xref: /openbmc/linux/drivers/clk/sunxi/clk-sunxi.c (revision d2999e1b)
1 /*
2  * Copyright 2013 Emilio López
3  *
4  * Emilio López <emilio@elopez.com.ar>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 #include <linux/clk-provider.h>
18 #include <linux/clkdev.h>
19 #include <linux/of.h>
20 #include <linux/of_address.h>
21 #include <linux/reset-controller.h>
22 
23 #include "clk-factors.h"
24 
25 static DEFINE_SPINLOCK(clk_lock);
26 
27 /* Maximum number of parents our clocks have */
28 #define SUNXI_MAX_PARENTS	5
29 
30 /**
31  * sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1
32  * PLL1 rate is calculated as follows
33  * rate = (parent_rate * n * (k + 1) >> p) / (m + 1);
34  * parent_rate is always 24Mhz
35  */
36 
37 static void sun4i_get_pll1_factors(u32 *freq, u32 parent_rate,
38 				   u8 *n, u8 *k, u8 *m, u8 *p)
39 {
40 	u8 div;
41 
42 	/* Normalize value to a 6M multiple */
43 	div = *freq / 6000000;
44 	*freq = 6000000 * div;
45 
46 	/* we were called to round the frequency, we can now return */
47 	if (n == NULL)
48 		return;
49 
50 	/* m is always zero for pll1 */
51 	*m = 0;
52 
53 	/* k is 1 only on these cases */
54 	if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
55 		*k = 1;
56 	else
57 		*k = 0;
58 
59 	/* p will be 3 for divs under 10 */
60 	if (div < 10)
61 		*p = 3;
62 
63 	/* p will be 2 for divs between 10 - 20 and odd divs under 32 */
64 	else if (div < 20 || (div < 32 && (div & 1)))
65 		*p = 2;
66 
67 	/* p will be 1 for even divs under 32, divs under 40 and odd pairs
68 	 * of divs between 40-62 */
69 	else if (div < 40 || (div < 64 && (div & 2)))
70 		*p = 1;
71 
72 	/* any other entries have p = 0 */
73 	else
74 		*p = 0;
75 
76 	/* calculate a suitable n based on k and p */
77 	div <<= *p;
78 	div /= (*k + 1);
79 	*n = div / 4;
80 }
81 
82 /**
83  * sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1
84  * PLL1 rate is calculated as follows
85  * rate = parent_rate * (n + 1) * (k + 1) / (m + 1);
86  * parent_rate should always be 24MHz
87  */
88 static void sun6i_a31_get_pll1_factors(u32 *freq, u32 parent_rate,
89 				       u8 *n, u8 *k, u8 *m, u8 *p)
90 {
91 	/*
92 	 * We can operate only on MHz, this will make our life easier
93 	 * later.
94 	 */
95 	u32 freq_mhz = *freq / 1000000;
96 	u32 parent_freq_mhz = parent_rate / 1000000;
97 
98 	/*
99 	 * Round down the frequency to the closest multiple of either
100 	 * 6 or 16
101 	 */
102 	u32 round_freq_6 = round_down(freq_mhz, 6);
103 	u32 round_freq_16 = round_down(freq_mhz, 16);
104 
105 	if (round_freq_6 > round_freq_16)
106 		freq_mhz = round_freq_6;
107 	else
108 		freq_mhz = round_freq_16;
109 
110 	*freq = freq_mhz * 1000000;
111 
112 	/*
113 	 * If the factors pointer are null, we were just called to
114 	 * round down the frequency.
115 	 * Exit.
116 	 */
117 	if (n == NULL)
118 		return;
119 
120 	/* If the frequency is a multiple of 32 MHz, k is always 3 */
121 	if (!(freq_mhz % 32))
122 		*k = 3;
123 	/* If the frequency is a multiple of 9 MHz, k is always 2 */
124 	else if (!(freq_mhz % 9))
125 		*k = 2;
126 	/* If the frequency is a multiple of 8 MHz, k is always 1 */
127 	else if (!(freq_mhz % 8))
128 		*k = 1;
129 	/* Otherwise, we don't use the k factor */
130 	else
131 		*k = 0;
132 
133 	/*
134 	 * If the frequency is a multiple of 2 but not a multiple of
135 	 * 3, m is 3. This is the first time we use 6 here, yet we
136 	 * will use it on several other places.
137 	 * We use this number because it's the lowest frequency we can
138 	 * generate (with n = 0, k = 0, m = 3), so every other frequency
139 	 * somehow relates to this frequency.
140 	 */
141 	if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4)
142 		*m = 2;
143 	/*
144 	 * If the frequency is a multiple of 6MHz, but the factor is
145 	 * odd, m will be 3
146 	 */
147 	else if ((freq_mhz / 6) & 1)
148 		*m = 3;
149 	/* Otherwise, we end up with m = 1 */
150 	else
151 		*m = 1;
152 
153 	/* Calculate n thanks to the above factors we already got */
154 	*n = freq_mhz * (*m + 1) / ((*k + 1) * parent_freq_mhz) - 1;
155 
156 	/*
157 	 * If n end up being outbound, and that we can still decrease
158 	 * m, do it.
