xref: /openbmc/linux/drivers/clk/sunxi/clk-sunxi.c (revision b34e08d5)
1 /*
2  * Copyright 2013 Emilio López
3  *
4  * Emilio López <emilio@elopez.com.ar>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 #include <linux/clk-provider.h>
18 #include <linux/clkdev.h>
19 #include <linux/of.h>
20 #include <linux/of_address.h>
21 #include <linux/reset-controller.h>
22 
23 #include "clk-factors.h"
24 
25 static DEFINE_SPINLOCK(clk_lock);
26 
27 /* Maximum number of parents our clocks have */
28 #define SUNXI_MAX_PARENTS	5
29 
30 /**
31  * sun4i_osc_clk_setup() - Setup function for gatable oscillator
32  */
33 
34 #define SUNXI_OSC24M_GATE	0
35 
36 static void __init sun4i_osc_clk_setup(struct device_node *node)
37 {
38 	struct clk *clk;
39 	struct clk_fixed_rate *fixed;
40 	struct clk_gate *gate;
41 	const char *clk_name = node->name;
42 	u32 rate;
43 
44 	if (of_property_read_u32(node, "clock-frequency", &rate))
45 		return;
46 
47 	/* allocate fixed-rate and gate clock structs */
48 	fixed = kzalloc(sizeof(struct clk_fixed_rate), GFP_KERNEL);
49 	if (!fixed)
50 		return;
51 	gate = kzalloc(sizeof(struct clk_gate), GFP_KERNEL);
52 	if (!gate)
53 		goto err_free_fixed;
54 
55 	of_property_read_string(node, "clock-output-names", &clk_name);
56 
57 	/* set up gate and fixed rate properties */
58 	gate->reg = of_iomap(node, 0);
59 	gate->bit_idx = SUNXI_OSC24M_GATE;
60 	gate->lock = &clk_lock;
61 	fixed->fixed_rate = rate;
62 
63 	clk = clk_register_composite(NULL, clk_name,
64 			NULL, 0,
65 			NULL, NULL,
66 			&fixed->hw, &clk_fixed_rate_ops,
67 			&gate->hw, &clk_gate_ops,
68 			CLK_IS_ROOT);
69 
70 	if (IS_ERR(clk))
71 		goto err_free_gate;
72 
73 	of_clk_add_provider(node, of_clk_src_simple_get, clk);
74 	clk_register_clkdev(clk, clk_name, NULL);
75 
76 	return;
77 
78 err_free_gate:
79 	kfree(gate);
80 err_free_fixed:
81 	kfree(fixed);
82 }
83 CLK_OF_DECLARE(sun4i_osc, "allwinner,sun4i-a10-osc-clk", sun4i_osc_clk_setup);
84 
85 
86 
87 /**
88  * sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1
89  * PLL1 rate is calculated as follows
90  * rate = (parent_rate * n * (k + 1) >> p) / (m + 1);
91  * parent_rate is always 24Mhz
92  */
93 
94 static void sun4i_get_pll1_factors(u32 *freq, u32 parent_rate,
95 				   u8 *n, u8 *k, u8 *m, u8 *p)
96 {
97 	u8 div;
98 
99 	/* Normalize value to a 6M multiple */
100 	div = *freq / 6000000;
101 	*freq = 6000000 * div;
102 
103 	/* we were called to round the frequency, we can now return */
104 	if (n == NULL)
105 		return;
106 
107 	/* m is always zero for pll1 */
108 	*m = 0;
109 
110 	/* k is 1 only on these cases */
111 	if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
112 		*k = 1;
113 	else
114 		*k = 0;
115 
116 	/* p will be 3 for divs under 10 */
117 	if (div < 10)
118 		*p = 3;
119 
120 	/* p will be 2 for divs between 10 - 20 and odd divs under 32 */
121 	else if (div < 20 || (div < 32 && (div & 1)))
122 		*p = 2;
123 
124 	/* p will be 1 for even divs under 32, divs under 40 and odd pairs
125 	 * of divs between 40-62 */
126 	else if (div < 40 || (div < 64 && (div & 2)))
127 		*p = 1;
128 
129 	/* any other entries have p = 0 */
130 	else
131 		*p = 0;
132 
133 	/* calculate a suitable n based on k and p */
134 	div <<= *p;
135 	div /= (*k + 1);
136 	*n = div / 4;
137 }
138 
139 /**
140  * sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1
141  * PLL1 rate is calculated as follows
142  * rate = parent_rate * (n + 1) * (k + 1) / (m + 1);
143  * parent_rate should always be 24MHz
144  */
145 static void sun6i_a31_get_pll1_factors(u32 *freq, u32 parent_rate,
146 				       u8 *n, u8 *k, u8 *m, u8 *p)
147 {
148 	/*
149 	 * We can operate only on MHz, this will make our life easier
150 	 * later.
151 	 */
152 	u32 freq_mhz = *freq / 1000000;
153 	u32 parent_freq_mhz = parent_rate / 1000000;
154 
155 	/*
156 	 * Round down the frequency to the closest multiple of either
157 	 * 6 or 16
158 	 */
159 	u32 round_freq_6 = round_down(freq_mhz, 6);
160 	u32 round_freq_16 = round_down(freq_mhz, 16);
161 
162 	if (round_freq_6 > round_freq_16)
163 		freq_mhz = round_freq_6;
164 	else
165 		freq_mhz = round_freq_16;
166 
167 	*freq = freq_mhz * 1000000;
168 
169 	/*
170 	 * If the factors pointer are null, we were just called to
171 	 * round down the frequency.
172 	 * Exit.
173 	 */
174 	if (n == NULL)
175 		return;
176 
177 	/* If the frequency is a multiple of 32 MHz, k is always 3 */
178 	if (!(freq_mhz % 32))
179 		*k = 3;
180 	/* If the frequency is a multiple of 9 MHz, k is always 2 */
181 	else if (!(freq_mhz % 9))
182 		*k = 2;
183 	/* If the frequency is a multiple of 8 MHz, k is always 1 */
184 	else if (!(freq_mhz % 8))
185 		*k = 1;
186 	/* Otherwise, we don't use the k factor */
187 	else
188 		*k = 0;
189 
190 	/*
191 	 * If the frequency is a multiple of 2 but not a multiple of
192 	 * 3, m is 3. This is the first time we use 6 here, yet we
193 	 * will use it on several other places.
