xref: /openbmc/linux/drivers/clk/sunxi/clk-sunxi.c (revision a06c488d)
1 /*
2  * Copyright 2013 Emilio López
3  *
4  * Emilio López <emilio@elopez.com.ar>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 #include <linux/clk.h>
18 #include <linux/clk-provider.h>
19 #include <linux/clkdev.h>
20 #include <linux/of.h>
21 #include <linux/of_address.h>
22 #include <linux/reset-controller.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 #include <linux/log2.h>
26 
27 #include "clk-factors.h"
28 
29 static DEFINE_SPINLOCK(clk_lock);
30 
31 /**
32  * sun6i_a31_ahb1_clk_setup() - Setup function for a31 ahb1 composite clk
33  */
34 
35 #define SUN6I_AHB1_MAX_PARENTS		4
36 #define SUN6I_AHB1_MUX_PARENT_PLL6	3
37 #define SUN6I_AHB1_MUX_SHIFT		12
38 /* un-shifted mask is what mux_clk expects */
39 #define SUN6I_AHB1_MUX_MASK		0x3
40 #define SUN6I_AHB1_MUX_GET_PARENT(reg)	((reg >> SUN6I_AHB1_MUX_SHIFT) & \
41 					 SUN6I_AHB1_MUX_MASK)
42 
43 #define SUN6I_AHB1_DIV_SHIFT		4
44 #define SUN6I_AHB1_DIV_MASK		(0x3 << SUN6I_AHB1_DIV_SHIFT)
45 #define SUN6I_AHB1_DIV_GET(reg)		((reg & SUN6I_AHB1_DIV_MASK) >> \
46 						SUN6I_AHB1_DIV_SHIFT)
47 #define SUN6I_AHB1_DIV_SET(reg, div)	((reg & ~SUN6I_AHB1_DIV_MASK) | \
48 						(div << SUN6I_AHB1_DIV_SHIFT))
49 #define SUN6I_AHB1_PLL6_DIV_SHIFT	6
50 #define SUN6I_AHB1_PLL6_DIV_MASK	(0x3 << SUN6I_AHB1_PLL6_DIV_SHIFT)
51 #define SUN6I_AHB1_PLL6_DIV_GET(reg)	((reg & SUN6I_AHB1_PLL6_DIV_MASK) >> \
52 						SUN6I_AHB1_PLL6_DIV_SHIFT)
53 #define SUN6I_AHB1_PLL6_DIV_SET(reg, div) ((reg & ~SUN6I_AHB1_PLL6_DIV_MASK) | \
54 						(div << SUN6I_AHB1_PLL6_DIV_SHIFT))
55 
56 struct sun6i_ahb1_clk {
57 	struct clk_hw hw;
58 	void __iomem *reg;
59 };
60 
61 #define to_sun6i_ahb1_clk(_hw) container_of(_hw, struct sun6i_ahb1_clk, hw)
62 
63 static unsigned long sun6i_ahb1_clk_recalc_rate(struct clk_hw *hw,
64 						unsigned long parent_rate)
65 {
66 	struct sun6i_ahb1_clk *ahb1 = to_sun6i_ahb1_clk(hw);
67 	unsigned long rate;
68 	u32 reg;
69 
70 	/* Fetch the register value */
71 	reg = readl(ahb1->reg);
72 
73 	/* apply pre-divider first if parent is pll6 */
74 	if (SUN6I_AHB1_MUX_GET_PARENT(reg) == SUN6I_AHB1_MUX_PARENT_PLL6)
75 		parent_rate /= SUN6I_AHB1_PLL6_DIV_GET(reg) + 1;
76 
77 	/* clk divider */
78 	rate = parent_rate >> SUN6I_AHB1_DIV_GET(reg);
79 
80 	return rate;
81 }
82 
83 static long sun6i_ahb1_clk_round(unsigned long rate, u8 *divp, u8 *pre_divp,
84 				 u8 parent, unsigned long parent_rate)
85 {
86 	u8 div, calcp, calcm = 1;
87 
88 	/*
89 	 * clock can only divide, so we will never be able to achieve
90 	 * frequencies higher than the parent frequency
91 	 */
92 	if (parent_rate && rate > parent_rate)
93 		rate = parent_rate;
94 
95 	div = DIV_ROUND_UP(parent_rate, rate);
96 
97 	/* calculate pre-divider if parent is pll6 */
98 	if (parent == SUN6I_AHB1_MUX_PARENT_PLL6) {
99 		if (div < 4)
100 			calcp = 0;
101 		else if (div / 2 < 4)
102 			calcp = 1;
103 		else if (div / 4 < 4)
104 			calcp = 2;
105 		else
106 			calcp = 3;
107 
108 		calcm = DIV_ROUND_UP(div, 1 << calcp);
109 	} else {
110 		calcp = __roundup_pow_of_two(div);
111 		calcp = calcp > 3 ? 3 : calcp;
112 	}
113 
114 	/* we were asked to pass back divider values */
115 	if (divp) {
116 		*divp = calcp;
117 		*pre_divp = calcm - 1;
118 	}
119 
120 	return (parent_rate / calcm) >> calcp;
121 }
122 
123 static int sun6i_ahb1_clk_determine_rate(struct clk_hw *hw,
124 					 struct clk_rate_request *req)
125 {
126 	struct clk_hw *parent, *best_parent = NULL;
127 	int i, num_parents;
128 	unsigned long parent_rate, best = 0, child_rate, best_child_rate = 0;
129 
130 	/* find the parent that can help provide the fastest rate <= rate */
131 	num_parents = clk_hw_get_num_parents(hw);
132 	for (i = 0; i < num_parents; i++) {
133 		parent = clk_hw_get_parent_by_index(hw, i);
134 		if (!parent)
135 			continue;
136 		if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT)
137 			parent_rate = clk_hw_round_rate(parent, req->rate);
138 		else
139 			parent_rate = clk_hw_get_rate(parent);
140 
141 		child_rate = sun6i_ahb1_clk_round(req->rate, NULL, NULL, i,
142 						  parent_rate);
143 
144 		if (child_rate <= req->rate && child_rate > best_child_rate) {
145 			best_parent = parent;
146 			best = parent_rate;
147 			best_child_rate = child_rate;
148 		}
149 	}
150 
151 	if (!best_parent)
152 		return -EINVAL;
