2c
134 #define DFLL_MONITOR_DATA_NEW_MASK (0x1 << 16)
135 #define DFLL_MONITOR_DATA_VAL_SHIFT 0
136 #define DFLL_MONITOR_DATA_VAL_MASK (0xFFFF << DFLL_MONITOR_DATA_VAL_SHIFT)
137
138 /*
139 * I2C output control registers - access via dfll_i2c_{readl,writel}
140 */
141
142 /* DFLL_I2C_CFG: I2C controller configuration register */
143 #define DFLL_I2C_CFG 0x40
144 #define DFLL_I2C_CFG_ARB_ENABLE (0x1 << 20)
145 #define DFLL_I2C_CFG_HS_CODE_SHIFT 16
146 #define DFLL_I2C_CFG_HS_CODE_MASK (0x7 << DFLL_I2C_CFG_HS_CODE_SHIFT)
147 #define DFLL_I2C_CFG_PACKET_ENABLE (0x1 << 15)
148 #define DFLL_I2C_CFG_SIZE_SHIFT 12
149 #define DFLL_I2C_CFG_SIZE_MASK (0x7 << DFLL_I2C_CFG_SIZE_SHIFT)
150 #define DFLL_I2C_CFG_SLAVE_ADDR_10 (0x1 << 10)
151 #define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT 1
152 #define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT 0
153
154 /* DFLL_I2C_VDD_REG_ADDR: PMIC I2C address for closed loop mode */
155 #define DFLL_I2C_VDD_REG_ADDR 0x44
156
157 /* DFLL_I2C_STS: I2C controller status */
158 #define DFLL_I2C_STS 0x48
159 #define DFLL_I2C_STS_I2C_LAST_SHIFT 1
160 #define DFLL_I2C_STS_I2C_REQ_PENDING 0x1
161
162 /* DFLL_INTR_STS: DFLL interrupt status register */
163 #define DFLL_INTR_STS 0x5c
164
165 /* DFLL_INTR_EN: DFLL interrupt enable register */
166 #define DFLL_INTR_EN 0x60
167 #define DFLL_INTR_MIN_MASK 0x1
168 #define DFLL_INTR_MAX_MASK 0x2
169
170 /*
171 * Integrated I2C controller registers - relative to td->i2c_controller_base
172 */
173
174 /* DFLL_I2C_CLK_DIVISOR: I2C controller clock divisor */
175 #define DFLL_I2C_CLK_DIVISOR 0x6c
176 #define DFLL_I2C_CLK_DIVISOR_MASK 0xffff
177 #define DFLL_I2C_CLK_DIVISOR_FS_SHIFT 16
178 #define DFLL_I2C_CLK_DIVISOR_HS_SHIFT 0
179 #define DFLL_I2C_CLK_DIVISOR_PREDIV 8
180 #define DFLL_I2C_CLK_DIVISOR_HSMODE_PREDIV 12
181
182 /*
183 * Other constants
184 */
185
186 /* MAX_DFLL_VOLTAGES: number of LUT entries in the DFLL IP block */
187 #define MAX_DFLL_VOLTAGES 33
188
189 /*
190 * REF_CLK_CYC_PER_DVCO_SAMPLE: the number of ref_clk cycles that the hardware
191 * integrates the DVCO counter over - used for debug rate monitoring and
192 * droop control
193 */
194 #define REF_CLK_CYC_PER_DVCO_SAMPLE 4
195
196 /*
197 * REF_CLOCK_RATE: the DFLL reference clock rate currently supported by this
198 * driver, in Hz
199 */
200 #define REF_CLOCK_RATE 51000000UL
201
202 #define DVCO_RATE_TO_MULT(rate, ref_rate) ((rate) / ((ref_rate) / 2))
203 #define MULT_TO_DVCO_RATE(mult, ref_rate) ((mult) * ((ref_rate) / 2))
204
205 /**
206 * enum dfll_ctrl_mode - DFLL hardware operating mode
207 * @DFLL_UNINITIALIZED: (uninitialized state - not in hardware bitfield)
208 * @DFLL_DISABLED: DFLL not generating an output clock
209 * @DFLL_OPEN_LOOP: DVCO running, but DFLL not adjusting voltage
210 * @DFLL_CLOSED_LOOP: DVCO running, and DFLL adjusting voltage to match
211 * the requested rate
212 *
213 * The integer corresponding to the last two states, minus one, is
214 * written to the DFLL hardware to change operating modes.
215 */
216 enum dfll_ctrl_mode {
217 DFLL_UNINITIALIZED = 0,
218 DFLL_DISABLED = 1,
219 DFLL_OPEN_LOOP = 2,
220 DFLL_CLOSED_LOOP = 3,
221 };
222
223 /**
224 * enum dfll_tune_range - voltage range that the driver believes it's in
225 * @DFLL_TUNE_UNINITIALIZED: DFLL tuning not yet programmed
226 * @DFLL_TUNE_LOW: DFLL in the low-voltage range (or open-loop mode)
227 *
228 * Some DFLL tuning parameters may need to change depending on the
229 * DVCO's voltage; these states represent the ranges that the driver
230 * supports. These are software states; these values are never
231 * written into registers.
232 */
233 enum dfll_tune_range {
234 DFLL_TUNE_UNINITIALIZED = 0,
235 DFLL_TUNE_LOW = 1,
236 };
237
238
239 enum tegra_dfll_pmu_if {
240 TEGRA_DFLL_PMU_I2C = 0,
241 TEGRA_DFLL_PMU_PWM = 1,
242 };
243
244 /**
245 * struct dfll_rate_req - target DFLL rate request data
246 * @rate: target frequency, after the postscaling
247 * @dvco_target_rate: target frequency, after the postscaling
248 * @lut_index: LUT index at which voltage the dvco_target_rate will be reached
249 * @mult_bits: value to program to the MULT bits of the DFLL_FREQ_REQ register
250 * @scale_bits: value to program to the SCALE bits of the DFLL_FREQ_REQ register
251 */
252 struct dfll_rate_req {
253 unsigned long rate;
254 unsigned long dvco_target_rate;
255 int lut_index;
256 u8 mult_bits;
257 u8 scale_bits;
258 };
259
260 struct tegra_dfll {
261 struct device *dev;
262 struct tegra_dfll_soc_data *soc;
263
264 void __iomem *base;
265 void __iomem *i2c_base;
266 void __iomem *i2c_controller_base;
267 void __iomem *lut_base;
268
269 struct regulator *vdd_reg;
270 struct clk *soc_clk;
271 struct clk *ref_clk;
272 struct clk *i2c_clk;
273 struct clk *dfll_clk;
274 struct reset_control *dfll_rst;
275 struct reset_control *dvco_rst;
276 unsigned long ref_rate;
277 unsigned long i2c_clk_rate;
278 unsigned long dvco_rate_min;
279
280 enum dfll_ctrl_mode mode;
281 enum dfll_tune_range tune_range;
282 struct dentry *debugfs_dir;
283 struct clk_hw dfll_clk_hw;
284 const char *output_clock_name;
285 struct dfll_rate_req last_req;
286 unsigned long last_unrounded_rate;
287
288 /* Parameters from DT */
289 u32 droop_ctrl;
290 u32 sample_rate;
291 u32 force_mode;
292 u32 cf;
293 u32 ci;
294 u32 cg;
295 bool cg_scale;
296
297 /* I2C interface parameters */
298 u32 i2c_fs_rate;
299 u32 i2c_reg;
300 u32 i2c_slave_addr;
301
302 /* lut array entries are regulator framework selectors or PWM values*/
303 unsigned lut[MAX_DFLL_VOLTAGES];
304 unsigned long lut_uv[MAX_DFLL_VOLTAGES];
305 int lut_size;
306 u8 lut_bottom, lut_min, lut_max, lut_safe;
307
308 /* PWM interface */
309 enum tegra_dfll_pmu_if pmu_if;
310 unsigned long pwm_rate;
311 struct pinctrl *pwm_pin;
312 struct pinctrl_state *pwm_enable_state;
313 struct pinctrl_state *pwm_disable_state;
314 u32 reg_init_uV;
315 };
316
317 #define clk_hw_to_dfll(_hw) container_of(_hw, struct tegra_dfll, dfll_clk_hw)
318
319 /* mode_name: map numeric DFLL modes to names for friendly console messages */
320 static const char * const mode_name[] = {
321 [DFLL_UNINITIALIZED] = "uninitialized",
322 [DFLL_DISABLED] = "disabled",
323 [DFLL_OPEN_LOOP] = "open_loop",
324 [DFLL_CLOSED_LOOP] = "closed_loop",
325 };
326
327 /*
328 * Register accessors
329 */
330
dfll_readl(struct tegra_dfll * td,u32 offs)331 static inline u32 dfll_readl(struct tegra_dfll *td, u32 offs)
332 {
333 return __raw_readl(td->base + offs);
334 }
335
dfll_writel(struct tegra_dfll * td,u32 val,u32 offs)336 static inline void dfll_writel(struct tegra_dfll *td, u32 val, u32 offs)
337 {
338 WARN_ON(offs >= DFLL_I2C_CFG);
339 __raw_writel(val, td->base + offs);
340 }
341
dfll_wmb(struct tegra_dfll * td)342 static inline void dfll_wmb(struct tegra_dfll *td)
343 {
344 dfll_readl(td, DFLL_CTRL);
345 }
346
347 /* I2C output control registers - for addresses above DFLL_I2C_CFG */
348
dfll_i2c_readl(struct tegra_dfll * td,u32 offs)349 static inline u32 dfll_i2c_readl(struct tegra_dfll *td, u32 offs)
350 {
351 return __raw_readl(td->i2c_base + offs);
352 }
353
dfll_i2c_writel(struct tegra_dfll * td,u32 val,u32 offs)354 static inline void dfll_i2c_writel(struct tegra_dfll *td, u32 val, u32 offs)
355 {
356 __raw_writel(val, td->i2c_base + offs);
357 }
358
dfll_i2c_wmb(struct tegra_dfll * td)359 static inline void dfll_i2c_wmb(struct tegra_dfll *td)
360 {
361 dfll_i2c_readl(td, DFLL_I2C_CFG);
362 }
363
364 /**
365 * dfll_is_running - is the DFLL currently generating a clock?