194 	 * We use this number because it's the lowest frequency we can
195 	 * generate (with n = 0, k = 0, m = 3), so every other frequency
196 	 * somehow relates to this frequency.
197 	 */
198 	if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4)
199 		*m = 2;
200 	/*
201 	 * If the frequency is a multiple of 6MHz, but the factor is
202 	 * odd, m will be 3
203 	 */
204 	else if ((freq_mhz / 6) & 1)
205 		*m = 3;
206 	/* Otherwise, we end up with m = 1 */
207 	else
208 		*m = 1;
209 
210 	/* Calculate n thanks to the above factors we already got */
211 	*n = freq_mhz * (*m + 1) / ((*k + 1) * parent_freq_mhz) - 1;
212 
213 	/*
214 	 * If n end up being outbound, and that we can still decrease
215 	 * m, do it.
216 	 */
217 	if ((*n + 1) > 31 && (*m + 1) > 1) {
218 		*n = (*n + 1) / 2 - 1;
219 		*m = (*m + 1) / 2 - 1;
220 	}
221 }
222 
223 /**
224  * sun4i_get_pll5_factors() - calculates n, k factors for PLL5
225  * PLL5 rate is calculated as follows
226  * rate = parent_rate * n * (k + 1)
227  * parent_rate is always 24Mhz
228  */
229 
230 static void sun4i_get_pll5_factors(u32 *freq, u32 parent_rate,
231 				   u8 *n, u8 *k, u8 *m, u8 *p)
232 {
233 	u8 div;
234 
235 	/* Normalize value to a parent_rate multiple (24M) */
236 	div = *freq / parent_rate;
237 	*freq = parent_rate * div;
238 
239 	/* we were called to round the frequency, we can now return */
240 	if (n == NULL)
241 		return;
242 
243 	if (div < 31)
244 		*k = 0;
245 	else if (div / 2 < 31)
246 		*k = 1;
247 	else if (div / 3 < 31)
248 		*k = 2;
249 	else
250 		*k = 3;
251 
252 	*n = DIV_ROUND_UP(div, (*k+1));
253 }
254 
255 /**
256  * sun6i_a31_get_pll6_factors() - calculates n, k factors for A31 PLL6
257  * PLL6 rate is calculated as follows
258  * rate = parent_rate * n * (k + 1) / 2
259  * parent_rate is always 24Mhz
260  */
261 
262 static void sun6i_a31_get_pll6_factors(u32 *freq, u32 parent_rate,
263 				       u8 *n, u8 *k, u8 *m, u8 *p)
264 {
265 	u8 div;
266 
267 	/*
268 	 * We always have 24MHz / 2, so we can just say that our
269 	 * parent clock is 12MHz.
270 	 */
271 	parent_rate = parent_rate / 2;
272 
273 	/* Normalize value to a parent_rate multiple (24M / 2) */
274 	div = *freq / parent_rate;
275 	*freq = parent_rate * div;
276 
277 	/* we were called to round the frequency, we can now return */
278 	if (n == NULL)
279 		return;
280 
281 	*k = div / 32;
282 	if (*k > 3)
283 		*k = 3;
284 
285 	*n = DIV_ROUND_UP(div, (*k+1));
286 }
287 
288 /**
289  * sun4i_get_apb1_factors() - calculates m, p factors for APB1
290  * APB1 rate is calculated as follows
291  * rate = (parent_rate >> p) / (m + 1);
292  */
293 
294 static void sun4i_get_apb1_factors(u32 *freq, u32 parent_rate,
295 				   u8 *n, u8 *k, u8 *m, u8 *p)
296 {
297 	u8 calcm, calcp;
298 
299 	if (parent_rate < *freq)
300 		*freq = parent_rate;
301 
302 	parent_rate = DIV_ROUND_UP(parent_rate, *freq);
303 
304 	/* Invalid rate! */
305 	if (parent_rate > 32)
306 		return;
307 
308 	if (parent_rate <= 4)
309 		calcp = 0;
310 	else if (parent_rate <= 8)
311 		calcp = 1;
312 	else if (parent_rate <= 16)
313 		calcp = 2;
314 	else
315 		calcp = 3;
316 
317 	calcm = (parent_rate >> calcp) - 1;
318 
319 	*freq = (parent_rate >> calcp) / (calcm + 1);
320 
321 	/* we were called to round the frequency, we can now return */
322 	if (n == NULL)
323 		return;
324 
325 	*m = calcm;
326 	*p = calcp;
327 }
328 
329 
330 
331 /**
332  * sun4i_get_mod0_factors() - calculates m, n factors for MOD0-style clocks
333  * MOD0 rate is calculated as follows
334  * rate = (parent_rate >> p) / (m + 1);
335  */
336 
337 static void sun4i_get_mod0_factors(u32 *freq, u32 parent_rate,
338 				   u8 *n, u8 *k, u8 *m, u8 *p)
339 {
340 	u8 div, calcm, calcp;
341 
342 	/* These clocks can only divide, so we will never be able to achieve
343 	 * frequencies higher than the parent frequency */
344 	if (*freq > parent_rate)
345 		*freq = parent_rate;
346 
347 	div = DIV_ROUND_UP(parent_rate, *freq);
348 
349 	if (div < 16)
350 		calcp = 0;
351 	else if (div / 2 < 16)
352 		calcp = 1;
353 	else if (div / 4 < 16)
354 		calcp = 2;
355 	else
356 		calcp = 3;
357 
358 	calcm = DIV_ROUND_UP(div, 1 << calcp);
359 
360 	*freq = (parent_rate >> calcp) / calcm;
361 
362 	/* we were called to round the frequency, we can now return */
363 	if (n == NULL)
364 		return;
365 
366 	*m = calcm - 1;
367 	*p = calcp;
368 }
369 
370 
371 
372 /**
373  * sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B
374  * CLK_OUT rate is calculated as follows
375  * rate = (parent_rate >> p) / (m + 1);
376  */
377 
378 static void sun7i_a20_get_out_factors(u32 *freq, u32 parent_rate,
379 				      u8 *n, u8 *k, u8 *m, u8 *p)
380 {
381 	u8 div, calcm, calcp;
382 
383 	/* These clocks can only divide, so we will never be able to achieve
384 	 * frequencies higher than the parent frequency */
385 	if (*freq > parent_rate)
386 		*freq = parent_rate;
387 
388 	div = DIV_ROUND_UP(parent_rate, *freq);
389 
390 	if (div < 32)
391 		calcp = 0;
392 	else if (div / 2 < 32)
393 		calcp = 1;
394 	else if (div / 4 < 32)
395 		calcp = 2;
396 	else
397 		calcp = 3;
398 
399 	calcm = DIV_ROUND_UP(div, 1 << calcp);
400 
401 	*freq = (parent_rate >> calcp) / calcm;
402 
403 	/* we were called to round the frequency, we can now return */
404 	if (n == NULL)
405 		return;
406 
407 	*m = calcm - 1;
408 	*p = calcp;
409 }
410 
411 
412 
413 /**
414  * sun7i_a20_gmac_clk_setup - Setup function for A20/A31 GMAC clock module
415  *
416  * This clock looks something like this
417  *                               ________________________
418  *  MII TX clock from PHY >-----|___________    _________|----> to GMAC core
419  *  GMAC Int. RGMII TX clk >----|___________\__/__gate---|----> to PHY
420  *  Ext. 125MHz RGMII TX clk >--|__divider__/            |
421  *                              |________________________|
422  *
423  * The external 125 MHz reference is optional, i.e. GMAC can use its
424  * internal TX clock just fine. The A31 GMAC clock module does not have
425  * the divider controls for the external reference.
