xref: /openbmc/linux/drivers/clk/sunxi/clk-sunxi.c (revision 249592bf)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2013 Emilio López
4  *
5  * Emilio López <emilio@elopez.com.ar>
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/clk-provider.h>
10 #include <linux/clkdev.h>
11 #include <linux/io.h>
12 #include <linux/of.h>
13 #include <linux/of_address.h>
14 #include <linux/reset-controller.h>
15 #include <linux/slab.h>
16 #include <linux/spinlock.h>
17 #include <linux/log2.h>
18 
19 #include "clk-factors.h"
20 
21 static DEFINE_SPINLOCK(clk_lock);
22 
23 /* Maximum number of parents our clocks have */
24 #define SUNXI_MAX_PARENTS	5
25 
26 /*
27  * sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1
28  * PLL1 rate is calculated as follows
29  * rate = (parent_rate * n * (k + 1) >> p) / (m + 1);
30  * parent_rate is always 24Mhz
31  */
32 
33 static void sun4i_get_pll1_factors(struct factors_request *req)
34 {
35 	u8 div;
36 
37 	/* Normalize value to a 6M multiple */
38 	div = req->rate / 6000000;
39 	req->rate = 6000000 * div;
40 
41 	/* m is always zero for pll1 */
42 	req->m = 0;
43 
44 	/* k is 1 only on these cases */
45 	if (req->rate >= 768000000 || req->rate == 42000000 ||
46 			req->rate == 54000000)
47 		req->k = 1;
48 	else
49 		req->k = 0;
50 
51 	/* p will be 3 for divs under 10 */
52 	if (div < 10)
53 		req->p = 3;
54 
55 	/* p will be 2 for divs between 10 - 20 and odd divs under 32 */
56 	else if (div < 20 || (div < 32 && (div & 1)))
57 		req->p = 2;
58 
59 	/* p will be 1 for even divs under 32, divs under 40 and odd pairs
60 	 * of divs between 40-62 */
61 	else if (div < 40 || (div < 64 && (div & 2)))
62 		req->p = 1;
63 
64 	/* any other entries have p = 0 */
65 	else
66 		req->p = 0;
67 
68 	/* calculate a suitable n based on k and p */
69 	div <<= req->p;
70 	div /= (req->k + 1);
71 	req->n = div / 4;
72 }
73 
74 /*
75  * sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1
76  * PLL1 rate is calculated as follows
77  * rate = parent_rate * (n + 1) * (k + 1) / (m + 1);
78  * parent_rate should always be 24MHz
79  */
80 static void sun6i_a31_get_pll1_factors(struct factors_request *req)
81 {
82 	/*
83 	 * We can operate only on MHz, this will make our life easier
84 	 * later.
85 	 */
86 	u32 freq_mhz = req->rate / 1000000;
87 	u32 parent_freq_mhz = req->parent_rate / 1000000;
88 
89 	/*
90 	 * Round down the frequency to the closest multiple of either
91 	 * 6 or 16
92 	 */
93 	u32 round_freq_6 = rounddown(freq_mhz, 6);
94 	u32 round_freq_16 = round_down(freq_mhz, 16);
95 
96 	if (round_freq_6 > round_freq_16)
97 		freq_mhz = round_freq_6;
98 	else
99 		freq_mhz = round_freq_16;
100 
101 	req->rate = freq_mhz * 1000000;
102 
103 	/* If the frequency is a multiple of 32 MHz, k is always 3 */
104 	if (!(freq_mhz % 32))
105 		req->k = 3;
106 	/* If the frequency is a multiple of 9 MHz, k is always 2 */
107 	else if (!(freq_mhz % 9))
108 		req->k = 2;
109 	/* If the frequency is a multiple of 8 MHz, k is always 1 */
110 	else if (!(freq_mhz % 8))
111 		req->k = 1;
112 	/* Otherwise, we don't use the k factor */
113 	else
114 		req->k = 0;
115 
116 	/*
117 	 * If the frequency is a multiple of 2 but not a multiple of
118 	 * 3, m is 3. This is the first time we use 6 here, yet we
119 	 * will use it on several other places.
120 	 * We use this number because it's the lowest frequency we can
121 	 * generate (with n = 0, k = 0, m = 3), so every other frequency
122 	 * somehow relates to this frequency.
123 	 */
124 	if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4)
125 		req->m = 2;
126 	/*
127 	 * If the frequency is a multiple of 6MHz, but the factor is
128 	 * odd, m will be 3
129 	 */
130 	else if ((freq_mhz / 6) & 1)
131 		req->m = 3;
132 	/* Otherwise, we end up with m = 1 */
133 	else
134 		req->m = 1;
135 
136 	/* Calculate n thanks to the above factors we already got */
137 	req->n = freq_mhz * (req->m + 1) / ((req->k + 1) * parent_freq_mhz)
138 		 - 1;
139 
140 	/*
141 	 * If n end up being outbound, and that we can still decrease
142 	 * m, do it.