153 
154 	req->best_parent_hw = best_parent;
155 	req->best_parent_rate = best;
156 	req->rate = best_child_rate;
157 
158 	return 0;
159 }
160 
161 static int sun6i_ahb1_clk_set_rate(struct clk_hw *hw, unsigned long rate,
162 				   unsigned long parent_rate)
163 {
164 	struct sun6i_ahb1_clk *ahb1 = to_sun6i_ahb1_clk(hw);
165 	unsigned long flags;
166 	u8 div, pre_div, parent;
167 	u32 reg;
168 
169 	spin_lock_irqsave(&clk_lock, flags);
170 
171 	reg = readl(ahb1->reg);
172 
173 	/* need to know which parent is used to apply pre-divider */
174 	parent = SUN6I_AHB1_MUX_GET_PARENT(reg);
175 	sun6i_ahb1_clk_round(rate, &div, &pre_div, parent, parent_rate);
176 
177 	reg = SUN6I_AHB1_DIV_SET(reg, div);
178 	reg = SUN6I_AHB1_PLL6_DIV_SET(reg, pre_div);
179 	writel(reg, ahb1->reg);
180 
181 	spin_unlock_irqrestore(&clk_lock, flags);
182 
183 	return 0;
184 }
185 
186 static const struct clk_ops sun6i_ahb1_clk_ops = {
187 	.determine_rate	= sun6i_ahb1_clk_determine_rate,
188 	.recalc_rate	= sun6i_ahb1_clk_recalc_rate,
189 	.set_rate	= sun6i_ahb1_clk_set_rate,
190 };
191 
192 static void __init sun6i_ahb1_clk_setup(struct device_node *node)
193 {
194 	struct clk *clk;
195 	struct sun6i_ahb1_clk *ahb1;
196 	struct clk_mux *mux;
197 	const char *clk_name = node->name;
198 	const char *parents[SUN6I_AHB1_MAX_PARENTS];
199 	void __iomem *reg;
200 	int i;
201 
202 	reg = of_io_request_and_map(node, 0, of_node_full_name(node));
203 	if (IS_ERR(reg))
204 		return;
205 
206 	/* we have a mux, we will have >1 parents */
207 	i = of_clk_parent_fill(node, parents, SUN6I_AHB1_MAX_PARENTS);
208 	of_property_read_string(node, "clock-output-names", &clk_name);
209 
210 	ahb1 = kzalloc(sizeof(struct sun6i_ahb1_clk), GFP_KERNEL);
211 	if (!ahb1)
212 		return;
213 
214 	mux = kzalloc(sizeof(struct clk_mux), GFP_KERNEL);
215 	if (!mux) {
216 		kfree(ahb1);
217 		return;
218 	}
219 
220 	/* set up clock properties */
221 	mux->reg = reg;
222 	mux->shift = SUN6I_AHB1_MUX_SHIFT;
223 	mux->mask = SUN6I_AHB1_MUX_MASK;
224 	mux->lock = &clk_lock;
225 	ahb1->reg = reg;
226 
227 	clk = clk_register_composite(NULL, clk_name, parents, i,
228 				     &mux->hw, &clk_mux_ops,
229 				     &ahb1->hw, &sun6i_ahb1_clk_ops,
230 				     NULL, NULL, 0);
231 
232 	if (!IS_ERR(clk)) {
233 		of_clk_add_provider(node, of_clk_src_simple_get, clk);
234 		clk_register_clkdev(clk, clk_name, NULL);
235 	}
236 }
237 CLK_OF_DECLARE(sun6i_a31_ahb1, "allwinner,sun6i-a31-ahb1-clk", sun6i_ahb1_clk_setup);
238 
239 /* Maximum number of parents our clocks have */
240 #define SUNXI_MAX_PARENTS	5
241 
242 /**
243  * sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1
244  * PLL1 rate is calculated as follows
245  * rate = (parent_rate * n * (k + 1) >> p) / (m + 1);
246  * parent_rate is always 24Mhz
247  */
248 
249 static void sun4i_get_pll1_factors(u32 *freq, u32 parent_rate,
250 				   u8 *n, u8 *k, u8 *m, u8 *p)
251 {
252 	u8 div;
253 
254 	/* Normalize value to a 6M multiple */
255 	div = *freq / 6000000;
256 	*freq = 6000000 * div;
257 
258 	/* we were called to round the frequency, we can now return */
259 	if (n == NULL)
260 		return;
261 
262 	/* m is always zero for pll1 */
263 	*m = 0;
264 
265 	/* k is 1 only on these cases */
266 	if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
267 		*k = 1;
268 	else
269 		*k = 0;
270 
271 	/* p will be 3 for divs under 10 */
272 	if (div < 10)
273 		*p = 3;
274 
275 	/* p will be 2 for divs between 10 - 20 and odd divs under 32 */
276 	else if (div < 20 || (div < 32 && (div & 1)))
277 		*p = 2;
278 
279 	/* p will be 1 for even divs under 32, divs under 40 and odd pairs
280 	 * of divs between 40-62 */
281 	else if (div < 40 || (div < 64 && (div & 2)))
282 		*p = 1;
283 
284 	/* any other entries have p = 0 */
285 	else
286 		*p = 0;
287 
288 	/* calculate a suitable n based on k and p */
289 	div <<= *p;
290 	div /= (*k + 1);
291 	*n = div / 4;
292 }
293 
294 /**
295  * sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1
296  * PLL1 rate is calculated as follows
297  * rate = parent_rate * (n + 1) * (k + 1) / (m + 1);
298  * parent_rate should always be 24MHz
299  */
300 static void sun6i_a31_get_pll1_factors(u32 *freq, u32 parent_rate,
301 				       u8 *n, u8 *k, u8 *m, u8 *p)
302 {
303 	/*
304 	 * We can operate only on MHz, this will make our life easier
305 	 * later.