426  *
427  * To keep it simple, let the GMAC use either the MII TX clock for MII mode,
428  * and its internal TX clock for GMII and RGMII modes. The GMAC driver should
429  * select the appropriate source and gate/ungate the output to the PHY.
430  *
431  * Only the GMAC should use this clock. Altering the clock so that it doesn't
432  * match the GMAC's operation parameters will result in the GMAC not being
433  * able to send traffic out. The GMAC driver should set the clock rate and
434  * enable/disable this clock to configure the required state. The clock
435  * driver then responds by auto-reparenting the clock.
436  */
437 
438 #define SUN7I_A20_GMAC_GPIT	2
439 #define SUN7I_A20_GMAC_MASK	0x3
440 #define SUN7I_A20_GMAC_PARENTS	2
441 
442 static void __init sun7i_a20_gmac_clk_setup(struct device_node *node)
443 {
444 	struct clk *clk;
445 	struct clk_mux *mux;
446 	struct clk_gate *gate;
447 	const char *clk_name = node->name;
448 	const char *parents[SUN7I_A20_GMAC_PARENTS];
449 	void *reg;
450 
451 	if (of_property_read_string(node, "clock-output-names", &clk_name))
452 		return;
453 
454 	/* allocate mux and gate clock structs */
455 	mux = kzalloc(sizeof(struct clk_mux), GFP_KERNEL);
456 	if (!mux)
457 		return;
458 
459 	gate = kzalloc(sizeof(struct clk_gate), GFP_KERNEL);
460 	if (!gate)
461 		goto free_mux;
462 
463 	/* gmac clock requires exactly 2 parents */
464 	parents[0] = of_clk_get_parent_name(node, 0);
465 	parents[1] = of_clk_get_parent_name(node, 1);
466 	if (!parents[0] || !parents[1])
467 		goto free_gate;
468 
469 	reg = of_iomap(node, 0);
470 	if (!reg)
471 		goto free_gate;
472 
473 	/* set up gate and fixed rate properties */
474 	gate->reg = reg;
475 	gate->bit_idx = SUN7I_A20_GMAC_GPIT;
476 	gate->lock = &clk_lock;
477 	mux->reg = reg;
478 	mux->mask = SUN7I_A20_GMAC_MASK;
479 	mux->flags = CLK_MUX_INDEX_BIT;
480 	mux->lock = &clk_lock;
481 
482 	clk = clk_register_composite(NULL, clk_name,
483 			parents, SUN7I_A20_GMAC_PARENTS,
484 			&mux->hw, &clk_mux_ops,
485 			NULL, NULL,
486 			&gate->hw, &clk_gate_ops,
487 			0);
488 
489 	if (IS_ERR(clk))
490 		goto iounmap_reg;
491 
492 	of_clk_add_provider(node, of_clk_src_simple_get, clk);
493 	clk_register_clkdev(clk, clk_name, NULL);
494 
495 	return;
496 
497 iounmap_reg:
498 	iounmap(reg);
499 free_gate:
500 	kfree(gate);
501 free_mux:
502 	kfree(mux);
503 }
504 CLK_OF_DECLARE(sun7i_a20_gmac, "allwinner,sun7i-a20-gmac-clk",
505 		sun7i_a20_gmac_clk_setup);
506 
507 
508 
509 /**
510  * sunxi_factors_clk_setup() - Setup function for factor clocks
511  */
512 
513 #define SUNXI_FACTORS_MUX_MASK 0x3
514 
515 struct factors_data {
516 	int enable;
517 	int mux;
518 	struct clk_factors_config *table;
519 	void (*getter) (u32 *rate, u32 parent_rate, u8 *n, u8 *k, u8 *m, u8 *p);
520 	const char *name;
521 };
522 
523 static struct clk_factors_config sun4i_pll1_config = {
524 	.nshift = 8,
525 	.nwidth = 5,
526 	.kshift = 4,
527 	.kwidth = 2,
528 	.mshift = 0,
529 	.mwidth = 2,
530 	.pshift = 16,
531 	.pwidth = 2,
532 };
533 
534 static struct clk_factors_config sun6i_a31_pll1_config = {
535 	.nshift	= 8,
536 	.nwidth = 5,
537 	.kshift = 4,
538 	.kwidth = 2,
539 	.mshift = 0,
540 	.mwidth = 2,
541 };
542 
543 static struct clk_factors_config sun4i_pll5_config = {
544 	.nshift = 8,
545 	.nwidth = 5,
546 	.kshift = 4,
547 	.kwidth = 2,
548 };
549 
550 static struct clk_factors_config sun6i_a31_pll6_config = {
551 	.nshift	= 8,
552 	.nwidth = 5,
553 	.kshift = 4,
554 	.kwidth = 2,
555 };
556 
557 static struct clk_factors_config sun4i_apb1_config = {
558 	.mshift = 0,
559 	.mwidth = 5,
560 	.pshift = 16,
561 	.pwidth = 2,
562 };
563 
564 /* user manual says "n" but it's really "p" */
565 static struct clk_factors_config sun4i_mod0_config = {
566 	.mshift = 0,
567 	.mwidth = 4,
568 	.pshift = 16,
569 	.pwidth = 2,
570 };
571 
572 /* user manual says "n" but it's really "p" */
573 static struct clk_factors_config sun7i_a20_out_config = {
574 	.mshift = 8,
575 	.mwidth = 5,
576 	.pshift = 20,
577 	.pwidth = 2,
578 };
579 
580 static const struct factors_data sun4i_pll1_data __initconst = {
581 	.enable = 31,
582 	.table = &sun4i_pll1_config,
583 	.getter = sun4i_get_pll1_factors,
584 };
585 
586 static const struct factors_data sun6i_a31_pll1_data __initconst = {
587 	.enable = 31,
588 	.table = &sun6i_a31_pll1_config,
589 	.getter = sun6i_a31_get_pll1_factors,
590 };
591 
592 static const struct factors_data sun7i_a20_pll4_data __initconst = {
593 	.enable = 31,
594 	.table = &sun4i_pll5_config,
595 	.getter = sun4i_get_pll5_factors,
596 };