143 	 */
144 	if ((req->n + 1) > 31 && (req->m + 1) > 1) {
145 		req->n = (req->n + 1) / 2 - 1;
146 		req->m = (req->m + 1) / 2 - 1;
147 	}
148 }
149 
150 /*
151  * sun8i_a23_get_pll1_factors() - calculates n, k, m, p factors for PLL1
152  * PLL1 rate is calculated as follows
153  * rate = (parent_rate * (n + 1) * (k + 1) >> p) / (m + 1);
154  * parent_rate is always 24Mhz
155  */
156 
157 static void sun8i_a23_get_pll1_factors(struct factors_request *req)
158 {
159 	u8 div;
160 
161 	/* Normalize value to a 6M multiple */
162 	div = req->rate / 6000000;
163 	req->rate = 6000000 * div;
164 
165 	/* m is always zero for pll1 */
166 	req->m = 0;
167 
168 	/* k is 1 only on these cases */
169 	if (req->rate >= 768000000 || req->rate == 42000000 ||
170 			req->rate == 54000000)
171 		req->k = 1;
172 	else
173 		req->k = 0;
174 
175 	/* p will be 2 for divs under 20 and odd divs under 32 */
176 	if (div < 20 || (div < 32 && (div & 1)))
177 		req->p = 2;
178 
179 	/* p will be 1 for even divs under 32, divs under 40 and odd pairs
180 	 * of divs between 40-62 */
181 	else if (div < 40 || (div < 64 && (div & 2)))
182 		req->p = 1;
183 
184 	/* any other entries have p = 0 */
185 	else
186 		req->p = 0;
187 
188 	/* calculate a suitable n based on k and p */
189 	div <<= req->p;
190 	div /= (req->k + 1);
191 	req->n = div / 4 - 1;
192 }
193 
194 /*
195  * sun4i_get_pll5_factors() - calculates n, k factors for PLL5
196  * PLL5 rate is calculated as follows
197  * rate = parent_rate * n * (k + 1)
198  * parent_rate is always 24Mhz
199  */
200 
201 static void sun4i_get_pll5_factors(struct factors_request *req)
202 {
203 	u8 div;
204 
205 	/* Normalize value to a parent_rate multiple (24M) */
206 	div = req->rate / req->parent_rate;
207 	req->rate = req->parent_rate * div;
208 
209 	if (div < 31)
210 		req->k = 0;
211 	else if (div / 2 < 31)
212 		req->k = 1;
213 	else if (div / 3 < 31)
214 		req->k = 2;
215 	else
216 		req->k = 3;
217 
218 	req->n = DIV_ROUND_UP(div, (req->k + 1));
219 }
220 
221 /*
222  * sun6i_a31_get_pll6_factors() - calculates n, k factors for A31 PLL6x2
223  * PLL6x2 rate is calculated as follows
224  * rate = parent_rate * (n + 1) * (k + 1)
225  * parent_rate is always 24Mhz
226  */
227 
228 static void sun6i_a31_get_pll6_factors(struct factors_request *req)
229 {
230 	u8 div;
231 
232 	/* Normalize value to a parent_rate multiple (24M) */
233 	div = req->rate / req->parent_rate;
234 	req->rate = req->parent_rate * div;
235 
236 	req->k = div / 32;
237 	if (req->k > 3)
238 		req->k = 3;
239 
240 	req->n = DIV_ROUND_UP(div, (req->k + 1)) - 1;
241 }
242 
243 /*
244  * sun5i_a13_get_ahb_factors() - calculates m, p factors for AHB
245  * AHB rate is calculated as follows
246  * rate = parent_rate >> p
247  */
248 
249 static void sun5i_a13_get_ahb_factors(struct factors_request *req)
250 {
251 	u32 div;
252 
253 	/* divide only */
254 	if (req->parent_rate < req->rate)
255 		req->rate = req->parent_rate;
256 
257 	/*
258 	 * user manual says valid speed is 8k ~ 276M, but tests show it
259 	 * can work at speeds up to 300M, just after reparenting to pll6
260 	 */
261 	if (req->rate < 8000)
262 		req->rate = 8000;
263 	if (req->rate > 300000000)
264 		req->rate = 300000000;
265 
266 	div = order_base_2(DIV_ROUND_UP(req->parent_rate, req->rate));
267 
268 	/* p = 0 ~ 3 */
269 	if (div > 3)
270 		div = 3;
271 
272 	req->rate = req->parent_rate >> div;
273 
274 	req->p = div;
275 }
276 
277 #define SUN6I_AHB1_PARENT_PLL6	3
278 
279 /*
280  * sun6i_a31_get_ahb_factors() - calculates m, p factors for AHB
281  * AHB rate is calculated as follows
282  * rate = parent_rate >> p
283  *
284  * if parent is pll6, then
285  * parent_rate = pll6 rate / (m + 1)
286  */
287 
288 static void sun6i_get_ahb1_factors(struct factors_request *req)
289 {
290 	u8 div, calcp, calcm = 1;
291 
292 	/*
293 	 * clock can only divide, so we will never be able to achieve
294 	 * frequencies higher than the parent frequency
295 	 */