159 	 */
160 	if ((*n + 1) > 31 && (*m + 1) > 1) {
161 		*n = (*n + 1) / 2 - 1;
162 		*m = (*m + 1) / 2 - 1;
163 	}
164 }
165 
166 /**
167  * sun4i_get_pll5_factors() - calculates n, k factors for PLL5
168  * PLL5 rate is calculated as follows
169  * rate = parent_rate * n * (k + 1)
170  * parent_rate is always 24Mhz
171  */
172 
173 static void sun4i_get_pll5_factors(u32 *freq, u32 parent_rate,
174 				   u8 *n, u8 *k, u8 *m, u8 *p)
175 {
176 	u8 div;
177 
178 	/* Normalize value to a parent_rate multiple (24M) */
179 	div = *freq / parent_rate;
180 	*freq = parent_rate * div;
181 
182 	/* we were called to round the frequency, we can now return */
183 	if (n == NULL)
184 		return;
185 
186 	if (div < 31)
187 		*k = 0;
188 	else if (div / 2 < 31)
189 		*k = 1;
190 	else if (div / 3 < 31)
191 		*k = 2;
192 	else
193 		*k = 3;
194 
195 	*n = DIV_ROUND_UP(div, (*k+1));
196 }
197 
198 /**
199  * sun6i_a31_get_pll6_factors() - calculates n, k factors for A31 PLL6
200  * PLL6 rate is calculated as follows
201  * rate = parent_rate * n * (k + 1) / 2
202  * parent_rate is always 24Mhz
203  */
204 
205 static void sun6i_a31_get_pll6_factors(u32 *freq, u32 parent_rate,
206 				       u8 *n, u8 *k, u8 *m, u8 *p)
207 {
208 	u8 div;
209 
210 	/*
211 	 * We always have 24MHz / 2, so we can just say that our
212 	 * parent clock is 12MHz.
213 	 */
214 	parent_rate = parent_rate / 2;
215 
216 	/* Normalize value to a parent_rate multiple (24M / 2) */
217 	div = *freq / parent_rate;
218 	*freq = parent_rate * div;
219 
220 	/* we were called to round the frequency, we can now return */
221 	if (n == NULL)
222 		return;
223 
224 	*k = div / 32;
225 	if (*k > 3)
226 		*k = 3;
227 
228 	*n = DIV_ROUND_UP(div, (*k+1));
229 }
230 
231 /**
232  * sun4i_get_apb1_factors() - calculates m, p factors for APB1
233  * APB1 rate is calculated as follows
234  * rate = (parent_rate >> p) / (m + 1);
235  */
236 
237 static void sun4i_get_apb1_factors(u32 *freq, u32 parent_rate,
238 				   u8 *n, u8 *k, u8 *m, u8 *p)
239 {
240 	u8 calcm, calcp;
241 
242 	if (parent_rate < *freq)
243 		*freq = parent_rate;
244 
245 	parent_rate = DIV_ROUND_UP(parent_rate, *freq);
246 
247 	/* Invalid rate! */
248 	if (parent_rate > 32)
249 		return;
250 
251 	if (parent_rate <= 4)
252 		calcp = 0;
253 	else if (parent_rate <= 8)
254 		calcp = 1;
255 	else if (parent_rate <= 16)
256 		calcp = 2;
257 	else
258 		calcp = 3;
259 
260 	calcm = (parent_rate >> calcp) - 1;
261 
262 	*freq = (parent_rate >> calcp) / (calcm + 1);
263 
264 	/* we were called to round the frequency, we can now return */
265 	if (n == NULL)
266 		return;
267 
268 	*m = calcm;
269 	*p = calcp;
270 }
271 
272 
273 
274 /**
275  * sun4i_get_mod0_factors() - calculates m, n factors for MOD0-style clocks
276  * MOD0 rate is calculated as follows
277  * rate = (parent_rate >> p) / (m + 1);
278  */
279 
280 static void sun4i_get_mod0_factors(u32 *freq, u32 parent_rate,
281 				   u8 *n, u8 *k, u8 *m, u8 *p)
282 {
283 	u8 div, calcm, calcp;
284 
285 	/* These clocks can only divide, so we will never be able to achieve
286 	 * frequencies higher than the parent frequency */
287 	if (*freq > parent_rate)
288 		*freq = parent_rate;
289 
290 	div = DIV_ROUND_UP(parent_rate, *freq);
291 
292 	if (div < 16)
293 		calcp = 0;
294 	else if (div / 2 < 16)
295 		calcp = 1;
296 	else if (div / 4 < 16)
297 		calcp = 2;
298 	else
299 		calcp = 3;
300 
301 	calcm = DIV_ROUND_UP(div, 1 << calcp);
302 
303 	*freq = (parent_rate >> calcp) / calcm;
304 
305 	/* we were called to round the frequency, we can now return */
306 	if (n == NULL)
307 		return;
308 
309 	*m = calcm - 1;
310 	*p = calcp;
311 }
312 
313 
314 
315 /**
316  * sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B
317  * CLK_OUT rate is calculated as follows
318  * rate = (parent_rate >> p) / (m + 1);
319  */
320 
321 static void sun7i_a20_get_out_factors(u32 *freq, u32 parent_rate,
322 				      u8 *n, u8 *k, u8 *m, u8 *p)
323 {
324 	u8 div, calcm, calcp;
325 
326 	/* These clocks can only divide, so we will never be able to achieve
327 	 * frequencies higher than the parent frequency */
328 	if (*freq > parent_rate)
329 		*freq = parent_rate;
330 
331 	div = DIV_ROUND_UP(parent_rate, *freq);
332 
333 	if (div < 32)
334 		calcp = 0;
335 	else if (div / 2 < 32)
336 		calcp = 1;
337 	else if (div / 4 < 32)
338 		calcp = 2;
339 	else
340 		calcp = 3;
341 
342 	calcm = DIV_ROUND_UP(div, 1 << calcp);
343 
344 	*freq = (parent_rate >> calcp) / calcm;