597 
598 static const struct factors_data sun4i_pll5_data __initconst = {
599 	.enable = 31,
600 	.table = &sun4i_pll5_config,
601 	.getter = sun4i_get_pll5_factors,
602 	.name = "pll5",
603 };
604 
605 static const struct factors_data sun4i_pll6_data __initconst = {
606 	.enable = 31,
607 	.table = &sun4i_pll5_config,
608 	.getter = sun4i_get_pll5_factors,
609 	.name = "pll6",
610 };
611 
612 static const struct factors_data sun6i_a31_pll6_data __initconst = {
613 	.enable = 31,
614 	.table = &sun6i_a31_pll6_config,
615 	.getter = sun6i_a31_get_pll6_factors,
616 };
617 
618 static const struct factors_data sun4i_apb1_data __initconst = {
619 	.table = &sun4i_apb1_config,
620 	.getter = sun4i_get_apb1_factors,
621 };
622 
623 static const struct factors_data sun4i_mod0_data __initconst = {
624 	.enable = 31,
625 	.mux = 24,
626 	.table = &sun4i_mod0_config,
627 	.getter = sun4i_get_mod0_factors,
628 };
629 
630 static const struct factors_data sun7i_a20_out_data __initconst = {
631 	.enable = 31,
632 	.mux = 24,
633 	.table = &sun7i_a20_out_config,
634 	.getter = sun7i_a20_get_out_factors,
635 };
636 
637 static struct clk * __init sunxi_factors_clk_setup(struct device_node *node,
638 						const struct factors_data *data)
639 {
640 	struct clk *clk;
641 	struct clk_factors *factors;
642 	struct clk_gate *gate = NULL;
643 	struct clk_mux *mux = NULL;
644 	struct clk_hw *gate_hw = NULL;
645 	struct clk_hw *mux_hw = NULL;
646 	const char *clk_name = node->name;
647 	const char *parents[SUNXI_MAX_PARENTS];
648 	void *reg;
649 	int i = 0;
650 
651 	reg = of_iomap(node, 0);
652 
653 	/* if we have a mux, we will have >1 parents */
654 	while (i < SUNXI_MAX_PARENTS &&
655 	       (parents[i] = of_clk_get_parent_name(node, i)) != NULL)
656 		i++;
657 
658 	/*
659 	 * some factor clocks, such as pll5 and pll6, may have multiple
660 	 * outputs, and have their name designated in factors_data
661 	 */
662 	if (data->name)
663 		clk_name = data->name;
664 	else
665 		of_property_read_string(node, "clock-output-names", &clk_name);
666 
667 	factors = kzalloc(sizeof(struct clk_factors), GFP_KERNEL);
668 	if (!factors)
669 		return NULL;
670 
671 	/* Add a gate if this factor clock can be gated */
672 	if (data->enable) {
673 		gate = kzalloc(sizeof(struct clk_gate), GFP_KERNEL);
674 		if (!gate) {
675 			kfree(factors);
676 			return NULL;
677 		}
678 
679 		/* set up gate properties */
680 		gate->reg = reg;
681 		gate->bit_idx = data->enable;
682 		gate->lock = &clk_lock;
683 		gate_hw = &gate->hw;
684 	}
685 
686 	/* Add a mux if this factor clock can be muxed */
687 	if (data->mux) {
688 		mux = kzalloc(sizeof(struct clk_mux), GFP_KERNEL);
689 		if (!mux) {
690 			kfree(factors);
691 			kfree(gate);
692 			return NULL;
693 		}
694 
695 		/* set up gate properties */
696 		mux->reg = reg;
697 		mux->shift = data->mux;
698 		mux->mask = SUNXI_FACTORS_MUX_MASK;
699 		mux->lock = &clk_lock;
700 		mux_hw = &mux->hw;
701 	}
702 
703 	/* set up factors properties */
704 	factors->reg = reg;
705 	factors->config = data->table;
706 	factors->get_factors = data->getter;
707 	factors->lock = &clk_lock;
708 
709 	clk = clk_register_composite(NULL, clk_name,
710 			parents, i,
711 			mux_hw, &clk_mux_ops,
712 			&factors->hw, &clk_factors_ops,
713 			gate_hw, &clk_gate_ops, 0);
714 
715 	if (!IS_ERR(clk)) {
716 		of_clk_add_provider(node, of_clk_src_simple_get, clk);
717 		clk_register_clkdev(clk, clk_name, NULL);
718 	}
719 
720 	return clk;
721 }
722 
723 
724 
725 /**
726  * sunxi_mux_clk_setup() - Setup function for muxes
727  */
728 
729 #define SUNXI_MUX_GATE_WIDTH	2
730 
731 struct mux_data {
732 	u8 shift;
733 };
734 
735 static const struct mux_data sun4i_cpu_mux_data __initconst = {
736 	.shift = 16,
737 };
738 
739 static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = {
740 	.shift = 12,
741 };
742 
743 static const struct mux_data sun4i_apb1_mux_data __initconst = {
744 	.shift = 24,
745 };
746 
747 static void __init sunxi_mux_clk_setup(struct device_node *node,
748 				       struct mux_data *data)
749 {
750 	struct clk *clk;
751 	const char *clk_name = node->name;
752 	const char *parents[SUNXI_MAX_PARENTS];
753 	void *reg;
754 	int i = 0;
755 
756 	reg = of_iomap(node, 0);
757 
758 	while (i < SUNXI_MAX_PARENTS &&
759 	       (parents[i] = of_clk_get_parent_name(node, i)) != NULL)
760 		i++;
761 
762 	of_property_read_string(node, "clock-output-names", &clk_name);
763 
764 	clk = clk_register_mux(NULL, clk_name, parents, i,
765 			       CLK_SET_RATE_NO_REPARENT, reg,
766 			       data->shift, SUNXI_MUX_GATE_WIDTH,
