xref: /openbmc/linux/drivers/clk/sunxi/clk-sunxi.c (revision 1fa0a7dc)
1 /*
2  * Copyright 2013 Emilio López
3  *
4  * Emilio López <emilio@elopez.com.ar>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 #include <linux/clk.h>
18 #include <linux/clk-provider.h>
19 #include <linux/clkdev.h>
20 #include <linux/io.h>
21 #include <linux/of.h>
22 #include <linux/of_address.h>
23 #include <linux/reset-controller.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26 #include <linux/log2.h>
27 
28 #include "clk-factors.h"
29 
30 static DEFINE_SPINLOCK(clk_lock);
31 
32 /* Maximum number of parents our clocks have */
33 #define SUNXI_MAX_PARENTS	5
34 
35 /**
36  * sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1
37  * PLL1 rate is calculated as follows
38  * rate = (parent_rate * n * (k + 1) >> p) / (m + 1);
39  * parent_rate is always 24Mhz
40  */
41 
42 static void sun4i_get_pll1_factors(struct factors_request *req)
43 {
44 	u8 div;
45 
46 	/* Normalize value to a 6M multiple */
47 	div = req->rate / 6000000;
48 	req->rate = 6000000 * div;
49 
50 	/* m is always zero for pll1 */
51 	req->m = 0;
52 
53 	/* k is 1 only on these cases */
54 	if (req->rate >= 768000000 || req->rate == 42000000 ||
55 			req->rate == 54000000)
56 		req->k = 1;
57 	else
58 		req->k = 0;
59 
60 	/* p will be 3 for divs under 10 */
61 	if (div < 10)
62 		req->p = 3;
63 
64 	/* p will be 2 for divs between 10 - 20 and odd divs under 32 */
65 	else if (div < 20 || (div < 32 && (div & 1)))
66 		req->p = 2;
67 
68 	/* p will be 1 for even divs under 32, divs under 40 and odd pairs
69 	 * of divs between 40-62 */
70 	else if (div < 40 || (div < 64 && (div & 2)))
71 		req->p = 1;
72 
73 	/* any other entries have p = 0 */
74 	else
75 		req->p = 0;
76 
77 	/* calculate a suitable n based on k and p */
78 	div <<= req->p;
79 	div /= (req->k + 1);
80 	req->n = div / 4;
81 }
82 
83 /**
84  * sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1
85  * PLL1 rate is calculated as follows
86  * rate = parent_rate * (n + 1) * (k + 1) / (m + 1);
87  * parent_rate should always be 24MHz
88  */
89 static void sun6i_a31_get_pll1_factors(struct factors_request *req)
90 {
91 	/*
92 	 * We can operate only on MHz, this will make our life easier
93 	 * later.
94 	 */
95 	u32 freq_mhz = req->rate / 1000000;
96 	u32 parent_freq_mhz = req->parent_rate / 1000000;
97 
98 	/*
99 	 * Round down the frequency to the closest multiple of either
100 	 * 6 or 16
101 	 */
102 	u32 round_freq_6 = round_down(freq_mhz, 6);
103 	u32 round_freq_16 = round_down(freq_mhz, 16);
104 
105 	if (round_freq_6 > round_freq_16)
106 		freq_mhz = round_freq_6;
107 	else
108 		freq_mhz = round_freq_16;
109 
110 	req->rate = freq_mhz * 1000000;
111 
112 	/* If the frequency is a multiple of 32 MHz, k is always 3 */
113 	if (!(freq_mhz % 32))
114 		req->k = 3;
115 	/* If the frequency is a multiple of 9 MHz, k is always 2 */
116 	else if (!(freq_mhz % 9))
117 		req->k = 2;
118 	/* If the frequency is a multiple of 8 MHz, k is always 1 */
119 	else if (!(freq_mhz % 8))
120 		req->k = 1;
121 	/* Otherwise, we don't use the k factor */
122 	else
123 		req->k = 0;
124 
125 	/*
126 	 * If the frequency is a multiple of 2 but not a multiple of
127 	 * 3, m is 3. This is the first time we use 6 here, yet we
128 	 * will use it on several other places.