296 	if (req->parent_rate && req->rate > req->parent_rate)
297 		req->rate = req->parent_rate;
298 
299 	div = DIV_ROUND_UP(req->parent_rate, req->rate);
300 
301 	/* calculate pre-divider if parent is pll6 */
302 	if (req->parent_index == SUN6I_AHB1_PARENT_PLL6) {
303 		if (div < 4)
304 			calcp = 0;
305 		else if (div / 2 < 4)
306 			calcp = 1;
307 		else if (div / 4 < 4)
308 			calcp = 2;
309 		else
310 			calcp = 3;
311 
312 		calcm = DIV_ROUND_UP(div, 1 << calcp);
313 	} else {
314 		calcp = __roundup_pow_of_two(div);
315 		calcp = calcp > 3 ? 3 : calcp;
316 	}
317 
318 	req->rate = (req->parent_rate / calcm) >> calcp;
319 	req->p = calcp;
320 	req->m = calcm - 1;
321 }
322 
323 /*
324  * sun6i_ahb1_recalc() - calculates AHB clock rate from m, p factors and
325  *			 parent index
326  */
327 static void sun6i_ahb1_recalc(struct factors_request *req)
328 {
329 	req->rate = req->parent_rate;
330 
331 	/* apply pre-divider first if parent is pll6 */
332 	if (req->parent_index == SUN6I_AHB1_PARENT_PLL6)
333 		req->rate /= req->m + 1;
334 
335 	/* clk divider */
336 	req->rate >>= req->p;
337 }
338 
339 /*
340  * sun4i_get_apb1_factors() - calculates m, p factors for APB1
341  * APB1 rate is calculated as follows
342  * rate = (parent_rate >> p) / (m + 1);
343  */
344 
345 static void sun4i_get_apb1_factors(struct factors_request *req)
346 {
347 	u8 calcm, calcp;
348 	int div;
349 
350 	if (req->parent_rate < req->rate)
351 		req->rate = req->parent_rate;
352 
353 	div = DIV_ROUND_UP(req->parent_rate, req->rate);
354 
355 	/* Invalid rate! */
356 	if (div > 32)
357 		return;
358 
359 	if (div <= 4)
360 		calcp = 0;
361 	else if (div <= 8)
362 		calcp = 1;
363 	else if (div <= 16)
364 		calcp = 2;
365 	else
366 		calcp = 3;
367 
368 	calcm = (div >> calcp) - 1;
369 
370 	req->rate = (req->parent_rate >> calcp) / (calcm + 1);
371 	req->m = calcm;
372 	req->p = calcp;
373 }
374 
375 
376 
377 
378 /*
379  * sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B
380  * CLK_OUT rate is calculated as follows
381  * rate = (parent_rate >> p) / (m + 1);
382  */
383 
384 static void sun7i_a20_get_out_factors(struct factors_request *req)
385 {
386 	u8 div, calcm, calcp;
387 
388 	/* These clocks can only divide, so we will never be able to achieve
389 	 * frequencies higher than the parent frequency */
390 	if (req->rate > req->parent_rate)
391 		req->rate = req->parent_rate;
392 
393 	div = DIV_ROUND_UP(req->parent_rate, req->rate);
394 
395 	if (div < 32)
396 		calcp = 0;
397 	else if (div / 2 < 32)
398 		calcp = 1;
399 	else if (div / 4 < 32)
400 		calcp = 2;
401 	else
402 		calcp = 3;
403 
404 	calcm = DIV_ROUND_UP(div, 1 << calcp);
405 
406 	req->rate = (req->parent_rate >> calcp) / calcm;
407 	req->m = calcm - 1;
408 	req->p = calcp;
409 }
410 
411 /*
412  * sunxi_factors_clk_setup() - Setup function for factor clocks
413  */
414 
415 static const struct clk_factors_config sun4i_pll1_config = {
416 	.nshift = 8,
417 	.nwidth = 5,
418 	.kshift = 4,
419 	.kwidth = 2,
420 	.mshift = 0,
421 	.mwidth = 2,
422 	.pshift = 16,
423 	.pwidth = 2,
424 };
425 
426 static const struct clk_factors_config sun6i_a31_pll1_config = {
427 	.nshift	= 8,
428 	.nwidth = 5,
429 	.kshift = 4,
430 	.kwidth = 2,
431 	.mshift = 0,
432 	.mwidth = 2,
433 	.n_start = 1,
434 };
435 
436 static const struct clk_factors_config sun8i_a23_pll1_config = {
437 	.nshift = 8,
438 	.nwidth = 5,
439 	.kshift = 4,
440 	.kwidth = 2,
441 	.mshift = 0,
442 	.mwidth = 2,
443 	.pshift = 16,
444 	.pwidth = 2,
445 	.n_start = 1,
446 };
447 
448 static const struct clk_factors_config sun4i_pll5_config = {
449 	.nshift = 8,
450 	.nwidth = 5,
451 	.kshift = 4,
452 	.kwidth = 2,
453 };
454 
455 static const struct clk_factors_config sun6i_a31_pll6_config = {
456 	.nshift	= 8,
457 	.nwidth = 5,
458 	.kshift = 4,
459 	.kwidth = 2,
460 	.n_start = 1,
461 };
462 
463 static const struct clk_factors_config sun5i_a13_ahb_config = {
464 	.pshift = 4,
465 	.pwidth = 2,