345 
346 	/* we were called to round the frequency, we can now return */
347 	if (n == NULL)
348 		return;
349 
350 	*m = calcm - 1;
351 	*p = calcp;
352 }
353 
354 /**
355  * clk_sunxi_mmc_phase_control() - configures MMC clock phase control
356  */
357 
358 void clk_sunxi_mmc_phase_control(struct clk *clk, u8 sample, u8 output)
359 {
360 	#define to_clk_composite(_hw) container_of(_hw, struct clk_composite, hw)
361 	#define to_clk_factors(_hw) container_of(_hw, struct clk_factors, hw)
362 
363 	struct clk_hw *hw = __clk_get_hw(clk);
364 	struct clk_composite *composite = to_clk_composite(hw);
365 	struct clk_hw *rate_hw = composite->rate_hw;
366 	struct clk_factors *factors = to_clk_factors(rate_hw);
367 	unsigned long flags = 0;
368 	u32 reg;
369 
370 	if (factors->lock)
371 		spin_lock_irqsave(factors->lock, flags);
372 
373 	reg = readl(factors->reg);
374 
375 	/* set sample clock phase control */
376 	reg &= ~(0x7 << 20);
377 	reg |= ((sample & 0x7) << 20);
378 
379 	/* set output clock phase control */
380 	reg &= ~(0x7 << 8);
381 	reg |= ((output & 0x7) << 8);
382 
383 	writel(reg, factors->reg);
384 
385 	if (factors->lock)
386 		spin_unlock_irqrestore(factors->lock, flags);
387 }
388 EXPORT_SYMBOL(clk_sunxi_mmc_phase_control);
389 
390 
391 /**
392  * sunxi_factors_clk_setup() - Setup function for factor clocks
393  */
394 
395 #define SUNXI_FACTORS_MUX_MASK 0x3
396 
397 struct factors_data {
398 	int enable;
399 	int mux;
400 	struct clk_factors_config *table;
401 	void (*getter) (u32 *rate, u32 parent_rate, u8 *n, u8 *k, u8 *m, u8 *p);
402 	const char *name;
403 };
404 
405 static struct clk_factors_config sun4i_pll1_config = {
406 	.nshift = 8,
407 	.nwidth = 5,
408 	.kshift = 4,
409 	.kwidth = 2,
410 	.mshift = 0,
411 	.mwidth = 2,
412 	.pshift = 16,
413 	.pwidth = 2,
414 };
415 
416 static struct clk_factors_config sun6i_a31_pll1_config = {
417 	.nshift	= 8,
418 	.nwidth = 5,
419 	.kshift = 4,
420 	.kwidth = 2,
421 	.mshift = 0,
422 	.mwidth = 2,
423 };
424 
425 static struct clk_factors_config sun4i_pll5_config = {
426 	.nshift = 8,
427 	.nwidth = 5,
428 	.kshift = 4,
429 	.kwidth = 2,
430 };
431 
432 static struct clk_factors_config sun6i_a31_pll6_config = {
433 	.nshift	= 8,
434 	.nwidth = 5,
435 	.kshift = 4,
436 	.kwidth = 2,
437 };
438 
439 static struct clk_factors_config sun4i_apb1_config = {
440 	.mshift = 0,
441 	.mwidth = 5,
442 	.pshift = 16,
443 	.pwidth = 2,
444 };
445 
446 /* user manual says "n" but it's really "p" */
447 static struct clk_factors_config sun4i_mod0_config = {
448 	.mshift = 0,
449 	.mwidth = 4,
450 	.pshift = 16,
451 	.pwidth = 2,
452 };
453 
454 /* user manual says "n" but it's really "p" */
455 static struct clk_factors_config sun7i_a20_out_config = {
456 	.mshift = 8,
457 	.mwidth = 5,
458 	.pshift = 20,
459 	.pwidth = 2,
460 };
461 
462 static const struct factors_data sun4i_pll1_data __initconst = {
463 	.enable = 31,
464 	.table = &sun4i_pll1_config,
465 	.getter = sun4i_get_pll1_factors,
466 };
467 
468 static const struct factors_data sun6i_a31_pll1_data __initconst = {
469 	.enable = 31,
470 	.table = &sun6i_a31_pll1_config,
471 	.getter = sun6i_a31_get_pll1_factors,
472 };
473 
474 static const struct factors_data sun7i_a20_pll4_data __initconst = {
475 	.enable = 31,
476 	.table = &sun4i_pll5_config,
477 	.getter = sun4i_get_pll5_factors,
478 };
479 
480 static const struct factors_data sun4i_pll5_data __initconst = {
481 	.enable = 31,
482 	.table = &sun4i_pll5_config,
483 	.getter = sun4i_get_pll5_factors,
484 	.name = "pll5",
485 };
486 
487 static const struct factors_data sun4i_pll6_data __initconst = {
488 	.enable = 31,
489 	.table = &sun4i_pll5_config,
490 	.getter = sun4i_get_pll5_factors,
491 	.name = "pll6",
492 };
493 
494 static const struct factors_data sun6i_a31_pll6_data __initconst = {
495 	.enable = 31,
496 	.table = &sun6i_a31_pll6_config,
497 	.getter = sun6i_a31_get_pll6_factors,
498 };
499 
500 static const struct factors_data sun4i_apb1_data __initconst = {
501 	.table = &sun4i_apb1_config,
502 	.getter = sun4i_get_apb1_factors,
503 };
504 
505 static const struct factors_data sun4i_mod0_data __initconst = {
506 	.enable = 31,
507 	.mux = 24,
508 	.table = &sun4i_mod0_config,
509 	.getter = sun4i_get_mod0_factors,
510 };
511 
512 static const struct factors_data sun7i_a20_out_data __initconst = {
513 	.enable = 31,
514 	.mux = 24,
515 	.table = &sun7i_a20_out_config,
516 	.getter = sun7i_a20_get_out_factors,
517 };
518 
