xref: /openbmc/linux/drivers/clk/sunxi/clk-sunxi.c (revision ca460cc2)
1 /*
2  * Copyright 2013 Emilio López
3  *
4  * Emilio López <emilio@elopez.com.ar>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 #include <linux/clk-provider.h>
18 #include <linux/clkdev.h>
19 #include <linux/of.h>
20 #include <linux/of_address.h>
21 #include <linux/reset-controller.h>
22 #include <linux/spinlock.h>
23 
24 #include "clk-factors.h"
25 
26 static DEFINE_SPINLOCK(clk_lock);
27 
28 /* Maximum number of parents our clocks have */
29 #define SUNXI_MAX_PARENTS	5
30 
31 /**
32  * sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1
33  * PLL1 rate is calculated as follows
34  * rate = (parent_rate * n * (k + 1) >> p) / (m + 1);
35  * parent_rate is always 24Mhz
36  */
37 
38 static void sun4i_get_pll1_factors(u32 *freq, u32 parent_rate,
39 				   u8 *n, u8 *k, u8 *m, u8 *p)
40 {
41 	u8 div;
42 
43 	/* Normalize value to a 6M multiple */
44 	div = *freq / 6000000;
45 	*freq = 6000000 * div;
46 
47 	/* we were called to round the frequency, we can now return */
48 	if (n == NULL)
49 		return;
50 
51 	/* m is always zero for pll1 */
52 	*m = 0;
53 
54 	/* k is 1 only on these cases */
55 	if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
56 		*k = 1;
57 	else
58 		*k = 0;
59 
60 	/* p will be 3 for divs under 10 */
61 	if (div < 10)
62 		*p = 3;
63 
64 	/* p will be 2 for divs between 10 - 20 and odd divs under 32 */
65 	else if (div < 20 || (div < 32 && (div & 1)))
66 		*p = 2;
67 
68 	/* p will be 1 for even divs under 32, divs under 40 and odd pairs
69 	 * of divs between 40-62 */
70 	else if (div < 40 || (div < 64 && (div & 2)))
71 		*p = 1;
72 
73 	/* any other entries have p = 0 */
74 	else
75 		*p = 0;
76 
77 	/* calculate a suitable n based on k and p */
78 	div <<= *p;
79 	div /= (*k + 1);
80 	*n = div / 4;
81 }
82 
83 /**
84  * sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1
85  * PLL1 rate is calculated as follows
86  * rate = parent_rate * (n + 1) * (k + 1) / (m + 1);
87  * parent_rate should always be 24MHz
88  */
89 static void sun6i_a31_get_pll1_factors(u32 *freq, u32 parent_rate,
90 				       u8 *n, u8 *k, u8 *m, u8 *p)
91 {
92 	/*
93 	 * We can operate only on MHz, this will make our life easier
94 	 * later.
95 	 */
96 	u32 freq_mhz = *freq / 1000000;
97 	u32 parent_freq_mhz = parent_rate / 1000000;
98 
99 	/*
100 	 * Round down the frequency to the closest multiple of either
101 	 * 6 or 16
102 	 */
103 	u32 round_freq_6 = round_down(freq_mhz, 6);
104 	u32 round_freq_16 = round_down(freq_mhz, 16);
105 
106 	if (round_freq_6 > round_freq_16)
107 		freq_mhz = round_freq_6;
108 	else
109 		freq_mhz = round_freq_16;
110 
111 	*freq = freq_mhz * 1000000;
112 
113 	/*
114 	 * If the factors pointer are null, we were just called to
115 	 * round down the frequency.
116 	 * Exit.
117 	 */
118 	if (n == NULL)
119 		return;
120 
121 	/* If the frequency is a multiple of 32 MHz, k is always 3 */
122 	if (!(freq_mhz % 32))
123 		*k = 3;
124 	/* If the frequency is a multiple of 9 MHz, k is always 2 */
125 	else if (!(freq_mhz % 9))
126 		*k = 2;
127 	/* If the frequency is a multiple of 8 MHz, k is always 1 */
128 	else if (!(freq_mhz % 8))
129 		*k = 1;
130 	/* Otherwise, we don't use the k factor */
131 	else
132 		*k = 0;
133 
134 	/*
135 	 * If the frequency is a multiple of 2 but not a multiple of
136 	 * 3, m is 3. This is the first time we use 6 here, yet we
137 	 * will use it on several other places.
138 	 * We use this number because it's the lowest frequency we can
139 	 * generate (with n = 0, k = 0, m = 3), so every other frequency
140 	 * somehow relates to this frequency.
141 	 */
142 	if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4)
143 		*m = 2;
144 	/*
145 	 * If the frequency is a multiple of 6MHz, but the factor is
146 	 * odd, m will be 3
147 	 */
148 	else if ((freq_mhz / 6) & 1)
149 		*m = 3;
150 	/* Otherwise, we end up with m = 1 */
151 	else
152 		*m = 1;
153 
154 	/* Calculate n thanks to the above factors we already got */
155 	*n = freq_mhz * (*m + 1) / ((*k + 1) * parent_freq_mhz) - 1;
156 
157 	/*
158 	 * If n end up being outbound, and that we can still decrease
159 	 * m, do it.