466 };
467 
468 static const struct clk_factors_config sun6i_ahb1_config = {
469 	.mshift = 6,
470 	.mwidth = 2,
471 	.pshift = 4,
472 	.pwidth = 2,
473 };
474 
475 static const struct clk_factors_config sun4i_apb1_config = {
476 	.mshift = 0,
477 	.mwidth = 5,
478 	.pshift = 16,
479 	.pwidth = 2,
480 };
481 
482 /* user manual says "n" but it's really "p" */
483 static const struct clk_factors_config sun7i_a20_out_config = {
484 	.mshift = 8,
485 	.mwidth = 5,
486 	.pshift = 20,
487 	.pwidth = 2,
488 };
489 
490 static const struct factors_data sun4i_pll1_data __initconst = {
491 	.enable = 31,
492 	.table = &sun4i_pll1_config,
493 	.getter = sun4i_get_pll1_factors,
494 };
495 
496 static const struct factors_data sun6i_a31_pll1_data __initconst = {
497 	.enable = 31,
498 	.table = &sun6i_a31_pll1_config,
499 	.getter = sun6i_a31_get_pll1_factors,
500 };
501 
502 static const struct factors_data sun8i_a23_pll1_data __initconst = {
503 	.enable = 31,
504 	.table = &sun8i_a23_pll1_config,
505 	.getter = sun8i_a23_get_pll1_factors,
506 };
507 
508 static const struct factors_data sun7i_a20_pll4_data __initconst = {
509 	.enable = 31,
510 	.table = &sun4i_pll5_config,
511 	.getter = sun4i_get_pll5_factors,
512 };
513 
514 static const struct factors_data sun4i_pll5_data __initconst = {
515 	.enable = 31,
516 	.table = &sun4i_pll5_config,
517 	.getter = sun4i_get_pll5_factors,
518 };
519 
520 static const struct factors_data sun6i_a31_pll6_data __initconst = {
521 	.enable = 31,
522 	.table = &sun6i_a31_pll6_config,
523 	.getter = sun6i_a31_get_pll6_factors,
524 };
525 
526 static const struct factors_data sun5i_a13_ahb_data __initconst = {
527 	.mux = 6,
528 	.muxmask = BIT(1) | BIT(0),
529 	.table = &sun5i_a13_ahb_config,
530 	.getter = sun5i_a13_get_ahb_factors,
531 };
532 
533 static const struct factors_data sun6i_ahb1_data __initconst = {
534 	.mux = 12,
535 	.muxmask = BIT(1) | BIT(0),
536 	.table = &sun6i_ahb1_config,
537 	.getter = sun6i_get_ahb1_factors,
538 	.recalc = sun6i_ahb1_recalc,
539 };
540 
541 static const struct factors_data sun4i_apb1_data __initconst = {
542 	.mux = 24,
543 	.muxmask = BIT(1) | BIT(0),
544 	.table = &sun4i_apb1_config,
545 	.getter = sun4i_get_apb1_factors,
546 };
547 
548 static const struct factors_data sun7i_a20_out_data __initconst = {
549 	.enable = 31,
550 	.mux = 24,
551 	.muxmask = BIT(1) | BIT(0),
552 	.table = &sun7i_a20_out_config,
553 	.getter = sun7i_a20_get_out_factors,
554 };
555 
556 static struct clk * __init sunxi_factors_clk_setup(struct device_node *node,
557 						   const struct factors_data *data)
558 {
559 	void __iomem *reg;
560 
561 	reg = of_iomap(node, 0);
562 	if (!reg) {
563 		pr_err("Could not get registers for factors-clk: %pOFn\n",
564 		       node);
565 		return NULL;
566 	}
567 
568 	return sunxi_factors_register(node, data, &clk_lock, reg);
569 }
570 
571 static void __init sun4i_pll1_clk_setup(struct device_node *node)
572 {
573 	sunxi_factors_clk_setup(node, &sun4i_pll1_data);
574 }
575 CLK_OF_DECLARE(sun4i_pll1, "allwinner,sun4i-a10-pll1-clk",
576 	       sun4i_pll1_clk_setup);
577 
578 static void __init sun6i_pll1_clk_setup(struct device_node *node)
579 {
580 	sunxi_factors_clk_setup(node, &sun6i_a31_pll1_data);
581 }
582 CLK_OF_DECLARE(sun6i_pll1, "allwinner,sun6i-a31-pll1-clk",
583 	       sun6i_pll1_clk_setup);
584 
585 static void __init sun8i_pll1_clk_setup(struct device_node *node)
586 {
587 	sunxi_factors_clk_setup(node, &sun8i_a23_pll1_data);
588 }
589 CLK_OF_DECLARE(sun8i_pll1, "allwinner,sun8i-a23-pll1-clk",
590 	       sun8i_pll1_clk_setup);
591 
592 static void __init sun7i_pll4_clk_setup(struct device_node *node)
593 {
594 	sunxi_factors_clk_setup(node, &sun7i_a20_pll4_data);
595 }
596 CLK_OF_DECLARE(sun7i_pll4, "allwinner,sun7i-a20-pll4-clk",
597 	       sun7i_pll4_clk_setup);
598 
599 static void __init sun5i_ahb_clk_setup(struct device_node *node)
600 {
601 	sunxi_factors_clk_setup(node, &sun5i_a13_ahb_data);