366 * @td: DFLL instance
367 *
368 * If the DFLL is currently generating an output clock signal, return
369 * true; otherwise return false.
370 */
dfll_is_running(struct tegra_dfll * td)371 static bool dfll_is_running(struct tegra_dfll *td)
372 {
373 return td->mode >= DFLL_OPEN_LOOP;
374 }
375
376 /*
377 * Runtime PM suspend/resume callbacks
378 */
379
380 /**
381 * tegra_dfll_runtime_resume - enable all clocks needed by the DFLL
382 * @dev: DFLL device *
383 *
384 * Enable all clocks needed by the DFLL. Assumes that clk_prepare()
385 * has already been called on all the clocks.
386 *
387 * XXX Should also handle context restore when returning from off.
388 */
tegra_dfll_runtime_resume(struct device * dev)389 int tegra_dfll_runtime_resume(struct device *dev)
390 {
391 struct tegra_dfll *td = dev_get_drvdata(dev);
392 int ret;
393
394 ret = clk_enable(td->ref_clk);
395 if (ret) {
396 dev_err(dev, "could not enable ref clock: %d\n", ret);
397 return ret;
398 }
399
400 ret = clk_enable(td->soc_clk);
401 if (ret) {
402 dev_err(dev, "could not enable register clock: %d\n", ret);
403 clk_disable(td->ref_clk);
404 return ret;
405 }
406
407 ret = clk_enable(td->i2c_clk);
408 if (ret) {
409 dev_err(dev, "could not enable i2c clock: %d\n", ret);
410 clk_disable(td->soc_clk);
411 clk_disable(td->ref_clk);
412 return ret;
413 }
414
415 return 0;
416 }
417 EXPORT_SYMBOL(tegra_dfll_runtime_resume);
418
419 /**
420 * tegra_dfll_runtime_suspend - disable all clocks needed by the DFLL
421 * @dev: DFLL device *
422 *
423 * Disable all clocks needed by the DFLL. Assumes that other code
424 * will later call clk_unprepare().
425 */
tegra_dfll_runtime_suspend(struct device * dev)426 int tegra_dfll_runtime_suspend(struct device *dev)
427 {
428 struct tegra_dfll *td = dev_get_drvdata(dev);
429
430 clk_disable(td->ref_clk);
431 clk_disable(td->soc_clk);
432 clk_disable(td->i2c_clk);
433
434 return 0;
435 }
436 EXPORT_SYMBOL(tegra_dfll_runtime_suspend);
437
438 /*
439 * DFLL tuning operations (per-voltage-range tuning settings)
440 */
441
442 /**
443 * dfll_tune_low - tune to DFLL and CPU settings valid for any voltage
444 * @td: DFLL instance
445 *
446 * Tune the DFLL oscillator parameters and the CPU clock shaper for
447 * the low-voltage range. These settings are valid for any voltage,
448 * but may not be optimal.
449 */
dfll_tune_low(struct tegra_dfll * td)450 static void dfll_tune_low(struct tegra_dfll *td)
451 {
452 td->tune_range = DFLL_TUNE_LOW;
453
454 dfll_writel(td, td->soc->cvb->cpu_dfll_data.tune0_low, DFLL_TUNE0);
455 dfll_writel(td, td->soc->cvb->cpu_dfll_data.tune1, DFLL_TUNE1);
456 dfll_wmb(td);
457
458 if (td->soc->set_clock_trimmers_low)
459 td->soc->set_clock_trimmers_low();
460 }
461
462 /*
463 * Output clock scaler helpers
464 */
465
466 /**
467 * dfll_scale_dvco_rate - calculate scaled rate from the DVCO rate
468 * @scale_bits: clock scaler value (bits in the DFLL_FREQ_REQ_SCALE field)
469 * @dvco_rate: the DVCO rate
470 *
471 * Apply the same scaling formula that the DFLL hardware uses to scale
472 * the DVCO rate.
473 */
dfll_scale_dvco_rate(int scale_bits,unsigned long dvco_rate)474 static unsigned long dfll_scale_dvco_rate(int scale_bits,
475 unsigned long dvco_rate)
476 {
477 return (u64)dvco_rate * (scale_bits + 1) / DFLL_FREQ_REQ_SCALE_MAX;
478 }
479
480 /*
481 * DFLL mode switching
482 */
483
484 /**
485 * dfll_set_mode - change the DFLL control mode
486 * @td: DFLL instance
487 * @mode: DFLL control mode (see enum dfll_ctrl_mode)
488 *
489 * Change the DFLL's operating mode between disabled, open-loop mode,
490 * and closed-loop mode, or vice versa.
491 */
dfll_set_mode(struct tegra_dfll * td,enum dfll_ctrl_mode mode)492 static void dfll_set_mode(struct tegra_dfll *td,
493 enum dfll_ctrl_mode mode)
494 {
495 td->mode = mode;
496 dfll_writel(td, mode - 1, DFLL_CTRL);
497 dfll_wmb(td);
498 }
499
500 /*
501 * DVCO rate control
502 */
503
get_dvco_rate_below(struct tegra_dfll * td,u8 out_min)504 static unsigned long get_dvco_rate_below(struct tegra_dfll *td, u8 out_min)
505 {
506 struct dev_pm_opp *opp;
507 unsigned long rate, prev_rate;
508 unsigned long uv, min_uv;
509
510 min_uv = td->lut_uv[out_min];
511 for (rate = 0, prev_rate = 0; ; rate++) {
512 opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate);
513 if (IS_ERR(opp))
514 break;
515
516 uv = dev_pm_opp_get_voltage(opp);
517 dev_pm_opp_put(opp);
518
519 if (uv && uv > min_uv)
520 return prev_rate;
521
522 prev_rate = rate;
523 }
524
525 return prev_rate;
526 }
527
528 /*
529 * DFLL-to-I2C controller interface
530 */
531
532 /**
533 * dfll_i2c_set_output_enabled - enable/disable I2C PMIC voltage requests
534 * @td: DFLL instance
535 * @enable: whether to enable or disable the I2C voltage requests
536 *
537 * Set the master enable control for I2C control value updates. If disabled,
538 * then I2C control messages are inhibited, regardless of the DFLL mode.
539 */
dfll_i2c_set_output_enabled(struct tegra_dfll * td,bool enable)540 static int dfll_i2c_set_output_enabled(struct tegra_dfll *td, bool enable)
541 {
542 u32 val;
543
544 val = dfll_i2c_readl(td, DFLL_OUTPUT_CFG);
545
546 if (enable)
547 val |= DFLL_OUTPUT_CFG_I2C_ENABLE;
548 else
549 val &= ~DFLL_OUTPUT_CFG_I2C_ENABLE;
550
551 dfll_i2c_writel(td, val, DFLL_OUTPUT_CFG);
552 dfll_i2c_wmb(td);
553
554 return 0;
555 }
556
557
558 /*
559 * DFLL-to-PWM controller interface
560 */
561
562 /**
563 * dfll_pwm_set_output_enabled - enable/disable PWM voltage requests
564 * @td: DFLL instance
565 * @enable: whether to enable or disable the PWM voltage requests
566 *
567 * Set the master enable control for PWM control value updates. If disabled,
568 * then the PWM signal is not driven. Also configure the PWM output pad
569 * to the appropriate state.
570 */
dfll_pwm_set_output_enabled(struct tegra_dfll * td,bool enable)571 static int dfll_pwm_set_output_enabled(struct tegra_dfll *td, bool enable)
572 {
573 int ret;
574 u32 val, div;
575
576 if (enable) {
577 ret = pinctrl_select_state(td->pwm_pin, td->pwm_enable_state);
578 if (ret < 0) {
579 dev_err(td->dev, "setting enable state failed\n");
580 return -EINVAL;
581 }
582 val = dfll_readl(td, DFLL_OUTPUT_CFG);
583 val &= ~DFLL_OUTPUT_CFG_PWM_DIV_MASK;
584 div = DIV_ROUND_UP(td->ref_rate, td->pwm_rate);
585 val |= (div << DFLL_OUTPUT_CFG_PWM_DIV_SHIFT)
586 & DFLL_OUTPUT_CFG_PWM_DIV_MASK;
587 dfll_writel(td, val, DFLL_OUTPUT_CFG);
588 dfll_wmb(td);
589
590 val |= DFLL_OUTPUT_CFG_PWM_ENABLE;
591 dfll_writel(td, val, DFLL_OUTPUT_CFG);
592 dfll_wmb(td);
593 } else {
594 ret = pinctrl_select_state(td->pwm_pin, td->pwm_disable_state);
595 if (ret < 0)
596 dev_warn(td->dev, "setting disable state failed\n");
597
598 val = dfll_readl(td, DFLL_OUTPUT_CFG);
599 val &= ~DFLL_OUTPUT_CFG_PWM_ENABLE;
600 dfll_writel(td, val, DFLL_OUTPUT_CFG);
601 dfll_wmb(td);
602 }
603
604 return 0;
605 }
606
607 /**
608 * dfll_set_force_output_value - set fixed value for force output
609 * @td: DFLL instance
610 * @out_val: value to force output
611 *
612 * Set the fixed value for force output, DFLL will output this value when
613 * force output is enabled.
614 */
dfll_set_force_output_value(struct tegra_dfll * td,u8 out_val)615 static u32 dfll_set_force_output_value(struct tegra_dfll *td, u8 out_val)
616 {
617 u32 val = dfll_readl(td, DFLL_OUTPUT_FORCE);
618
619 val = (val & DFLL_OUTPUT_FORCE_ENABLE) | (out_val & OUT_MASK);
620 dfll_writel(td, val, DFLL_OUTPUT_FORCE);
621 dfll_wmb(td);
622
623 return dfll_readl(td, DFLL_OUTPUT_FORCE);
624 }
625
626 /**
627 * dfll_set_force_output_enabled - enable/disable force output
628 * @td: DFLL instance
629 * @enable: whether to enable or disable the force output
630 *
631 * Set the enable control for fouce output with fixed value.
