xref: /openbmc/linux/drivers/clk/sunxi/clk-sunxi.c (revision 3932b9ca)
1 /*
2  * Copyright 2013 Emilio López
3  *
4  * Emilio López <emilio@elopez.com.ar>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 #include <linux/clk-provider.h>
18 #include <linux/clkdev.h>
19 #include <linux/of.h>
20 #include <linux/of_address.h>
21 #include <linux/reset-controller.h>
22 
23 #include "clk-factors.h"
24 
25 static DEFINE_SPINLOCK(clk_lock);
26 
27 /* Maximum number of parents our clocks have */
28 #define SUNXI_MAX_PARENTS	5
29 
30 /**
31  * sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1
32  * PLL1 rate is calculated as follows
33  * rate = (parent_rate * n * (k + 1) >> p) / (m + 1);
34  * parent_rate is always 24Mhz
35  */
36 
37 static void sun4i_get_pll1_factors(u32 *freq, u32 parent_rate,
38 				   u8 *n, u8 *k, u8 *m, u8 *p)
39 {
40 	u8 div;
41 
42 	/* Normalize value to a 6M multiple */
43 	div = *freq / 6000000;
44 	*freq = 6000000 * div;
45 
46 	/* we were called to round the frequency, we can now return */
47 	if (n == NULL)
48 		return;
49 
50 	/* m is always zero for pll1 */
51 	*m = 0;
52 
53 	/* k is 1 only on these cases */
54 	if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
55 		*k = 1;
56 	else
57 		*k = 0;
58 
59 	/* p will be 3 for divs under 10 */
60 	if (div < 10)
61 		*p = 3;
62 
63 	/* p will be 2 for divs between 10 - 20 and odd divs under 32 */
64 	else if (div < 20 || (div < 32 && (div & 1)))
65 		*p = 2;
66 
67 	/* p will be 1 for even divs under 32, divs under 40 and odd pairs
68 	 * of divs between 40-62 */
69 	else if (div < 40 || (div < 64 && (div & 2)))
70 		*p = 1;
71 
72 	/* any other entries have p = 0 */
73 	else
74 		*p = 0;
75 
76 	/* calculate a suitable n based on k and p */
77 	div <<= *p;
78 	div /= (*k + 1);
79 	*n = div / 4;
80 }
81 
82 /**
83  * sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1
84  * PLL1 rate is calculated as follows
85  * rate = parent_rate * (n + 1) * (k + 1) / (m + 1);
86  * parent_rate should always be 24MHz
87  */
88 static void sun6i_a31_get_pll1_factors(u32 *freq, u32 parent_rate,
89 				       u8 *n, u8 *k, u8 *m, u8 *p)
90 {
91 	/*
92 	 * We can operate only on MHz, this will make our life easier
93 	 * later.
94 	 */
95 	u32 freq_mhz = *freq / 1000000;
96 	u32 parent_freq_mhz = parent_rate / 1000000;
97 
98 	/*
99 	 * Round down the frequency to the closest multiple of either
100 	 * 6 or 16
101 	 */
102 	u32 round_freq_6 = round_down(freq_mhz, 6);
103 	u32 round_freq_16 = round_down(freq_mhz, 16);
104 
105 	if (round_freq_6 > round_freq_16)
106 		freq_mhz = round_freq_6;
107 	else
108 		freq_mhz = round_freq_16;
109 
110 	*freq = freq_mhz * 1000000;
111 
112 	/*
113 	 * If the factors pointer are null, we were just called to
114 	 * round down the frequency.
115 	 * Exit.
116 	 */
117 	if (n == NULL)
118 		return;
119 
120 	/* If the frequency is a multiple of 32 MHz, k is always 3 */
121 	if (!(freq_mhz % 32))
122 		*k = 3;
123 	/* If the frequency is a multiple of 9 MHz, k is always 2 */
124 	else if (!(freq_mhz % 9))
125 		*k = 2;
126 	/* If the frequency is a multiple of 8 MHz, k is always 1 */
127 	else if (!(freq_mhz % 8))
128 		*k = 1;
129 	/* Otherwise, we don't use the k factor */
130 	else
131 		*k = 0;
132 
133 	/*
134 	 * If the frequency is a multiple of 2 but not a multiple of
135 	 * 3, m is 3. This is the first time we use 6 here, yet we
136 	 * will use it on several other places.
137 	 * We use this number because it's the lowest frequency we can
138 	 * generate (with n = 0, k = 0, m = 3), so every other frequency
139 	 * somehow relates to this frequency.
140 	 */
141 	if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4)
142 		*m = 2;
143 	/*
144 	 * If the frequency is a multiple of 6MHz, but the factor is
145 	 * odd, m will be 3
146 	 */
147 	else if ((freq_mhz / 6) & 1)
148 		*m = 3;
149 	/* Otherwise, we end up with m = 1 */
150 	else
151 		*m = 1;
152 
153 	/* Calculate n thanks to the above factors we already got */
154 	*n = freq_mhz * (*m + 1) / ((*k + 1) * parent_freq_mhz) - 1;
155 
156 	/*
157 	 * If n end up being outbound, and that we can still decrease
158 	 * m, do it.