306 	 */
307 	u32 freq_mhz = *freq / 1000000;
308 	u32 parent_freq_mhz = parent_rate / 1000000;
309 
310 	/*
311 	 * Round down the frequency to the closest multiple of either
312 	 * 6 or 16
313 	 */
314 	u32 round_freq_6 = round_down(freq_mhz, 6);
315 	u32 round_freq_16 = round_down(freq_mhz, 16);
316 
317 	if (round_freq_6 > round_freq_16)
318 		freq_mhz = round_freq_6;
319 	else
320 		freq_mhz = round_freq_16;
321 
322 	*freq = freq_mhz * 1000000;
323 
324 	/*
325 	 * If the factors pointer are null, we were just called to
326 	 * round down the frequency.
327 	 * Exit.
328 	 */
329 	if (n == NULL)
330 		return;
331 
332 	/* If the frequency is a multiple of 32 MHz, k is always 3 */
333 	if (!(freq_mhz % 32))
334 		*k = 3;
335 	/* If the frequency is a multiple of 9 MHz, k is always 2 */
336 	else if (!(freq_mhz % 9))
337 		*k = 2;
338 	/* If the frequency is a multiple of 8 MHz, k is always 1 */
339 	else if (!(freq_mhz % 8))
340 		*k = 1;
341 	/* Otherwise, we don't use the k factor */
342 	else
343 		*k = 0;
344 
345 	/*
346 	 * If the frequency is a multiple of 2 but not a multiple of
347 	 * 3, m is 3. This is the first time we use 6 here, yet we
348 	 * will use it on several other places.
349 	 * We use this number because it's the lowest frequency we can
350 	 * generate (with n = 0, k = 0, m = 3), so every other frequency
351 	 * somehow relates to this frequency.
352 	 */
353 	if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4)
354 		*m = 2;
355 	/*
356 	 * If the frequency is a multiple of 6MHz, but the factor is
357 	 * odd, m will be 3
358 	 */
359 	else if ((freq_mhz / 6) & 1)
360 		*m = 3;
361 	/* Otherwise, we end up with m = 1 */
362 	else
363 		*m = 1;
364 
365 	/* Calculate n thanks to the above factors we already got */
366 	*n = freq_mhz * (*m + 1) / ((*k + 1) * parent_freq_mhz) - 1;
367 
368 	/*
369 	 * If n end up being outbound, and that we can still decrease
370 	 * m, do it.
371 	 */
372 	if ((*n + 1) > 31 && (*m + 1) > 1) {
373 		*n = (*n + 1) / 2 - 1;
374 		*m = (*m + 1) / 2 - 1;
375 	}
376 }
377 
378 /**
379  * sun8i_a23_get_pll1_factors() - calculates n, k, m, p factors for PLL1
380  * PLL1 rate is calculated as follows
381  * rate = (parent_rate * (n + 1) * (k + 1) >> p) / (m + 1);
382  * parent_rate is always 24Mhz
383  */
384 
385 static void sun8i_a23_get_pll1_factors(u32 *freq, u32 parent_rate,
386 				   u8 *n, u8 *k, u8 *m, u8 *p)
387 {
388 	u8 div;
389 
390 	/* Normalize value to a 6M multiple */
391 	div = *freq / 6000000;
392 	*freq = 6000000 * div;
393 
394 	/* we were called to round the frequency, we can now return */
395 	if (n == NULL)
396 		return;
397 
398 	/* m is always zero for pll1 */
399 	*m = 0;
400 
401 	/* k is 1 only on these cases */
402 	if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
403 		*k = 1;
404 	else
405 		*k = 0;
406 
407 	/* p will be 2 for divs under 20 and odd divs under 32 */
408 	if (div < 20 || (div < 32 && (div & 1)))
409 		*p = 2;
410 
411 	/* p will be 1 for even divs under 32, divs under 40 and odd pairs
412 	 * of divs between 40-62 */
413 	else if (div < 40 || (div < 64 && (div & 2)))
414 		*p = 1;
415 
416 	/* any other entries have p = 0 */
417 	else
418 		*p = 0;
419 
420 	/* calculate a suitable n based on k and p */
421 	div <<= *p;
422 	div /= (*k + 1);
423 	*n = div / 4 - 1;
424 }
425 
426 /**
427  * sun4i_get_pll5_factors() - calculates n, k factors for PLL5
428  * PLL5 rate is calculated as follows
429  * rate = parent_rate * n * (k + 1)
430  * parent_rate is always 24Mhz
431  */
432 
433 static void sun4i_get_pll5_factors(u32 *freq, u32 parent_rate,
434 				   u8 *n, u8 *k, u8 *m, u8 *p)
435 {
436 	u8 div;
437 
438 	/* Normalize value to a parent_rate multiple (24M) */
439 	div = *freq / parent_rate;
440 	*freq = parent_rate * div;
441 
442 	/* we were called to round the frequency, we can now return */
443 	if (n == NULL)
444 		return;
445 
446 	if (div < 31)
447 		*k = 0;
448 	else if (div / 2 < 31)
449 		*k = 1;
450 	else if (div / 3 < 31)
451 		*k = 2;
452 	else
453 		*k = 3;
454 
455 	*n = DIV_ROUND_UP(div, (*k+1));
456 }
457 
458 /**
459  * sun6i_a31_get_pll6_factors() - calculates n, k factors for A31 PLL6x2
460  * PLL6x2 rate is calculated as follows
461  * rate = parent_rate * (n + 1) * (k + 1)
462  * parent_rate is always 24Mhz
463  */
464 