602 }
603 CLK_OF_DECLARE(sun5i_ahb, "allwinner,sun5i-a13-ahb-clk",
604 	       sun5i_ahb_clk_setup);
605 
606 static void __init sun6i_ahb1_clk_setup(struct device_node *node)
607 {
608 	sunxi_factors_clk_setup(node, &sun6i_ahb1_data);
609 }
610 CLK_OF_DECLARE(sun6i_a31_ahb1, "allwinner,sun6i-a31-ahb1-clk",
611 	       sun6i_ahb1_clk_setup);
612 
613 static void __init sun4i_apb1_clk_setup(struct device_node *node)
614 {
615 	sunxi_factors_clk_setup(node, &sun4i_apb1_data);
616 }
617 CLK_OF_DECLARE(sun4i_apb1, "allwinner,sun4i-a10-apb1-clk",
618 	       sun4i_apb1_clk_setup);
619 
620 static void __init sun7i_out_clk_setup(struct device_node *node)
621 {
622 	sunxi_factors_clk_setup(node, &sun7i_a20_out_data);
623 }
624 CLK_OF_DECLARE(sun7i_out, "allwinner,sun7i-a20-out-clk",
625 	       sun7i_out_clk_setup);
626 
627 
628 /*
629  * sunxi_mux_clk_setup() - Setup function for muxes
630  */
631 
632 #define SUNXI_MUX_GATE_WIDTH	2
633 
634 struct mux_data {
635 	u8 shift;
636 };
637 
638 static const struct mux_data sun4i_cpu_mux_data __initconst = {
639 	.shift = 16,
640 };
641 
642 static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = {
643 	.shift = 12,
644 };
645 
646 static const struct mux_data sun8i_h3_ahb2_mux_data __initconst = {
647 	.shift = 0,
648 };
649 
650 static struct clk * __init sunxi_mux_clk_setup(struct device_node *node,
651 					       const struct mux_data *data,
652 					       unsigned long flags)
653 {
654 	struct clk *clk;
655 	const char *clk_name = node->name;
656 	const char *parents[SUNXI_MAX_PARENTS];
657 	void __iomem *reg;
658 	int i;
659 
660 	reg = of_iomap(node, 0);
661 	if (!reg) {
662 		pr_err("Could not map registers for mux-clk: %pOF\n", node);
663 		return NULL;
664 	}
665 
666 	i = of_clk_parent_fill(node, parents, SUNXI_MAX_PARENTS);
667 	if (of_property_read_string(node, "clock-output-names", &clk_name)) {
668 		pr_err("%s: could not read clock-output-names from \"%pOF\"\n",
669 		       __func__, node);
670 		goto out_unmap;
671 	}
672 
673 	clk = clk_register_mux(NULL, clk_name, parents, i,
674 			       CLK_SET_RATE_PARENT | flags, reg,
675 			       data->shift, SUNXI_MUX_GATE_WIDTH,
676 			       0, &clk_lock);
677 
678 	if (IS_ERR(clk)) {
679 		pr_err("%s: failed to register mux clock %s: %ld\n", __func__,
680 		       clk_name, PTR_ERR(clk));
681 		goto out_unmap;
682 	}
683 
684 	if (of_clk_add_provider(node, of_clk_src_simple_get, clk)) {
685 		pr_err("%s: failed to add clock provider for %s\n",
686 		       __func__, clk_name);
687 		clk_unregister_divider(clk);
688 		goto out_unmap;
689 	}
690 
691 	return clk;
692 out_unmap:
693 	iounmap(reg);
694 	return NULL;
695 }
696 
697 static void __init sun4i_cpu_clk_setup(struct device_node *node)
698 {
699 	/* Protect CPU clock */
700 	sunxi_mux_clk_setup(node, &sun4i_cpu_mux_data, CLK_IS_CRITICAL);
701 }
702 CLK_OF_DECLARE(sun4i_cpu, "allwinner,sun4i-a10-cpu-clk",
703 	       sun4i_cpu_clk_setup);
704 
705 static void __init sun6i_ahb1_mux_clk_setup(struct device_node *node)
706 {
707 	sunxi_mux_clk_setup(node, &sun6i_a31_ahb1_mux_data, 0);
708 }
709 CLK_OF_DECLARE(sun6i_ahb1_mux, "allwinner,sun6i-a31-ahb1-mux-clk",
710 	       sun6i_ahb1_mux_clk_setup);
711 
712 static void __init sun8i_ahb2_clk_setup(struct device_node *node)
713 {
714 	sunxi_mux_clk_setup(node, &sun8i_h3_ahb2_mux_data, 0);
715 }
716 CLK_OF_DECLARE(sun8i_ahb2, "allwinner,sun8i-h3-ahb2-clk",
717 	       sun8i_ahb2_clk_setup);
718 
719 
720 /*
721  * sunxi_divider_clk_setup() - Setup function for simple divider clocks
722  */
723 
724 struct div_data {
725 	u8	shift;
726 	u8	pow;
727 	u8	width;
728 	const struct clk_div_table *table;
729 };
730 
731 static const struct div_data sun4i_axi_data __initconst = {
732 	.shift	= 0,
733 	.pow	= 0,
734 	.width	= 2,
735 };
736 
737 static const struct clk_div_table sun8i_a23_axi_table[] __initconst = {
738 	{ .val = 0, .div = 1 },
739 	{ .val = 1, .div = 2 },
740 	{ .val = 2, .div = 3 },