160 	 */
161 	if ((*n + 1) > 31 && (*m + 1) > 1) {
162 		*n = (*n + 1) / 2 - 1;
163 		*m = (*m + 1) / 2 - 1;
164 	}
165 }
166 
167 /**
168  * sun8i_a23_get_pll1_factors() - calculates n, k, m, p factors for PLL1
169  * PLL1 rate is calculated as follows
170  * rate = (parent_rate * (n + 1) * (k + 1) >> p) / (m + 1);
171  * parent_rate is always 24Mhz
172  */
173 
174 static void sun8i_a23_get_pll1_factors(u32 *freq, u32 parent_rate,
175 				   u8 *n, u8 *k, u8 *m, u8 *p)
176 {
177 	u8 div;
178 
179 	/* Normalize value to a 6M multiple */
180 	div = *freq / 6000000;
181 	*freq = 6000000 * div;
182 
183 	/* we were called to round the frequency, we can now return */
184 	if (n == NULL)
185 		return;
186 
187 	/* m is always zero for pll1 */
188 	*m = 0;
189 
190 	/* k is 1 only on these cases */
191 	if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
192 		*k = 1;
193 	else
194 		*k = 0;
195 
196 	/* p will be 2 for divs under 20 and odd divs under 32 */
197 	if (div < 20 || (div < 32 && (div & 1)))
198 		*p = 2;
199 
200 	/* p will be 1 for even divs under 32, divs under 40 and odd pairs
201 	 * of divs between 40-62 */
202 	else if (div < 40 || (div < 64 && (div & 2)))
203 		*p = 1;
204 
205 	/* any other entries have p = 0 */
206 	else
207 		*p = 0;
208 
209 	/* calculate a suitable n based on k and p */
210 	div <<= *p;
211 	div /= (*k + 1);
212 	*n = div / 4 - 1;
213 }
214 
215 /**
216  * sun4i_get_pll5_factors() - calculates n, k factors for PLL5
217  * PLL5 rate is calculated as follows
218  * rate = parent_rate * n * (k + 1)
219  * parent_rate is always 24Mhz
220  */
221 
222 static void sun4i_get_pll5_factors(u32 *freq, u32 parent_rate,
223 				   u8 *n, u8 *k, u8 *m, u8 *p)
224 {
225 	u8 div;
226 
227 	/* Normalize value to a parent_rate multiple (24M) */
228 	div = *freq / parent_rate;
229 	*freq = parent_rate * div;
230 
231 	/* we were called to round the frequency, we can now return */
232 	if (n == NULL)
233 		return;
234 
235 	if (div < 31)
236 		*k = 0;
237 	else if (div / 2 < 31)
238 		*k = 1;
239 	else if (div / 3 < 31)
240 		*k = 2;
241 	else
242 		*k = 3;
243 
244 	*n = DIV_ROUND_UP(div, (*k+1));
245 }
246 
247 /**
248  * sun6i_a31_get_pll6_factors() - calculates n, k factors for A31 PLL6
249  * PLL6 rate is calculated as follows
250  * rate = parent_rate * n * (k + 1) / 2
251  * parent_rate is always 24Mhz
252  */
253 
254 static void sun6i_a31_get_pll6_factors(u32 *freq, u32 parent_rate,
255 				       u8 *n, u8 *k, u8 *m, u8 *p)
256 {
257 	u8 div;
258 
259 	/*
260 	 * We always have 24MHz / 2, so we can just say that our
261 	 * parent clock is 12MHz.
262 	 */
263 	parent_rate = parent_rate / 2;
264 
265 	/* Normalize value to a parent_rate multiple (24M / 2) */
266 	div = *freq / parent_rate;
267 	*freq = parent_rate * div;
268 
269 	/* we were called to round the frequency, we can now return */
270 	if (n == NULL)
271 		return;
272 
273 	*k = div / 32;
274 	if (*k > 3)
275 		*k = 3;
276 
277 	*n = DIV_ROUND_UP(div, (*k+1));
278 }
279 
280 /**
281  * sun4i_get_apb1_factors() - calculates m, p factors for APB1
282  * APB1 rate is calculated as follows
283  * rate = (parent_rate >> p) / (m + 1);
284  */
285 
286 static void sun4i_get_apb1_factors(u32 *freq, u32 parent_rate,
287 				   u8 *n, u8 *k, u8 *m, u8 *p)
288 {
289 	u8 calcm, calcp;
290 
291 	if (parent_rate < *freq)
292 		*freq = parent_rate;
293 
294 	parent_rate = DIV_ROUND_UP(parent_rate, *freq);
295 
296 	/* Invalid rate! */
297 	if (parent_rate > 32)
298 		return;
299 
300 	if (parent_rate <= 4)
301 		calcp = 0;
302 	else if (parent_rate <= 8)
303 		calcp = 1;
304 	else if (parent_rate <= 16)
305 		calcp = 2;
306 	else
307 		calcp = 3;
308 
309 	calcm = (parent_rate >> calcp) - 1;
310 
311 	*freq = (parent_rate >> calcp) / (calcm + 1);
312 
313 	/* we were called to round the frequency, we can now return */
314 	if (n == NULL)
315 		return;
316 
317 	*m = calcm;
318 	*p = calcp;
319 }
320 
321 
322 
323 
324 /**
325  * sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B
326  * CLK_OUT rate is calculated as follows
327  * rate = (parent_rate >> p) / (m + 1);
328  */
329 
330 static void sun7i_a20_get_out_factors(u32 *freq, u32 parent_rate,
331 				      u8 *n, u8 *k, u8 *m, u8 *p)
332 {
333 	u8 div, calcm, calcp;
334 
335 	/* These clocks can only divide, so we will never be able to achieve
336 	 * frequencies higher than the parent frequency */