159 	 */
160 	if ((*n + 1) > 31 && (*m + 1) > 1) {
161 		*n = (*n + 1) / 2 - 1;
162 		*m = (*m + 1) / 2 - 1;
163 	}
164 }
165 
166 /**
167  * sun8i_a23_get_pll1_factors() - calculates n, k, m, p factors for PLL1
168  * PLL1 rate is calculated as follows
169  * rate = (parent_rate * (n + 1) * (k + 1) >> p) / (m + 1);
170  * parent_rate is always 24Mhz
171  */
172 
173 static void sun8i_a23_get_pll1_factors(u32 *freq, u32 parent_rate,
174 				   u8 *n, u8 *k, u8 *m, u8 *p)
175 {
176 	u8 div;
177 
178 	/* Normalize value to a 6M multiple */
179 	div = *freq / 6000000;
180 	*freq = 6000000 * div;
181 
182 	/* we were called to round the frequency, we can now return */
183 	if (n == NULL)
184 		return;
185 
186 	/* m is always zero for pll1 */
187 	*m = 0;
188 
189 	/* k is 1 only on these cases */
190 	if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
191 		*k = 1;
192 	else
193 		*k = 0;
194 
195 	/* p will be 2 for divs under 20 and odd divs under 32 */
196 	if (div < 20 || (div < 32 && (div & 1)))
197 		*p = 2;
198 
199 	/* p will be 1 for even divs under 32, divs under 40 and odd pairs
200 	 * of divs between 40-62 */
201 	else if (div < 40 || (div < 64 && (div & 2)))
202 		*p = 1;
203 
204 	/* any other entries have p = 0 */
205 	else
206 		*p = 0;
207 
208 	/* calculate a suitable n based on k and p */
209 	div <<= *p;
210 	div /= (*k + 1);
211 	*n = div / 4 - 1;
212 }
213 
214 /**
215  * sun4i_get_pll5_factors() - calculates n, k factors for PLL5
216  * PLL5 rate is calculated as follows
217  * rate = parent_rate * n * (k + 1)
218  * parent_rate is always 24Mhz
219  */
220 
221 static void sun4i_get_pll5_factors(u32 *freq, u32 parent_rate,
222 				   u8 *n, u8 *k, u8 *m, u8 *p)
223 {
224 	u8 div;
225 
226 	/* Normalize value to a parent_rate multiple (24M) */
227 	div = *freq / parent_rate;
228 	*freq = parent_rate * div;
229 
230 	/* we were called to round the frequency, we can now return */
231 	if (n == NULL)
232 		return;
233 
234 	if (div < 31)
235 		*k = 0;
236 	else if (div / 2 < 31)
237 		*k = 1;
238 	else if (div / 3 < 31)
239 		*k = 2;
240 	else
241 		*k = 3;
242 
243 	*n = DIV_ROUND_UP(div, (*k+1));
244 }
245 
246 /**
247  * sun6i_a31_get_pll6_factors() - calculates n, k factors for A31 PLL6
248  * PLL6 rate is calculated as follows
249  * rate = parent_rate * n * (k + 1) / 2
250  * parent_rate is always 24Mhz
251  */
252 
253 static void sun6i_a31_get_pll6_factors(u32 *freq, u32 parent_rate,
254 				       u8 *n, u8 *k, u8 *m, u8 *p)
255 {
256 	u8 div;
257 
258 	/*
259 	 * We always have 24MHz / 2, so we can just say that our
260 	 * parent clock is 12MHz.
261 	 */
262 	parent_rate = parent_rate / 2;
263 
264 	/* Normalize value to a parent_rate multiple (24M / 2) */
265 	div = *freq / parent_rate;
266 	*freq = parent_rate * div;
267 
268 	/* we were called to round the frequency, we can now return */
269 	if (n == NULL)
270 		return;
271 
272 	*k = div / 32;
273 	if (*k > 3)
274 		*k = 3;
275 
276 	*n = DIV_ROUND_UP(div, (*k+1));
277 }
278 
279 /**
280  * sun4i_get_apb1_factors() - calculates m, p factors for APB1
281  * APB1 rate is calculated as follows
282  * rate = (parent_rate >> p) / (m + 1);
283  */
284 
285 static void sun4i_get_apb1_factors(u32 *freq, u32 parent_rate,
286 				   u8 *n, u8 *k, u8 *m, u8 *p)
287 {
288 	u8 calcm, calcp;
289 
290 	if (parent_rate < *freq)
291 		*freq = parent_rate;
292 
293 	parent_rate = DIV_ROUND_UP(parent_rate, *freq);
294 
295 	/* Invalid rate! */
296 	if (parent_rate > 32)
297 		return;
298 
299 	if (parent_rate <= 4)
300 		calcp = 0;
301 	else if (parent_rate <= 8)
302 		calcp = 1;
303 	else if (parent_rate <= 16)
304 		calcp = 2;
305 	else
306 		calcp = 3;
307 
308 	calcm = (parent_rate >> calcp) - 1;
309 
310 	*freq = (parent_rate >> calcp) / (calcm + 1);
311 
312 	/* we were called to round the frequency, we can now return */
313 	if (n == NULL)
314 		return;
315 
316 	*m = calcm;
317 	*p = calcp;
318 }
319 
320 
321 
322 /**
323  * sun4i_get_mod0_factors() - calculates m, n factors for MOD0-style clocks
324  * MOD0 rate is calculated as follows
325  * rate = (parent_rate >> p) / (m + 1);
326  */
327 
328 static void sun4i_get_mod0_factors(u32 *freq, u32 parent_rate,
329 				   u8 *n, u8 *k, u8 *m, u8 *p)
330 {
331 	u8 div, calcm, calcp;
332 
333 	/* These clocks can only divide, so we will never be able to achieve
334 	 * frequencies higher than the parent frequency */
335 	if (*freq > parent_rate)
336 		*freq = parent_rate;
337 
338 	div = DIV_ROUND_UP(parent_rate, *freq);
339 
340 	if (div < 16)
341 		calcp = 0;
342 	else if (div / 2 < 16)
343 		calcp = 1;
344 	else if (div / 4 < 16)
345 		calcp = 2;
346 	else
347 		calcp = 3;
348 
349 	calcm = DIV_ROUND_UP(div, 1 << calcp);
350 
351 	*freq = (parent_rate >> calcp) / calcm;
352 
353 	/* we were called to round the frequency, we can now return */
354 	if (n == NULL)
355 		return;
356 
357 	*m = calcm - 1;
358 	*p = calcp;
359 }
360 
361 