129 	 * We use this number because it's the lowest frequency we can
130 	 * generate (with n = 0, k = 0, m = 3), so every other frequency
131 	 * somehow relates to this frequency.
132 	 */
133 	if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4)
134 		req->m = 2;
135 	/*
136 	 * If the frequency is a multiple of 6MHz, but the factor is
137 	 * odd, m will be 3
138 	 */
139 	else if ((freq_mhz / 6) & 1)
140 		req->m = 3;
141 	/* Otherwise, we end up with m = 1 */
142 	else
143 		req->m = 1;
144 
145 	/* Calculate n thanks to the above factors we already got */
146 	req->n = freq_mhz * (req->m + 1) / ((req->k + 1) * parent_freq_mhz)
147 		 - 1;
148 
149 	/*
150 	 * If n end up being outbound, and that we can still decrease
151 	 * m, do it.
152 	 */
153 	if ((req->n + 1) > 31 && (req->m + 1) > 1) {
154 		req->n = (req->n + 1) / 2 - 1;
155 		req->m = (req->m + 1) / 2 - 1;
156 	}
157 }
158 
159 /**
160  * sun8i_a23_get_pll1_factors() - calculates n, k, m, p factors for PLL1
161  * PLL1 rate is calculated as follows
162  * rate = (parent_rate * (n + 1) * (k + 1) >> p) / (m + 1);
163  * parent_rate is always 24Mhz
164  */
165 
166 static void sun8i_a23_get_pll1_factors(struct factors_request *req)
167 {
168 	u8 div;
169 
170 	/* Normalize value to a 6M multiple */
171 	div = req->rate / 6000000;
172 	req->rate = 6000000 * div;
173 
174 	/* m is always zero for pll1 */
175 	req->m = 0;
176 
177 	/* k is 1 only on these cases */
178 	if (req->rate >= 768000000 || req->rate == 42000000 ||
179 			req->rate == 54000000)
180 		req->k = 1;
181 	else
182 		req->k = 0;
183 
184 	/* p will be 2 for divs under 20 and odd divs under 32 */
185 	if (div < 20 || (div < 32 && (div & 1)))
186 		req->p = 2;
187 
188 	/* p will be 1 for even divs under 32, divs under 40 and odd pairs
189 	 * of divs between 40-62 */
190 	else if (div < 40 || (div < 64 && (div & 2)))
191 		req->p = 1;
192 
193 	/* any other entries have p = 0 */
194 	else
195 		req->p = 0;
196 
197 	/* calculate a suitable n based on k and p */
198 	div <<= req->p;
199 	div /= (req->k + 1);
200 	req->n = div / 4 - 1;
201 }
202 
203 /**
204  * sun4i_get_pll5_factors() - calculates n, k factors for PLL5
205  * PLL5 rate is calculated as follows
206  * rate = parent_rate * n * (k + 1)
207  * parent_rate is always 24Mhz
208  */
209 
210 static void sun4i_get_pll5_factors(struct factors_request *req)
211 {
212 	u8 div;
213 
214 	/* Normalize value to a parent_rate multiple (24M) */
215 	div = req->rate / req->parent_rate;
216 	req->rate = req->parent_rate * div;
217 
218 	if (div < 31)
219 		req->k = 0;
220 	else if (div / 2 < 31)
221 		req->k = 1;
222 	else if (div / 3 < 31)
223 		req->k = 2;
224 	else
225 		req->k = 3;
226 
227 	req->n = DIV_ROUND_UP(div, (req->k + 1));
228 }
229 
230 /**
231  * sun6i_a31_get_pll6_factors() - calculates n, k factors for A31 PLL6x2
232  * PLL6x2 rate is calculated as follows
233  * rate = parent_rate * (n + 1) * (k + 1)
234  * parent_rate is always 24Mhz
235  */
236 
237 static void sun6i_a31_get_pll6_factors(struct factors_request *req)