337 	if (*freq > parent_rate)
338 		*freq = parent_rate;
339 
340 	div = DIV_ROUND_UP(parent_rate, *freq);
341 
342 	if (div < 32)
343 		calcp = 0;
344 	else if (div / 2 < 32)
345 		calcp = 1;
346 	else if (div / 4 < 32)
347 		calcp = 2;
348 	else
349 		calcp = 3;
350 
351 	calcm = DIV_ROUND_UP(div, 1 << calcp);
352 
353 	*freq = (parent_rate >> calcp) / calcm;
354 
355 	/* we were called to round the frequency, we can now return */
356 	if (n == NULL)
357 		return;
358 
359 	*m = calcm - 1;
360 	*p = calcp;
361 }
362 
363 /**
364  * clk_sunxi_mmc_phase_control() - configures MMC clock phase control
365  */
366 
367 void clk_sunxi_mmc_phase_control(struct clk *clk, u8 sample, u8 output)
368 {
369 	#define to_clk_composite(_hw) container_of(_hw, struct clk_composite, hw)
370 	#define to_clk_factors(_hw) container_of(_hw, struct clk_factors, hw)
371 
372 	struct clk_hw *hw = __clk_get_hw(clk);
373 	struct clk_composite *composite = to_clk_composite(hw);
374 	struct clk_hw *rate_hw = composite->rate_hw;
375 	struct clk_factors *factors = to_clk_factors(rate_hw);
376 	unsigned long flags = 0;
377 	u32 reg;
378 
379 	if (factors->lock)
380 		spin_lock_irqsave(factors->lock, flags);
381 
382 	reg = readl(factors->reg);
383 
384 	/* set sample clock phase control */
385 	reg &= ~(0x7 << 20);
386 	reg |= ((sample & 0x7) << 20);
387 
388 	/* set output clock phase control */
389 	reg &= ~(0x7 << 8);
390 	reg |= ((output & 0x7) << 8);
391 
392 	writel(reg, factors->reg);
393 
394 	if (factors->lock)
395 		spin_unlock_irqrestore(factors->lock, flags);
396 }
397 EXPORT_SYMBOL(clk_sunxi_mmc_phase_control);
398 
399 
400 /**
401  * sunxi_factors_clk_setup() - Setup function for factor clocks
402  */
403 
404 static struct clk_factors_config sun4i_pll1_config = {
405 	.nshift = 8,
406 	.nwidth = 5,
407 	.kshift = 4,
408 	.kwidth = 2,
409 	.mshift = 0,
410 	.mwidth = 2,
411 	.pshift = 16,
412 	.pwidth = 2,
413 };
414 
415 static struct clk_factors_config sun6i_a31_pll1_config = {
416 	.nshift	= 8,
417 	.nwidth = 5,
418 	.kshift = 4,
419 	.kwidth = 2,
420 	.mshift = 0,
421 	.mwidth = 2,
422 };
423 
424 static struct clk_factors_config sun8i_a23_pll1_config = {
425 	.nshift = 8,
426 	.nwidth = 5,
427 	.kshift = 4,
428 	.kwidth = 2,
429 	.mshift = 0,
430 	.mwidth = 2,
431 	.pshift = 16,
432 	.pwidth = 2,
433 	.n_start = 1,
434 };
435 
436 static struct clk_factors_config sun4i_pll5_config = {
437 	.nshift = 8,
438 	.nwidth = 5,
439 	.kshift = 4,
440 	.kwidth = 2,
441 };
442 
443 static struct clk_factors_config sun6i_a31_pll6_config = {
444 	.nshift	= 8,
445 	.nwidth = 5,
446 	.kshift = 4,
447 	.kwidth = 2,
448 };
449 
450 static struct clk_factors_config sun4i_apb1_config = {
451 	.mshift = 0,
452 	.mwidth = 5,
453 	.pshift = 16,
454 	.pwidth = 2,
455 };
456 
457 /* user manual says "n" but it's really "p" */
458 static struct clk_factors_config sun7i_a20_out_config = {
459 	.mshift = 8,
460 	.mwidth = 5,
461 	.pshift = 20,
462 	.pwidth = 2,
463 };
464 
465 static const struct factors_data sun4i_pll1_data __initconst = {
466 	.enable = 31,
467 	.table = &sun4i_pll1_config,
468 	.getter = sun4i_get_pll1_factors,
469 };
470 
471 static const struct factors_data sun6i_a31_pll1_data __initconst = {
472 	.enable = 31,
473 	.table = &sun6i_a31_pll1_config,
474 	.getter = sun6i_a31_get_pll1_factors,
475 };
476 
477 static const struct factors_data sun8i_a23_pll1_data __initconst = {
478 	.enable = 31,
479 	.table = &sun8i_a23_pll1_config,
480 	.getter = sun8i_a23_get_pll1_factors,
481 };
482 
483 static const struct factors_data sun7i_a20_pll4_data __initconst = {
484 	.enable = 31,
485 	.table = &sun4i_pll5_config,
486 	.getter = sun4i_get_pll5_factors,
487 };
488 
489 static const struct factors_data sun4i_pll5_data __initconst = {
490 	.enable = 31,
491 	.table = &sun4i_pll5_config,
492 	.getter = sun4i_get_pll5_factors,
493 	.name = "pll5",
494 };
495 
496 static const struct factors_data sun4i_pll6_data __initconst = {
497 	.enable = 31,
498 	.table = &sun4i_pll5_config,
499 	.getter = sun4i_get_pll5_factors,
500 	.name = "pll6",
501 };
502 
503 static const struct factors_data sun6i_a31_pll6_data __initconst = {
504 	.enable = 31,
505 	.table = &sun6i_a31_pll6_config,
506 	.getter = sun6i_a31_get_pll6_factors,
507 };
508 
509 static const struct factors_data sun4i_apb1_data __initconst = {
510 	.table = &sun4i_apb1_config,
511 	.getter = sun4i_get_apb1_factors,