519 static struct clk * __init sunxi_factors_clk_setup(struct device_node *node,
520 						const struct factors_data *data)
521 {
522 	struct clk *clk;
523 	struct clk_factors *factors;
524 	struct clk_gate *gate = NULL;
525 	struct clk_mux *mux = NULL;
526 	struct clk_hw *gate_hw = NULL;
527 	struct clk_hw *mux_hw = NULL;
528 	const char *clk_name = node->name;
529 	const char *parents[SUNXI_MAX_PARENTS];
530 	void *reg;
531 	int i = 0;
532 
533 	reg = of_iomap(node, 0);
534 
535 	/* if we have a mux, we will have >1 parents */
536 	while (i < SUNXI_MAX_PARENTS &&
537 	       (parents[i] = of_clk_get_parent_name(node, i)) != NULL)
538 		i++;
539 
540 	/*
541 	 * some factor clocks, such as pll5 and pll6, may have multiple
542 	 * outputs, and have their name designated in factors_data
543 	 */
544 	if (data->name)
545 		clk_name = data->name;
546 	else
547 		of_property_read_string(node, "clock-output-names", &clk_name);
548 
549 	factors = kzalloc(sizeof(struct clk_factors), GFP_KERNEL);
550 	if (!factors)
551 		return NULL;
552 
553 	/* Add a gate if this factor clock can be gated */
554 	if (data->enable) {
555 		gate = kzalloc(sizeof(struct clk_gate), GFP_KERNEL);
556 		if (!gate) {
557 			kfree(factors);
558 			return NULL;
559 		}
560 
561 		/* set up gate properties */
562 		gate->reg = reg;
563 		gate->bit_idx = data->enable;
564 		gate->lock = &clk_lock;
565 		gate_hw = &gate->hw;
566 	}
567 
568 	/* Add a mux if this factor clock can be muxed */
569 	if (data->mux) {
570 		mux = kzalloc(sizeof(struct clk_mux), GFP_KERNEL);
571 		if (!mux) {
572 			kfree(factors);
573 			kfree(gate);
574 			return NULL;
575 		}
576 
577 		/* set up gate properties */
578 		mux->reg = reg;
579 		mux->shift = data->mux;
580 		mux->mask = SUNXI_FACTORS_MUX_MASK;
581 		mux->lock = &clk_lock;
582 		mux_hw = &mux->hw;
583 	}
584 
585 	/* set up factors properties */
586 	factors->reg = reg;
587 	factors->config = data->table;
588 	factors->get_factors = data->getter;
589 	factors->lock = &clk_lock;
590 
591 	clk = clk_register_composite(NULL, clk_name,
592 			parents, i,
593 			mux_hw, &clk_mux_ops,
594 			&factors->hw, &clk_factors_ops,
595 			gate_hw, &clk_gate_ops, 0);
596 
597 	if (!IS_ERR(clk)) {
598 		of_clk_add_provider(node, of_clk_src_simple_get, clk);
599 		clk_register_clkdev(clk, clk_name, NULL);
600 	}
601 
602 	return clk;
603 }
604 
605 
606 
607 /**
608  * sunxi_mux_clk_setup() - Setup function for muxes
609  */
610 
611 #define SUNXI_MUX_GATE_WIDTH	2
612 
613 struct mux_data {
614 	u8 shift;
615 };
616 
617 static const struct mux_data sun4i_cpu_mux_data __initconst = {
618 	.shift = 16,
619 };
620 
621 static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = {
622 	.shift = 12,
623 };
624 
625 static const struct mux_data sun4i_apb1_mux_data __initconst = {
626 	.shift = 24,
627 };
628 
629 static void __init sunxi_mux_clk_setup(struct device_node *node,
630 				       struct mux_data *data)
631 {
632 	struct clk *clk;
633 	const char *clk_name = node->name;
634 	const char *parents[SUNXI_MAX_PARENTS];
635 	void *reg;
636 	int i = 0;
637 
638 	reg = of_iomap(node, 0);
639 
640 	while (i < SUNXI_MAX_PARENTS &&
641 	       (parents[i] = of_clk_get_parent_name(node, i)) != NULL)
642 		i++;
643 
644 	of_property_read_string(node, "clock-output-names", &clk_name);
645 
646 	clk = clk_register_mux(NULL, clk_name, parents, i,
647 			       CLK_SET_RATE_NO_REPARENT, reg,
648 			       data->shift, SUNXI_MUX_GATE_WIDTH,
649 			       0, &clk_lock);
650 
651 	if (clk) {
652 		of_clk_add_provider(node, of_clk_src_simple_get, clk);
653 		clk_register_clkdev(clk, clk_name, NULL);
654 	}
655 }
656 
657 
658 
659 /**
660  * sunxi_divider_clk_setup() - Setup function for simple divider clocks
661  */
662 
663 struct div_data {
664 	u8	shift;
665 	u8	pow;
666 	u8	width;
667 };
668 
669 static const struct div_data sun4i_axi_data __initconst = {
670 	.shift	= 0,
671 	.pow	= 0,
672 	.width	= 2,
673 };
674 
675 static const struct div_data sun4i_ahb_data __initconst = {
676 	.shift	= 4,
677 	.pow	= 1,
678 	.width	= 2,
679 };
680 
681 static const struct div_data sun4i_apb0_data __initconst = {
682 	.shift	= 8,
683 	.pow	= 1,
684 	.width	= 2,
685 };
686 
687 static const struct div_data sun6i_a31_apb2_div_data __initconst = {
688 	.shift	= 0,
689 	.pow	= 0,
690 	.width	= 4,
691 };
692 
693 static void __init sunxi_divider_clk_setup(struct device_node *node,
694 					   struct div_data *data)
695 {
696 	struct clk *clk;
697 	const char *clk_name = node->name;