465 static void sun6i_a31_get_pll6_factors(u32 *freq, u32 parent_rate,
466 				       u8 *n, u8 *k, u8 *m, u8 *p)
467 {
468 	u8 div;
469 
470 	/* Normalize value to a parent_rate multiple (24M) */
471 	div = *freq / parent_rate;
472 	*freq = parent_rate * div;
473 
474 	/* we were called to round the frequency, we can now return */
475 	if (n == NULL)
476 		return;
477 
478 	*k = div / 32;
479 	if (*k > 3)
480 		*k = 3;
481 
482 	*n = DIV_ROUND_UP(div, (*k+1)) - 1;
483 }
484 
485 /**
486  * sun5i_a13_get_ahb_factors() - calculates m, p factors for AHB
487  * AHB rate is calculated as follows
488  * rate = parent_rate >> p
489  */
490 
491 static void sun5i_a13_get_ahb_factors(u32 *freq, u32 parent_rate,
492 				       u8 *n, u8 *k, u8 *m, u8 *p)
493 {
494 	u32 div;
495 
496 	/* divide only */
497 	if (parent_rate < *freq)
498 		*freq = parent_rate;
499 
500 	/*
501 	 * user manual says valid speed is 8k ~ 276M, but tests show it
502 	 * can work at speeds up to 300M, just after reparenting to pll6
503 	 */
504 	if (*freq < 8000)
505 		*freq = 8000;
506 	if (*freq > 300000000)
507 		*freq = 300000000;
508 
509 	div = order_base_2(DIV_ROUND_UP(parent_rate, *freq));
510 
511 	/* p = 0 ~ 3 */
512 	if (div > 3)
513 		div = 3;
514 
515 	*freq = parent_rate >> div;
516 
517 	/* we were called to round the frequency, we can now return */
518 	if (p == NULL)
519 		return;
520 
521 	*p = div;
522 }
523 
524 /**
525  * sun4i_get_apb1_factors() - calculates m, p factors for APB1
526  * APB1 rate is calculated as follows
527  * rate = (parent_rate >> p) / (m + 1);
528  */
529 
530 static void sun4i_get_apb1_factors(u32 *freq, u32 parent_rate,
531 				   u8 *n, u8 *k, u8 *m, u8 *p)
532 {
533 	u8 calcm, calcp;
534 
535 	if (parent_rate < *freq)
536 		*freq = parent_rate;
537 
538 	parent_rate = DIV_ROUND_UP(parent_rate, *freq);
539 
540 	/* Invalid rate! */
541 	if (parent_rate > 32)
542 		return;
543 
544 	if (parent_rate <= 4)
545 		calcp = 0;
546 	else if (parent_rate <= 8)
547 		calcp = 1;
548 	else if (parent_rate <= 16)
549 		calcp = 2;
550 	else
551 		calcp = 3;
552 
553 	calcm = (parent_rate >> calcp) - 1;
554 
555 	*freq = (parent_rate >> calcp) / (calcm + 1);
556 
557 	/* we were called to round the frequency, we can now return */
558 	if (n == NULL)
559 		return;
560 
561 	*m = calcm;
562 	*p = calcp;
563 }
564 
565 
566 
567 
568 /**
569  * sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B
570  * CLK_OUT rate is calculated as follows
571  * rate = (parent_rate >> p) / (m + 1);
572  */
573 
574 static void sun7i_a20_get_out_factors(u32 *freq, u32 parent_rate,
575 				      u8 *n, u8 *k, u8 *m, u8 *p)
576 {
577 	u8 div, calcm, calcp;
578 
579 	/* These clocks can only divide, so we will never be able to achieve
580 	 * frequencies higher than the parent frequency */
581 	if (*freq > parent_rate)
582 		*freq = parent_rate;
583 
584 	div = DIV_ROUND_UP(parent_rate, *freq);
585 
586 	if (div < 32)
587 		calcp = 0;
588 	else if (div / 2 < 32)
589 		calcp = 1;
590 	else if (div / 4 < 32)
591 		calcp = 2;
592 	else
593 		calcp = 3;
594 
595 	calcm = DIV_ROUND_UP(div, 1 << calcp);
596 
597 	*freq = (parent_rate >> calcp) / calcm;
598 
599 	/* we were called to round the frequency, we can now return */
600 	if (n == NULL)
601 		return;
602 
603 	*m = calcm - 1;
604 	*p = calcp;
605 }
606 
607 /**
608  * sunxi_factors_clk_setup() - Setup function for factor clocks
609  */
610 
611 static struct clk_factors_config sun4i_pll1_config = {
612 	.nshift = 8,
613 	.nwidth = 5,
614 	.kshift = 4,
615 	.kwidth = 2,
616 	.mshift = 0,
617 	.mwidth = 2,
618 	.pshift = 16,
619 	.pwidth = 2,
620 };
621 
622 static struct clk_factors_config sun6i_a31_pll1_config = {
623 	.nshift	= 8,
624 	.nwidth = 5,
625 	.kshift = 4,
626 	.kwidth = 2,
627 	.mshift = 0,
628 	.mwidth = 2,
629 	.n_start = 1,
630 };
631 
632 static struct clk_factors_config sun8i_a23_pll1_config = {
633 	.nshift = 8,
634 	.nwidth = 5,
635 	.kshift = 4,
636 	.kwidth = 2,
637 	.mshift = 0,
638 	.mwidth = 2,
639 	.pshift = 16,
640 	.pwidth = 2,
641 	.n_start = 1,
642 };
643 
644 static struct clk_factors_config sun4i_pll5_config = {
645 	.nshift = 8,
646 	.nwidth = 5,
647 	.kshift = 4,
648 	.kwidth = 2,
649 };
650 
651 static struct clk_factors_config sun6i_a31_pll6_config = {
652 	.nshift	= 8,
653 	.nwidth = 5,
654 	.kshift = 4,
655 	.kwidth = 2,
656 	.n_start = 1,
657 };
658 