512 };
513 
514 static const struct factors_data sun7i_a20_out_data __initconst = {
515 	.enable = 31,
516 	.mux = 24,
517 	.table = &sun7i_a20_out_config,
518 	.getter = sun7i_a20_get_out_factors,
519 };
520 
521 static struct clk * __init sunxi_factors_clk_setup(struct device_node *node,
522 						   const struct factors_data *data)
523 {
524 	return sunxi_factors_register(node, data, &clk_lock);
525 }
526 
527 
528 
529 /**
530  * sunxi_mux_clk_setup() - Setup function for muxes
531  */
532 
533 #define SUNXI_MUX_GATE_WIDTH	2
534 
535 struct mux_data {
536 	u8 shift;
537 };
538 
539 static const struct mux_data sun4i_cpu_mux_data __initconst = {
540 	.shift = 16,
541 };
542 
543 static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = {
544 	.shift = 12,
545 };
546 
547 static const struct mux_data sun4i_apb1_mux_data __initconst = {
548 	.shift = 24,
549 };
550 
551 static void __init sunxi_mux_clk_setup(struct device_node *node,
552 				       struct mux_data *data)
553 {
554 	struct clk *clk;
555 	const char *clk_name = node->name;
556 	const char *parents[SUNXI_MAX_PARENTS];
557 	void __iomem *reg;
558 	int i = 0;
559 
560 	reg = of_iomap(node, 0);
561 
562 	while (i < SUNXI_MAX_PARENTS &&
563 	       (parents[i] = of_clk_get_parent_name(node, i)) != NULL)
564 		i++;
565 
566 	of_property_read_string(node, "clock-output-names", &clk_name);
567 
568 	clk = clk_register_mux(NULL, clk_name, parents, i,
569 			       CLK_SET_RATE_NO_REPARENT, reg,
570 			       data->shift, SUNXI_MUX_GATE_WIDTH,
571 			       0, &clk_lock);
572 
573 	if (clk) {
574 		of_clk_add_provider(node, of_clk_src_simple_get, clk);
575 		clk_register_clkdev(clk, clk_name, NULL);
576 	}
577 }
578 
579 
580 
581 /**
582  * sunxi_divider_clk_setup() - Setup function for simple divider clocks
583  */
584 
585 struct div_data {
586 	u8	shift;
587 	u8	pow;
588 	u8	width;
589 	const struct clk_div_table *table;
590 };
591 
592 static const struct div_data sun4i_axi_data __initconst = {
593 	.shift	= 0,
594 	.pow	= 0,
595 	.width	= 2,
596 };
597 
598 static const struct clk_div_table sun8i_a23_axi_table[] __initconst = {
599 	{ .val = 0, .div = 1 },
600 	{ .val = 1, .div = 2 },
601 	{ .val = 2, .div = 3 },
602 	{ .val = 3, .div = 4 },
603 	{ .val = 4, .div = 4 },
604 	{ .val = 5, .div = 4 },
605 	{ .val = 6, .div = 4 },
606 	{ .val = 7, .div = 4 },
607 	{ } /* sentinel */
608 };
609 
610 static const struct div_data sun8i_a23_axi_data __initconst = {
611 	.width	= 3,
612 	.table	= sun8i_a23_axi_table,
613 };
614 
615 static const struct div_data sun4i_ahb_data __initconst = {
616 	.shift	= 4,
617 	.pow	= 1,
618 	.width	= 2,
619 };
620 
621 static const struct clk_div_table sun4i_apb0_table[] __initconst = {
622 	{ .val = 0, .div = 2 },
623 	{ .val = 1, .div = 2 },
624 	{ .val = 2, .div = 4 },
625 	{ .val = 3, .div = 8 },
626 	{ } /* sentinel */
627 };
628 
629 static const struct div_data sun4i_apb0_data __initconst = {
630 	.shift	= 8,
631 	.pow	= 1,
632 	.width	= 2,
633 	.table	= sun4i_apb0_table,
634 };
635 
636 static const struct div_data sun6i_a31_apb2_div_data __initconst = {
637 	.shift	= 0,
638 	.pow	= 0,
639 	.width	= 4,
640 };
641 
642 static void __init sunxi_divider_clk_setup(struct device_node *node,
643 					   struct div_data *data)
644 {
645 	struct clk *clk;
646 	const char *clk_name = node->name;
647 	const char *clk_parent;
648 	void __iomem *reg;
649 
650 	reg = of_iomap(node, 0);
651 
652 	clk_parent = of_clk_get_parent_name(node, 0);
653 
654 	of_property_read_string(node, "clock-output-names", &clk_name);
655 
656 	clk = clk_register_divider_table(NULL, clk_name, clk_parent, 0,
657 					 reg, data->shift, data->width,
658 					 data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0,
659 					 data->table, &clk_lock);
660 	if (clk) {
661 		of_clk_add_provider(node, of_clk_src_simple_get, clk);
662 		clk_register_clkdev(clk, clk_name, NULL);
663 	}
664 }
665 
666 
667 
668 /**
669  * sunxi_gates_reset... - reset bits in leaf gate clk registers handling
670  */
671 
672 struct gates_reset_data {
673 	void __iomem			*reg;
674 	spinlock_t			*lock;
675 	struct reset_controller_dev	rcdev;
676 };
677 
678 static int sunxi_gates_reset_assert(struct reset_controller_dev *rcdev,
679 			      unsigned long id)
680 {
681 	struct gates_reset_data *data = container_of(rcdev,
682 						     struct gates_reset_data,
683 						     rcdev);