362 
363 /**
364  * sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B
365  * CLK_OUT rate is calculated as follows
366  * rate = (parent_rate >> p) / (m + 1);
367  */
368 
369 static void sun7i_a20_get_out_factors(u32 *freq, u32 parent_rate,
370 				      u8 *n, u8 *k, u8 *m, u8 *p)
371 {
372 	u8 div, calcm, calcp;
373 
374 	/* These clocks can only divide, so we will never be able to achieve
375 	 * frequencies higher than the parent frequency */
376 	if (*freq > parent_rate)
377 		*freq = parent_rate;
378 
379 	div = DIV_ROUND_UP(parent_rate, *freq);
380 
381 	if (div < 32)
382 		calcp = 0;
383 	else if (div / 2 < 32)
384 		calcp = 1;
385 	else if (div / 4 < 32)
386 		calcp = 2;
387 	else
388 		calcp = 3;
389 
390 	calcm = DIV_ROUND_UP(div, 1 << calcp);
391 
392 	*freq = (parent_rate >> calcp) / calcm;
393 
394 	/* we were called to round the frequency, we can now return */
395 	if (n == NULL)
396 		return;
397 
398 	*m = calcm - 1;
399 	*p = calcp;
400 }
401 
402 /**
403  * clk_sunxi_mmc_phase_control() - configures MMC clock phase control
404  */
405 
406 void clk_sunxi_mmc_phase_control(struct clk *clk, u8 sample, u8 output)
407 {
408 	#define to_clk_composite(_hw) container_of(_hw, struct clk_composite, hw)
409 	#define to_clk_factors(_hw) container_of(_hw, struct clk_factors, hw)
410 
411 	struct clk_hw *hw = __clk_get_hw(clk);
412 	struct clk_composite *composite = to_clk_composite(hw);
413 	struct clk_hw *rate_hw = composite->rate_hw;
414 	struct clk_factors *factors = to_clk_factors(rate_hw);
415 	unsigned long flags = 0;
416 	u32 reg;
417 
418 	if (factors->lock)
419 		spin_lock_irqsave(factors->lock, flags);
420 
421 	reg = readl(factors->reg);
422 
423 	/* set sample clock phase control */
424 	reg &= ~(0x7 << 20);
425 	reg |= ((sample & 0x7) << 20);
426 
427 	/* set output clock phase control */
428 	reg &= ~(0x7 << 8);
429 	reg |= ((output & 0x7) << 8);
430 
431 	writel(reg, factors->reg);
432 
433 	if (factors->lock)
434 		spin_unlock_irqrestore(factors->lock, flags);
435 }
436 EXPORT_SYMBOL(clk_sunxi_mmc_phase_control);
437 
438 
439 /**
440  * sunxi_factors_clk_setup() - Setup function for factor clocks
441  */
442 
443 #define SUNXI_FACTORS_MUX_MASK 0x3
444 
445 struct factors_data {
446 	int enable;
447 	int mux;
448 	struct clk_factors_config *table;
449 	void (*getter) (u32 *rate, u32 parent_rate, u8 *n, u8 *k, u8 *m, u8 *p);
450 	const char *name;
451 };
452 
453 static struct clk_factors_config sun4i_pll1_config = {
454 	.nshift = 8,
455 	.nwidth = 5,
456 	.kshift = 4,
457 	.kwidth = 2,
458 	.mshift = 0,
459 	.mwidth = 2,
460 	.pshift = 16,
461 	.pwidth = 2,
462 };
463 
464 static struct clk_factors_config sun6i_a31_pll1_config = {
465 	.nshift	= 8,
466 	.nwidth = 5,
467 	.kshift = 4,
468 	.kwidth = 2,
469 	.mshift = 0,
470 	.mwidth = 2,
471 };
472 
473 static struct clk_factors_config sun8i_a23_pll1_config = {
474 	.nshift = 8,
475 	.nwidth = 5,
476 	.kshift = 4,
477 	.kwidth = 2,
478 	.mshift = 0,
479 	.mwidth = 2,
480 	.pshift = 16,
481 	.pwidth = 2,
482 	.n_start = 1,
483 };
484 
485 static struct clk_factors_config sun4i_pll5_config = {
486 	.nshift = 8,
487 	.nwidth = 5,
488 	.kshift = 4,
489 	.kwidth = 2,
490 };
491 
492 static struct clk_factors_config sun6i_a31_pll6_config = {
493 	.nshift	= 8,
494 	.nwidth = 5,
495 	.kshift = 4,
496 	.kwidth = 2,
497 };
498 
499 static struct clk_factors_config sun4i_apb1_config = {
500 	.mshift = 0,
501 	.mwidth = 5,
502 	.pshift = 16,
503 	.pwidth = 2,
504 };
505 
506 /* user manual says "n" but it's really "p" */
507 static struct clk_factors_config sun4i_mod0_config = {
508 	.mshift = 0,
509 	.mwidth = 4,
510 	.pshift = 16,
511 	.pwidth = 2,
512 };
513 
514 /* user manual says "n" but it's really "p" */
515 static struct clk_factors_config sun7i_a20_out_config = {
516 	.mshift = 8,
517 	.mwidth = 5,
518 	.pshift = 20,
519 	.pwidth = 2,
520 };
521 
522 static const struct factors_data sun4i_pll1_data __initconst = {
523 	.enable = 31,
524 	.table = &sun4i_pll1_config,
525 	.getter = sun4i_get_pll1_factors,
526 };
527 
528 static const struct factors_data sun6i_a31_pll1_data __initconst = {
529 	.enable = 31,
530 	.table = &sun6i_a31_pll1_config,
531 	.getter = sun6i_a31_get_pll1_factors,
532 };
533 
534 static const struct factors_data sun8i_a23_pll1_data __initconst = {
535 	.enable = 31,
536 	.table = &sun8i_a23_pll1_config,
537 	.getter = sun8i_a23_get_pll1_factors,
538 };
539 
540 static const struct factors_data sun7i_a20_pll4_data __initconst = {
541 	.enable = 31,
542 	.table = &sun4i_pll5_config,
543 	.getter = sun4i_get_pll5_factors,
544 };
545 
546 static const struct factors_data sun4i_pll5_data __initconst = {
547 	.enable = 31,
548 	.table = &sun4i_pll5_config,
549 	.getter = sun4i_get_pll5_factors,
550 	.name = "pll5",
551 };
552 
553 static const struct factors_data sun4i_pll6_data __initconst = {
554 	.enable = 31,
555 	.table = &sun4i_pll5_config,
556 	.getter = sun4i_get_pll5_factors,