767 			       0, &clk_lock);
768 
769 	if (clk) {
770 		of_clk_add_provider(node, of_clk_src_simple_get, clk);
771 		clk_register_clkdev(clk, clk_name, NULL);
772 	}
773 }
774 
775 
776 
777 /**
778  * sunxi_divider_clk_setup() - Setup function for simple divider clocks
779  */
780 
781 struct div_data {
782 	u8	shift;
783 	u8	pow;
784 	u8	width;
785 };
786 
787 static const struct div_data sun4i_axi_data __initconst = {
788 	.shift	= 0,
789 	.pow	= 0,
790 	.width	= 2,
791 };
792 
793 static const struct div_data sun4i_ahb_data __initconst = {
794 	.shift	= 4,
795 	.pow	= 1,
796 	.width	= 2,
797 };
798 
799 static const struct div_data sun4i_apb0_data __initconst = {
800 	.shift	= 8,
801 	.pow	= 1,
802 	.width	= 2,
803 };
804 
805 static const struct div_data sun6i_a31_apb2_div_data __initconst = {
806 	.shift	= 0,
807 	.pow	= 0,
808 	.width	= 4,
809 };
810 
811 static void __init sunxi_divider_clk_setup(struct device_node *node,
812 					   struct div_data *data)
813 {
814 	struct clk *clk;
815 	const char *clk_name = node->name;
816 	const char *clk_parent;
817 	void *reg;
818 
819 	reg = of_iomap(node, 0);
820 
821 	clk_parent = of_clk_get_parent_name(node, 0);
822 
823 	of_property_read_string(node, "clock-output-names", &clk_name);
824 
825 	clk = clk_register_divider(NULL, clk_name, clk_parent, 0,
826 				   reg, data->shift, data->width,
827 				   data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0,
828 				   &clk_lock);
829 	if (clk) {
830 		of_clk_add_provider(node, of_clk_src_simple_get, clk);
831 		clk_register_clkdev(clk, clk_name, NULL);
832 	}
833 }
834 
835 
836 
837 /**
838  * sunxi_gates_reset... - reset bits in leaf gate clk registers handling
839  */
840 
841 struct gates_reset_data {
842 	void __iomem			*reg;
843 	spinlock_t			*lock;
844 	struct reset_controller_dev	rcdev;
845 };
846 
847 static int sunxi_gates_reset_assert(struct reset_controller_dev *rcdev,
848 			      unsigned long id)
849 {
850 	struct gates_reset_data *data = container_of(rcdev,
851 						     struct gates_reset_data,
852 						     rcdev);
853 	unsigned long flags;
854 	u32 reg;
855 
856 	spin_lock_irqsave(data->lock, flags);
857 
858 	reg = readl(data->reg);
859 	writel(reg & ~BIT(id), data->reg);
860 
861 	spin_unlock_irqrestore(data->lock, flags);
862 
863 	return 0;
864 }
865 
866 static int sunxi_gates_reset_deassert(struct reset_controller_dev *rcdev,
867 				unsigned long id)
868 {
869 	struct gates_reset_data *data = container_of(rcdev,
870 						     struct gates_reset_data,
871 						     rcdev);
872 	unsigned long flags;
873 	u32 reg;
874 
875 	spin_lock_irqsave(data->lock, flags);
876 
877 	reg = readl(data->reg);
878 	writel(reg | BIT(id), data->reg);
879 
880 	spin_unlock_irqrestore(data->lock, flags);
881 
882 	return 0;
883 }
884 
885 static struct reset_control_ops sunxi_gates_reset_ops = {
886 	.assert		= sunxi_gates_reset_assert,
887 	.deassert	= sunxi_gates_reset_deassert,
888 };
889 
890 /**
891  * sunxi_gates_clk_setup() - Setup function for leaf gates on clocks
892  */
893 
894 #define SUNXI_GATES_MAX_SIZE	64
895 
896 struct gates_data {
897 	DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE);
898 	u32 reset_mask;
899 };
900 
901 static const struct gates_data sun4i_axi_gates_data __initconst = {
902 	.mask = {1},
903 };
904 
905 static const struct gates_data sun4i_ahb_gates_data __initconst = {
906 	.mask = {0x7F77FFF, 0x14FB3F},
907 };
908 
909 static const struct gates_data sun5i_a10s_ahb_gates_data __initconst = {
910 	.mask = {0x147667e7, 0x185915},
911 };
912 
913 static const struct gates_data sun5i_a13_ahb_gates_data __initconst = {
914 	.mask = {0x107067e7, 0x185111},
915 };
916 
917 static const struct gates_data sun6i_a31_ahb1_gates_data __initconst = {
918 	.mask = {0xEDFE7F62, 0x794F931},
919 };
920 
921 static const struct gates_data sun7i_a20_ahb_gates_data __initconst = {
922 	.mask = { 0x12f77fff, 0x16ff3f },
923 };
924 
925 static const struct gates_data sun4i_apb0_gates_data __initconst = {
926 	.mask = {0x4EF},
927 };
928 
929 static const struct gates_data sun5i_a10s_apb0_gates_data __initconst = {
930 	.mask = {0x469},
931 };
932 
933 static const struct gates_data sun5i_a13_apb0_gates_data __initconst = {
934 	.mask = {0x61},
935 };
936 
937 static const struct gates_data sun7i_a20_apb0_gates_data __initconst = {
938 	.mask = { 0x4ff },
939 };
940 
941 static const struct gates_data sun4i_apb1_gates_data __initconst = {
942 	.mask = {0xFF00F7},
943 };
944 
945 static const struct gates_data sun5i_a10s_apb1_gates_data __initconst = {