741 	{ .val = 3, .div = 4 },
742 	{ .val = 4, .div = 4 },
743 	{ .val = 5, .div = 4 },
744 	{ .val = 6, .div = 4 },
745 	{ .val = 7, .div = 4 },
746 	{ } /* sentinel */
747 };
748 
749 static const struct div_data sun8i_a23_axi_data __initconst = {
750 	.width	= 3,
751 	.table	= sun8i_a23_axi_table,
752 };
753 
754 static const struct div_data sun4i_ahb_data __initconst = {
755 	.shift	= 4,
756 	.pow	= 1,
757 	.width	= 2,
758 };
759 
760 static const struct clk_div_table sun4i_apb0_table[] __initconst = {
761 	{ .val = 0, .div = 2 },
762 	{ .val = 1, .div = 2 },
763 	{ .val = 2, .div = 4 },
764 	{ .val = 3, .div = 8 },
765 	{ } /* sentinel */
766 };
767 
768 static const struct div_data sun4i_apb0_data __initconst = {
769 	.shift	= 8,
770 	.pow	= 1,
771 	.width	= 2,
772 	.table	= sun4i_apb0_table,
773 };
774 
775 static void __init sunxi_divider_clk_setup(struct device_node *node,
776 					   const struct div_data *data)
777 {
778 	struct clk *clk;
779 	const char *clk_name = node->name;
780 	const char *clk_parent;
781 	void __iomem *reg;
782 
783 	reg = of_iomap(node, 0);
784 	if (!reg) {
785 		pr_err("Could not map registers for mux-clk: %pOF\n", node);
786 		return;
787 	}
788 
789 	clk_parent = of_clk_get_parent_name(node, 0);
790 
791 	if (of_property_read_string(node, "clock-output-names", &clk_name)) {
792 		pr_err("%s: could not read clock-output-names from \"%pOF\"\n",
793 		       __func__, node);
794 		goto out_unmap;
795 	}
796 
797 	clk = clk_register_divider_table(NULL, clk_name, clk_parent, 0,
798 					 reg, data->shift, data->width,
799 					 data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0,
800 					 data->table, &clk_lock);
801 	if (IS_ERR(clk)) {
802 		pr_err("%s: failed to register divider clock %s: %ld\n",
803 		       __func__, clk_name, PTR_ERR(clk));
804 		goto out_unmap;
805 	}
806 
807 	if (of_clk_add_provider(node, of_clk_src_simple_get, clk)) {
808 		pr_err("%s: failed to add clock provider for %s\n",
809 		       __func__, clk_name);
810 		goto out_unregister;
811 	}
812 
813 	if (clk_register_clkdev(clk, clk_name, NULL)) {
814 		of_clk_del_provider(node);
815 		goto out_unregister;
816 	}
817 
818 	return;
819 out_unregister:
820 	clk_unregister_divider(clk);
821 
822 out_unmap:
823 	iounmap(reg);
824 }
825 
826 static void __init sun4i_ahb_clk_setup(struct device_node *node)
827 {
828 	sunxi_divider_clk_setup(node, &sun4i_ahb_data);
829 }
830 CLK_OF_DECLARE(sun4i_ahb, "allwinner,sun4i-a10-ahb-clk",
831 	       sun4i_ahb_clk_setup);
832 
833 static void __init sun4i_apb0_clk_setup(struct device_node *node)
834 {
835 	sunxi_divider_clk_setup(node, &sun4i_apb0_data);
836 }
837 CLK_OF_DECLARE(sun4i_apb0, "allwinner,sun4i-a10-apb0-clk",
838 	       sun4i_apb0_clk_setup);
839 
840 static void __init sun4i_axi_clk_setup(struct device_node *node)
841 {
842 	sunxi_divider_clk_setup(node, &sun4i_axi_data);
843 }
844 CLK_OF_DECLARE(sun4i_axi, "allwinner,sun4i-a10-axi-clk",
845 	       sun4i_axi_clk_setup);
846 
847 static void __init sun8i_axi_clk_setup(struct device_node *node)
848 {
849 	sunxi_divider_clk_setup(node, &sun8i_a23_axi_data);
850 }
851 CLK_OF_DECLARE(sun8i_axi, "allwinner,sun8i-a23-axi-clk",
852 	       sun8i_axi_clk_setup);
853 
854 
855 
856 /*
857  * sunxi_gates_clk_setup() - Setup function for leaf gates on clocks
858  */
859 
860 #define SUNXI_GATES_MAX_SIZE	64
861 
862 struct gates_data {
863 	DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE);
864 };
865 
866 /*
867  * sunxi_divs_clk_setup() helper data
868  */
869 
870 #define SUNXI_DIVS_MAX_QTY	4
871 #define SUNXI_DIVISOR_WIDTH	2
872 
873 struct divs_data {
874 	const struct factors_data *factors; /* data for the factor clock */
875 	int ndivs; /* number of outputs */
876 	/*
877 	 * List of outputs. Refer to the diagram for sunxi_divs_clk_setup():
878 	 * self or base factor clock refers to the output from the pll
879 	 * itself. The remaining refer to fixed or configurable divider
880 	 * outputs.