238 {
239 	u8 div;
240 
241 	/* Normalize value to a parent_rate multiple (24M) */
242 	div = req->rate / req->parent_rate;
243 	req->rate = req->parent_rate * div;
244 
245 	req->k = div / 32;
246 	if (req->k > 3)
247 		req->k = 3;
248 
249 	req->n = DIV_ROUND_UP(div, (req->k + 1)) - 1;
250 }
251 
252 /**
253  * sun5i_a13_get_ahb_factors() - calculates m, p factors for AHB
254  * AHB rate is calculated as follows
255  * rate = parent_rate >> p
256  */
257 
258 static void sun5i_a13_get_ahb_factors(struct factors_request *req)
259 {
260 	u32 div;
261 
262 	/* divide only */
263 	if (req->parent_rate < req->rate)
264 		req->rate = req->parent_rate;
265 
266 	/*
267 	 * user manual says valid speed is 8k ~ 276M, but tests show it
268 	 * can work at speeds up to 300M, just after reparenting to pll6
269 	 */
270 	if (req->rate < 8000)
271 		req->rate = 8000;
272 	if (req->rate > 300000000)
273 		req->rate = 300000000;
274 
275 	div = order_base_2(DIV_ROUND_UP(req->parent_rate, req->rate));
276 
277 	/* p = 0 ~ 3 */
278 	if (div > 3)
279 		div = 3;
280 
281 	req->rate = req->parent_rate >> div;
282 
283 	req->p = div;
284 }
285 
286 #define SUN6I_AHB1_PARENT_PLL6	3
287 
288 /**
289  * sun6i_a31_get_ahb_factors() - calculates m, p factors for AHB
290  * AHB rate is calculated as follows
291  * rate = parent_rate >> p
292  *
293  * if parent is pll6, then
294  * parent_rate = pll6 rate / (m + 1)
295  */
296 
297 static void sun6i_get_ahb1_factors(struct factors_request *req)
298 {
299 	u8 div, calcp, calcm = 1;
300 
301 	/*
302 	 * clock can only divide, so we will never be able to achieve
303 	 * frequencies higher than the parent frequency
304 	 */
305 	if (req->parent_rate && req->rate > req->parent_rate)
306 		req->rate = req->parent_rate;
307 
308 	div = DIV_ROUND_UP(req->parent_rate, req->rate);
309 
310 	/* calculate pre-divider if parent is pll6 */
311 	if (req->parent_index == SUN6I_AHB1_PARENT_PLL6) {
312 		if (div < 4)
313 			calcp = 0;
314 		else if (div / 2 < 4)
315 			calcp = 1;
316 		else if (div / 4 < 4)
317 			calcp = 2;
318 		else
319 			calcp = 3;
320 
321 		calcm = DIV_ROUND_UP(div, 1 << calcp);
322 	} else {
323 		calcp = __roundup_pow_of_two(div);
324 		calcp = calcp > 3 ? 3 : calcp;
325 	}
326 
327 	req->rate = (req->parent_rate / calcm) >> calcp;
328 	req->p = calcp;
329 	req->m = calcm - 1;
330 }
331 
332 /**
333  * sun6i_ahb1_recalc() - calculates AHB clock rate from m, p factors and
334  *			 parent index
335  */
336 static void sun6i_ahb1_recalc(struct factors_request *req)
337 {
338 	req->rate = req->parent_rate;
339 
340 	/* apply pre-divider first if parent is pll6 */
341 	if (req->parent_index == SUN6I_AHB1_PARENT_PLL6)
342 		req->rate /= req->m + 1;
343 
344 	/* clk divider */
345 	req->rate >>= req->p;
346 }
347 
348 /**
349  * sun4i_get_apb1_factors() - calculates m, p factors for APB1
350  * APB1 rate is calculated as follows
351  * rate = (parent_rate >> p) / (m + 1);
352  */
353 
354 static void sun4i_get_apb1_factors(struct factors_request *req)
355 {