946 	.mask = {0xf0007},
947 };
948 
949 static const struct gates_data sun5i_a13_apb1_gates_data __initconst = {
950 	.mask = {0xa0007},
951 };
952 
953 static const struct gates_data sun6i_a31_apb1_gates_data __initconst = {
954 	.mask = {0x3031},
955 };
956 
957 static const struct gates_data sun6i_a31_apb2_gates_data __initconst = {
958 	.mask = {0x3F000F},
959 };
960 
961 static const struct gates_data sun7i_a20_apb1_gates_data __initconst = {
962 	.mask = { 0xff80ff },
963 };
964 
965 static const struct gates_data sun4i_a10_usb_gates_data __initconst = {
966 	.mask = {0x1C0},
967 	.reset_mask = 0x07,
968 };
969 
970 static const struct gates_data sun5i_a13_usb_gates_data __initconst = {
971 	.mask = {0x140},
972 	.reset_mask = 0x03,
973 };
974 
975 static void __init sunxi_gates_clk_setup(struct device_node *node,
976 					 struct gates_data *data)
977 {
978 	struct clk_onecell_data *clk_data;
979 	struct gates_reset_data *reset_data;
980 	const char *clk_parent;
981 	const char *clk_name;
982 	void *reg;
983 	int qty;
984 	int i = 0;
985 	int j = 0;
986 	int ignore;
987 
988 	reg = of_iomap(node, 0);
989 
990 	clk_parent = of_clk_get_parent_name(node, 0);
991 
992 	/* Worst-case size approximation and memory allocation */
993 	qty = find_last_bit(data->mask, SUNXI_GATES_MAX_SIZE);
994 	clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
995 	if (!clk_data)
996 		return;
997 	clk_data->clks = kzalloc((qty+1) * sizeof(struct clk *), GFP_KERNEL);
998 	if (!clk_data->clks) {
999 		kfree(clk_data);
1000 		return;
1001 	}
1002 
1003 	for_each_set_bit(i, data->mask, SUNXI_GATES_MAX_SIZE) {
1004 		of_property_read_string_index(node, "clock-output-names",
1005 					      j, &clk_name);
1006 
1007 		/* No driver claims this clock, but it should remain gated */
1008 		ignore = !strcmp("ahb_sdram", clk_name) ? CLK_IGNORE_UNUSED : 0;
1009 
1010 		clk_data->clks[i] = clk_register_gate(NULL, clk_name,
1011 						      clk_parent, ignore,
1012 						      reg + 4 * (i/32), i % 32,
1013 						      0, &clk_lock);
1014 		WARN_ON(IS_ERR(clk_data->clks[i]));
1015 
1016 		j++;
1017 	}
1018 
1019 	/* Adjust to the real max */
1020 	clk_data->clk_num = i;
1021 
1022 	of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
1023 
1024 	/* Register a reset controler for gates with reset bits */
1025 	if (data->reset_mask == 0)
1026 		return;
1027 
1028 	reset_data = kzalloc(sizeof(*reset_data), GFP_KERNEL);
1029 	if (!reset_data)
1030 		return;
1031 
1032 	reset_data->reg = reg;
1033 	reset_data->lock = &clk_lock;
1034 	reset_data->rcdev.nr_resets = __fls(data->reset_mask) + 1;
1035 	reset_data->rcdev.ops = &sunxi_gates_reset_ops;
1036 	reset_data->rcdev.of_node = node;
1037 	reset_controller_register(&reset_data->rcdev);
1038 }
1039 
1040 
1041 
1042 /**
1043  * sunxi_divs_clk_setup() helper data
1044  */
1045 
1046 #define SUNXI_DIVS_MAX_QTY	2
1047 #define SUNXI_DIVISOR_WIDTH	2
1048 
1049 struct divs_data {
1050 	const struct factors_data *factors; /* data for the factor clock */
1051 	struct {
1052 		u8 fixed; /* is it a fixed divisor? if not... */
1053 		struct clk_div_table *table; /* is it a table based divisor? */
1054 		u8 shift; /* otherwise it's a normal divisor with this shift */
1055 		u8 pow;   /* is it power-of-two based? */
1056 		u8 gate;  /* is it independently gateable? */
1057 	} div[SUNXI_DIVS_MAX_QTY];
1058 };
1059 
1060 static struct clk_div_table pll6_sata_tbl[] = {
1061 	{ .val = 0, .div = 6, },
1062 	{ .val = 1, .div = 12, },
1063 	{ .val = 2, .div = 18, },
1064 	{ .val = 3, .div = 24, },
1065 	{ } /* sentinel */
1066 };
1067 
1068 static const struct divs_data pll5_divs_data __initconst = {
1069 	.factors = &sun4i_pll5_data,
1070 	.div = {
1071 		{ .shift = 0, .pow = 0, }, /* M, DDR */
1072 		{ .shift = 16, .pow = 1, }, /* P, other */
1073 	}
1074 };
1075 
1076 static const struct divs_data pll6_divs_data __initconst = {
1077 	.factors = &sun4i_pll6_data,
1078 	.div = {
1079 		{ .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */
1080 		{ .fixed = 2 }, /* P, other */
1081 	}
1082 };
1083 
1084 /**
1085  * sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks
1086  *
1087  * These clocks look something like this
1088  *            ________________________
1089  *           |         ___divisor 1---|----> to consumer
1090  * parent >--|  pll___/___divisor 2---|----> to consumer
1091  *           |        \_______________|____> to consumer
1092  *           |________________________|
1093  */
1094 
1095 static void __init sunxi_divs_clk_setup(struct device_node *node,
1096 					struct divs_data *data)