684 	unsigned long flags;
685 	u32 reg;
686 
687 	spin_lock_irqsave(data->lock, flags);
688 
689 	reg = readl(data->reg);
690 	writel(reg & ~BIT(id), data->reg);
691 
692 	spin_unlock_irqrestore(data->lock, flags);
693 
694 	return 0;
695 }
696 
697 static int sunxi_gates_reset_deassert(struct reset_controller_dev *rcdev,
698 				unsigned long id)
699 {
700 	struct gates_reset_data *data = container_of(rcdev,
701 						     struct gates_reset_data,
702 						     rcdev);
703 	unsigned long flags;
704 	u32 reg;
705 
706 	spin_lock_irqsave(data->lock, flags);
707 
708 	reg = readl(data->reg);
709 	writel(reg | BIT(id), data->reg);
710 
711 	spin_unlock_irqrestore(data->lock, flags);
712 
713 	return 0;
714 }
715 
716 static struct reset_control_ops sunxi_gates_reset_ops = {
717 	.assert		= sunxi_gates_reset_assert,
718 	.deassert	= sunxi_gates_reset_deassert,
719 };
720 
721 /**
722  * sunxi_gates_clk_setup() - Setup function for leaf gates on clocks
723  */
724 
725 #define SUNXI_GATES_MAX_SIZE	64
726 
727 struct gates_data {
728 	DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE);
729 	u32 reset_mask;
730 };
731 
732 static const struct gates_data sun4i_axi_gates_data __initconst = {
733 	.mask = {1},
734 };
735 
736 static const struct gates_data sun4i_ahb_gates_data __initconst = {
737 	.mask = {0x7F77FFF, 0x14FB3F},
738 };
739 
740 static const struct gates_data sun5i_a10s_ahb_gates_data __initconst = {
741 	.mask = {0x147667e7, 0x185915},
742 };
743 
744 static const struct gates_data sun5i_a13_ahb_gates_data __initconst = {
745 	.mask = {0x107067e7, 0x185111},
746 };
747 
748 static const struct gates_data sun6i_a31_ahb1_gates_data __initconst = {
749 	.mask = {0xEDFE7F62, 0x794F931},
750 };
751 
752 static const struct gates_data sun7i_a20_ahb_gates_data __initconst = {
753 	.mask = { 0x12f77fff, 0x16ff3f },
754 };
755 
756 static const struct gates_data sun8i_a23_ahb1_gates_data __initconst = {
757 	.mask = {0x25386742, 0x2505111},
758 };
759 
760 static const struct gates_data sun4i_apb0_gates_data __initconst = {
761 	.mask = {0x4EF},
762 };
763 
764 static const struct gates_data sun5i_a10s_apb0_gates_data __initconst = {
765 	.mask = {0x469},
766 };
767 
768 static const struct gates_data sun5i_a13_apb0_gates_data __initconst = {
769 	.mask = {0x61},
770 };
771 
772 static const struct gates_data sun7i_a20_apb0_gates_data __initconst = {
773 	.mask = { 0x4ff },
774 };
775 
776 static const struct gates_data sun4i_apb1_gates_data __initconst = {
777 	.mask = {0xFF00F7},
778 };
779 
780 static const struct gates_data sun5i_a10s_apb1_gates_data __initconst = {
781 	.mask = {0xf0007},
782 };
783 
784 static const struct gates_data sun5i_a13_apb1_gates_data __initconst = {
785 	.mask = {0xa0007},
786 };
787 
788 static const struct gates_data sun6i_a31_apb1_gates_data __initconst = {
789 	.mask = {0x3031},
790 };
791 
792 static const struct gates_data sun8i_a23_apb1_gates_data __initconst = {
793 	.mask = {0x3021},
794 };
795 
796 static const struct gates_data sun6i_a31_apb2_gates_data __initconst = {
797 	.mask = {0x3F000F},
798 };
799 
800 static const struct gates_data sun7i_a20_apb1_gates_data __initconst = {
801 	.mask = { 0xff80ff },
802 };
803 
804 static const struct gates_data sun8i_a23_apb2_gates_data __initconst = {
805 	.mask = {0x1F0007},
806 };
807 
808 static const struct gates_data sun4i_a10_usb_gates_data __initconst = {
809 	.mask = {0x1C0},
810 	.reset_mask = 0x07,
811 };
812 
813 static const struct gates_data sun5i_a13_usb_gates_data __initconst = {
814 	.mask = {0x140},
815 	.reset_mask = 0x03,
816 };
817 
818 static const struct gates_data sun6i_a31_usb_gates_data __initconst = {
819 	.mask = { BIT(18) | BIT(17) | BIT(16) | BIT(10) | BIT(9) | BIT(8) },
820 	.reset_mask = BIT(2) | BIT(1) | BIT(0),
821 };
822 
823 static void __init sunxi_gates_clk_setup(struct device_node *node,
824 					 struct gates_data *data)
825 {
826 	struct clk_onecell_data *clk_data;
827 	struct gates_reset_data *reset_data;
828 	const char *clk_parent;
829 	const char *clk_name;
830 	void __iomem *reg;
831 	int qty;
832 	int i = 0;
833 	int j = 0;
834 
835 	reg = of_iomap(node, 0);
836 
837 	clk_parent = of_clk_get_parent_name(node, 0);
838 
839 	/* Worst-case size approximation and memory allocation */
840 	qty = find_last_bit(data->mask, SUNXI_GATES_MAX_SIZE);
841 	clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