356 	u8 calcm, calcp;
357 	int div;
358 
359 	if (req->parent_rate < req->rate)
360 		req->rate = req->parent_rate;
361 
362 	div = DIV_ROUND_UP(req->parent_rate, req->rate);
363 
364 	/* Invalid rate! */
365 	if (div > 32)
366 		return;
367 
368 	if (div <= 4)
369 		calcp = 0;
370 	else if (div <= 8)
371 		calcp = 1;
372 	else if (div <= 16)
373 		calcp = 2;
374 	else
375 		calcp = 3;
376 
377 	calcm = (div >> calcp) - 1;
378 
379 	req->rate = (req->parent_rate >> calcp) / (calcm + 1);
380 	req->m = calcm;
381 	req->p = calcp;
382 }
383 
384 
385 
386 
387 /**
388  * sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B
389  * CLK_OUT rate is calculated as follows
390  * rate = (parent_rate >> p) / (m + 1);
391  */
392 
393 static void sun7i_a20_get_out_factors(struct factors_request *req)
394 {
395 	u8 div, calcm, calcp;
396 
397 	/* These clocks can only divide, so we will never be able to achieve
398 	 * frequencies higher than the parent frequency */
399 	if (req->rate > req->parent_rate)
400 		req->rate = req->parent_rate;
401 
402 	div = DIV_ROUND_UP(req->parent_rate, req->rate);
403 
404 	if (div < 32)
405 		calcp = 0;
406 	else if (div / 2 < 32)
407 		calcp = 1;
408 	else if (div / 4 < 32)
409 		calcp = 2;
410 	else
411 		calcp = 3;
412 
413 	calcm = DIV_ROUND_UP(div, 1 << calcp);
414 
415 	req->rate = (req->parent_rate >> calcp) / calcm;
416 	req->m = calcm - 1;
417 	req->p = calcp;
418 }
419 
420 /**
421  * sunxi_factors_clk_setup() - Setup function for factor clocks
422  */
423 
424 static const struct clk_factors_config sun4i_pll1_config = {
425 	.nshift = 8,
426 	.nwidth = 5,
427 	.kshift = 4,
428 	.kwidth = 2,
429 	.mshift = 0,
430 	.mwidth = 2,
431 	.pshift = 16,
432 	.pwidth = 2,
433 };
434 
435 static const struct clk_factors_config sun6i_a31_pll1_config = {
436 	.nshift	= 8,
437 	.nwidth = 5,
438 	.kshift = 4,
439 	.kwidth = 2,
440 	.mshift = 0,
441 	.mwidth = 2,
442 	.n_start = 1,
443 };
444 
445 static const struct clk_factors_config sun8i_a23_pll1_config = {
446 	.nshift = 8,
447 	.nwidth = 5,
448 	.kshift = 4,
449 	.kwidth = 2,
450 	.mshift = 0,
451 	.mwidth = 2,
452 	.pshift = 16,
453 	.pwidth = 2,
454 	.n_start = 1,
455 };
456 
457 static const struct clk_factors_config sun4i_pll5_config = {
458 	.nshift = 8,
459 	.nwidth = 5,
460 	.kshift = 4,
461 	.kwidth = 2,
462 };
463 
464 static const struct clk_factors_config sun6i_a31_pll6_config = {
465 	.nshift	= 8,
466 	.nwidth = 5,
467 	.kshift = 4,
468 	.kwidth = 2,
469 	.n_start = 1,
470 };
471 
472 static const struct clk_factors_config sun5i_a13_ahb_config = {
473 	.pshift = 4,
474 	.pwidth = 2,
475 };
476 
477 static const struct clk_factors_config sun6i_ahb1_config = {
478 	.mshift = 6,
479 	.mwidth = 2,
480 	.pshift = 4,
481 	.pwidth = 2,
482 };
483 
484 static const struct clk_factors_config sun4i_apb1_config = {
485 	.mshift = 0,
486 	.mwidth = 5,
487 	.pshift = 16,
488 	.pwidth = 2,
489 };
490 
491 /* user manual says "n" but it's really "p" */
492 static const struct clk_factors_config sun7i_a20_out_config = {
493 	.mshift = 8,