659 static struct clk_factors_config sun5i_a13_ahb_config = {
660 	.pshift = 4,
661 	.pwidth = 2,
662 };
663 
664 static struct clk_factors_config sun4i_apb1_config = {
665 	.mshift = 0,
666 	.mwidth = 5,
667 	.pshift = 16,
668 	.pwidth = 2,
669 };
670 
671 /* user manual says "n" but it's really "p" */
672 static struct clk_factors_config sun7i_a20_out_config = {
673 	.mshift = 8,
674 	.mwidth = 5,
675 	.pshift = 20,
676 	.pwidth = 2,
677 };
678 
679 static const struct factors_data sun4i_pll1_data __initconst = {
680 	.enable = 31,
681 	.table = &sun4i_pll1_config,
682 	.getter = sun4i_get_pll1_factors,
683 };
684 
685 static const struct factors_data sun6i_a31_pll1_data __initconst = {
686 	.enable = 31,
687 	.table = &sun6i_a31_pll1_config,
688 	.getter = sun6i_a31_get_pll1_factors,
689 };
690 
691 static const struct factors_data sun8i_a23_pll1_data __initconst = {
692 	.enable = 31,
693 	.table = &sun8i_a23_pll1_config,
694 	.getter = sun8i_a23_get_pll1_factors,
695 };
696 
697 static const struct factors_data sun7i_a20_pll4_data __initconst = {
698 	.enable = 31,
699 	.table = &sun4i_pll5_config,
700 	.getter = sun4i_get_pll5_factors,
701 };
702 
703 static const struct factors_data sun4i_pll5_data __initconst = {
704 	.enable = 31,
705 	.table = &sun4i_pll5_config,
706 	.getter = sun4i_get_pll5_factors,
707 	.name = "pll5",
708 };
709 
710 static const struct factors_data sun4i_pll6_data __initconst = {
711 	.enable = 31,
712 	.table = &sun4i_pll5_config,
713 	.getter = sun4i_get_pll5_factors,
714 	.name = "pll6",
715 };
716 
717 static const struct factors_data sun6i_a31_pll6_data __initconst = {
718 	.enable = 31,
719 	.table = &sun6i_a31_pll6_config,
720 	.getter = sun6i_a31_get_pll6_factors,
721 	.name = "pll6x2",
722 };
723 
724 static const struct factors_data sun5i_a13_ahb_data __initconst = {
725 	.mux = 6,
726 	.muxmask = BIT(1) | BIT(0),
727 	.table = &sun5i_a13_ahb_config,
728 	.getter = sun5i_a13_get_ahb_factors,
729 };
730 
731 static const struct factors_data sun4i_apb1_data __initconst = {
732 	.mux = 24,
733 	.muxmask = BIT(1) | BIT(0),
734 	.table = &sun4i_apb1_config,
735 	.getter = sun4i_get_apb1_factors,
736 };
737 
738 static const struct factors_data sun7i_a20_out_data __initconst = {
739 	.enable = 31,
740 	.mux = 24,
741 	.muxmask = BIT(1) | BIT(0),
742 	.table = &sun7i_a20_out_config,
743 	.getter = sun7i_a20_get_out_factors,
744 };
745 
746 static struct clk * __init sunxi_factors_clk_setup(struct device_node *node,
747 						   const struct factors_data *data)
748 {
749 	void __iomem *reg;
750 
751 	reg = of_iomap(node, 0);
752 	if (!reg) {
753 		pr_err("Could not get registers for factors-clk: %s\n",
754 		       node->name);
755 		return NULL;
756 	}
757 
758 	return sunxi_factors_register(node, data, &clk_lock, reg);
759 }
760 
761 
762 
763 /**
764  * sunxi_mux_clk_setup() - Setup function for muxes
765  */
766 
767 #define SUNXI_MUX_GATE_WIDTH	2
768 
769 struct mux_data {
770 	u8 shift;
771 };
772 
773 static const struct mux_data sun4i_cpu_mux_data __initconst = {
774 	.shift = 16,
775 };
776 
777 static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = {
778 	.shift = 12,
779 };
780 
781 static const struct mux_data sun8i_h3_ahb2_mux_data __initconst = {
782 	.shift = 0,
783 };
784 
785 static void __init sunxi_mux_clk_setup(struct device_node *node,
786 				       struct mux_data *data)
787 {
788 	struct clk *clk;
789 	const char *clk_name = node->name;
790 	const char *parents[SUNXI_MAX_PARENTS];
791 	void __iomem *reg;
792 	int i;
793 
794 	reg = of_iomap(node, 0);
795 
796 	i = of_clk_parent_fill(node, parents, SUNXI_MAX_PARENTS);
797 	of_property_read_string(node, "clock-output-names", &clk_name);
798 
799 	clk = clk_register_mux(NULL, clk_name, parents, i,
800 			       CLK_SET_RATE_PARENT, reg,
801 			       data->shift, SUNXI_MUX_GATE_WIDTH,
802 			       0, &clk_lock);
803 
804 	if (clk) {
805 		of_clk_add_provider(node, of_clk_src_simple_get, clk);
806 		clk_register_clkdev(clk, clk_name, NULL);
807 	}
808 }
809 
810 
811 
812 /**
813  * sunxi_divider_clk_setup() - Setup function for simple divider clocks
814  */
815 
816 struct div_data {
817 	u8	shift;
818 	u8	pow;
819 	u8	width;
820 	const struct clk_div_table *table;
821 };
822 
823 static const struct div_data sun4i_axi_data __initconst = {
824 	.shift	= 0,
825 	.pow	= 0,
826 	.width	= 2,