881 	 */
882 	struct {
883 		u8 self; /* is it the base factor clock? (only one) */
884 		u8 fixed; /* is it a fixed divisor? if not... */
885 		struct clk_div_table *table; /* is it a table based divisor? */
886 		u8 shift; /* otherwise it's a normal divisor with this shift */
887 		u8 pow;   /* is it power-of-two based? */
888 		u8 gate;  /* is it independently gateable? */
889 		bool critical;
890 	} div[SUNXI_DIVS_MAX_QTY];
891 };
892 
893 static struct clk_div_table pll6_sata_tbl[] = {
894 	{ .val = 0, .div = 6, },
895 	{ .val = 1, .div = 12, },
896 	{ .val = 2, .div = 18, },
897 	{ .val = 3, .div = 24, },
898 	{ } /* sentinel */
899 };
900 
901 static const struct divs_data pll5_divs_data __initconst = {
902 	.factors = &sun4i_pll5_data,
903 	.ndivs = 2,
904 	.div = {
905 		/* Protect PLL5_DDR */
906 		{ .shift = 0, .pow = 0, .critical = true }, /* M, DDR */
907 		{ .shift = 16, .pow = 1, }, /* P, other */
908 		/* No output for the base factor clock */
909 	}
910 };
911 
912 static const struct divs_data pll6_divs_data __initconst = {
913 	.factors = &sun4i_pll5_data,
914 	.ndivs = 4,
915 	.div = {
916 		{ .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */
917 		{ .fixed = 2 }, /* P, other */
918 		{ .self = 1 }, /* base factor clock, 2x */
919 		{ .fixed = 4 }, /* pll6 / 4, used as ahb input */
920 	}
921 };
922 
923 static const struct divs_data sun6i_a31_pll6_divs_data __initconst = {
924 	.factors = &sun6i_a31_pll6_data,
925 	.ndivs = 2,
926 	.div = {
927 		{ .fixed = 2 }, /* normal output */
928 		{ .self = 1 }, /* base factor clock, 2x */
929 	}
930 };
931 
932 /*
933  * sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks
934  *
935  * These clocks look something like this
936  *            ________________________
937  *           |         ___divisor 1---|----> to consumer
938  * parent >--|  pll___/___divisor 2---|----> to consumer
939  *           |        \_______________|____> to consumer
940  *           |________________________|
941  */
942 
943 static struct clk ** __init sunxi_divs_clk_setup(struct device_node *node,
944 						 const struct divs_data *data)
945 {
946 	struct clk_onecell_data *clk_data;
947 	const char *parent;
948 	const char *clk_name;
949 	struct clk **clks, *pclk;
950 	struct clk_hw *gate_hw, *rate_hw;
951 	const struct clk_ops *rate_ops;
952 	struct clk_gate *gate = NULL;
953 	struct clk_fixed_factor *fix_factor;
954 	struct clk_divider *divider;
955 	struct factors_data factors = *data->factors;
956 	char *derived_name = NULL;
957 	void __iomem *reg;
958 	int ndivs = SUNXI_DIVS_MAX_QTY, i = 0;
959 	int flags, clkflags;
960 
961 	/* if number of children known, use it */
962 	if (data->ndivs)
963 		ndivs = data->ndivs;
964 
965 	/* Try to find a name for base factor clock */
966 	for (i = 0; i < ndivs; i++) {
967 		if (data->div[i].self) {
968 			of_property_read_string_index(node, "clock-output-names",
969 						      i, &factors.name);
970 			break;
971 		}
972 	}
973 	/* If we don't have a .self clk use the first output-name up to '_' */
974 	if (factors.name == NULL) {
975 		char *endp;
976 
977 		of_property_read_string_index(node, "clock-output-names",
978 						      0, &clk_name);
979 		endp = strchr(clk_name, '_');
980 		if (endp) {
981 			derived_name = kstrndup(clk_name, endp - clk_name,
982 						GFP_KERNEL);
983 			if (!derived_name)
984 				return NULL;
985 			factors.name = derived_name;
986 		} else {
987 			factors.name = clk_name;
988 		}
989 	}
990 
991 	/* Set up factor clock that we will be dividing */
992 	pclk = sunxi_factors_clk_setup(node, &factors);
993 	if (!pclk)
994 		return NULL;
995 
996 	parent = __clk_get_name(pclk);
997 	kfree(derived_name);
998 
999 	reg = of_iomap(node, 0);
1000 	if (!reg) {
1001 		pr_err("Could not map registers for divs-clk: %pOF\n", node);
1002 		return NULL;
1003 	}
1004 
1005 	clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
1006 	if (!clk_data)
1007 		goto out_unmap;
1008 
1009 	clks = kcalloc(ndivs, sizeof(*clks), GFP_KERNEL);
1010 	if (!clks)
1011 		goto free_clkdata;
1012 
1013 	clk_data->clks = clks;
1014 
1015 	/* It's not a good idea to have automatic reparenting changing
1016 	 * our RAM clock! */
1017 	clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT;
1018 