842 	if (!clk_data)
843 		return;
844 	clk_data->clks = kzalloc((qty+1) * sizeof(struct clk *), GFP_KERNEL);
845 	if (!clk_data->clks) {
846 		kfree(clk_data);
847 		return;
848 	}
849 
850 	for_each_set_bit(i, data->mask, SUNXI_GATES_MAX_SIZE) {
851 		of_property_read_string_index(node, "clock-output-names",
852 					      j, &clk_name);
853 
854 		clk_data->clks[i] = clk_register_gate(NULL, clk_name,
855 						      clk_parent, 0,
856 						      reg + 4 * (i/32), i % 32,
857 						      0, &clk_lock);
858 		WARN_ON(IS_ERR(clk_data->clks[i]));
859 		clk_register_clkdev(clk_data->clks[i], clk_name, NULL);
860 
861 		j++;
862 	}
863 
864 	/* Adjust to the real max */
865 	clk_data->clk_num = i;
866 
867 	of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
868 
869 	/* Register a reset controler for gates with reset bits */
870 	if (data->reset_mask == 0)
871 		return;
872 
873 	reset_data = kzalloc(sizeof(*reset_data), GFP_KERNEL);
874 	if (!reset_data)
875 		return;
876 
877 	reset_data->reg = reg;
878 	reset_data->lock = &clk_lock;
879 	reset_data->rcdev.nr_resets = __fls(data->reset_mask) + 1;
880 	reset_data->rcdev.ops = &sunxi_gates_reset_ops;
881 	reset_data->rcdev.of_node = node;
882 	reset_controller_register(&reset_data->rcdev);
883 }
884 
885 
886 
887 /**
888  * sunxi_divs_clk_setup() helper data
889  */
890 
891 #define SUNXI_DIVS_MAX_QTY	2
892 #define SUNXI_DIVISOR_WIDTH	2
893 
894 struct divs_data {
895 	const struct factors_data *factors; /* data for the factor clock */
896 	struct {
897 		u8 fixed; /* is it a fixed divisor? if not... */
898 		struct clk_div_table *table; /* is it a table based divisor? */
899 		u8 shift; /* otherwise it's a normal divisor with this shift */
900 		u8 pow;   /* is it power-of-two based? */
901 		u8 gate;  /* is it independently gateable? */
902 	} div[SUNXI_DIVS_MAX_QTY];
903 };
904 
905 static struct clk_div_table pll6_sata_tbl[] = {
906 	{ .val = 0, .div = 6, },
907 	{ .val = 1, .div = 12, },
908 	{ .val = 2, .div = 18, },
909 	{ .val = 3, .div = 24, },
910 	{ } /* sentinel */
911 };
912 
913 static const struct divs_data pll5_divs_data __initconst = {
914 	.factors = &sun4i_pll5_data,
915 	.div = {
916 		{ .shift = 0, .pow = 0, }, /* M, DDR */
917 		{ .shift = 16, .pow = 1, }, /* P, other */
918 	}
919 };
920 
921 static const struct divs_data pll6_divs_data __initconst = {
922 	.factors = &sun4i_pll6_data,
923 	.div = {
924 		{ .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */
925 		{ .fixed = 2 }, /* P, other */
926 	}
927 };
928 
929 /**
930  * sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks
931  *
932  * These clocks look something like this
933  *            ________________________
934  *           |         ___divisor 1---|----> to consumer
935  * parent >--|  pll___/___divisor 2---|----> to consumer
936  *           |        \_______________|____> to consumer
937  *           |________________________|
938  */
939 
940 static void __init sunxi_divs_clk_setup(struct device_node *node,
941 					struct divs_data *data)
942 {
943 	struct clk_onecell_data *clk_data;
944 	const char *parent;
945 	const char *clk_name;
946 	struct clk **clks, *pclk;
947 	struct clk_hw *gate_hw, *rate_hw;
948 	const struct clk_ops *rate_ops;
949 	struct clk_gate *gate = NULL;
950 	struct clk_fixed_factor *fix_factor;
951 	struct clk_divider *divider;
952 	void __iomem *reg;
953 	int i = 0;
954 	int flags, clkflags;
955 
956 	/* Set up factor clock that we will be dividing */
957 	pclk = sunxi_factors_clk_setup(node, data->factors);
958 	parent = __clk_get_name(pclk);
959 
960 	reg = of_iomap(node, 0);
961 
962 	clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
963 	if (!clk_data)
964 		return;
965 
966 	clks = kzalloc((SUNXI_DIVS_MAX_QTY+1) * sizeof(*clks), GFP_KERNEL);
967 	if (!clks)
968 		goto free_clkdata;
969 
970 	clk_data->clks = clks;
971 
972 	/* It's not a good idea to have automatic reparenting changing
973 	 * our RAM clock! */
974 	clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT;
975 
976 	for (i = 0; i < SUNXI_DIVS_MAX_QTY; i++) {
977 		if (of_property_read_string_index(node, "clock-output-names",
978 						  i, &clk_name) != 0)
979 			break;
980 
981 		gate_hw = NULL;
982 		rate_hw = NULL;
983 		rate_ops = NULL;
984 
985 		/* If this leaf clock can be gated, create a gate */
986 		if (data->div[i].gate) {
987 			gate = kzalloc(sizeof(*gate), GFP_KERNEL);