698 	const char *clk_parent;
699 	void *reg;
700 
701 	reg = of_iomap(node, 0);
702 
703 	clk_parent = of_clk_get_parent_name(node, 0);
704 
705 	of_property_read_string(node, "clock-output-names", &clk_name);
706 
707 	clk = clk_register_divider(NULL, clk_name, clk_parent, 0,
708 				   reg, data->shift, data->width,
709 				   data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0,
710 				   &clk_lock);
711 	if (clk) {
712 		of_clk_add_provider(node, of_clk_src_simple_get, clk);
713 		clk_register_clkdev(clk, clk_name, NULL);
714 	}
715 }
716 
717 
718 
719 /**
720  * sunxi_gates_reset... - reset bits in leaf gate clk registers handling
721  */
722 
723 struct gates_reset_data {
724 	void __iomem			*reg;
725 	spinlock_t			*lock;
726 	struct reset_controller_dev	rcdev;
727 };
728 
729 static int sunxi_gates_reset_assert(struct reset_controller_dev *rcdev,
730 			      unsigned long id)
731 {
732 	struct gates_reset_data *data = container_of(rcdev,
733 						     struct gates_reset_data,
734 						     rcdev);
735 	unsigned long flags;
736 	u32 reg;
737 
738 	spin_lock_irqsave(data->lock, flags);
739 
740 	reg = readl(data->reg);
741 	writel(reg & ~BIT(id), data->reg);
742 
743 	spin_unlock_irqrestore(data->lock, flags);
744 
745 	return 0;
746 }
747 
748 static int sunxi_gates_reset_deassert(struct reset_controller_dev *rcdev,
749 				unsigned long id)
750 {
751 	struct gates_reset_data *data = container_of(rcdev,
752 						     struct gates_reset_data,
753 						     rcdev);
754 	unsigned long flags;
755 	u32 reg;
756 
757 	spin_lock_irqsave(data->lock, flags);
758 
759 	reg = readl(data->reg);
760 	writel(reg | BIT(id), data->reg);
761 
762 	spin_unlock_irqrestore(data->lock, flags);
763 
764 	return 0;
765 }
766 
767 static struct reset_control_ops sunxi_gates_reset_ops = {
768 	.assert		= sunxi_gates_reset_assert,
769 	.deassert	= sunxi_gates_reset_deassert,
770 };
771 
772 /**
773  * sunxi_gates_clk_setup() - Setup function for leaf gates on clocks
774  */
775 
776 #define SUNXI_GATES_MAX_SIZE	64
777 
778 struct gates_data {
779 	DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE);
780 	u32 reset_mask;
781 };
782 
783 static const struct gates_data sun4i_axi_gates_data __initconst = {
784 	.mask = {1},
785 };
786 
787 static const struct gates_data sun4i_ahb_gates_data __initconst = {
788 	.mask = {0x7F77FFF, 0x14FB3F},
789 };
790 
791 static const struct gates_data sun5i_a10s_ahb_gates_data __initconst = {
792 	.mask = {0x147667e7, 0x185915},
793 };
794 
795 static const struct gates_data sun5i_a13_ahb_gates_data __initconst = {
796 	.mask = {0x107067e7, 0x185111},
797 };
798 
799 static const struct gates_data sun6i_a31_ahb1_gates_data __initconst = {
800 	.mask = {0xEDFE7F62, 0x794F931},
801 };
802 
803 static const struct gates_data sun7i_a20_ahb_gates_data __initconst = {
804 	.mask = { 0x12f77fff, 0x16ff3f },
805 };
806 
807 static const struct gates_data sun4i_apb0_gates_data __initconst = {
808 	.mask = {0x4EF},
809 };
810 
811 static const struct gates_data sun5i_a10s_apb0_gates_data __initconst = {
812 	.mask = {0x469},
813 };
814 
815 static const struct gates_data sun5i_a13_apb0_gates_data __initconst = {
816 	.mask = {0x61},
817 };
818 
819 static const struct gates_data sun7i_a20_apb0_gates_data __initconst = {
820 	.mask = { 0x4ff },
821 };
822 
823 static const struct gates_data sun4i_apb1_gates_data __initconst = {
824 	.mask = {0xFF00F7},
825 };
826 
827 static const struct gates_data sun5i_a10s_apb1_gates_data __initconst = {
828 	.mask = {0xf0007},
829 };
830 
831 static const struct gates_data sun5i_a13_apb1_gates_data __initconst = {
832 	.mask = {0xa0007},
833 };
834 
835 static const struct gates_data sun6i_a31_apb1_gates_data __initconst = {
836 	.mask = {0x3031},
837 };
838 
839 static const struct gates_data sun6i_a31_apb2_gates_data __initconst = {
840 	.mask = {0x3F000F},
841 };
842 
843 static const struct gates_data sun7i_a20_apb1_gates_data __initconst = {
844 	.mask = { 0xff80ff },
845 };
846 
847 static const struct gates_data sun4i_a10_usb_gates_data __initconst = {
848 	.mask = {0x1C0},
849 	.reset_mask = 0x07,
850 };
851 
852 static const struct gates_data sun5i_a13_usb_gates_data __initconst = {
853 	.mask = {0x140},
854 	.reset_mask = 0x03,
855 };
856 
857 static const struct gates_data sun6i_a31_usb_gates_data __initconst = {
858 	.mask = { BIT(18) | BIT(17) | BIT(16) | BIT(10) | BIT(9) | BIT(8) },
859 	.reset_mask = BIT(2) | BIT(1) | BIT(0),