1019 	for (i = 0; i < ndivs; i++) {
1020 		if (of_property_read_string_index(node, "clock-output-names",
1021 						  i, &clk_name) != 0)
1022 			break;
1023 
1024 		/* If this is the base factor clock, only update clks */
1025 		if (data->div[i].self) {
1026 			clk_data->clks[i] = pclk;
1027 			continue;
1028 		}
1029 
1030 		gate_hw = NULL;
1031 		rate_hw = NULL;
1032 		rate_ops = NULL;
1033 
1034 		/* If this leaf clock can be gated, create a gate */
1035 		if (data->div[i].gate) {
1036 			gate = kzalloc(sizeof(*gate), GFP_KERNEL);
1037 			if (!gate)
1038 				goto free_clks;
1039 
1040 			gate->reg = reg;
1041 			gate->bit_idx = data->div[i].gate;
1042 			gate->lock = &clk_lock;
1043 
1044 			gate_hw = &gate->hw;
1045 		}
1046 
1047 		/* Leaves can be fixed or configurable divisors */
1048 		if (data->div[i].fixed) {
1049 			fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL);
1050 			if (!fix_factor)
1051 				goto free_gate;
1052 
1053 			fix_factor->mult = 1;
1054 			fix_factor->div = data->div[i].fixed;
1055 
1056 			rate_hw = &fix_factor->hw;
1057 			rate_ops = &clk_fixed_factor_ops;
1058 		} else {
1059 			divider = kzalloc(sizeof(*divider), GFP_KERNEL);
1060 			if (!divider)
1061 				goto free_gate;
1062 
1063 			flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0;
1064 
1065 			divider->reg = reg;
1066 			divider->shift = data->div[i].shift;
1067 			divider->width = SUNXI_DIVISOR_WIDTH;
1068 			divider->flags = flags;
1069 			divider->lock = &clk_lock;
1070 			divider->table = data->div[i].table;
1071 
1072 			rate_hw = &divider->hw;
1073 			rate_ops = &clk_divider_ops;
1074 		}
1075 
1076 		/* Wrap the (potential) gate and the divisor on a composite
1077 		 * clock to unify them */
1078 		clks[i] = clk_register_composite(NULL, clk_name, &parent, 1,
1079 						 NULL, NULL,
1080 						 rate_hw, rate_ops,
1081 						 gate_hw, &clk_gate_ops,
1082 						 clkflags |
1083 						 (data->div[i].critical ?
1084 							CLK_IS_CRITICAL : 0));
1085 
1086 		WARN_ON(IS_ERR(clk_data->clks[i]));
1087 	}
1088 
1089 	/* Adjust to the real max */
1090 	clk_data->clk_num = i;
1091 
1092 	if (of_clk_add_provider(node, of_clk_src_onecell_get, clk_data)) {
1093 		pr_err("%s: failed to add clock provider for %s\n",
1094 		       __func__, clk_name);
1095 		goto free_gate;
1096 	}
1097 
1098 	return clks;
1099 free_gate:
1100 	kfree(gate);
1101 free_clks:
1102 	kfree(clks);
1103 free_clkdata:
1104 	kfree(clk_data);
1105 out_unmap:
1106 	iounmap(reg);
1107 	return NULL;
1108 }
1109 
1110 static void __init sun4i_pll5_clk_setup(struct device_node *node)
1111 {
1112 	sunxi_divs_clk_setup(node, &pll5_divs_data);
1113 }
1114 CLK_OF_DECLARE(sun4i_pll5, "allwinner,sun4i-a10-pll5-clk",
1115 	       sun4i_pll5_clk_setup);
1116 
1117 static void __init sun4i_pll6_clk_setup(struct device_node *node)
1118 {
1119 	sunxi_divs_clk_setup(node, &pll6_divs_data);
1120 }
1121 CLK_OF_DECLARE(sun4i_pll6, "allwinner,sun4i-a10-pll6-clk",
1122 	       sun4i_pll6_clk_setup);
1123 
1124 static void __init sun6i_pll6_clk_setup(struct device_node *node)
1125 {
1126 	sunxi_divs_clk_setup(node, &sun6i_a31_pll6_divs_data);
1127 }
1128 CLK_OF_DECLARE(sun6i_pll6, "allwinner,sun6i-a31-pll6-clk",
1129 	       sun6i_pll6_clk_setup);
1130 
1131 /*
1132  * sun6i display
1133  *
1134  * rate = parent_rate / (m + 1);
1135  */
1136 static void sun6i_display_factors(struct factors_request *req)
1137 {
1138 	u8 m;
1139 
1140 	if (req->rate > req->parent_rate)
1141 		req->rate = req->parent_rate;
1142 
1143 	m = DIV_ROUND_UP(req->parent_rate, req->rate);
1144 
1145 	req->rate = req->parent_rate / m;
1146 	req->m = m - 1;
1147 }
1148 
1149 static const struct clk_factors_config sun6i_display_config = {
1150 	.mshift = 0,
1151 	.mwidth = 4,
1152 };
1153 
1154 static const struct factors_data sun6i_display_data __initconst = {
1155 	.enable = 31,
1156 	.mux = 24,
1157 	.muxmask = BIT(2) | BIT(1) | BIT(0),
1158 	.table = &sun6i_display_config,
1159 	.getter = sun6i_display_factors,
1160 };
1161 
1162 static void __init sun6i_display_setup(struct device_node *node)
1163 {
1164 	sunxi_factors_clk_setup(node, &sun6i_display_data);
1165 }
1166 CLK_OF_DECLARE(sun6i_display, "allwinner,sun6i-a31-display-clk",
1167 	       sun6i_display_setup);
1168