988 			if (!gate)
989 				goto free_clks;
990 
991 			gate->reg = reg;
992 			gate->bit_idx = data->div[i].gate;
993 			gate->lock = &clk_lock;
994 
995 			gate_hw = &gate->hw;
996 		}
997 
998 		/* Leaves can be fixed or configurable divisors */
999 		if (data->div[i].fixed) {
1000 			fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL);
1001 			if (!fix_factor)
1002 				goto free_gate;
1003 
1004 			fix_factor->mult = 1;
1005 			fix_factor->div = data->div[i].fixed;
1006 
1007 			rate_hw = &fix_factor->hw;
1008 			rate_ops = &clk_fixed_factor_ops;
1009 		} else {
1010 			divider = kzalloc(sizeof(*divider), GFP_KERNEL);
1011 			if (!divider)
1012 				goto free_gate;
1013 
1014 			flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0;
1015 
1016 			divider->reg = reg;
1017 			divider->shift = data->div[i].shift;
1018 			divider->width = SUNXI_DIVISOR_WIDTH;
1019 			divider->flags = flags;
1020 			divider->lock = &clk_lock;
1021 			divider->table = data->div[i].table;
1022 
1023 			rate_hw = &divider->hw;
1024 			rate_ops = &clk_divider_ops;
1025 		}
1026 
1027 		/* Wrap the (potential) gate and the divisor on a composite
1028 		 * clock to unify them */
1029 		clks[i] = clk_register_composite(NULL, clk_name, &parent, 1,
1030 						 NULL, NULL,
1031 						 rate_hw, rate_ops,
1032 						 gate_hw, &clk_gate_ops,
1033 						 clkflags);
1034 
1035 		WARN_ON(IS_ERR(clk_data->clks[i]));
1036 		clk_register_clkdev(clks[i], clk_name, NULL);
1037 	}
1038 
1039 	/* The last clock available on the getter is the parent */
1040 	clks[i++] = pclk;
1041 
1042 	/* Adjust to the real max */
1043 	clk_data->clk_num = i;
1044 
1045 	of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
1046 
1047 	return;
1048 
1049 free_gate:
1050 	kfree(gate);
1051 free_clks:
1052 	kfree(clks);
1053 free_clkdata:
1054 	kfree(clk_data);
1055 }
1056 
1057 
1058 
1059 /* Matches for factors clocks */
1060 static const struct of_device_id clk_factors_match[] __initconst = {
1061 	{.compatible = "allwinner,sun4i-a10-pll1-clk", .data = &sun4i_pll1_data,},
1062 	{.compatible = "allwinner,sun6i-a31-pll1-clk", .data = &sun6i_a31_pll1_data,},
1063 	{.compatible = "allwinner,sun8i-a23-pll1-clk", .data = &sun8i_a23_pll1_data,},
1064 	{.compatible = "allwinner,sun7i-a20-pll4-clk", .data = &sun7i_a20_pll4_data,},
1065 	{.compatible = "allwinner,sun6i-a31-pll6-clk", .data = &sun6i_a31_pll6_data,},
1066 	{.compatible = "allwinner,sun4i-a10-apb1-clk", .data = &sun4i_apb1_data,},
1067 	{.compatible = "allwinner,sun7i-a20-out-clk", .data = &sun7i_a20_out_data,},
1068 	{}
1069 };
1070 
1071 /* Matches for divider clocks */
1072 static const struct of_device_id clk_div_match[] __initconst = {
1073 	{.compatible = "allwinner,sun4i-a10-axi-clk", .data = &sun4i_axi_data,},
1074 	{.compatible = "allwinner,sun8i-a23-axi-clk", .data = &sun8i_a23_axi_data,},
1075 	{.compatible = "allwinner,sun4i-a10-ahb-clk", .data = &sun4i_ahb_data,},
1076 	{.compatible = "allwinner,sun4i-a10-apb0-clk", .data = &sun4i_apb0_data,},
1077 	{.compatible = "allwinner,sun6i-a31-apb2-div-clk", .data = &sun6i_a31_apb2_div_data,},
1078 	{}
1079 };
1080 
1081 /* Matches for divided outputs */
1082 static const struct of_device_id clk_divs_match[] __initconst = {
1083 	{.compatible = "allwinner,sun4i-a10-pll5-clk", .data = &pll5_divs_data,},
1084 	{.compatible = "allwinner,sun4i-a10-pll6-clk", .data = &pll6_divs_data,},
1085 	{}
1086 };
1087 
1088 /* Matches for mux clocks */
1089 static const struct of_device_id clk_mux_match[] __initconst = {
1090 	{.compatible = "allwinner,sun4i-a10-cpu-clk", .data = &sun4i_cpu_mux_data,},
1091 	{.compatible = "allwinner,sun4i-a10-apb1-mux-clk", .data = &sun4i_apb1_mux_data,},
1092 	{.compatible = "allwinner,sun6i-a31-ahb1-mux-clk", .data = &sun6i_a31_ahb1_mux_data,},
1093 	{}
1094 };
1095 
1096 /* Matches for gate clocks */
1097 static const struct of_device_id clk_gates_match[] __initconst = {
1098 	{.compatible = "allwinner,sun4i-a10-axi-gates-clk", .data = &sun4i_axi_gates_data,},
1099 	{.compatible = "allwinner,sun4i-a10-ahb-gates-clk", .data = &sun4i_ahb_gates_data,},
1100 	{.compatible = "allwinner,sun5i-a10s-ahb-gates-clk", .data = &sun5i_a10s_ahb_gates_data,},
1101 	{.compatible = "allwinner,sun5i-a13-ahb-gates-clk", .data = &sun5i_a13_ahb_gates_data,},
1102 	{.compatible = "allwinner,sun6i-a31-ahb1-gates-clk", .data = &sun6i_a31_ahb1_gates_data,},