632 */
dfll_set_force_output_enabled(struct tegra_dfll * td,bool enable)633 static void dfll_set_force_output_enabled(struct tegra_dfll *td, bool enable)
634 {
635 u32 val = dfll_readl(td, DFLL_OUTPUT_FORCE);
636
637 if (enable)
638 val |= DFLL_OUTPUT_FORCE_ENABLE;
639 else
640 val &= ~DFLL_OUTPUT_FORCE_ENABLE;
641
642 dfll_writel(td, val, DFLL_OUTPUT_FORCE);
643 dfll_wmb(td);
644 }
645
646 /**
647 * dfll_force_output - force output a fixed value
648 * @td: DFLL instance
649 * @out_sel: value to force output
650 *
651 * Set the fixed value for force output, DFLL will output this value.
652 */
dfll_force_output(struct tegra_dfll * td,unsigned int out_sel)653 static int dfll_force_output(struct tegra_dfll *td, unsigned int out_sel)
654 {
655 u32 val;
656
657 if (out_sel > OUT_MASK)
658 return -EINVAL;
659
660 val = dfll_set_force_output_value(td, out_sel);
661 if ((td->mode < DFLL_CLOSED_LOOP) &&
662 !(val & DFLL_OUTPUT_FORCE_ENABLE)) {
663 dfll_set_force_output_enabled(td, true);
664 }
665
666 return 0;
667 }
668
669 /**
670 * dfll_load_i2c_lut - load the voltage lookup table
671 * @td: struct tegra_dfll *
672 *
673 * Load the voltage-to-PMIC register value lookup table into the DFLL
674 * IP block memory. Look-up tables can be loaded at any time.
675 */
dfll_load_i2c_lut(struct tegra_dfll * td)676 static void dfll_load_i2c_lut(struct tegra_dfll *td)
677 {
678 int i, lut_index;
679 u32 val;
680
681 for (i = 0; i < MAX_DFLL_VOLTAGES; i++) {
682 if (i < td->lut_min)
683 lut_index = td->lut_min;
684 else if (i > td->lut_max)
685 lut_index = td->lut_max;
686 else
687 lut_index = i;
688
689 val = regulator_list_hardware_vsel(td->vdd_reg,
690 td->lut[lut_index]);
691 __raw_writel(val, td->lut_base + i * 4);
692 }
693
694 dfll_i2c_wmb(td);
695 }
696
697 /**
698 * dfll_init_i2c_if - set up the DFLL's DFLL-I2C interface
699 * @td: DFLL instance
700 *
701 * During DFLL driver initialization, program the DFLL-I2C interface
702 * with the PMU slave address, vdd register offset, and transfer mode.
703 * This data is used by the DFLL to automatically construct I2C
704 * voltage-set commands, which are then passed to the DFLL's internal
705 * I2C controller.
706 */
dfll_init_i2c_if(struct tegra_dfll * td)707 static void dfll_init_i2c_if(struct tegra_dfll *td)
708 {
709 u32 val;
710
711 if (td->i2c_slave_addr > 0x7f) {
712 val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT;
713 val |= DFLL_I2C_CFG_SLAVE_ADDR_10;
714 } else {
715 val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT;
716 }
717 val |= DFLL_I2C_CFG_SIZE_MASK;
718 val |= DFLL_I2C_CFG_ARB_ENABLE;
719 dfll_i2c_writel(td, val, DFLL_I2C_CFG);
720
721 dfll_i2c_writel(td, td->i2c_reg, DFLL_I2C_VDD_REG_ADDR);
722
723 val = DIV_ROUND_UP(td->i2c_clk_rate, td->i2c_fs_rate * 8);
724 BUG_ON(!val || (val > DFLL_I2C_CLK_DIVISOR_MASK));
725 val = (val - 1) << DFLL_I2C_CLK_DIVISOR_FS_SHIFT;
726
727 /* default hs divisor just in case */
728 val |= 1 << DFLL_I2C_CLK_DIVISOR_HS_SHIFT;
729 __raw_writel(val, td->i2c_controller_base + DFLL_I2C_CLK_DIVISOR);
730 dfll_i2c_wmb(td);
731 }
732
733 /**
734 * dfll_init_out_if - prepare DFLL-to-PMIC interface
735 * @td: DFLL instance
736 *
737 * During DFLL driver initialization or resume from context loss,
738 * disable the I2C command output to the PMIC, set safe voltage and
739 * output limits, and disable and clear limit interrupts.
740 */
dfll_init_out_if(struct tegra_dfll * td)741 static void dfll_init_out_if(struct tegra_dfll *td)
742 {
743 u32 val;
744
745 td->lut_min = td->lut_bottom;
746 td->lut_max = td->lut_size - 1;
747 td->lut_safe = td->lut_min + (td->lut_min < td->lut_max ? 1 : 0);
748
749 /* clear DFLL_OUTPUT_CFG before setting new value */
750 dfll_writel(td, 0, DFLL_OUTPUT_CFG);
751 dfll_wmb(td);
752
753 val = (td->lut_safe << DFLL_OUTPUT_CFG_SAFE_SHIFT) |
754 (td->lut_max << DFLL_OUTPUT_CFG_MAX_SHIFT) |
755 (td->lut_min << DFLL_OUTPUT_CFG_MIN_SHIFT);
756 dfll_writel(td, val, DFLL_OUTPUT_CFG);
757 dfll_wmb(td);
758
759 dfll_writel(td, 0, DFLL_OUTPUT_FORCE);
760 dfll_i2c_writel(td, 0, DFLL_INTR_EN);
761 dfll_i2c_writel(td, DFLL_INTR_MAX_MASK | DFLL_INTR_MIN_MASK,
762 DFLL_INTR_STS);
763
764 if (td->pmu_if == TEGRA_DFLL_PMU_PWM) {
765 u32 vinit = td->reg_init_uV;
766 int vstep = td->soc->alignment.step_uv;
767 unsigned long vmin = td->lut_uv[0];
768
769 /* set initial voltage */
770 if ((vinit >= vmin) && vstep) {
771 unsigned int vsel;
772
773 vsel = DIV_ROUND_UP((vinit - vmin), vstep);
774 dfll_force_output(td, vsel);
775 }
776 } else {
777 dfll_load_i2c_lut(td);
778 dfll_init_i2c_if(td);
779 }
780 }
781
782 /*
783 * Set/get the DFLL's targeted output clock rate
784 */
785
786 /**
787 * find_lut_index_for_rate - determine I2C LUT index for given DFLL rate
788 * @td: DFLL instance
789 * @rate: clock rate
790 *
791 * Determines the index of a I2C LUT entry for a voltage that approximately
792 * produces the given DFLL clock rate. This is used when forcing a value
793 * to the integrator during rate changes. Returns -ENOENT if a suitable
794 * LUT index is not found.
795 */
find_lut_index_for_rate(struct tegra_dfll * td,unsigned long rate)796 static int find_lut_index_for_rate(struct tegra_dfll *td, unsigned long rate)
797 {
798 struct dev_pm_opp *opp;
799 int i, align_step;
800
801 opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate);
802 if (IS_ERR(opp))
803 return PTR_ERR(opp);
804
805 align_step = dev_pm_opp_get_voltage(opp) / td->soc->alignment.step_uv;
806 dev_pm_opp_put(opp);
807
808 for (i = td->lut_bottom; i < td->lut_size; i++) {
809 if ((td->lut_uv[i] / td->soc->alignment.step_uv) >= align_step)
810 return i;
811 }
812
813 return -ENOENT;
814 }
815
816 /**
817 * dfll_calculate_rate_request - calculate DFLL parameters for a given rate
818 * @td: DFLL instance
819 * @req: DFLL-rate-request structure
820 * @rate: the desired DFLL rate
821 *
822 * Populate the DFLL-rate-request record @req fields with the scale_bits
823 * and mult_bits fields, based on the target input rate. Returns 0 upon
824 * success, or -EINVAL if the requested rate in req->rate is too high
825 * or low for the DFLL to generate.
826 */
dfll_calculate_rate_request(struct tegra_dfll * td,struct dfll_rate_req * req,unsigned long rate)827 static int dfll_calculate_rate_request(struct tegra_dfll *td,
828 struct dfll_rate_req *req,
829 unsigned long rate)
830 {
831 u32 val;
832
833 /*
834 * If requested rate is below the minimum DVCO rate, active the scaler.
835 * In the future the DVCO minimum voltage should be selected based on
836 * chip temperature and the actual minimum rate should be calibrated
837 * at runtime.
838 */
839 req->scale_bits = DFLL_FREQ_REQ_SCALE_MAX - 1;
840 if (rate < td->dvco_rate_min) {
841 int scale;
842
843 scale = DIV_ROUND_CLOSEST(rate / 1000 * DFLL_FREQ_REQ_SCALE_MAX,
844 td->dvco_rate_min / 1000);
845 if (!scale) {
846 dev_err(td->dev, "%s: Rate %lu is too low\n",
847 __func__, rate);
848 return -EINVAL;
849 }
850 req->scale_bits = scale - 1;
851 rate = td->dvco_rate_min;
852 }
853
854 /* Convert requested rate into frequency request and scale settings */
855 val = DVCO_RATE_TO_MULT(rate, td->ref_rate);
856 if (val > FREQ_MAX) {
857 dev_err(td->dev, "%s: Rate %lu is above dfll range\n",
858 __func__, rate);
859 return -EINVAL;
860 }
861 req->mult_bits = val;
862 req->dvco_target_rate = MULT_TO_DVCO_RATE(req->mult_bits, td->ref_rate);
863 req->rate = dfll_scale_dvco_rate(req->scale_bits,
864 req->dvco_target_rate);
865 req->lut_index = find_lut_index_for_rate(td, req->dvco_target_rate);
866 if (req->lut_index < 0)
867 return req->lut_index;
868
869 return 0;
870 }
871
872 /**
873 * dfll_set_frequency_request - start the frequency change operation
874 * @td: DFLL instance
875 * @req: rate request structure
876 *
877 * Tell the DFLL to try to change its output frequency to the
878 * frequency represented by @req. DFLL must be in closed-loop mode.