1097 {
1098 	struct clk_onecell_data *clk_data;
1099 	const char *parent;
1100 	const char *clk_name;
1101 	struct clk **clks, *pclk;
1102 	struct clk_hw *gate_hw, *rate_hw;
1103 	const struct clk_ops *rate_ops;
1104 	struct clk_gate *gate = NULL;
1105 	struct clk_fixed_factor *fix_factor;
1106 	struct clk_divider *divider;
1107 	void *reg;
1108 	int i = 0;
1109 	int flags, clkflags;
1110 
1111 	/* Set up factor clock that we will be dividing */
1112 	pclk = sunxi_factors_clk_setup(node, data->factors);
1113 	parent = __clk_get_name(pclk);
1114 
1115 	reg = of_iomap(node, 0);
1116 
1117 	clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
1118 	if (!clk_data)
1119 		return;
1120 
1121 	clks = kzalloc((SUNXI_DIVS_MAX_QTY+1) * sizeof(*clks), GFP_KERNEL);
1122 	if (!clks)
1123 		goto free_clkdata;
1124 
1125 	clk_data->clks = clks;
1126 
1127 	/* It's not a good idea to have automatic reparenting changing
1128 	 * our RAM clock! */
1129 	clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT;
1130 
1131 	for (i = 0; i < SUNXI_DIVS_MAX_QTY; i++) {
1132 		if (of_property_read_string_index(node, "clock-output-names",
1133 						  i, &clk_name) != 0)
1134 			break;
1135 
1136 		gate_hw = NULL;
1137 		rate_hw = NULL;
1138 		rate_ops = NULL;
1139 
1140 		/* If this leaf clock can be gated, create a gate */
1141 		if (data->div[i].gate) {
1142 			gate = kzalloc(sizeof(*gate), GFP_KERNEL);
1143 			if (!gate)
1144 				goto free_clks;
1145 
1146 			gate->reg = reg;
1147 			gate->bit_idx = data->div[i].gate;
1148 			gate->lock = &clk_lock;
1149 
1150 			gate_hw = &gate->hw;
1151 		}
1152 
1153 		/* Leaves can be fixed or configurable divisors */
1154 		if (data->div[i].fixed) {
1155 			fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL);
1156 			if (!fix_factor)
1157 				goto free_gate;
1158 
1159 			fix_factor->mult = 1;
1160 			fix_factor->div = data->div[i].fixed;
1161 
1162 			rate_hw = &fix_factor->hw;
1163 			rate_ops = &clk_fixed_factor_ops;
1164 		} else {
1165 			divider = kzalloc(sizeof(*divider), GFP_KERNEL);
1166 			if (!divider)
1167 				goto free_gate;
1168 
1169 			flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0;
1170 
1171 			divider->reg = reg;
1172 			divider->shift = data->div[i].shift;
1173 			divider->width = SUNXI_DIVISOR_WIDTH;
1174 			divider->flags = flags;
1175 			divider->lock = &clk_lock;
1176 			divider->table = data->div[i].table;
1177 
1178 			rate_hw = &divider->hw;
1179 			rate_ops = &clk_divider_ops;
1180 		}
1181 
1182 		/* Wrap the (potential) gate and the divisor on a composite
1183 		 * clock to unify them */
1184 		clks[i] = clk_register_composite(NULL, clk_name, &parent, 1,
1185 						 NULL, NULL,
1186 						 rate_hw, rate_ops,
1187 						 gate_hw, &clk_gate_ops,
1188 						 clkflags);
1189 
1190 		WARN_ON(IS_ERR(clk_data->clks[i]));
1191 		clk_register_clkdev(clks[i], clk_name, NULL);
1192 	}
1193 
1194 	/* The last clock available on the getter is the parent */
1195 	clks[i++] = pclk;
1196 
1197 	/* Adjust to the real max */
1198 	clk_data->clk_num = i;
1199 
1200 	of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
1201 
1202 	return;
1203 
1204 free_gate:
1205 	kfree(gate);
1206 free_clks:
1207 	kfree(clks);
1208 free_clkdata:
1209 	kfree(clk_data);
1210 }
1211 
1212 
1213 
1214 /* Matches for factors clocks */
1215 static const struct of_device_id clk_factors_match[] __initconst = {
1216 	{.compatible = "allwinner,sun4i-a10-pll1-clk", .data = &sun4i_pll1_data,},
1217 	{.compatible = "allwinner,sun6i-a31-pll1-clk", .data = &sun6i_a31_pll1_data,},
1218 	{.compatible = "allwinner,sun7i-a20-pll4-clk", .data = &sun7i_a20_pll4_data,},
1219 	{.compatible = "allwinner,sun6i-a31-pll6-clk", .data = &sun6i_a31_pll6_data,},
1220 	{.compatible = "allwinner,sun4i-a10-apb1-clk", .data = &sun4i_apb1_data,},
1221 	{.compatible = "allwinner,sun4i-a10-mod0-clk", .data = &sun4i_mod0_data,},
1222 	{.compatible = "allwinner,sun7i-a20-out-clk", .data = &sun7i_a20_out_data,},
1223 	{}
1224 };
1225 
1226 /* Matches for divider clocks */
1227 static const struct of_device_id clk_div_match[] __initconst = {
1228 	{.compatible = "allwinner,sun4i-a10-axi-clk", .data = &sun4i_axi_data,},
1229 	{.compatible = "allwinner,sun4i-a10-ahb-clk", .data = &sun4i_ahb_data,},
1230 	{.compatible = "allwinner,sun4i-a10-apb0-clk", .data = &sun4i_apb0_data,},
1231 	{.compatible = "allwinner,sun6i-a31-apb2-div-clk", .data = &sun6i_a31_apb2_div_data,},
1232 	{}
1233 };
1234 
1235 /* Matches for divided outputs */
1236 static const struct of_device_id clk_divs_match[] __initconst = {