557 	.name = "pll6",
558 };
559 
560 static const struct factors_data sun6i_a31_pll6_data __initconst = {
561 	.enable = 31,
562 	.table = &sun6i_a31_pll6_config,
563 	.getter = sun6i_a31_get_pll6_factors,
564 };
565 
566 static const struct factors_data sun4i_apb1_data __initconst = {
567 	.table = &sun4i_apb1_config,
568 	.getter = sun4i_get_apb1_factors,
569 };
570 
571 static const struct factors_data sun4i_mod0_data __initconst = {
572 	.enable = 31,
573 	.mux = 24,
574 	.table = &sun4i_mod0_config,
575 	.getter = sun4i_get_mod0_factors,
576 };
577 
578 static const struct factors_data sun7i_a20_out_data __initconst = {
579 	.enable = 31,
580 	.mux = 24,
581 	.table = &sun7i_a20_out_config,
582 	.getter = sun7i_a20_get_out_factors,
583 };
584 
585 static struct clk * __init sunxi_factors_clk_setup(struct device_node *node,
586 						const struct factors_data *data)
587 {
588 	struct clk *clk;
589 	struct clk_factors *factors;
590 	struct clk_gate *gate = NULL;
591 	struct clk_mux *mux = NULL;
592 	struct clk_hw *gate_hw = NULL;
593 	struct clk_hw *mux_hw = NULL;
594 	const char *clk_name = node->name;
595 	const char *parents[SUNXI_MAX_PARENTS];
596 	void __iomem *reg;
597 	int i = 0;
598 
599 	reg = of_iomap(node, 0);
600 
601 	/* if we have a mux, we will have >1 parents */
602 	while (i < SUNXI_MAX_PARENTS &&
603 	       (parents[i] = of_clk_get_parent_name(node, i)) != NULL)
604 		i++;
605 
606 	/*
607 	 * some factor clocks, such as pll5 and pll6, may have multiple
608 	 * outputs, and have their name designated in factors_data
609 	 */
610 	if (data->name)
611 		clk_name = data->name;
612 	else
613 		of_property_read_string(node, "clock-output-names", &clk_name);
614 
615 	factors = kzalloc(sizeof(struct clk_factors), GFP_KERNEL);
616 	if (!factors)
617 		return NULL;
618 
619 	/* Add a gate if this factor clock can be gated */
620 	if (data->enable) {
621 		gate = kzalloc(sizeof(struct clk_gate), GFP_KERNEL);
622 		if (!gate) {
623 			kfree(factors);
624 			return NULL;
625 		}
626 
627 		/* set up gate properties */
628 		gate->reg = reg;
629 		gate->bit_idx = data->enable;
630 		gate->lock = &clk_lock;
631 		gate_hw = &gate->hw;
632 	}
633 
634 	/* Add a mux if this factor clock can be muxed */
635 	if (data->mux) {
636 		mux = kzalloc(sizeof(struct clk_mux), GFP_KERNEL);
637 		if (!mux) {
638 			kfree(factors);
639 			kfree(gate);
640 			return NULL;
641 		}
642 
643 		/* set up gate properties */
644 		mux->reg = reg;
645 		mux->shift = data->mux;
646 		mux->mask = SUNXI_FACTORS_MUX_MASK;
647 		mux->lock = &clk_lock;
648 		mux_hw = &mux->hw;
649 	}
650 
651 	/* set up factors properties */
652 	factors->reg = reg;
653 	factors->config = data->table;
654 	factors->get_factors = data->getter;
655 	factors->lock = &clk_lock;
656 
657 	clk = clk_register_composite(NULL, clk_name,
658 			parents, i,
659 			mux_hw, &clk_mux_ops,
660 			&factors->hw, &clk_factors_ops,
661 			gate_hw, &clk_gate_ops, 0);
662 
663 	if (!IS_ERR(clk)) {
664 		of_clk_add_provider(node, of_clk_src_simple_get, clk);
665 		clk_register_clkdev(clk, clk_name, NULL);
666 	}
667 
668 	return clk;
669 }
670 
671 
672 
673 /**
674  * sunxi_mux_clk_setup() - Setup function for muxes
675  */
676 
677 #define SUNXI_MUX_GATE_WIDTH	2
678 
679 struct mux_data {
680 	u8 shift;
681 };
682 
683 static const struct mux_data sun4i_cpu_mux_data __initconst = {
684 	.shift = 16,
685 };
686 
687 static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = {
688 	.shift = 12,
689 };
690 
691 static const struct mux_data sun4i_apb1_mux_data __initconst = {
692 	.shift = 24,
693 };
694 
695 static void __init sunxi_mux_clk_setup(struct device_node *node,
696 				       struct mux_data *data)
697 {
698 	struct clk *clk;
699 	const char *clk_name = node->name;
700 	const char *parents[SUNXI_MAX_PARENTS];
701 	void __iomem *reg;
702 	int i = 0;
703 
704 	reg = of_iomap(node, 0);
705 
706 	while (i < SUNXI_MAX_PARENTS &&
707 	       (parents[i] = of_clk_get_parent_name(node, i)) != NULL)
708 		i++;
709 
710 	of_property_read_string(node, "clock-output-names", &clk_name);
711 
712 	clk = clk_register_mux(NULL, clk_name, parents, i,
713 			       CLK_SET_RATE_NO_REPARENT, reg,
714 			       data->shift, SUNXI_MUX_GATE_WIDTH,
715 			       0, &clk_lock);
716 
717 	if (clk) {
718 		of_clk_add_provider(node, of_clk_src_simple_get, clk);
719 		clk_register_clkdev(clk, clk_name, NULL);
720 	}
721 }
722 
723 
724 
725 /**
726  * sunxi_divider_clk_setup() - Setup function for simple divider clocks
727  */
728 
729 struct div_data {
730 	u8	shift;
731 	u8	pow;
732 	u8	width;
733 	const struct clk_div_table *table;
734 };
735 
736 static const struct div_data sun4i_axi_data __initconst = {
737 	.shift	= 0,
738 	.pow	= 0,
739 	.width	= 2,
740 };
741 
742 static const struct clk_div_table sun8i_a23_axi_table[] __initconst = {
743 	{ .val = 0, .div = 1 },
744 	{ .val = 1, .div = 2 },
745 	{ .val = 2, .div = 3 },