879 */
dfll_set_frequency_request(struct tegra_dfll * td,struct dfll_rate_req * req)880 static void dfll_set_frequency_request(struct tegra_dfll *td,
881 struct dfll_rate_req *req)
882 {
883 u32 val = 0;
884 int force_val;
885 int coef = 128; /* FIXME: td->cg_scale? */;
886
887 force_val = (req->lut_index - td->lut_safe) * coef / td->cg;
888 force_val = clamp(force_val, FORCE_MIN, FORCE_MAX);
889
890 val |= req->mult_bits << DFLL_FREQ_REQ_MULT_SHIFT;
891 val |= req->scale_bits << DFLL_FREQ_REQ_SCALE_SHIFT;
892 val |= ((u32)force_val << DFLL_FREQ_REQ_FORCE_SHIFT) &
893 DFLL_FREQ_REQ_FORCE_MASK;
894 val |= DFLL_FREQ_REQ_FREQ_VALID | DFLL_FREQ_REQ_FORCE_ENABLE;
895
896 dfll_writel(td, val, DFLL_FREQ_REQ);
897 dfll_wmb(td);
898 }
899
900 /**
901 * dfll_request_rate - set the next rate for the DFLL to tune to
902 * @td: DFLL instance
903 * @rate: clock rate to target
904 *
905 * Convert the requested clock rate @rate into the DFLL control logic
906 * settings. In closed-loop mode, update new settings immediately to
907 * adjust DFLL output rate accordingly. Otherwise, just save them
908 * until the next switch to closed loop. Returns 0 upon success,
909 * -EPERM if the DFLL driver has not yet been initialized, or -EINVAL
910 * if @rate is outside the DFLL's tunable range.
911 */
dfll_request_rate(struct tegra_dfll * td,unsigned long rate)912 static int dfll_request_rate(struct tegra_dfll *td, unsigned long rate)
913 {
914 int ret;
915 struct dfll_rate_req req;
916
917 if (td->mode == DFLL_UNINITIALIZED) {
918 dev_err(td->dev, "%s: Cannot set DFLL rate in %s mode\n",
919 __func__, mode_name[td->mode]);
920 return -EPERM;
921 }
922
923 ret = dfll_calculate_rate_request(td, &req, rate);
924 if (ret)
925 return ret;
926
927 td->last_unrounded_rate = rate;
928 td->last_req = req;
929
930 if (td->mode == DFLL_CLOSED_LOOP)
931 dfll_set_frequency_request(td, &td->last_req);
932
933 return 0;
934 }
935
936 /*
937 * DFLL enable/disable & open-loop <-> closed-loop transitions
938 */
939
940 /**
941 * dfll_disable - switch from open-loop mode to disabled mode
942 * @td: DFLL instance
943 *
944 * Switch from OPEN_LOOP state to DISABLED state. Returns 0 upon success
945 * or -EPERM if the DFLL is not currently in open-loop mode.
946 */
dfll_disable(struct tegra_dfll * td)947 static int dfll_disable(struct tegra_dfll *td)
948 {
949 if (td->mode != DFLL_OPEN_LOOP) {
950 dev_err(td->dev, "cannot disable DFLL in %s mode\n",
951 mode_name[td->mode]);
952 return -EINVAL;
953 }
954
955 dfll_set_mode(td, DFLL_DISABLED);
956 pm_runtime_put_sync(td->dev);
957
958 return 0;
959 }
960
961 /**
962 * dfll_enable - switch a disabled DFLL to open-loop mode
963 * @td: DFLL instance
964 *
965 * Switch from DISABLED state to OPEN_LOOP state. Returns 0 upon success
966 * or -EPERM if the DFLL is not currently disabled.
967 */
dfll_enable(struct tegra_dfll * td)968 static int dfll_enable(struct tegra_dfll *td)
969 {
970 if (td->mode != DFLL_DISABLED) {
971 dev_err(td->dev, "cannot enable DFLL in %s mode\n",
972 mode_name[td->mode]);
973 return -EPERM;
974 }
975
976 pm_runtime_get_sync(td->dev);
977 dfll_set_mode(td, DFLL_OPEN_LOOP);
978
979 return 0;
980 }
981
982 /**
983 * dfll_set_open_loop_config - prepare to switch to open-loop mode
984 * @td: DFLL instance
985 *
986 * Prepare to switch the DFLL to open-loop mode. This switches the
987 * DFLL to the low-voltage tuning range, ensures that I2C output
988 * forcing is disabled, and disables the output clock rate scaler.
989 * The DFLL's low-voltage tuning range parameters must be
990 * characterized to keep the downstream device stable at any DVCO
991 * input voltage. No return value.
992 */
dfll_set_open_loop_config(struct tegra_dfll * td)993 static void dfll_set_open_loop_config(struct tegra_dfll *td)
994 {
995 u32 val;
996
997 /* always tune low (safe) in open loop */
998 if (td->tune_range != DFLL_TUNE_LOW)
999 dfll_tune_low(td);
1000
1001 val = dfll_readl(td, DFLL_FREQ_REQ);
1002 val |= DFLL_FREQ_REQ_SCALE_MASK;
1003 val &= ~DFLL_FREQ_REQ_FORCE_ENABLE;
1004 dfll_writel(td, val, DFLL_FREQ_REQ);
1005 dfll_wmb(td);
1006 }
1007
1008 /**
1009 * dfll_lock - switch from open-loop to closed-loop mode
1010 * @td: DFLL instance
1011 *
1012 * Switch from OPEN_LOOP state to CLOSED_LOOP state. Returns 0 upon success,
1013 * -EINVAL if the DFLL's target rate hasn't been set yet, or -EPERM if the
1014 * DFLL is not currently in open-loop mode.
1015 */
dfll_lock(struct tegra_dfll * td)1016 static int dfll_lock(struct tegra_dfll *td)
1017 {
1018 struct dfll_rate_req *req = &td->last_req;
1019
1020 switch (td->mode) {
1021 case DFLL_CLOSED_LOOP:
1022 return 0;
1023
1024 case DFLL_OPEN_LOOP:
1025 if (req->rate == 0) {
1026 dev_err(td->dev, "%s: Cannot lock DFLL at rate 0\n",
1027 __func__);
1028 return -EINVAL;
1029 }
1030
1031 if (td->pmu_if == TEGRA_DFLL_PMU_PWM)
1032 dfll_pwm_set_output_enabled(td, true);
1033 else
1034 dfll_i2c_set_output_enabled(td, true);
1035
1036 dfll_set_mode(td, DFLL_CLOSED_LOOP);
1037 dfll_set_frequency_request(td, req);
1038 dfll_set_force_output_enabled(td, false);
1039 return 0;
1040
1041 default:
1042 BUG_ON(td->mode > DFLL_CLOSED_LOOP);
1043 dev_err(td->dev, "%s: Cannot lock DFLL in %s mode\n",
1044 __func__, mode_name[td->mode]);
1045 return -EPERM;
1046 }
1047 }
1048
1049 /**
1050 * dfll_unlock - switch from closed-loop to open-loop mode
1051 * @td: DFLL instance
1052 *
1053 * Switch from CLOSED_LOOP state to OPEN_LOOP state. Returns 0 upon success,
1054 * or -EPERM if the DFLL is not currently in open-loop mode.
1055 */
dfll_unlock(struct tegra_dfll * td)1056 static int dfll_unlock(struct tegra_dfll *td)
1057 {
1058 switch (td->mode) {
1059 case DFLL_CLOSED_LOOP:
1060 dfll_set_open_loop_config(td);
1061 dfll_set_mode(td, DFLL_OPEN_LOOP);
1062 if (td->pmu_if == TEGRA_DFLL_PMU_PWM)
1063 dfll_pwm_set_output_enabled(td, false);
1064 else
1065 dfll_i2c_set_output_enabled(td, false);
1066 return 0;
1067
1068 case DFLL_OPEN_LOOP:
1069 return 0;
1070
1071 default:
1072 BUG_ON(td->mode > DFLL_CLOSED_LOOP);
1073 dev_err(td->dev, "%s: Cannot unlock DFLL in %s mode\n",
1074 __func__, mode_name[td->mode]);
1075 return -EPERM;
1076 }
1077 }
1078
1079 /*
1080 * Clock framework integration
1081 *
1082 * When the DFLL is being controlled by the CCF, always enter closed loop
1083 * mode when the clk is enabled. This requires that a DFLL rate request
1084 * has been set beforehand, which implies that a clk_set_rate() call is
1085 * always required before a clk_enable().
1086 */
1087
dfll_clk_is_enabled(struct clk_hw * hw)1088 static int dfll_clk_is_enabled(struct clk_hw *hw)
1089 {
1090 struct tegra_dfll *td = clk_hw_to_dfll(hw);
1091
1092 return dfll_is_running(td);
1093 }
1094
dfll_clk_enable(struct clk_hw * hw)1095 static int dfll_clk_enable(struct clk_hw *hw)
1096 {
1097 struct tegra_dfll *td = clk_hw_to_dfll(hw);
1098 int ret;
1099
1100 ret = dfll_enable(td);
1101 if (ret)
1102 return ret;
1103
1104 ret = dfll_lock(td);
1105 if (ret)
1106 dfll_disable(td);
1107
1108 return ret;
1109 }
1110
dfll_clk_disable(struct clk_hw * hw)1111 static void dfll_clk_disable(struct clk_hw *hw)
1112 {
1113 struct tegra_dfll *td = clk_hw_to_dfll(hw);
1114 int ret;
1115
1116 ret = dfll_unlock(td);
1117 if (!ret)
1118 dfll_disable(td);
1119 }
1120
dfll_clk_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)1121 static unsigned long dfll_clk_recalc_rate(struct clk_hw *hw,
1122 unsigned long parent_rate)
1123 {
1124 struct tegra_dfll *td = clk_hw_to_dfll(hw);
1125
1126 return td->last_unrounded_rate;
1127 }
1128
1129 /* Must use determine_rate since it allows for rates exceeding 2^31-1 */
dfll_clk_determine_rate(struct clk_hw * hw,struct clk_rate_request * clk_req)1130 static int dfll_clk_determine_rate(struct clk_hw *hw,
1131 struct clk_rate_request *clk_req)
1132 {
1133 struct tegra_dfll *td = clk_hw_to_dfll(hw);
1134 struct dfll_rate_req req;
1135 int ret;
1136
1137 ret = dfll_calculate_rate_request(td, &req, clk_req->rate);
1138 if (ret)
1139 return ret;
1140
1141 /*
1142 * Don't set the rounded rate, since it doesn't really matter as
1143 * the output rate will be voltage controlled anyway, and cpufreq
1144 * freaks out if any rounding happens.