1237 	{.compatible = "allwinner,sun4i-a10-pll5-clk", .data = &pll5_divs_data,},
1238 	{.compatible = "allwinner,sun4i-a10-pll6-clk", .data = &pll6_divs_data,},
1239 	{}
1240 };
1241 
1242 /* Matches for mux clocks */
1243 static const struct of_device_id clk_mux_match[] __initconst = {
1244 	{.compatible = "allwinner,sun4i-a10-cpu-clk", .data = &sun4i_cpu_mux_data,},
1245 	{.compatible = "allwinner,sun4i-a10-apb1-mux-clk", .data = &sun4i_apb1_mux_data,},
1246 	{.compatible = "allwinner,sun6i-a31-ahb1-mux-clk", .data = &sun6i_a31_ahb1_mux_data,},
1247 	{}
1248 };
1249 
1250 /* Matches for gate clocks */
1251 static const struct of_device_id clk_gates_match[] __initconst = {
1252 	{.compatible = "allwinner,sun4i-a10-axi-gates-clk", .data = &sun4i_axi_gates_data,},
1253 	{.compatible = "allwinner,sun4i-a10-ahb-gates-clk", .data = &sun4i_ahb_gates_data,},
1254 	{.compatible = "allwinner,sun5i-a10s-ahb-gates-clk", .data = &sun5i_a10s_ahb_gates_data,},
1255 	{.compatible = "allwinner,sun5i-a13-ahb-gates-clk", .data = &sun5i_a13_ahb_gates_data,},
1256 	{.compatible = "allwinner,sun6i-a31-ahb1-gates-clk", .data = &sun6i_a31_ahb1_gates_data,},
1257 	{.compatible = "allwinner,sun7i-a20-ahb-gates-clk", .data = &sun7i_a20_ahb_gates_data,},
1258 	{.compatible = "allwinner,sun4i-a10-apb0-gates-clk", .data = &sun4i_apb0_gates_data,},
1259 	{.compatible = "allwinner,sun5i-a10s-apb0-gates-clk", .data = &sun5i_a10s_apb0_gates_data,},
1260 	{.compatible = "allwinner,sun5i-a13-apb0-gates-clk", .data = &sun5i_a13_apb0_gates_data,},
1261 	{.compatible = "allwinner,sun7i-a20-apb0-gates-clk", .data = &sun7i_a20_apb0_gates_data,},
1262 	{.compatible = "allwinner,sun4i-a10-apb1-gates-clk", .data = &sun4i_apb1_gates_data,},
1263 	{.compatible = "allwinner,sun5i-a10s-apb1-gates-clk", .data = &sun5i_a10s_apb1_gates_data,},
1264 	{.compatible = "allwinner,sun5i-a13-apb1-gates-clk", .data = &sun5i_a13_apb1_gates_data,},
1265 	{.compatible = "allwinner,sun6i-a31-apb1-gates-clk", .data = &sun6i_a31_apb1_gates_data,},
1266 	{.compatible = "allwinner,sun7i-a20-apb1-gates-clk", .data = &sun7i_a20_apb1_gates_data,},
1267 	{.compatible = "allwinner,sun6i-a31-apb2-gates-clk", .data = &sun6i_a31_apb2_gates_data,},
1268 	{.compatible = "allwinner,sun4i-a10-usb-clk", .data = &sun4i_a10_usb_gates_data,},
1269 	{.compatible = "allwinner,sun5i-a13-usb-clk", .data = &sun5i_a13_usb_gates_data,},
1270 	{}
1271 };
1272 
1273 static void __init of_sunxi_table_clock_setup(const struct of_device_id *clk_match,
1274 					      void *function)
1275 {
1276 	struct device_node *np;
1277 	const struct div_data *data;
1278 	const struct of_device_id *match;
1279 	void (*setup_function)(struct device_node *, const void *) = function;
1280 
1281 	for_each_matching_node(np, clk_match) {
1282 		match = of_match_node(clk_match, np);
1283 		data = match->data;
1284 		setup_function(np, data);
1285 	}
1286 }
1287 
1288 /**
1289  * System clock protection
1290  *
1291  * By enabling these critical clocks, we prevent their accidental gating
1292  * by the framework
1293  */
1294 static void __init sunxi_clock_protect(void)
1295 {
1296 	struct clk *clk;
1297 
1298 	/* memory bus clock - sun5i+ */
1299 	clk = clk_get(NULL, "mbus");
1300 	if (!IS_ERR(clk)) {
1301 		clk_prepare_enable(clk);
1302 		clk_put(clk);
1303 	}
1304 
1305 	/* DDR clock - sun4i+ */
1306 	clk = clk_get(NULL, "pll5_ddr");
1307 	if (!IS_ERR(clk)) {
1308 		clk_prepare_enable(clk);
1309 		clk_put(clk);
1310 	}
1311 }
1312 
1313 static void __init sunxi_init_clocks(void)
1314 {
1315 	/* Register factor clocks */
1316 	of_sunxi_table_clock_setup(clk_factors_match, sunxi_factors_clk_setup);
1317 
1318 	/* Register divider clocks */
1319 	of_sunxi_table_clock_setup(clk_div_match, sunxi_divider_clk_setup);
1320 
1321 	/* Register divided output clocks */
1322 	of_sunxi_table_clock_setup(clk_divs_match, sunxi_divs_clk_setup);
1323 
1324 	/* Register mux clocks */
1325 	of_sunxi_table_clock_setup(clk_mux_match, sunxi_mux_clk_setup);
1326 
1327 	/* Register gate clocks */
1328 	of_sunxi_table_clock_setup(clk_gates_match, sunxi_gates_clk_setup);
1329 
1330 	/* Enable core system clocks */
1331 	sunxi_clock_protect();
1332 }
1333 CLK_OF_DECLARE(sun4i_a10_clk_init, "allwinner,sun4i-a10", sunxi_init_clocks);
1334 CLK_OF_DECLARE(sun5i_a10s_clk_init, "allwinner,sun5i-a10s", sunxi_init_clocks);
1335 CLK_OF_DECLARE(sun5i_a13_clk_init, "allwinner,sun5i-a13", sunxi_init_clocks);
1336 CLK_OF_DECLARE(sun6i_a31_clk_init, "allwinner,sun6i-a31", sunxi_init_clocks);
1337 CLK_OF_DECLARE(sun7i_a20_clk_init, "allwinner,sun7i-a20", sunxi_init_clocks);
1338