860 };
861 
862 static void __init sunxi_gates_clk_setup(struct device_node *node,
863 					 struct gates_data *data)
864 {
865 	struct clk_onecell_data *clk_data;
866 	struct gates_reset_data *reset_data;
867 	const char *clk_parent;
868 	const char *clk_name;
869 	void *reg;
870 	int qty;
871 	int i = 0;
872 	int j = 0;
873 	int ignore;
874 
875 	reg = of_iomap(node, 0);
876 
877 	clk_parent = of_clk_get_parent_name(node, 0);
878 
879 	/* Worst-case size approximation and memory allocation */
880 	qty = find_last_bit(data->mask, SUNXI_GATES_MAX_SIZE);
881 	clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
882 	if (!clk_data)
883 		return;
884 	clk_data->clks = kzalloc((qty+1) * sizeof(struct clk *), GFP_KERNEL);
885 	if (!clk_data->clks) {
886 		kfree(clk_data);
887 		return;
888 	}
889 
890 	for_each_set_bit(i, data->mask, SUNXI_GATES_MAX_SIZE) {
891 		of_property_read_string_index(node, "clock-output-names",
892 					      j, &clk_name);
893 
894 		/* No driver claims this clock, but it should remain gated */
895 		ignore = !strcmp("ahb_sdram", clk_name) ? CLK_IGNORE_UNUSED : 0;
896 
897 		clk_data->clks[i] = clk_register_gate(NULL, clk_name,
898 						      clk_parent, ignore,
899 						      reg + 4 * (i/32), i % 32,
900 						      0, &clk_lock);
901 		WARN_ON(IS_ERR(clk_data->clks[i]));
902 
903 		j++;
904 	}
905 
906 	/* Adjust to the real max */
907 	clk_data->clk_num = i;
908 
909 	of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
910 
911 	/* Register a reset controler for gates with reset bits */
912 	if (data->reset_mask == 0)
913 		return;
914 
915 	reset_data = kzalloc(sizeof(*reset_data), GFP_KERNEL);
916 	if (!reset_data)
917 		return;
918 
919 	reset_data->reg = reg;
920 	reset_data->lock = &clk_lock;
921 	reset_data->rcdev.nr_resets = __fls(data->reset_mask) + 1;
922 	reset_data->rcdev.ops = &sunxi_gates_reset_ops;
923 	reset_data->rcdev.of_node = node;
924 	reset_controller_register(&reset_data->rcdev);
925 }
926 
927 
928 
929 /**
930  * sunxi_divs_clk_setup() helper data
931  */
932 
933 #define SUNXI_DIVS_MAX_QTY	2
934 #define SUNXI_DIVISOR_WIDTH	2
935 
936 struct divs_data {
937 	const struct factors_data *factors; /* data for the factor clock */
938 	struct {
939 		u8 fixed; /* is it a fixed divisor? if not... */
940 		struct clk_div_table *table; /* is it a table based divisor? */
941 		u8 shift; /* otherwise it's a normal divisor with this shift */
942 		u8 pow;   /* is it power-of-two based? */
943 		u8 gate;  /* is it independently gateable? */
944 	} div[SUNXI_DIVS_MAX_QTY];
945 };
946 
947 static struct clk_div_table pll6_sata_tbl[] = {
948 	{ .val = 0, .div = 6, },
949 	{ .val = 1, .div = 12, },
950 	{ .val = 2, .div = 18, },
951 	{ .val = 3, .div = 24, },
952 	{ } /* sentinel */
953 };
954 
955 static const struct divs_data pll5_divs_data __initconst = {
956 	.factors = &sun4i_pll5_data,
957 	.div = {
958 		{ .shift = 0, .pow = 0, }, /* M, DDR */
959 		{ .shift = 16, .pow = 1, }, /* P, other */
960 	}
961 };
962 
963 static const struct divs_data pll6_divs_data __initconst = {
964 	.factors = &sun4i_pll6_data,
965 	.div = {
966 		{ .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */
967 		{ .fixed = 2 }, /* P, other */
968 	}
969 };
970 
971 /**
972  * sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks
973  *
974  * These clocks look something like this
975  *            ________________________
976  *           |         ___divisor 1---|----> to consumer
977  * parent >--|  pll___/___divisor 2---|----> to consumer
978  *           |        \_______________|____> to consumer
979  *           |________________________|
980  */
981 
982 static void __init sunxi_divs_clk_setup(struct device_node *node,
983 					struct divs_data *data)
984 {
985 	struct clk_onecell_data *clk_data;
986 	const char *parent;
987 	const char *clk_name;
988 	struct clk **clks, *pclk;
989 	struct clk_hw *gate_hw, *rate_hw;
990 	const struct clk_ops *rate_ops;
991 	struct clk_gate *gate = NULL;
992 	struct clk_fixed_factor *fix_factor;
993 	struct clk_divider *divider;
994 	void *reg;
995 	int i = 0;
996 	int flags, clkflags;
997 
998 	/* Set up factor clock that we will be dividing */
999 	pclk = sunxi_factors_clk_setup(node, data->factors);
1000 	parent = __clk_get_name(pclk);
1001 
1002 	reg = of_iomap(node, 0);
1003 
1004 	clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
1005 	if (!clk_data)
1006 		return;
1007 
1008 	clks = kzalloc((SUNXI_DIVS_MAX_QTY+1) * sizeof(*clks), GFP_KERNEL);