1145 */
1146
1147 return 0;
1148 }
1149
dfll_clk_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)1150 static int dfll_clk_set_rate(struct clk_hw *hw, unsigned long rate,
1151 unsigned long parent_rate)
1152 {
1153 struct tegra_dfll *td = clk_hw_to_dfll(hw);
1154
1155 return dfll_request_rate(td, rate);
1156 }
1157
1158 static const struct clk_ops dfll_clk_ops = {
1159 .is_enabled = dfll_clk_is_enabled,
1160 .enable = dfll_clk_enable,
1161 .disable = dfll_clk_disable,
1162 .recalc_rate = dfll_clk_recalc_rate,
1163 .determine_rate = dfll_clk_determine_rate,
1164 .set_rate = dfll_clk_set_rate,
1165 };
1166
1167 static struct clk_init_data dfll_clk_init_data = {
1168 .ops = &dfll_clk_ops,
1169 .num_parents = 0,
1170 };
1171
1172 /**
1173 * dfll_register_clk - register the DFLL output clock with the clock framework
1174 * @td: DFLL instance
1175 *
1176 * Register the DFLL's output clock with the Linux clock framework and register
1177 * the DFLL driver as an OF clock provider. Returns 0 upon success or -EINVAL
1178 * or -ENOMEM upon failure.
1179 */
dfll_register_clk(struct tegra_dfll * td)1180 static int dfll_register_clk(struct tegra_dfll *td)
1181 {
1182 int ret;
1183
1184 dfll_clk_init_data.name = td->output_clock_name;
1185 td->dfll_clk_hw.init = &dfll_clk_init_data;
1186
1187 td->dfll_clk = clk_register(td->dev, &td->dfll_clk_hw);
1188 if (IS_ERR(td->dfll_clk)) {
1189 dev_err(td->dev, "DFLL clock registration error\n");
1190 return -EINVAL;
1191 }
1192
1193 ret = of_clk_add_provider(td->dev->of_node, of_clk_src_simple_get,
1194 td->dfll_clk);
1195 if (ret) {
1196 dev_err(td->dev, "of_clk_add_provider() failed\n");
1197
1198 clk_unregister(td->dfll_clk);
1199 return ret;
1200 }
1201
1202 return 0;
1203 }
1204
1205 /**
1206 * dfll_unregister_clk - unregister the DFLL output clock
1207 * @td: DFLL instance
1208 *
1209 * Unregister the DFLL's output clock from the Linux clock framework
1210 * and from clkdev. No return value.
1211 */
dfll_unregister_clk(struct tegra_dfll * td)1212 static void dfll_unregister_clk(struct tegra_dfll *td)
1213 {
1214 of_clk_del_provider(td->dev->of_node);
1215 clk_unregister(td->dfll_clk);
1216 td->dfll_clk = NULL;
1217 }
1218
1219 /*
1220 * Debugfs interface
1221 */
1222
1223 #ifdef CONFIG_DEBUG_FS
1224 /*
1225 * Monitor control
1226 */
1227
1228 /**
1229 * dfll_calc_monitored_rate - convert DFLL_MONITOR_DATA_VAL rate into real freq
1230 * @monitor_data: value read from the DFLL_MONITOR_DATA_VAL bitfield
1231 * @ref_rate: DFLL reference clock rate
1232 *
1233 * Convert @monitor_data from DFLL_MONITOR_DATA_VAL units into cycles
1234 * per second. Returns the converted value.
1235 */
dfll_calc_monitored_rate(u32 monitor_data,unsigned long ref_rate)1236 static u64 dfll_calc_monitored_rate(u32 monitor_data,
1237 unsigned long ref_rate)
1238 {
1239 return monitor_data * (ref_rate / REF_CLK_CYC_PER_DVCO_SAMPLE);
1240 }
1241
1242 /**
1243 * dfll_read_monitor_rate - return the DFLL's output rate from internal monitor
1244 * @td: DFLL instance
1245 *
1246 * If the DFLL is enabled, return the last rate reported by the DFLL's
1247 * internal monitoring hardware. This works in both open-loop and
1248 * closed-loop mode, and takes the output scaler setting into account.
1249 * Assumes that the monitor was programmed to monitor frequency before
1250 * the sample period started. If the driver believes that the DFLL is
1251 * currently uninitialized or disabled, it will return 0, since
1252 * otherwise the DFLL monitor data register will return the last
1253 * measured rate from when the DFLL was active.
1254 */
dfll_read_monitor_rate(struct tegra_dfll * td)1255 static u64 dfll_read_monitor_rate(struct tegra_dfll *td)
1256 {
1257 u32 v, s;
1258 u64 pre_scaler_rate, post_scaler_rate;
1259
1260 if (!dfll_is_running(td))
1261 return 0;
1262
1263 v = dfll_readl(td, DFLL_MONITOR_DATA);
1264 v = (v & DFLL_MONITOR_DATA_VAL_MASK) >> DFLL_MONITOR_DATA_VAL_SHIFT;
1265 pre_scaler_rate = dfll_calc_monitored_rate(v, td->ref_rate);
1266
1267 s = dfll_readl(td, DFLL_FREQ_REQ);
1268 s = (s & DFLL_FREQ_REQ_SCALE_MASK) >> DFLL_FREQ_REQ_SCALE_SHIFT;
1269 post_scaler_rate = dfll_scale_dvco_rate(s, pre_scaler_rate);
1270
1271 return post_scaler_rate;
1272 }
1273
attr_enable_get(void * data,u64 * val)1274 static int attr_enable_get(void *data, u64 *val)
1275 {
1276 struct tegra_dfll *td = data;
1277
1278 *val = dfll_is_running(td);
1279
1280 return 0;
1281 }
attr_enable_set(void * data,u64 val)1282 static int attr_enable_set(void *data, u64 val)
1283 {
1284 struct tegra_dfll *td = data;
1285
1286 return val ? dfll_enable(td) : dfll_disable(td);
1287 }
1288 DEFINE_DEBUGFS_ATTRIBUTE(enable_fops, attr_enable_get, attr_enable_set,
1289 "%llu\n");
1290
attr_lock_get(void * data,u64 * val)1291 static int attr_lock_get(void *data, u64 *val)
1292 {
1293 struct tegra_dfll *td = data;
1294
1295 *val = (td->mode == DFLL_CLOSED_LOOP);
1296
1297 return 0;
1298 }
attr_lock_set(void * data,u64 val)1299 static int attr_lock_set(void *data, u64 val)
1300 {
1301 struct tegra_dfll *td = data;
1302
1303 return val ? dfll_lock(td) : dfll_unlock(td);
1304 }
1305 DEFINE_DEBUGFS_ATTRIBUTE(lock_fops, attr_lock_get, attr_lock_set, "%llu\n");
1306
attr_rate_get(void * data,u64 * val)1307 static int attr_rate_get(void *data, u64 *val)
1308 {
1309 struct tegra_dfll *td = data;
1310
1311 *val = dfll_read_monitor_rate(td);
1312
1313 return 0;
1314 }
1315
attr_rate_set(void * data,u64 val)1316 static int attr_rate_set(void *data, u64 val)
1317 {
1318 struct tegra_dfll *td = data;
1319
1320 return dfll_request_rate(td, val);
1321 }
1322 DEFINE_DEBUGFS_ATTRIBUTE(rate_fops, attr_rate_get, attr_rate_set, "%llu\n");
1323
attr_registers_show(struct seq_file * s,void * data)1324 static int attr_registers_show(struct seq_file *s, void *data)
1325 {
1326 u32 val, offs;
1327 struct tegra_dfll *td = s->private;
1328
1329 seq_puts(s, "CONTROL REGISTERS:\n");
1330 for (offs = 0; offs <= DFLL_MONITOR_DATA; offs += 4) {
1331 if (offs == DFLL_OUTPUT_CFG)
1332 val = dfll_i2c_readl(td, offs);
1333 else
1334 val = dfll_readl(td, offs);
1335 seq_printf(s, "[0x%02x] = 0x%08x\n", offs, val);
1336 }
1337
1338 seq_puts(s, "\nI2C and INTR REGISTERS:\n");
1339 for (offs = DFLL_I2C_CFG; offs <= DFLL_I2C_STS; offs += 4)
1340 seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1341 dfll_i2c_readl(td, offs));
1342 for (offs = DFLL_INTR_STS; offs <= DFLL_INTR_EN; offs += 4)
1343 seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1344 dfll_i2c_readl(td, offs));
1345
1346 if (td->pmu_if == TEGRA_DFLL_PMU_I2C) {
1347 seq_puts(s, "\nINTEGRATED I2C CONTROLLER REGISTERS:\n");
1348 offs = DFLL_I2C_CLK_DIVISOR;
1349 seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1350 __raw_readl(td->i2c_controller_base + offs));
1351
1352 seq_puts(s, "\nLUT:\n");
1353 for (offs = 0; offs < 4 * MAX_DFLL_VOLTAGES; offs += 4)
1354 seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1355 __raw_readl(td->lut_base + offs));
1356 }
1357
1358 return 0;
1359 }
1360
1361 DEFINE_SHOW_ATTRIBUTE(attr_registers);
1362
dfll_debug_init(struct tegra_dfll * td)1363 static void dfll_debug_init(struct tegra_dfll *td)
1364 {
1365 struct dentry *root;
1366
1367 if (!td || (td->mode == DFLL_UNINITIALIZED))
1368 return;
1369
1370 root = debugfs_create_dir("tegra_dfll_fcpu", NULL);
1371 td->debugfs_dir = root;
1372
1373 debugfs_create_file_unsafe("enable", 0644, root, td,
1374 &enable_fops);
1375 debugfs_create_file_unsafe("lock", 0444, root, td, &lock_fops);
1376 debugfs_create_file_unsafe("rate", 0444, root, td, &rate_fops);
1377 debugfs_create_file("registers", 0444, root, td, &attr_registers_fops);
1378 }
1379
1380 #else
dfll_debug_init(struct tegra_dfll * td)1381 static inline void dfll_debug_init(struct tegra_dfll *td) { }
1382 #endif /* CONFIG_DEBUG_FS */
1383
1384 /*
1385 * DFLL initialization
1386 */
1387
1388 /**
1389 * dfll_set_default_params - program non-output related DFLL parameters
1390 * @td: DFLL instance
1391 *
1392 * During DFLL driver initialization or resume from context loss,
1393 * program parameters for the closed loop integrator, DVCO tuning,
1394 * voltage droop control and monitor control.