746 	{ .val = 3, .div = 4 },
747 	{ .val = 4, .div = 4 },
748 	{ .val = 5, .div = 4 },
749 	{ .val = 6, .div = 4 },
750 	{ .val = 7, .div = 4 },
751 	{ } /* sentinel */
752 };
753 
754 static const struct div_data sun8i_a23_axi_data __initconst = {
755 	.width	= 3,
756 	.table	= sun8i_a23_axi_table,
757 };
758 
759 static const struct div_data sun4i_ahb_data __initconst = {
760 	.shift	= 4,
761 	.pow	= 1,
762 	.width	= 2,
763 };
764 
765 static const struct div_data sun4i_apb0_data __initconst = {
766 	.shift	= 8,
767 	.pow	= 1,
768 	.width	= 2,
769 };
770 
771 static const struct div_data sun6i_a31_apb2_div_data __initconst = {
772 	.shift	= 0,
773 	.pow	= 0,
774 	.width	= 4,
775 };
776 
777 static void __init sunxi_divider_clk_setup(struct device_node *node,
778 					   struct div_data *data)
779 {
780 	struct clk *clk;
781 	const char *clk_name = node->name;
782 	const char *clk_parent;
783 	void __iomem *reg;
784 
785 	reg = of_iomap(node, 0);
786 
787 	clk_parent = of_clk_get_parent_name(node, 0);
788 
789 	of_property_read_string(node, "clock-output-names", &clk_name);
790 
791 	clk = clk_register_divider_table(NULL, clk_name, clk_parent, 0,
792 					 reg, data->shift, data->width,
793 					 data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0,
794 					 data->table, &clk_lock);
795 	if (clk) {
796 		of_clk_add_provider(node, of_clk_src_simple_get, clk);
797 		clk_register_clkdev(clk, clk_name, NULL);
798 	}
799 }
800 
801 
802 
803 /**
804  * sunxi_gates_reset... - reset bits in leaf gate clk registers handling
805  */
806 
807 struct gates_reset_data {
808 	void __iomem			*reg;
809 	spinlock_t			*lock;
810 	struct reset_controller_dev	rcdev;
811 };
812 
813 static int sunxi_gates_reset_assert(struct reset_controller_dev *rcdev,
814 			      unsigned long id)
815 {
816 	struct gates_reset_data *data = container_of(rcdev,
817 						     struct gates_reset_data,
818 						     rcdev);
819 	unsigned long flags;
820 	u32 reg;
821 
822 	spin_lock_irqsave(data->lock, flags);
823 
824 	reg = readl(data->reg);
825 	writel(reg & ~BIT(id), data->reg);
826 
827 	spin_unlock_irqrestore(data->lock, flags);
828 
829 	return 0;
830 }
831 
832 static int sunxi_gates_reset_deassert(struct reset_controller_dev *rcdev,
833 				unsigned long id)
834 {
835 	struct gates_reset_data *data = container_of(rcdev,
836 						     struct gates_reset_data,
837 						     rcdev);
838 	unsigned long flags;
839 	u32 reg;
840 
841 	spin_lock_irqsave(data->lock, flags);
842 
843 	reg = readl(data->reg);
844 	writel(reg | BIT(id), data->reg);
845 
846 	spin_unlock_irqrestore(data->lock, flags);
847 
848 	return 0;
849 }
850 
851 static struct reset_control_ops sunxi_gates_reset_ops = {
852 	.assert		= sunxi_gates_reset_assert,
853 	.deassert	= sunxi_gates_reset_deassert,
854 };
855 
856 /**
857  * sunxi_gates_clk_setup() - Setup function for leaf gates on clocks
858  */
859 
860 #define SUNXI_GATES_MAX_SIZE	64
861 
862 struct gates_data {
863 	DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE);
864 	u32 reset_mask;
865 };
866 
867 static const struct gates_data sun4i_axi_gates_data __initconst = {
868 	.mask = {1},
869 };
870 
871 static const struct gates_data sun4i_ahb_gates_data __initconst = {
872 	.mask = {0x7F77FFF, 0x14FB3F},
873 };
874 
875 static const struct gates_data sun5i_a10s_ahb_gates_data __initconst = {
876 	.mask = {0x147667e7, 0x185915},
877 };
878 
879 static const struct gates_data sun5i_a13_ahb_gates_data __initconst = {
880 	.mask = {0x107067e7, 0x185111},
881 };
882 
883 static const struct gates_data sun6i_a31_ahb1_gates_data __initconst = {
884 	.mask = {0xEDFE7F62, 0x794F931},
885 };
886 
887 static const struct gates_data sun7i_a20_ahb_gates_data __initconst = {
888 	.mask = { 0x12f77fff, 0x16ff3f },
889 };
890 
891 static const struct gates_data sun8i_a23_ahb1_gates_data __initconst = {
892 	.mask = {0x25386742, 0x2505111},
893 };
894 
895 static const struct gates_data sun4i_apb0_gates_data __initconst = {
896 	.mask = {0x4EF},
897 };
898 
899 static const struct gates_data sun5i_a10s_apb0_gates_data __initconst = {
900 	.mask = {0x469},
901 };
902 
903 static const struct gates_data sun5i_a13_apb0_gates_data __initconst = {
904 	.mask = {0x61},
905 };
906 
907 static const struct gates_data sun7i_a20_apb0_gates_data __initconst = {
908 	.mask = { 0x4ff },
909 };
910 
911 static const struct gates_data sun4i_apb1_gates_data __initconst = {
912 	.mask = {0xFF00F7},
913 };
914 
915 static const struct gates_data sun5i_a10s_apb1_gates_data __initconst = {
916 	.mask = {0xf0007},
917 };
918 
919 static const struct gates_data sun5i_a13_apb1_gates_data __initconst = {
920 	.mask = {0xa0007},
921 };
922 
923 static const struct gates_data sun6i_a31_apb1_gates_data __initconst = {
924 	.mask = {0x3031},
925 };
926 
927 static const struct gates_data sun8i_a23_apb1_gates_data __initconst = {
928 	.mask = {0x3021},
929 };
930 