827 };
828 
829 static const struct clk_div_table sun8i_a23_axi_table[] __initconst = {
830 	{ .val = 0, .div = 1 },
831 	{ .val = 1, .div = 2 },
832 	{ .val = 2, .div = 3 },
833 	{ .val = 3, .div = 4 },
834 	{ .val = 4, .div = 4 },
835 	{ .val = 5, .div = 4 },
836 	{ .val = 6, .div = 4 },
837 	{ .val = 7, .div = 4 },
838 	{ } /* sentinel */
839 };
840 
841 static const struct div_data sun8i_a23_axi_data __initconst = {
842 	.width	= 3,
843 	.table	= sun8i_a23_axi_table,
844 };
845 
846 static const struct div_data sun4i_ahb_data __initconst = {
847 	.shift	= 4,
848 	.pow	= 1,
849 	.width	= 2,
850 };
851 
852 static const struct clk_div_table sun4i_apb0_table[] __initconst = {
853 	{ .val = 0, .div = 2 },
854 	{ .val = 1, .div = 2 },
855 	{ .val = 2, .div = 4 },
856 	{ .val = 3, .div = 8 },
857 	{ } /* sentinel */
858 };
859 
860 static const struct div_data sun4i_apb0_data __initconst = {
861 	.shift	= 8,
862 	.pow	= 1,
863 	.width	= 2,
864 	.table	= sun4i_apb0_table,
865 };
866 
867 static void __init sunxi_divider_clk_setup(struct device_node *node,
868 					   struct div_data *data)
869 {
870 	struct clk *clk;
871 	const char *clk_name = node->name;
872 	const char *clk_parent;
873 	void __iomem *reg;
874 
875 	reg = of_iomap(node, 0);
876 
877 	clk_parent = of_clk_get_parent_name(node, 0);
878 
879 	of_property_read_string(node, "clock-output-names", &clk_name);
880 
881 	clk = clk_register_divider_table(NULL, clk_name, clk_parent, 0,
882 					 reg, data->shift, data->width,
883 					 data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0,
884 					 data->table, &clk_lock);
885 	if (clk) {
886 		of_clk_add_provider(node, of_clk_src_simple_get, clk);
887 		clk_register_clkdev(clk, clk_name, NULL);
888 	}
889 }
890 
891 
892 
893 /**
894  * sunxi_gates_clk_setup() - Setup function for leaf gates on clocks
895  */
896 
897 #define SUNXI_GATES_MAX_SIZE	64
898 
899 struct gates_data {
900 	DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE);
901 };
902 
903 /**
904  * sunxi_divs_clk_setup() helper data
905  */
906 
907 #define SUNXI_DIVS_MAX_QTY	4
908 #define SUNXI_DIVISOR_WIDTH	2
909 
910 struct divs_data {
911 	const struct factors_data *factors; /* data for the factor clock */
912 	int ndivs; /* number of outputs */
913 	/*
914 	 * List of outputs. Refer to the diagram for sunxi_divs_clk_setup():
915 	 * self or base factor clock refers to the output from the pll
916 	 * itself. The remaining refer to fixed or configurable divider
917 	 * outputs.
918 	 */
919 	struct {
920 		u8 self; /* is it the base factor clock? (only one) */
921 		u8 fixed; /* is it a fixed divisor? if not... */
922 		struct clk_div_table *table; /* is it a table based divisor? */
923 		u8 shift; /* otherwise it's a normal divisor with this shift */
924 		u8 pow;   /* is it power-of-two based? */
925 		u8 gate;  /* is it independently gateable? */
926 	} div[SUNXI_DIVS_MAX_QTY];
927 };
928 
929 static struct clk_div_table pll6_sata_tbl[] = {
930 	{ .val = 0, .div = 6, },
931 	{ .val = 1, .div = 12, },
932 	{ .val = 2, .div = 18, },
933 	{ .val = 3, .div = 24, },
934 	{ } /* sentinel */
935 };
936 
937 static const struct divs_data pll5_divs_data __initconst = {
938 	.factors = &sun4i_pll5_data,
939 	.ndivs = 2,
940 	.div = {
941 		{ .shift = 0, .pow = 0, }, /* M, DDR */
942 		{ .shift = 16, .pow = 1, }, /* P, other */
943 		/* No output for the base factor clock */
944 	}
945 };
946 
947 static const struct divs_data pll6_divs_data __initconst = {
948 	.factors = &sun4i_pll6_data,
949 	.ndivs = 4,
950 	.div = {
951 		{ .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */
952 		{ .fixed = 2 }, /* P, other */
953 		{ .self = 1 }, /* base factor clock, 2x */
954 		{ .fixed = 4 }, /* pll6 / 4, used as ahb input */
955 	}
956 };
957 
958 static const struct divs_data sun6i_a31_pll6_divs_data __initconst = {
959 	.factors = &sun6i_a31_pll6_data,
960 	.ndivs = 2,
961 	.div = {
962 		{ .fixed = 2 }, /* normal output */
963 		{ .self = 1 }, /* base factor clock, 2x */
964 	}
965 };
966 
967 /**
968  * sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks
969  *
970  * These clocks look something like this
971  *            ________________________
972  *           |         ___divisor 1---|----> to consumer
973  * parent >--|  pll___/___divisor 2---|----> to consumer
974  *           |        \_______________|____> to consumer