1395 */
dfll_set_default_params(struct tegra_dfll * td)1396 static void dfll_set_default_params(struct tegra_dfll *td)
1397 {
1398 u32 val;
1399
1400 val = DIV_ROUND_UP(td->ref_rate, td->sample_rate * 32);
1401 BUG_ON(val > DFLL_CONFIG_DIV_MASK);
1402 dfll_writel(td, val, DFLL_CONFIG);
1403
1404 val = (td->force_mode << DFLL_PARAMS_FORCE_MODE_SHIFT) |
1405 (td->cf << DFLL_PARAMS_CF_PARAM_SHIFT) |
1406 (td->ci << DFLL_PARAMS_CI_PARAM_SHIFT) |
1407 (td->cg << DFLL_PARAMS_CG_PARAM_SHIFT) |
1408 (td->cg_scale ? DFLL_PARAMS_CG_SCALE : 0);
1409 dfll_writel(td, val, DFLL_PARAMS);
1410
1411 dfll_tune_low(td);
1412 dfll_writel(td, td->droop_ctrl, DFLL_DROOP_CTRL);
1413 dfll_writel(td, DFLL_MONITOR_CTRL_FREQ, DFLL_MONITOR_CTRL);
1414 }
1415
1416 /**
1417 * dfll_init_clks - clk_get() the DFLL source clocks
1418 * @td: DFLL instance
1419 *
1420 * Call clk_get() on the DFLL source clocks and save the pointers for later
1421 * use. Returns 0 upon success or error (see devm_clk_get) if one or more
1422 * of the clocks couldn't be looked up.
1423 */
dfll_init_clks(struct tegra_dfll * td)1424 static int dfll_init_clks(struct tegra_dfll *td)
1425 {
1426 td->ref_clk = devm_clk_get(td->dev, "ref");
1427 if (IS_ERR(td->ref_clk)) {
1428 dev_err(td->dev, "missing ref clock\n");
1429 return PTR_ERR(td->ref_clk);
1430 }
1431
1432 td->soc_clk = devm_clk_get(td->dev, "soc");
1433 if (IS_ERR(td->soc_clk)) {
1434 dev_err(td->dev, "missing soc clock\n");
1435 return PTR_ERR(td->soc_clk);
1436 }
1437
1438 td->i2c_clk = devm_clk_get(td->dev, "i2c");
1439 if (IS_ERR(td->i2c_clk)) {
1440 dev_err(td->dev, "missing i2c clock\n");
1441 return PTR_ERR(td->i2c_clk);
1442 }
1443 td->i2c_clk_rate = clk_get_rate(td->i2c_clk);
1444
1445 return 0;
1446 }
1447
1448 /**
1449 * dfll_init - Prepare the DFLL IP block for use
1450 * @td: DFLL instance
1451 *
1452 * Do everything necessary to prepare the DFLL IP block for use. The
1453 * DFLL will be left in DISABLED state. Called by dfll_probe().
1454 * Returns 0 upon success, or passes along the error from whatever
1455 * function returned it.
1456 */
dfll_init(struct tegra_dfll * td)1457 static int dfll_init(struct tegra_dfll *td)
1458 {
1459 int ret;
1460
1461 td->ref_rate = clk_get_rate(td->ref_clk);
1462 if (td->ref_rate != REF_CLOCK_RATE) {
1463 dev_err(td->dev, "unexpected ref clk rate %lu, expecting %lu",
1464 td->ref_rate, REF_CLOCK_RATE);
1465 return -EINVAL;
1466 }
1467
1468 reset_control_deassert(td->dfll_rst);
1469 reset_control_deassert(td->dvco_rst);
1470
1471 ret = clk_prepare(td->ref_clk);
1472 if (ret) {
1473 dev_err(td->dev, "failed to prepare ref_clk\n");
1474 return ret;
1475 }
1476
1477 ret = clk_prepare(td->soc_clk);
1478 if (ret) {
1479 dev_err(td->dev, "failed to prepare soc_clk\n");
1480 goto di_err1;
1481 }
1482
1483 ret = clk_prepare(td->i2c_clk);
1484 if (ret) {
1485 dev_err(td->dev, "failed to prepare i2c_clk\n");
1486 goto di_err2;
1487 }
1488
1489 td->last_unrounded_rate = 0;
1490
1491 pm_runtime_enable(td->dev);
1492 pm_runtime_get_sync(td->dev);
1493
1494 dfll_set_mode(td, DFLL_DISABLED);
1495 dfll_set_default_params(td);
1496
1497 if (td->soc->init_clock_trimmers)
1498 td->soc->init_clock_trimmers();
1499
1500 dfll_set_open_loop_config(td);
1501
1502 dfll_init_out_if(td);
1503
1504 pm_runtime_put_sync(td->dev);
1505
1506 return 0;
1507
1508 di_err2:
1509 clk_unprepare(td->soc_clk);
1510 di_err1:
1511 clk_unprepare(td->ref_clk);
1512
1513 reset_control_assert(td->dvco_rst);
1514 reset_control_assert(td->dfll_rst);
1515
1516 return ret;
1517 }
1518
1519 /**
1520 * tegra_dfll_suspend - check DFLL is disabled
1521 * @dev: DFLL instance
1522 *
1523 * DFLL clock should be disabled by the CPUFreq driver. So, make
1524 * sure it is disabled and disable all clocks needed by the DFLL.
1525 */
tegra_dfll_suspend(struct device * dev)1526 int tegra_dfll_suspend(struct device *dev)
1527 {
1528 struct tegra_dfll *td = dev_get_drvdata(dev);
1529
1530 if (dfll_is_running(td)) {
1531 dev_err(td->dev, "DFLL still enabled while suspending\n");
1532 return -EBUSY;
1533 }
1534
1535 reset_control_assert(td->dvco_rst);
1536 reset_control_assert(td->dfll_rst);
1537
1538 return 0;
1539 }
1540 EXPORT_SYMBOL(tegra_dfll_suspend);
1541
1542 /**
1543 * tegra_dfll_resume - reinitialize DFLL on resume
1544 * @dev: DFLL instance
1545 *
1546 * DFLL is disabled and reset during suspend and resume.
1547 * So, reinitialize the DFLL IP block back for use.
1548 * DFLL clock is enabled later in closed loop mode by CPUFreq
1549 * driver before switching its clock source to DFLL output.
1550 */
tegra_dfll_resume(struct device * dev)1551 int tegra_dfll_resume(struct device *dev)
1552 {
1553 struct tegra_dfll *td = dev_get_drvdata(dev);
1554
1555 reset_control_deassert(td->dfll_rst);
1556 reset_control_deassert(td->dvco_rst);
1557
1558 pm_runtime_get_sync(td->dev);
1559
1560 dfll_set_mode(td, DFLL_DISABLED);
1561 dfll_set_default_params(td);
1562
1563 if (td->soc->init_clock_trimmers)
1564 td->soc->init_clock_trimmers();
1565
1566 dfll_set_open_loop_config(td);
1567
1568 dfll_init_out_if(td);
1569
1570 pm_runtime_put_sync(td->dev);
1571
1572 return 0;
1573 }
1574 EXPORT_SYMBOL(tegra_dfll_resume);
1575
1576 /*
1577 * DT data fetch
1578 */
1579
1580 /*
1581 * Find a PMIC voltage register-to-voltage mapping for the given voltage.
1582 * An exact voltage match is required.
1583 */
find_vdd_map_entry_exact(struct tegra_dfll * td,int uV)1584 static int find_vdd_map_entry_exact(struct tegra_dfll *td, int uV)
1585 {
1586 int i, n_voltages, reg_uV,reg_volt_id, align_step;
1587
1588 if (WARN_ON(td->pmu_if == TEGRA_DFLL_PMU_PWM))
1589 return -EINVAL;
1590
1591 align_step = uV / td->soc->alignment.step_uv;
1592 n_voltages = regulator_count_voltages(td->vdd_reg);
1593 for (i = 0; i < n_voltages; i++) {
1594 reg_uV = regulator_list_voltage(td->vdd_reg, i);
1595 if (reg_uV < 0)
1596 break;
1597
1598 reg_volt_id = reg_uV / td->soc->alignment.step_uv;
1599
1600 if (align_step == reg_volt_id)
1601 return i;
1602 }
1603
1604 dev_err(td->dev, "no voltage map entry for %d uV\n", uV);
1605 return -EINVAL;
1606 }
1607
1608 /*
1609 * Find a PMIC voltage register-to-voltage mapping for the given voltage,
1610 * rounding up to the closest supported voltage.