931 static const struct gates_data sun6i_a31_apb2_gates_data __initconst = {
932 	.mask = {0x3F000F},
933 };
934 
935 static const struct gates_data sun7i_a20_apb1_gates_data __initconst = {
936 	.mask = { 0xff80ff },
937 };
938 
939 static const struct gates_data sun8i_a23_apb2_gates_data __initconst = {
940 	.mask = {0x1F0007},
941 };
942 
943 static const struct gates_data sun4i_a10_usb_gates_data __initconst = {
944 	.mask = {0x1C0},
945 	.reset_mask = 0x07,
946 };
947 
948 static const struct gates_data sun5i_a13_usb_gates_data __initconst = {
949 	.mask = {0x140},
950 	.reset_mask = 0x03,
951 };
952 
953 static const struct gates_data sun6i_a31_usb_gates_data __initconst = {
954 	.mask = { BIT(18) | BIT(17) | BIT(16) | BIT(10) | BIT(9) | BIT(8) },
955 	.reset_mask = BIT(2) | BIT(1) | BIT(0),
956 };
957 
958 static void __init sunxi_gates_clk_setup(struct device_node *node,
959 					 struct gates_data *data)
960 {
961 	struct clk_onecell_data *clk_data;
962 	struct gates_reset_data *reset_data;
963 	const char *clk_parent;
964 	const char *clk_name;
965 	void __iomem *reg;
966 	int qty;
967 	int i = 0;
968 	int j = 0;
969 
970 	reg = of_iomap(node, 0);
971 
972 	clk_parent = of_clk_get_parent_name(node, 0);
973 
974 	/* Worst-case size approximation and memory allocation */
975 	qty = find_last_bit(data->mask, SUNXI_GATES_MAX_SIZE);
976 	clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
977 	if (!clk_data)
978 		return;
979 	clk_data->clks = kzalloc((qty+1) * sizeof(struct clk *), GFP_KERNEL);
980 	if (!clk_data->clks) {
981 		kfree(clk_data);
982 		return;
983 	}
984 
985 	for_each_set_bit(i, data->mask, SUNXI_GATES_MAX_SIZE) {
986 		of_property_read_string_index(node, "clock-output-names",
987 					      j, &clk_name);
988 
989 		clk_data->clks[i] = clk_register_gate(NULL, clk_name,
990 						      clk_parent, 0,
991 						      reg + 4 * (i/32), i % 32,
992 						      0, &clk_lock);
993 		WARN_ON(IS_ERR(clk_data->clks[i]));
994 		clk_register_clkdev(clk_data->clks[i], clk_name, NULL);
995 
996 		j++;
997 	}
998 
999 	/* Adjust to the real max */
1000 	clk_data->clk_num = i;
1001 
1002 	of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
1003 
1004 	/* Register a reset controler for gates with reset bits */
1005 	if (data->reset_mask == 0)
1006 		return;
1007 
1008 	reset_data = kzalloc(sizeof(*reset_data), GFP_KERNEL);
1009 	if (!reset_data)
1010 		return;
1011 
1012 	reset_data->reg = reg;
1013 	reset_data->lock = &clk_lock;
1014 	reset_data->rcdev.nr_resets = __fls(data->reset_mask) + 1;
1015 	reset_data->rcdev.ops = &sunxi_gates_reset_ops;
1016 	reset_data->rcdev.of_node = node;
1017 	reset_controller_register(&reset_data->rcdev);
1018 }
1019 
1020 
1021 
1022 /**
1023  * sunxi_divs_clk_setup() helper data
1024  */
1025 
1026 #define SUNXI_DIVS_MAX_QTY	2
1027 #define SUNXI_DIVISOR_WIDTH	2
1028 
1029 struct divs_data {
1030 	const struct factors_data *factors; /* data for the factor clock */
1031 	struct {
1032 		u8 fixed; /* is it a fixed divisor? if not... */
1033 		struct clk_div_table *table; /* is it a table based divisor? */
1034 		u8 shift; /* otherwise it's a normal divisor with this shift */
1035 		u8 pow;   /* is it power-of-two based? */
1036 		u8 gate;  /* is it independently gateable? */
1037 	} div[SUNXI_DIVS_MAX_QTY];
1038 };
1039 
1040 static struct clk_div_table pll6_sata_tbl[] = {
1041 	{ .val = 0, .div = 6, },
1042 	{ .val = 1, .div = 12, },
1043 	{ .val = 2, .div = 18, },
1044 	{ .val = 3, .div = 24, },
1045 	{ } /* sentinel */
1046 };
1047 
1048 static const struct divs_data pll5_divs_data __initconst = {
1049 	.factors = &sun4i_pll5_data,
1050 	.div = {
1051 		{ .shift = 0, .pow = 0, }, /* M, DDR */
1052 		{ .shift = 16, .pow = 1, }, /* P, other */
1053 	}
1054 };
1055 
1056 static const struct divs_data pll6_divs_data __initconst = {
1057 	.factors = &sun4i_pll6_data,
1058 	.div = {
1059 		{ .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */
1060 		{ .fixed = 2 }, /* P, other */
1061 	}
1062 };
1063 
1064 /**
1065  * sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks
1066  *
1067  * These clocks look something like this
1068  *            ________________________
1069  *           |         ___divisor 1---|----> to consumer
1070  * parent >--|  pll___/___divisor 2---|----> to consumer
1071  *           |        \_______________|____> to consumer
1072  *           |________________________|
1073  */
1074 
1075 static void __init sunxi_divs_clk_setup(struct device_node *node,
1076 					struct divs_data *data)
1077 {
1078 	struct clk_onecell_data *clk_data;
1079 	const char *parent;
1080 	const char *clk_name;
1081 	struct clk **clks, *pclk;
1082 	struct clk_hw *gate_hw, *rate_hw;
1083 	const struct clk_ops *rate_ops;
1084 	struct clk_gate *gate = NULL;
1085 	struct clk_fixed_factor *fix_factor;
1086 	struct clk_divider *divider;
1087 	void __iomem *reg;
1088 	int i = 0;
1089 	int flags, clkflags;
1090 