1103 	{.compatible = "allwinner,sun7i-a20-ahb-gates-clk", .data = &sun7i_a20_ahb_gates_data,},
1104 	{.compatible = "allwinner,sun8i-a23-ahb1-gates-clk", .data = &sun8i_a23_ahb1_gates_data,},
1105 	{.compatible = "allwinner,sun4i-a10-apb0-gates-clk", .data = &sun4i_apb0_gates_data,},
1106 	{.compatible = "allwinner,sun5i-a10s-apb0-gates-clk", .data = &sun5i_a10s_apb0_gates_data,},
1107 	{.compatible = "allwinner,sun5i-a13-apb0-gates-clk", .data = &sun5i_a13_apb0_gates_data,},
1108 	{.compatible = "allwinner,sun7i-a20-apb0-gates-clk", .data = &sun7i_a20_apb0_gates_data,},
1109 	{.compatible = "allwinner,sun4i-a10-apb1-gates-clk", .data = &sun4i_apb1_gates_data,},
1110 	{.compatible = "allwinner,sun5i-a10s-apb1-gates-clk", .data = &sun5i_a10s_apb1_gates_data,},
1111 	{.compatible = "allwinner,sun5i-a13-apb1-gates-clk", .data = &sun5i_a13_apb1_gates_data,},
1112 	{.compatible = "allwinner,sun6i-a31-apb1-gates-clk", .data = &sun6i_a31_apb1_gates_data,},
1113 	{.compatible = "allwinner,sun7i-a20-apb1-gates-clk", .data = &sun7i_a20_apb1_gates_data,},
1114 	{.compatible = "allwinner,sun8i-a23-apb1-gates-clk", .data = &sun8i_a23_apb1_gates_data,},
1115 	{.compatible = "allwinner,sun6i-a31-apb2-gates-clk", .data = &sun6i_a31_apb2_gates_data,},
1116 	{.compatible = "allwinner,sun8i-a23-apb2-gates-clk", .data = &sun8i_a23_apb2_gates_data,},
1117 	{.compatible = "allwinner,sun4i-a10-usb-clk", .data = &sun4i_a10_usb_gates_data,},
1118 	{.compatible = "allwinner,sun5i-a13-usb-clk", .data = &sun5i_a13_usb_gates_data,},
1119 	{.compatible = "allwinner,sun6i-a31-usb-clk", .data = &sun6i_a31_usb_gates_data,},
1120 	{}
1121 };
1122 
1123 static void __init of_sunxi_table_clock_setup(const struct of_device_id *clk_match,
1124 					      void *function)
1125 {
1126 	struct device_node *np;
1127 	const struct div_data *data;
1128 	const struct of_device_id *match;
1129 	void (*setup_function)(struct device_node *, const void *) = function;
1130 
1131 	for_each_matching_node_and_match(np, clk_match, &match) {
1132 		data = match->data;
1133 		setup_function(np, data);
1134 	}
1135 }
1136 
1137 static void __init sunxi_init_clocks(const char *clocks[], int nclocks)
1138 {
1139 	unsigned int i;
1140 
1141 	/* Register factor clocks */
1142 	of_sunxi_table_clock_setup(clk_factors_match, sunxi_factors_clk_setup);
1143 
1144 	/* Register divider clocks */
1145 	of_sunxi_table_clock_setup(clk_div_match, sunxi_divider_clk_setup);
1146 
1147 	/* Register divided output clocks */
1148 	of_sunxi_table_clock_setup(clk_divs_match, sunxi_divs_clk_setup);
1149 
1150 	/* Register mux clocks */
1151 	of_sunxi_table_clock_setup(clk_mux_match, sunxi_mux_clk_setup);
1152 
1153 	/* Register gate clocks */
1154 	of_sunxi_table_clock_setup(clk_gates_match, sunxi_gates_clk_setup);
1155 
1156 	/* Protect the clocks that needs to stay on */
1157 	for (i = 0; i < nclocks; i++) {
1158 		struct clk *clk = clk_get(NULL, clocks[i]);
1159 
1160 		if (!IS_ERR(clk))
1161 			clk_prepare_enable(clk);
1162 	}
1163 }
1164 
1165 static const char *sun4i_a10_critical_clocks[] __initdata = {
1166 	"pll5_ddr",
1167 	"ahb_sdram",
1168 };
1169 
1170 static void __init sun4i_a10_init_clocks(struct device_node *node)
1171 {
1172 	sunxi_init_clocks(sun4i_a10_critical_clocks,
1173 			  ARRAY_SIZE(sun4i_a10_critical_clocks));
1174 }
1175 CLK_OF_DECLARE(sun4i_a10_clk_init, "allwinner,sun4i-a10", sun4i_a10_init_clocks);
1176 
1177 static const char *sun5i_critical_clocks[] __initdata = {
1178 	"pll5_ddr",
1179 	"ahb_sdram",
1180 };
1181 
1182 static void __init sun5i_init_clocks(struct device_node *node)
1183 {
1184 	sunxi_init_clocks(sun5i_critical_clocks,
1185 			  ARRAY_SIZE(sun5i_critical_clocks));
1186 }
1187 CLK_OF_DECLARE(sun5i_a10s_clk_init, "allwinner,sun5i-a10s", sun5i_init_clocks);
1188 CLK_OF_DECLARE(sun5i_a13_clk_init, "allwinner,sun5i-a13", sun5i_init_clocks);
1189 CLK_OF_DECLARE(sun7i_a20_clk_init, "allwinner,sun7i-a20", sun5i_init_clocks);
1190 
1191 static const char *sun6i_critical_clocks[] __initdata = {
1192 	"cpu",
1193 	"ahb1_sdram",
1194 };
1195 
1196 static void __init sun6i_init_clocks(struct device_node *node)
1197 {
1198 	sunxi_init_clocks(sun6i_critical_clocks,
1199 			  ARRAY_SIZE(sun6i_critical_clocks));
1200 }
1201 CLK_OF_DECLARE(sun6i_a31_clk_init, "allwinner,sun6i-a31", sun6i_init_clocks);
1202 CLK_OF_DECLARE(sun8i_a23_clk_init, "allwinner,sun8i-a23", sun6i_init_clocks);
1203