975  *           |________________________|
976  */
977 
978 static void __init sunxi_divs_clk_setup(struct device_node *node,
979 					struct divs_data *data)
980 {
981 	struct clk_onecell_data *clk_data;
982 	const char *parent;
983 	const char *clk_name;
984 	struct clk **clks, *pclk;
985 	struct clk_hw *gate_hw, *rate_hw;
986 	const struct clk_ops *rate_ops;
987 	struct clk_gate *gate = NULL;
988 	struct clk_fixed_factor *fix_factor;
989 	struct clk_divider *divider;
990 	void __iomem *reg;
991 	int ndivs = SUNXI_DIVS_MAX_QTY, i = 0;
992 	int flags, clkflags;
993 
994 	/* if number of children known, use it */
995 	if (data->ndivs)
996 		ndivs = data->ndivs;
997 
998 	/* Set up factor clock that we will be dividing */
999 	pclk = sunxi_factors_clk_setup(node, data->factors);
1000 	parent = __clk_get_name(pclk);
1001 
1002 	reg = of_iomap(node, 0);
1003 
1004 	clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
1005 	if (!clk_data)
1006 		return;
1007 
1008 	clks = kcalloc(ndivs, sizeof(*clks), GFP_KERNEL);
1009 	if (!clks)
1010 		goto free_clkdata;
1011 
1012 	clk_data->clks = clks;
1013 
1014 	/* It's not a good idea to have automatic reparenting changing
1015 	 * our RAM clock! */
1016 	clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT;
1017 
1018 	for (i = 0; i < ndivs; i++) {
1019 		if (of_property_read_string_index(node, "clock-output-names",
1020 						  i, &clk_name) != 0)
1021 			break;
1022 
1023 		/* If this is the base factor clock, only update clks */
1024 		if (data->div[i].self) {
1025 			clk_data->clks[i] = pclk;
1026 			continue;
1027 		}
1028 
1029 		gate_hw = NULL;
1030 		rate_hw = NULL;
1031 		rate_ops = NULL;
1032 
1033 		/* If this leaf clock can be gated, create a gate */
1034 		if (data->div[i].gate) {
1035 			gate = kzalloc(sizeof(*gate), GFP_KERNEL);
1036 			if (!gate)
1037 				goto free_clks;
1038 
1039 			gate->reg = reg;
1040 			gate->bit_idx = data->div[i].gate;
1041 			gate->lock = &clk_lock;
1042 
1043 			gate_hw = &gate->hw;
1044 		}
1045 
1046 		/* Leaves can be fixed or configurable divisors */
1047 		if (data->div[i].fixed) {
1048 			fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL);
1049 			if (!fix_factor)
1050 				goto free_gate;
1051 
1052 			fix_factor->mult = 1;
1053 			fix_factor->div = data->div[i].fixed;
1054 
1055 			rate_hw = &fix_factor->hw;
1056 			rate_ops = &clk_fixed_factor_ops;
1057 		} else {
1058 			divider = kzalloc(sizeof(*divider), GFP_KERNEL);
1059 			if (!divider)
1060 				goto free_gate;
1061 
1062 			flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0;
1063 
1064 			divider->reg = reg;
1065 			divider->shift = data->div[i].shift;
1066 			divider->width = SUNXI_DIVISOR_WIDTH;
1067 			divider->flags = flags;
1068 			divider->lock = &clk_lock;
1069 			divider->table = data->div[i].table;
1070 
1071 			rate_hw = &divider->hw;
1072 			rate_ops = &clk_divider_ops;
1073 		}
1074 
1075 		/* Wrap the (potential) gate and the divisor on a composite
1076 		 * clock to unify them */
1077 		clks[i] = clk_register_composite(NULL, clk_name, &parent, 1,
1078 						 NULL, NULL,
1079 						 rate_hw, rate_ops,
1080 						 gate_hw, &clk_gate_ops,
1081 						 clkflags);
1082 
1083 		WARN_ON(IS_ERR(clk_data->clks[i]));
1084 		clk_register_clkdev(clks[i], clk_name, NULL);
1085 	}
1086 
1087 	/* Adjust to the real max */
1088 	clk_data->clk_num = i;
1089 
1090 	of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
1091 
1092 	return;
1093 
1094 free_gate:
1095 	kfree(gate);
1096 free_clks:
1097 	kfree(clks);
1098 free_clkdata:
1099 	kfree(clk_data);
1100 }
1101 
1102 
1103 
1104 /* Matches for factors clocks */
1105 static const struct of_device_id clk_factors_match[] __initconst = {
1106 	{.compatible = "allwinner,sun4i-a10-pll1-clk", .data = &sun4i_pll1_data,},
1107 	{.compatible = "allwinner,sun6i-a31-pll1-clk", .data = &sun6i_a31_pll1_data,},
1108 	{.compatible = "allwinner,sun8i-a23-pll1-clk", .data = &sun8i_a23_pll1_data,},
1109 	{.compatible = "allwinner,sun7i-a20-pll4-clk", .data = &sun7i_a20_pll4_data,},
1110 	{.compatible = "allwinner,sun5i-a13-ahb-clk", .data = &sun5i_a13_ahb_data,},
1111 	{.compatible = "allwinner,sun4i-a10-apb1-clk", .data = &sun4i_apb1_data,},
1112 	{.compatible = "allwinner,sun7i-a20-out-clk", .data = &sun7i_a20_out_data,},
1113 	{}
1114 };
1115 