1091 	/* Set up factor clock that we will be dividing */
1092 	pclk = sunxi_factors_clk_setup(node, data->factors);
1093 	parent = __clk_get_name(pclk);
1094 
1095 	reg = of_iomap(node, 0);
1096 
1097 	clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
1098 	if (!clk_data)
1099 		return;
1100 
1101 	clks = kzalloc((SUNXI_DIVS_MAX_QTY+1) * sizeof(*clks), GFP_KERNEL);
1102 	if (!clks)
1103 		goto free_clkdata;
1104 
1105 	clk_data->clks = clks;
1106 
1107 	/* It's not a good idea to have automatic reparenting changing
1108 	 * our RAM clock! */
1109 	clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT;
1110 
1111 	for (i = 0; i < SUNXI_DIVS_MAX_QTY; i++) {
1112 		if (of_property_read_string_index(node, "clock-output-names",
1113 						  i, &clk_name) != 0)
1114 			break;
1115 
1116 		gate_hw = NULL;
1117 		rate_hw = NULL;
1118 		rate_ops = NULL;
1119 
1120 		/* If this leaf clock can be gated, create a gate */
1121 		if (data->div[i].gate) {
1122 			gate = kzalloc(sizeof(*gate), GFP_KERNEL);
1123 			if (!gate)
1124 				goto free_clks;
1125 
1126 			gate->reg = reg;
1127 			gate->bit_idx = data->div[i].gate;
1128 			gate->lock = &clk_lock;
1129 
1130 			gate_hw = &gate->hw;
1131 		}
1132 
1133 		/* Leaves can be fixed or configurable divisors */
1134 		if (data->div[i].fixed) {
1135 			fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL);
1136 			if (!fix_factor)
1137 				goto free_gate;
1138 
1139 			fix_factor->mult = 1;
1140 			fix_factor->div = data->div[i].fixed;
1141 
1142 			rate_hw = &fix_factor->hw;
1143 			rate_ops = &clk_fixed_factor_ops;
1144 		} else {
1145 			divider = kzalloc(sizeof(*divider), GFP_KERNEL);
1146 			if (!divider)
1147 				goto free_gate;
1148 
1149 			flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0;
1150 
1151 			divider->reg = reg;
1152 			divider->shift = data->div[i].shift;
1153 			divider->width = SUNXI_DIVISOR_WIDTH;
1154 			divider->flags = flags;
1155 			divider->lock = &clk_lock;
1156 			divider->table = data->div[i].table;
1157 
1158 			rate_hw = &divider->hw;
1159 			rate_ops = &clk_divider_ops;
1160 		}
1161 
1162 		/* Wrap the (potential) gate and the divisor on a composite
1163 		 * clock to unify them */
1164 		clks[i] = clk_register_composite(NULL, clk_name, &parent, 1,
1165 						 NULL, NULL,
1166 						 rate_hw, rate_ops,
1167 						 gate_hw, &clk_gate_ops,
1168 						 clkflags);
1169 
1170 		WARN_ON(IS_ERR(clk_data->clks[i]));
1171 		clk_register_clkdev(clks[i], clk_name, NULL);
1172 	}
1173 
1174 	/* The last clock available on the getter is the parent */
1175 	clks[i++] = pclk;
1176 
1177 	/* Adjust to the real max */
1178 	clk_data->clk_num = i;
1179 
1180 	of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
1181 
1182 	return;
1183 
1184 free_gate:
1185 	kfree(gate);
1186 free_clks:
1187 	kfree(clks);
1188 free_clkdata:
1189 	kfree(clk_data);
1190 }
1191 
1192 
1193 
1194 /* Matches for factors clocks */
1195 static const struct of_device_id clk_factors_match[] __initconst = {
1196 	{.compatible = "allwinner,sun4i-a10-pll1-clk", .data = &sun4i_pll1_data,},
1197 	{.compatible = "allwinner,sun6i-a31-pll1-clk", .data = &sun6i_a31_pll1_data,},
1198 	{.compatible = "allwinner,sun8i-a23-pll1-clk", .data = &sun8i_a23_pll1_data,},
1199 	{.compatible = "allwinner,sun7i-a20-pll4-clk", .data = &sun7i_a20_pll4_data,},
1200 	{.compatible = "allwinner,sun6i-a31-pll6-clk", .data = &sun6i_a31_pll6_data,},
1201 	{.compatible = "allwinner,sun4i-a10-apb1-clk", .data = &sun4i_apb1_data,},
1202 	{.compatible = "allwinner,sun4i-a10-mod0-clk", .data = &sun4i_mod0_data,},
1203 	{.compatible = "allwinner,sun7i-a20-out-clk", .data = &sun7i_a20_out_data,},
1204 	{}
1205 };
1206 
1207 /* Matches for divider clocks */
1208 static const struct of_device_id clk_div_match[] __initconst = {
1209 	{.compatible = "allwinner,sun4i-a10-axi-clk", .data = &sun4i_axi_data,},
1210 	{.compatible = "allwinner,sun8i-a23-axi-clk", .data = &sun8i_a23_axi_data,},
1211 	{.compatible = "allwinner,sun4i-a10-ahb-clk", .data = &sun4i_ahb_data,},
1212 	{.compatible = "allwinner,sun4i-a10-apb0-clk", .data = &sun4i_apb0_data,},
1213 	{.compatible = "allwinner,sun6i-a31-apb2-div-clk", .data = &sun6i_a31_apb2_div_data,},
1214 	{}
1215 };
1216 
1217 /* Matches for divided outputs */
1218 static const struct of_device_id clk_divs_match[] __initconst = {
1219 	{.compatible = "allwinner,sun4i-a10-pll5-clk", .data = &pll5_divs_data,},
1220 	{.compatible = "allwinner,sun4i-a10-pll6-clk", .data = &pll6_divs_data,},
1221 	{}
1222 };
1223 
1224 /* Matches for mux clocks */
1225 static const struct of_device_id clk_mux_match[] __initconst = {
1226 	{.compatible = "allwinner,sun4i-a10-cpu-clk", .data = &sun4i_cpu_mux_data,},
1227 	{.compatible = "allwinner,sun4i-a10-apb1-mux-clk", .data = &sun4i_apb1_mux_data,},
1228 	{.compatible = "allwinner,sun6i-a31-ahb1-mux-clk", .data = &sun6i_a31_ahb1_mux_data,},
1229 	{}
1230 };
1231 
1232 /* Matches for gate clocks */