1009 	if (!clks)
1010 		goto free_clkdata;
1011 
1012 	clk_data->clks = clks;
1013 
1014 	/* It's not a good idea to have automatic reparenting changing
1015 	 * our RAM clock! */
1016 	clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT;
1017 
1018 	for (i = 0; i < SUNXI_DIVS_MAX_QTY; i++) {
1019 		if (of_property_read_string_index(node, "clock-output-names",
1020 						  i, &clk_name) != 0)
1021 			break;
1022 
1023 		gate_hw = NULL;
1024 		rate_hw = NULL;
1025 		rate_ops = NULL;
1026 
1027 		/* If this leaf clock can be gated, create a gate */
1028 		if (data->div[i].gate) {
1029 			gate = kzalloc(sizeof(*gate), GFP_KERNEL);
1030 			if (!gate)
1031 				goto free_clks;
1032 
1033 			gate->reg = reg;
1034 			gate->bit_idx = data->div[i].gate;
1035 			gate->lock = &clk_lock;
1036 
1037 			gate_hw = &gate->hw;
1038 		}
1039 
1040 		/* Leaves can be fixed or configurable divisors */
1041 		if (data->div[i].fixed) {
1042 			fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL);
1043 			if (!fix_factor)
1044 				goto free_gate;
1045 
1046 			fix_factor->mult = 1;
1047 			fix_factor->div = data->div[i].fixed;
1048 
1049 			rate_hw = &fix_factor->hw;
1050 			rate_ops = &clk_fixed_factor_ops;
1051 		} else {
1052 			divider = kzalloc(sizeof(*divider), GFP_KERNEL);
1053 			if (!divider)
1054 				goto free_gate;
1055 
1056 			flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0;
1057 
1058 			divider->reg = reg;
1059 			divider->shift = data->div[i].shift;
1060 			divider->width = SUNXI_DIVISOR_WIDTH;
1061 			divider->flags = flags;
1062 			divider->lock = &clk_lock;
1063 			divider->table = data->div[i].table;
1064 
1065 			rate_hw = &divider->hw;
1066 			rate_ops = &clk_divider_ops;
1067 		}
1068 
1069 		/* Wrap the (potential) gate and the divisor on a composite
1070 		 * clock to unify them */
1071 		clks[i] = clk_register_composite(NULL, clk_name, &parent, 1,
1072 						 NULL, NULL,
1073 						 rate_hw, rate_ops,
1074 						 gate_hw, &clk_gate_ops,
1075 						 clkflags);
1076 
1077 		WARN_ON(IS_ERR(clk_data->clks[i]));
1078 		clk_register_clkdev(clks[i], clk_name, NULL);
1079 	}
1080 
1081 	/* The last clock available on the getter is the parent */
1082 	clks[i++] = pclk;
1083 
1084 	/* Adjust to the real max */
1085 	clk_data->clk_num = i;
1086 
1087 	of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
1088 
1089 	return;
1090 
1091 free_gate:
1092 	kfree(gate);
1093 free_clks:
1094 	kfree(clks);
1095 free_clkdata:
1096 	kfree(clk_data);
1097 }
1098 
1099 
1100 
1101 /* Matches for factors clocks */
1102 static const struct of_device_id clk_factors_match[] __initconst = {
1103 	{.compatible = "allwinner,sun4i-a10-pll1-clk", .data = &sun4i_pll1_data,},
1104 	{.compatible = "allwinner,sun6i-a31-pll1-clk", .data = &sun6i_a31_pll1_data,},
1105 	{.compatible = "allwinner,sun7i-a20-pll4-clk", .data = &sun7i_a20_pll4_data,},
1106 	{.compatible = "allwinner,sun6i-a31-pll6-clk", .data = &sun6i_a31_pll6_data,},
1107 	{.compatible = "allwinner,sun4i-a10-apb1-clk", .data = &sun4i_apb1_data,},
1108 	{.compatible = "allwinner,sun4i-a10-mod0-clk", .data = &sun4i_mod0_data,},
1109 	{.compatible = "allwinner,sun7i-a20-out-clk", .data = &sun7i_a20_out_data,},
1110 	{}
1111 };
1112 
1113 /* Matches for divider clocks */
1114 static const struct of_device_id clk_div_match[] __initconst = {
1115 	{.compatible = "allwinner,sun4i-a10-axi-clk", .data = &sun4i_axi_data,},
1116 	{.compatible = "allwinner,sun4i-a10-ahb-clk", .data = &sun4i_ahb_data,},
1117 	{.compatible = "allwinner,sun4i-a10-apb0-clk", .data = &sun4i_apb0_data,},
1118 	{.compatible = "allwinner,sun6i-a31-apb2-div-clk", .data = &sun6i_a31_apb2_div_data,},
1119 	{}
1120 };
1121 
1122 /* Matches for divided outputs */
1123 static const struct of_device_id clk_divs_match[] __initconst = {
1124 	{.compatible = "allwinner,sun4i-a10-pll5-clk", .data = &pll5_divs_data,},
1125 	{.compatible = "allwinner,sun4i-a10-pll6-clk", .data = &pll6_divs_data,},
1126 	{}
1127 };
1128 
1129 /* Matches for mux clocks */
1130 static const struct of_device_id clk_mux_match[] __initconst = {
1131 	{.compatible = "allwinner,sun4i-a10-cpu-clk", .data = &sun4i_cpu_mux_data,},
1132 	{.compatible = "allwinner,sun4i-a10-apb1-mux-clk", .data = &sun4i_apb1_mux_data,},
1133 	{.compatible = "allwinner,sun6i-a31-ahb1-mux-clk", .data = &sun6i_a31_ahb1_mux_data,},
1134 	{}
1135 };
1136 
1137 /* Matches for gate clocks */
1138 static const struct of_device_id clk_gates_match[] __initconst = {