1611 * */
find_vdd_map_entry_min(struct tegra_dfll * td,int uV)1612 static int find_vdd_map_entry_min(struct tegra_dfll *td, int uV)
1613 {
1614 int i, n_voltages, reg_uV, reg_volt_id, align_step;
1615
1616 if (WARN_ON(td->pmu_if == TEGRA_DFLL_PMU_PWM))
1617 return -EINVAL;
1618
1619 align_step = uV / td->soc->alignment.step_uv;
1620 n_voltages = regulator_count_voltages(td->vdd_reg);
1621 for (i = 0; i < n_voltages; i++) {
1622 reg_uV = regulator_list_voltage(td->vdd_reg, i);
1623 if (reg_uV < 0)
1624 break;
1625
1626 reg_volt_id = reg_uV / td->soc->alignment.step_uv;
1627
1628 if (align_step <= reg_volt_id)
1629 return i;
1630 }
1631
1632 dev_err(td->dev, "no voltage map entry rounding to %d uV\n", uV);
1633 return -EINVAL;
1634 }
1635
1636 /*
1637 * dfll_build_pwm_lut - build the PWM regulator lookup table
1638 * @td: DFLL instance
1639 * @v_max: Vmax from OPP table
1640 *
1641 * Look-up table in h/w is ignored when PWM is used as DFLL interface to PMIC.
1642 * In this case closed loop output is controlling duty cycle directly. The s/w
1643 * look-up that maps PWM duty cycle to voltage is still built by this function.
1644 */
dfll_build_pwm_lut(struct tegra_dfll * td,unsigned long v_max)1645 static int dfll_build_pwm_lut(struct tegra_dfll *td, unsigned long v_max)
1646 {
1647 int i;
1648 unsigned long rate, reg_volt;
1649 u8 lut_bottom = MAX_DFLL_VOLTAGES;
1650 int v_min = td->soc->cvb->min_millivolts * 1000;
1651
1652 for (i = 0; i < MAX_DFLL_VOLTAGES; i++) {
1653 reg_volt = td->lut_uv[i];
1654
1655 /* since opp voltage is exact mv */
1656 reg_volt = (reg_volt / 1000) * 1000;
1657 if (reg_volt > v_max)
1658 break;
1659
1660 td->lut[i] = i;
1661 if ((lut_bottom == MAX_DFLL_VOLTAGES) && (reg_volt >= v_min))
1662 lut_bottom = i;
1663 }
1664
1665 /* determine voltage boundaries */
1666 td->lut_size = i;
1667 if ((lut_bottom == MAX_DFLL_VOLTAGES) ||
1668 (lut_bottom + 1 >= td->lut_size)) {
1669 dev_err(td->dev, "no voltage above DFLL minimum %d mV\n",
1670 td->soc->cvb->min_millivolts);
1671 return -EINVAL;
1672 }
1673 td->lut_bottom = lut_bottom;
1674
1675 /* determine rate boundaries */
1676 rate = get_dvco_rate_below(td, td->lut_bottom);
1677 if (!rate) {
1678 dev_err(td->dev, "no opp below DFLL minimum voltage %d mV\n",
1679 td->soc->cvb->min_millivolts);
1680 return -EINVAL;
1681 }
1682 td->dvco_rate_min = rate;
1683
1684 return 0;
1685 }
1686
1687 /**
1688 * dfll_build_i2c_lut - build the I2C voltage register lookup table
1689 * @td: DFLL instance
1690 * @v_max: Vmax from OPP table
1691 *
1692 * The DFLL hardware has 33 bytes of look-up table RAM that must be filled with
1693 * PMIC voltage register values that span the entire DFLL operating range.
1694 * This function builds the look-up table based on the OPP table provided by
1695 * the soc-specific platform driver (td->soc->opp_dev) and the PMIC
1696 * register-to-voltage mapping queried from the regulator framework.
1697 *
1698 * On success, fills in td->lut and returns 0, or -err on failure.
1699 */
dfll_build_i2c_lut(struct tegra_dfll * td,unsigned long v_max)1700 static int dfll_build_i2c_lut(struct tegra_dfll *td, unsigned long v_max)
1701 {
1702 unsigned long rate, v, v_opp;
1703 int ret = -EINVAL;
1704 int j, selector, lut;
1705
1706 v = td->soc->cvb->min_millivolts * 1000;
1707 lut = find_vdd_map_entry_exact(td, v);
1708 if (lut < 0)
1709 goto out;
1710 td->lut[0] = lut;
1711 td->lut_bottom = 0;
1712
1713 for (j = 1, rate = 0; ; rate++) {
1714 struct dev_pm_opp *opp;
1715
1716 opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate);
1717 if (IS_ERR(opp))
1718 break;
1719 v_opp = dev_pm_opp_get_voltage(opp);
1720
1721 if (v_opp <= td->soc->cvb->min_millivolts * 1000)
1722 td->dvco_rate_min = dev_pm_opp_get_freq(opp);
1723
1724 dev_pm_opp_put(opp);
1725
1726 for (;;) {
1727 v += max(1UL, (v_max - v) / (MAX_DFLL_VOLTAGES - j));
1728 if (v >= v_opp)
1729 break;
1730
1731 selector = find_vdd_map_entry_min(td, v);
1732 if (selector < 0)
1733 goto out;
1734 if (selector != td->lut[j - 1])
1735 td->lut[j++] = selector;
1736 }
1737
1738 v = (j == MAX_DFLL_VOLTAGES - 1) ? v_max : v_opp;
1739 selector = find_vdd_map_entry_exact(td, v);
1740 if (selector < 0)
1741 goto out;
1742 if (selector != td->lut[j - 1])
1743 td->lut[j++] = selector;
1744
1745 if (v >= v_max)
1746 break;
1747 }
1748 td->lut_size = j;
1749
1750 if (!td->dvco_rate_min)
1751 dev_err(td->dev, "no opp above DFLL minimum voltage %d mV\n",
1752 td->soc->cvb->min_millivolts);
1753 else {
1754 ret = 0;
1755 for (j = 0; j < td->lut_size; j++)
1756 td->lut_uv[j] =
1757 regulator_list_voltage(td->vdd_reg,
1758 td->lut[j]);
1759 }
1760
1761 out:
1762 return ret;
1763 }
1764
dfll_build_lut(struct tegra_dfll * td)1765 static int dfll_build_lut(struct tegra_dfll *td)
1766 {
1767 unsigned long rate, v_max;
1768 struct dev_pm_opp *opp;
1769
1770 rate = ULONG_MAX;
1771 opp = dev_pm_opp_find_freq_floor(td->soc->dev, &rate);
1772 if (IS_ERR(opp)) {
1773 dev_err(td->dev, "couldn't get vmax opp, empty opp table?\n");
1774 return -EINVAL;
1775 }
1776 v_max = dev_pm_opp_get_voltage(opp);
1777 dev_pm_opp_put(opp);
1778
1779 if (td->pmu_if == TEGRA_DFLL_PMU_PWM)
1780 return dfll_build_pwm_lut(td, v_max);
1781 else
1782 return dfll_build_i2c_lut(td, v_max);
1783 }
1784
1785 /**
1786 * read_dt_param - helper function for reading required parameters from the DT
1787 * @td: DFLL instance
1788 * @param: DT property name
1789 * @dest: output pointer for the value read
1790 *
1791 * Read a required numeric parameter from the DFLL device node, or complain
1792 * if the property doesn't exist. Returns a boolean indicating success for
1793 * easy chaining of multiple calls to this function.
1794 */
read_dt_param(struct tegra_dfll * td,const char * param,u32 * dest)1795 static bool read_dt_param(struct tegra_dfll *td, const char *param, u32 *dest)
1796 {
1797 int err = of_property_read_u32(td->dev->of_node, param, dest);
1798
1799 if (err < 0) {
1800 dev_err(td->dev, "failed to read DT parameter %s: %d\n",
1801 param, err);
1802 return false;
1803 }
1804
1805 return true;
1806 }
1807
1808 /**
1809 * dfll_fetch_i2c_params - query PMIC I2C params from DT & regulator subsystem
1810 * @td: DFLL instance
1811 *
1812 * Read all the parameters required for operation in I2C mode. The parameters
1813 * can originate from the device tree or the regulator subsystem.
1814 * Returns 0 on success or -err on failure.
1815 */
dfll_fetch_i2c_params(struct tegra_dfll * td)1816 static int dfll_fetch_i2c_params(struct tegra_dfll *td)
1817 {
1818 struct regmap *regmap;
1819 struct device *i2c_dev;
1820 struct i2c_client *i2c_client;
1821 int vsel_reg, vsel_mask;
1822 int ret;
1823
1824 if (!read_dt_param(td, "nvidia,i2c-fs-rate", &td->i2c_fs_rate))
1825 return -EINVAL;
1826
1827 regmap = regulator_get_regmap(td->vdd_reg);
1828 i2c_dev = regmap_get_device(regmap);
1829 i2c_client = to_i2c_client(i2c_dev);
1830
1831 td->i2c_slave_addr = i2c_client->addr;
1832
1833 ret = regulator_get_hardware_vsel_register(td->vdd_reg,
1834 &vsel_reg,
1835 &vsel_mask);
1836 if (ret < 0) {
1837 dev_err(td->dev,
1838 "regulator unsuitable for DFLL I2C operation\n");
1839 return -EINVAL;
1840 }
1841 td->i2c_reg = vsel_reg;
1842
1843 return 0;
1844 }
1845
dfll_fetch_pwm_params(struct tegra_dfll * td)1846 static int dfll_fetch_pwm_params(struct tegra_dfll *td)
1847 {
1848 int ret, i;
1849 u32 pwm_period;
1850
1851 if (!td->soc->alignment.step_uv || !td->soc->alignment.offset_uv) {
1852 dev_err(td->dev,
1853 "Missing step or alignment info for PWM regulator");
1854 return -EINVAL;
1855 }
1856 for (i = 0; i < MAX_DFLL_VOLTAGES; i++)
1857 td->lut_uv[i] = td->soc->alignment.offset_uv +
1858 i * td->soc->alignment.step_uv;
1859
1860 ret = read_dt_param(td, "nvidia,pwm-tristate-microvolts",
1861 &td->reg_init_uV);
1862 if (!ret) {
1863 dev_err(td->dev, "couldn't get initialized voltage\n");
1864 return -EINVAL;
1865 }
1866
1867 ret = read_dt_param(td, "nvidia,pwm-period-nanoseconds", &pwm_period);
1868 if (!ret) {
1869 dev_err(td->dev, "couldn't get PWM period\n");
1870 return -EINVAL;
1871 }
1872 td->pwm_rate = (NSEC_PER_SEC / pwm_period) * (MAX_DFLL_VOLTAGES - 1);
1873
1874 td->pwm_pin = devm_pinctrl_get(td->dev);
1875 if (IS_ERR(td->pwm_pin)) {
1876 dev_err(td->dev, "DT: missing pinctrl device\n");
1877 return PTR_ERR(td->pwm_pin);
1878 }
1879
1880 td->pwm_enable_state = pinctrl_lookup_state(td->pwm_pin,
1881 "dvfs_pwm_enable");
1882 if (IS_ERR(td->pwm_enable_state)) {
1883 dev_err(td->dev, "DT: missing pwm enabled state\n");
1884 return PTR_ERR(td->pwm_enable_state);
1885 }
1886
1887 td->pwm_disable_state = pinctrl_lookup_state(td->pwm_pin,
1888 "dvfs_pwm_disable");
1889 if (IS_ERR(td->pwm_disable_state)) {
1890 dev_err(td->dev, "DT: missing pwm disabled state\n");
1891 return PTR_ERR(td->pwm_disable_state);
1892 }
1893
1894 return 0;
1895 }
1896
1897 /**
1898 * dfll_fetch_common_params - read DFLL parameters from the device tree
1899 * @td: DFLL instance
1900 *
1901 * Read all the DT parameters that are common to both I2C and PWM operation.