1233 static const struct of_device_id clk_gates_match[] __initconst = {
1234 	{.compatible = "allwinner,sun4i-a10-axi-gates-clk", .data = &sun4i_axi_gates_data,},
1235 	{.compatible = "allwinner,sun4i-a10-ahb-gates-clk", .data = &sun4i_ahb_gates_data,},
1236 	{.compatible = "allwinner,sun5i-a10s-ahb-gates-clk", .data = &sun5i_a10s_ahb_gates_data,},
1237 	{.compatible = "allwinner,sun5i-a13-ahb-gates-clk", .data = &sun5i_a13_ahb_gates_data,},
1238 	{.compatible = "allwinner,sun6i-a31-ahb1-gates-clk", .data = &sun6i_a31_ahb1_gates_data,},
1239 	{.compatible = "allwinner,sun7i-a20-ahb-gates-clk", .data = &sun7i_a20_ahb_gates_data,},
1240 	{.compatible = "allwinner,sun8i-a23-ahb1-gates-clk", .data = &sun8i_a23_ahb1_gates_data,},
1241 	{.compatible = "allwinner,sun4i-a10-apb0-gates-clk", .data = &sun4i_apb0_gates_data,},
1242 	{.compatible = "allwinner,sun5i-a10s-apb0-gates-clk", .data = &sun5i_a10s_apb0_gates_data,},
1243 	{.compatible = "allwinner,sun5i-a13-apb0-gates-clk", .data = &sun5i_a13_apb0_gates_data,},
1244 	{.compatible = "allwinner,sun7i-a20-apb0-gates-clk", .data = &sun7i_a20_apb0_gates_data,},
1245 	{.compatible = "allwinner,sun4i-a10-apb1-gates-clk", .data = &sun4i_apb1_gates_data,},
1246 	{.compatible = "allwinner,sun5i-a10s-apb1-gates-clk", .data = &sun5i_a10s_apb1_gates_data,},
1247 	{.compatible = "allwinner,sun5i-a13-apb1-gates-clk", .data = &sun5i_a13_apb1_gates_data,},
1248 	{.compatible = "allwinner,sun6i-a31-apb1-gates-clk", .data = &sun6i_a31_apb1_gates_data,},
1249 	{.compatible = "allwinner,sun7i-a20-apb1-gates-clk", .data = &sun7i_a20_apb1_gates_data,},
1250 	{.compatible = "allwinner,sun8i-a23-apb1-gates-clk", .data = &sun8i_a23_apb1_gates_data,},
1251 	{.compatible = "allwinner,sun6i-a31-apb2-gates-clk", .data = &sun6i_a31_apb2_gates_data,},
1252 	{.compatible = "allwinner,sun8i-a23-apb2-gates-clk", .data = &sun8i_a23_apb2_gates_data,},
1253 	{.compatible = "allwinner,sun4i-a10-usb-clk", .data = &sun4i_a10_usb_gates_data,},
1254 	{.compatible = "allwinner,sun5i-a13-usb-clk", .data = &sun5i_a13_usb_gates_data,},
1255 	{.compatible = "allwinner,sun6i-a31-usb-clk", .data = &sun6i_a31_usb_gates_data,},
1256 	{}
1257 };
1258 
1259 static void __init of_sunxi_table_clock_setup(const struct of_device_id *clk_match,
1260 					      void *function)
1261 {
1262 	struct device_node *np;
1263 	const struct div_data *data;
1264 	const struct of_device_id *match;
1265 	void (*setup_function)(struct device_node *, const void *) = function;
1266 
1267 	for_each_matching_node_and_match(np, clk_match, &match) {
1268 		data = match->data;
1269 		setup_function(np, data);
1270 	}
1271 }
1272 
1273 static void __init sunxi_init_clocks(const char *clocks[], int nclocks)
1274 {
1275 	unsigned int i;
1276 
1277 	/* Register factor clocks */
1278 	of_sunxi_table_clock_setup(clk_factors_match, sunxi_factors_clk_setup);
1279 
1280 	/* Register divider clocks */
1281 	of_sunxi_table_clock_setup(clk_div_match, sunxi_divider_clk_setup);
1282 
1283 	/* Register divided output clocks */
1284 	of_sunxi_table_clock_setup(clk_divs_match, sunxi_divs_clk_setup);
1285 
1286 	/* Register mux clocks */
1287 	of_sunxi_table_clock_setup(clk_mux_match, sunxi_mux_clk_setup);
1288 
1289 	/* Register gate clocks */
1290 	of_sunxi_table_clock_setup(clk_gates_match, sunxi_gates_clk_setup);
1291 
1292 	/* Protect the clocks that needs to stay on */
1293 	for (i = 0; i < nclocks; i++) {
1294 		struct clk *clk = clk_get(NULL, clocks[i]);
1295 
1296 		if (!IS_ERR(clk))
1297 			clk_prepare_enable(clk);
1298 	}
1299 }
1300 
1301 static const char *sun4i_a10_critical_clocks[] __initdata = {
1302 	"pll5_ddr",
1303 	"ahb_sdram",
1304 };
1305 
1306 static void __init sun4i_a10_init_clocks(struct device_node *node)
1307 {
1308 	sunxi_init_clocks(sun4i_a10_critical_clocks,
1309 			  ARRAY_SIZE(sun4i_a10_critical_clocks));
1310 }
1311 CLK_OF_DECLARE(sun4i_a10_clk_init, "allwinner,sun4i-a10", sun4i_a10_init_clocks);
1312 
1313 static const char *sun5i_critical_clocks[] __initdata = {
1314 	"mbus",
1315 	"pll5_ddr",
1316 	"ahb_sdram",
1317 };
1318 
1319 static void __init sun5i_init_clocks(struct device_node *node)
1320 {
1321 	sunxi_init_clocks(sun5i_critical_clocks,
1322 			  ARRAY_SIZE(sun5i_critical_clocks));
1323 }
1324 CLK_OF_DECLARE(sun5i_a10s_clk_init, "allwinner,sun5i-a10s", sun5i_init_clocks);
1325 CLK_OF_DECLARE(sun5i_a13_clk_init, "allwinner,sun5i-a13", sun5i_init_clocks);
1326 CLK_OF_DECLARE(sun7i_a20_clk_init, "allwinner,sun7i-a20", sun5i_init_clocks);
1327 
1328 static const char *sun6i_critical_clocks[] __initdata = {
1329 	"cpu",
1330 	"ahb1_sdram",
1331 };
1332 
1333 static void __init sun6i_init_clocks(struct device_node *node)
1334 {
1335 	sunxi_init_clocks(sun6i_critical_clocks,
1336 			  ARRAY_SIZE(sun6i_critical_clocks));
1337 }
1338 CLK_OF_DECLARE(sun6i_a31_clk_init, "allwinner,sun6i-a31", sun6i_init_clocks);
1339 CLK_OF_DECLARE(sun8i_a23_clk_init, "allwinner,sun8i-a23", sun6i_init_clocks);
1340