1139 	{.compatible = "allwinner,sun4i-a10-axi-gates-clk", .data = &sun4i_axi_gates_data,},
1140 	{.compatible = "allwinner,sun4i-a10-ahb-gates-clk", .data = &sun4i_ahb_gates_data,},
1141 	{.compatible = "allwinner,sun5i-a10s-ahb-gates-clk", .data = &sun5i_a10s_ahb_gates_data,},
1142 	{.compatible = "allwinner,sun5i-a13-ahb-gates-clk", .data = &sun5i_a13_ahb_gates_data,},
1143 	{.compatible = "allwinner,sun6i-a31-ahb1-gates-clk", .data = &sun6i_a31_ahb1_gates_data,},
1144 	{.compatible = "allwinner,sun7i-a20-ahb-gates-clk", .data = &sun7i_a20_ahb_gates_data,},
1145 	{.compatible = "allwinner,sun4i-a10-apb0-gates-clk", .data = &sun4i_apb0_gates_data,},
1146 	{.compatible = "allwinner,sun5i-a10s-apb0-gates-clk", .data = &sun5i_a10s_apb0_gates_data,},
1147 	{.compatible = "allwinner,sun5i-a13-apb0-gates-clk", .data = &sun5i_a13_apb0_gates_data,},
1148 	{.compatible = "allwinner,sun7i-a20-apb0-gates-clk", .data = &sun7i_a20_apb0_gates_data,},
1149 	{.compatible = "allwinner,sun4i-a10-apb1-gates-clk", .data = &sun4i_apb1_gates_data,},
1150 	{.compatible = "allwinner,sun5i-a10s-apb1-gates-clk", .data = &sun5i_a10s_apb1_gates_data,},
1151 	{.compatible = "allwinner,sun5i-a13-apb1-gates-clk", .data = &sun5i_a13_apb1_gates_data,},
1152 	{.compatible = "allwinner,sun6i-a31-apb1-gates-clk", .data = &sun6i_a31_apb1_gates_data,},
1153 	{.compatible = "allwinner,sun7i-a20-apb1-gates-clk", .data = &sun7i_a20_apb1_gates_data,},
1154 	{.compatible = "allwinner,sun6i-a31-apb2-gates-clk", .data = &sun6i_a31_apb2_gates_data,},
1155 	{.compatible = "allwinner,sun4i-a10-usb-clk", .data = &sun4i_a10_usb_gates_data,},
1156 	{.compatible = "allwinner,sun5i-a13-usb-clk", .data = &sun5i_a13_usb_gates_data,},
1157 	{.compatible = "allwinner,sun6i-a31-usb-clk", .data = &sun6i_a31_usb_gates_data,},
1158 	{}
1159 };
1160 
1161 static void __init of_sunxi_table_clock_setup(const struct of_device_id *clk_match,
1162 					      void *function)
1163 {
1164 	struct device_node *np;
1165 	const struct div_data *data;
1166 	const struct of_device_id *match;
1167 	void (*setup_function)(struct device_node *, const void *) = function;
1168 
1169 	for_each_matching_node_and_match(np, clk_match, &match) {
1170 		data = match->data;
1171 		setup_function(np, data);
1172 	}
1173 }
1174 
1175 static void __init sunxi_init_clocks(const char *clocks[], int nclocks)
1176 {
1177 	unsigned int i;
1178 
1179 	/* Register factor clocks */
1180 	of_sunxi_table_clock_setup(clk_factors_match, sunxi_factors_clk_setup);
1181 
1182 	/* Register divider clocks */
1183 	of_sunxi_table_clock_setup(clk_div_match, sunxi_divider_clk_setup);
1184 
1185 	/* Register divided output clocks */
1186 	of_sunxi_table_clock_setup(clk_divs_match, sunxi_divs_clk_setup);
1187 
1188 	/* Register mux clocks */
1189 	of_sunxi_table_clock_setup(clk_mux_match, sunxi_mux_clk_setup);
1190 
1191 	/* Register gate clocks */
1192 	of_sunxi_table_clock_setup(clk_gates_match, sunxi_gates_clk_setup);
1193 
1194 	/* Protect the clocks that needs to stay on */
1195 	for (i = 0; i < nclocks; i++) {
1196 		struct clk *clk = clk_get(NULL, clocks[i]);
1197 
1198 		if (!IS_ERR(clk))
1199 			clk_prepare_enable(clk);
1200 	}
1201 }
1202 
1203 static const char *sun4i_a10_critical_clocks[] __initdata = {
1204 	"pll5_ddr",
1205 };
1206 
1207 static void __init sun4i_a10_init_clocks(struct device_node *node)
1208 {
1209 	sunxi_init_clocks(sun4i_a10_critical_clocks,
1210 			  ARRAY_SIZE(sun4i_a10_critical_clocks));
1211 }
1212 CLK_OF_DECLARE(sun4i_a10_clk_init, "allwinner,sun4i-a10", sun4i_a10_init_clocks);
1213 
1214 static const char *sun5i_critical_clocks[] __initdata = {
1215 	"mbus",
1216 	"pll5_ddr",
1217 };
1218 
1219 static void __init sun5i_init_clocks(struct device_node *node)
1220 {
1221 	sunxi_init_clocks(sun5i_critical_clocks,
1222 			  ARRAY_SIZE(sun5i_critical_clocks));
1223 }
1224 CLK_OF_DECLARE(sun5i_a10s_clk_init, "allwinner,sun5i-a10s", sun5i_init_clocks);
1225 CLK_OF_DECLARE(sun5i_a13_clk_init, "allwinner,sun5i-a13", sun5i_init_clocks);
1226 CLK_OF_DECLARE(sun7i_a20_clk_init, "allwinner,sun7i-a20", sun5i_init_clocks);
1227 
1228 static const char *sun6i_critical_clocks[] __initdata = {
1229 	"cpu",
1230 	"ahb1_sdram",
1231 };
1232 
1233 static void __init sun6i_init_clocks(struct device_node *node)
1234 {
1235 	sunxi_init_clocks(sun6i_critical_clocks,
1236 			  ARRAY_SIZE(sun6i_critical_clocks));
1237 }
1238 CLK_OF_DECLARE(sun6i_a31_clk_init, "allwinner,sun6i-a31", sun6i_init_clocks);
1239