1902 * Returns 0 on success or -EINVAL on any failure.
1903 */
dfll_fetch_common_params(struct tegra_dfll * td)1904 static int dfll_fetch_common_params(struct tegra_dfll *td)
1905 {
1906 bool ok = true;
1907
1908 ok &= read_dt_param(td, "nvidia,droop-ctrl", &td->droop_ctrl);
1909 ok &= read_dt_param(td, "nvidia,sample-rate", &td->sample_rate);
1910 ok &= read_dt_param(td, "nvidia,force-mode", &td->force_mode);
1911 ok &= read_dt_param(td, "nvidia,cf", &td->cf);
1912 ok &= read_dt_param(td, "nvidia,ci", &td->ci);
1913 ok &= read_dt_param(td, "nvidia,cg", &td->cg);
1914 td->cg_scale = of_property_read_bool(td->dev->of_node,
1915 "nvidia,cg-scale");
1916
1917 if (of_property_read_string(td->dev->of_node, "clock-output-names",
1918 &td->output_clock_name)) {
1919 dev_err(td->dev, "missing clock-output-names property\n");
1920 ok = false;
1921 }
1922
1923 return ok ? 0 : -EINVAL;
1924 }
1925
1926 /*
1927 * API exported to per-SoC platform drivers
1928 */
1929
1930 /**
1931 * tegra_dfll_register - probe a Tegra DFLL device
1932 * @pdev: DFLL platform_device *
1933 * @soc: Per-SoC integration and characterization data for this DFLL instance
1934 *
1935 * Probe and initialize a DFLL device instance. Intended to be called
1936 * by a SoC-specific shim driver that passes in per-SoC integration
1937 * and configuration data via @soc. Returns 0 on success or -err on failure.
1938 */
tegra_dfll_register(struct platform_device * pdev,struct tegra_dfll_soc_data * soc)1939 int tegra_dfll_register(struct platform_device *pdev,
1940 struct tegra_dfll_soc_data *soc)
1941 {
1942 struct resource *mem;
1943 struct tegra_dfll *td;
1944 int ret;
1945
1946 if (!soc) {
1947 dev_err(&pdev->dev, "no tegra_dfll_soc_data provided\n");
1948 return -EINVAL;
1949 }
1950
1951 td = devm_kzalloc(&pdev->dev, sizeof(*td), GFP_KERNEL);
1952 if (!td)
1953 return -ENOMEM;
1954 td->dev = &pdev->dev;
1955 platform_set_drvdata(pdev, td);
1956
1957 td->soc = soc;
1958
1959 td->dfll_rst = devm_reset_control_get_optional(td->dev, "dfll");
1960 if (IS_ERR(td->dfll_rst)) {
1961 dev_err(td->dev, "couldn't get dfll reset\n");
1962 return PTR_ERR(td->dfll_rst);
1963 }
1964
1965 td->dvco_rst = devm_reset_control_get(td->dev, "dvco");
1966 if (IS_ERR(td->dvco_rst)) {
1967 dev_err(td->dev, "couldn't get dvco reset\n");
1968 return PTR_ERR(td->dvco_rst);
1969 }
1970
1971 ret = dfll_fetch_common_params(td);
1972 if (ret) {
1973 dev_err(td->dev, "couldn't parse device tree parameters\n");
1974 return ret;
1975 }
1976
1977 if (of_property_read_bool(td->dev->of_node, "nvidia,pwm-to-pmic")) {
1978 td->pmu_if = TEGRA_DFLL_PMU_PWM;
1979 ret = dfll_fetch_pwm_params(td);
1980 } else {
1981 td->vdd_reg = devm_regulator_get(td->dev, "vdd-cpu");
1982 if (IS_ERR(td->vdd_reg)) {
1983 dev_err(td->dev, "couldn't get vdd_cpu regulator\n");
1984 return PTR_ERR(td->vdd_reg);
1985 }
1986 td->pmu_if = TEGRA_DFLL_PMU_I2C;
1987 ret = dfll_fetch_i2c_params(td);
1988 }
1989 if (ret)
1990 return ret;
1991
1992 ret = dfll_build_lut(td);
1993 if (ret) {
1994 dev_err(td->dev, "couldn't build LUT\n");
1995 return ret;
1996 }
1997
1998 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1999 if (!mem) {
2000 dev_err(td->dev, "no control register resource\n");
2001 return -ENODEV;
2002 }
2003
2004 td->base = devm_ioremap(td->dev, mem->start, resource_size(mem));
2005 if (!td->base) {
2006 dev_err(td->dev, "couldn't ioremap DFLL control registers\n");
2007 return -ENODEV;
2008 }
2009
2010 mem = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2011 if (!mem) {
2012 dev_err(td->dev, "no i2c_base resource\n");
2013 return -ENODEV;
2014 }
2015
2016 td->i2c_base = devm_ioremap(td->dev, mem->start, resource_size(mem));
2017 if (!td->i2c_base) {
2018 dev_err(td->dev, "couldn't ioremap i2c_base resource\n");
2019 return -ENODEV;
2020 }
2021
2022 mem = platform_get_resource(pdev, IORESOURCE_MEM, 2);
2023 if (!mem) {
2024 dev_err(td->dev, "no i2c_controller_base resource\n");
2025 return -ENODEV;
2026 }
2027
2028 td->i2c_controller_base = devm_ioremap(td->dev, mem->start,
2029 resource_size(mem));
2030 if (!td->i2c_controller_base) {
2031 dev_err(td->dev,
2032 "couldn't ioremap i2c_controller_base resource\n");
2033 return -ENODEV;
2034 }
2035
2036 mem = platform_get_resource(pdev, IORESOURCE_MEM, 3);
2037 if (!mem) {
2038 dev_err(td->dev, "no lut_base resource\n");
2039 return -ENODEV;
2040 }
2041
2042 td->lut_base = devm_ioremap(td->dev, mem->start, resource_size(mem));
2043 if (!td->lut_base) {
2044 dev_err(td->dev,
2045 "couldn't ioremap lut_base resource\n");
2046 return -ENODEV;
2047 }
2048
2049 ret = dfll_init_clks(td);
2050 if (ret) {
2051 dev_err(&pdev->dev, "DFLL clock init error\n");
2052 return ret;
2053 }
2054
2055 /* Enable the clocks and set the device up */
2056 ret = dfll_init(td);
2057 if (ret)
2058 return ret;
2059
2060 ret = dfll_register_clk(td);
2061 if (ret) {
2062 dev_err(&pdev->dev, "DFLL clk registration failed\n");
2063 return ret;
2064 }
2065
2066 dfll_debug_init(td);
2067
2068 return 0;
2069 }
2070 EXPORT_SYMBOL(tegra_dfll_register);
2071
2072 /**
2073 * tegra_dfll_unregister - release all of the DFLL driver resources for a device
2074 * @pdev: DFLL platform_device *
2075 *
2076 * Unbind this driver from the DFLL hardware device represented by
2077 * @pdev. The DFLL must be disabled for this to succeed. Returns a
2078 * soc pointer upon success or -EBUSY if the DFLL is still active.
2079 */
tegra_dfll_unregister(struct platform_device * pdev)2080 struct tegra_dfll_soc_data *tegra_dfll_unregister(struct platform_device *pdev)
2081 {
2082 struct tegra_dfll *td = platform_get_drvdata(pdev);
2083
2084 /*
2085 * Note that exiting early here doesn't prevent unbinding the driver.
2086 * Exiting early here only leaks some resources.
2087 */
2088 if (td->mode != DFLL_DISABLED) {
2089 dev_err(&pdev->dev,
2090 "must disable DFLL before removing driver\n");
2091 return ERR_PTR(-EBUSY);
2092 }
2093
2094 debugfs_remove_recursive(td->debugfs_dir);
2095
2096 dfll_unregister_clk(td);
2097 pm_runtime_disable(&pdev->dev);
2098
2099 clk_unprepare(td->ref_clk);
2100 clk_unprepare(td->soc_clk);
2101 clk_unprepare(td->i2c_clk);
2102
2103 reset_control_assert(td->dvco_rst);
2104 reset_control_assert(td->dfll_rst);
2105
2106 return td->soc;
2107 }
2108 EXPORT_SYMBOL(tegra_dfll_unregister);
2109