1116 /* Matches for divider clocks */
1117 static const struct of_device_id clk_div_match[] __initconst = {
1118 	{.compatible = "allwinner,sun4i-a10-axi-clk", .data = &sun4i_axi_data,},
1119 	{.compatible = "allwinner,sun8i-a23-axi-clk", .data = &sun8i_a23_axi_data,},
1120 	{.compatible = "allwinner,sun4i-a10-ahb-clk", .data = &sun4i_ahb_data,},
1121 	{.compatible = "allwinner,sun4i-a10-apb0-clk", .data = &sun4i_apb0_data,},
1122 	{}
1123 };
1124 
1125 /* Matches for divided outputs */
1126 static const struct of_device_id clk_divs_match[] __initconst = {
1127 	{.compatible = "allwinner,sun4i-a10-pll5-clk", .data = &pll5_divs_data,},
1128 	{.compatible = "allwinner,sun4i-a10-pll6-clk", .data = &pll6_divs_data,},
1129 	{.compatible = "allwinner,sun6i-a31-pll6-clk", .data = &sun6i_a31_pll6_divs_data,},
1130 	{}
1131 };
1132 
1133 /* Matches for mux clocks */
1134 static const struct of_device_id clk_mux_match[] __initconst = {
1135 	{.compatible = "allwinner,sun4i-a10-cpu-clk", .data = &sun4i_cpu_mux_data,},
1136 	{.compatible = "allwinner,sun6i-a31-ahb1-mux-clk", .data = &sun6i_a31_ahb1_mux_data,},
1137 	{.compatible = "allwinner,sun8i-h3-ahb2-clk", .data = &sun8i_h3_ahb2_mux_data,},
1138 	{}
1139 };
1140 
1141 
1142 static void __init of_sunxi_table_clock_setup(const struct of_device_id *clk_match,
1143 					      void *function)
1144 {
1145 	struct device_node *np;
1146 	const struct div_data *data;
1147 	const struct of_device_id *match;
1148 	void (*setup_function)(struct device_node *, const void *) = function;
1149 
1150 	for_each_matching_node_and_match(np, clk_match, &match) {
1151 		data = match->data;
1152 		setup_function(np, data);
1153 	}
1154 }
1155 
1156 static void __init sunxi_init_clocks(const char *clocks[], int nclocks)
1157 {
1158 	unsigned int i;
1159 
1160 	/* Register divided output clocks */
1161 	of_sunxi_table_clock_setup(clk_divs_match, sunxi_divs_clk_setup);
1162 
1163 	/* Register factor clocks */
1164 	of_sunxi_table_clock_setup(clk_factors_match, sunxi_factors_clk_setup);
1165 
1166 	/* Register divider clocks */
1167 	of_sunxi_table_clock_setup(clk_div_match, sunxi_divider_clk_setup);
1168 
1169 	/* Register mux clocks */
1170 	of_sunxi_table_clock_setup(clk_mux_match, sunxi_mux_clk_setup);
1171 
1172 	/* Protect the clocks that needs to stay on */
1173 	for (i = 0; i < nclocks; i++) {
1174 		struct clk *clk = clk_get(NULL, clocks[i]);
1175 
1176 		if (!IS_ERR(clk))
1177 			clk_prepare_enable(clk);
1178 	}
1179 }
1180 
1181 static const char *sun4i_a10_critical_clocks[] __initdata = {
1182 	"pll5_ddr",
1183 };
1184 
1185 static void __init sun4i_a10_init_clocks(struct device_node *node)
1186 {
1187 	sunxi_init_clocks(sun4i_a10_critical_clocks,
1188 			  ARRAY_SIZE(sun4i_a10_critical_clocks));
1189 }
1190 CLK_OF_DECLARE(sun4i_a10_clk_init, "allwinner,sun4i-a10", sun4i_a10_init_clocks);
1191 
1192 static const char *sun5i_critical_clocks[] __initdata = {
1193 	"cpu",
1194 	"pll5_ddr",
1195 };
1196 
1197 static void __init sun5i_init_clocks(struct device_node *node)
1198 {
1199 	sunxi_init_clocks(sun5i_critical_clocks,
1200 			  ARRAY_SIZE(sun5i_critical_clocks));
1201 }
1202 CLK_OF_DECLARE(sun5i_a10s_clk_init, "allwinner,sun5i-a10s", sun5i_init_clocks);
1203 CLK_OF_DECLARE(sun5i_a13_clk_init, "allwinner,sun5i-a13", sun5i_init_clocks);
1204 CLK_OF_DECLARE(sun5i_r8_clk_init, "allwinner,sun5i-r8", sun5i_init_clocks);
1205 CLK_OF_DECLARE(sun7i_a20_clk_init, "allwinner,sun7i-a20", sun5i_init_clocks);
1206 
1207 static const char *sun6i_critical_clocks[] __initdata = {
1208 	"cpu",
1209 };
1210 
1211 static void __init sun6i_init_clocks(struct device_node *node)
1212 {
1213 	sunxi_init_clocks(sun6i_critical_clocks,
1214 			  ARRAY_SIZE(sun6i_critical_clocks));
1215 }
1216 CLK_OF_DECLARE(sun6i_a31_clk_init, "allwinner,sun6i-a31", sun6i_init_clocks);
1217 CLK_OF_DECLARE(sun6i_a31s_clk_init, "allwinner,sun6i-a31s", sun6i_init_clocks);
1218 CLK_OF_DECLARE(sun8i_a23_clk_init, "allwinner,sun8i-a23", sun6i_init_clocks);
1219 CLK_OF_DECLARE(sun8i_a33_clk_init, "allwinner,sun8i-a33", sun6i_init_clocks);
1220 CLK_OF_DECLARE(sun8i_h3_clk_init, "allwinner,sun8i-h3", sun6i_init_clocks);
1221 
1222 static void __init sun9i_init_clocks(struct device_node *node)
1223 {
1224 	sunxi_init_clocks(NULL, 0);
1225 }
1226 CLK_OF_DECLARE(sun9i_a80_clk_init, "allwinner,sun9i-a80", sun9i_init_clocks);
1227