494 	.mwidth = 5,
495 	.pshift = 20,
496 	.pwidth = 2,
497 };
498 
499 static const struct factors_data sun4i_pll1_data __initconst = {
500 	.enable = 31,
501 	.table = &sun4i_pll1_config,
502 	.getter = sun4i_get_pll1_factors,
503 };
504 
505 static const struct factors_data sun6i_a31_pll1_data __initconst = {
506 	.enable = 31,
507 	.table = &sun6i_a31_pll1_config,
508 	.getter = sun6i_a31_get_pll1_factors,
509 };
510 
511 static const struct factors_data sun8i_a23_pll1_data __initconst = {
512 	.enable = 31,
513 	.table = &sun8i_a23_pll1_config,
514 	.getter = sun8i_a23_get_pll1_factors,
515 };
516 
517 static const struct factors_data sun7i_a20_pll4_data __initconst = {
518 	.enable = 31,
519 	.table = &sun4i_pll5_config,
520 	.getter = sun4i_get_pll5_factors,
521 };
522 
523 static const struct factors_data sun4i_pll5_data __initconst = {
524 	.enable = 31,
525 	.table = &sun4i_pll5_config,
526 	.getter = sun4i_get_pll5_factors,
527 };
528 
529 static const struct factors_data sun6i_a31_pll6_data __initconst = {
530 	.enable = 31,
531 	.table = &sun6i_a31_pll6_config,
532 	.getter = sun6i_a31_get_pll6_factors,
533 };
534 
535 static const struct factors_data sun5i_a13_ahb_data __initconst = {
536 	.mux = 6,
537 	.muxmask = BIT(1) | BIT(0),
538 	.table = &sun5i_a13_ahb_config,
539 	.getter = sun5i_a13_get_ahb_factors,
540 };
541 
542 static const struct factors_data sun6i_ahb1_data __initconst = {
543 	.mux = 12,
544 	.muxmask = BIT(1) | BIT(0),
545 	.table = &sun6i_ahb1_config,
546 	.getter = sun6i_get_ahb1_factors,
547 	.recalc = sun6i_ahb1_recalc,
548 };
549 
550 static const struct factors_data sun4i_apb1_data __initconst = {
551 	.mux = 24,
552 	.muxmask = BIT(1) | BIT(0),
553 	.table = &sun4i_apb1_config,
554 	.getter = sun4i_get_apb1_factors,
555 };
556 
557 static const struct factors_data sun7i_a20_out_data __initconst = {
558 	.enable = 31,
559 	.mux = 24,
560 	.muxmask = BIT(1) | BIT(0),
561 	.table = &sun7i_a20_out_config,
562 	.getter = sun7i_a20_get_out_factors,
563 };
564 
565 static struct clk * __init sunxi_factors_clk_setup(struct device_node *node,
566 						   const struct factors_data *data)
567 {
568 	void __iomem *reg;
569 
570 	reg = of_iomap(node, 0);
571 	if (!reg) {
572 		pr_err("Could not get registers for factors-clk: %pOFn\n",
573 		       node);
574 		return NULL;
575 	}
576 
577 	return sunxi_factors_register(node, data, &clk_lock, reg);
578 }
579 
580 static void __init sun4i_pll1_clk_setup(struct device_node *node)
581 {
582 	sunxi_factors_clk_setup(node, &sun4i_pll1_data);
583 }
584 CLK_OF_DECLARE(sun4i_pll1, "allwinner,sun4i-a10-pll1-clk",
585 	       sun4i_pll1_clk_setup);
586 
587 static void __init sun6i_pll1_clk_setup(struct device_node *node)
588 {
589 	sunxi_factors_clk_setup(node, &sun6i_a31_pll1_data);
590 }
591 CLK_OF_DECLARE(sun6i_pll1, "allwinner,sun6i-a31-pll1-clk",
592 	       sun6i_pll1_clk_setup);
593 
594 static void __init sun8i_pll1_clk_setup(struct device_node *node)
595 {
596 	sunxi_factors_clk_setup(node, &sun8i_a23_pll1_data);
597 }
598 CLK_OF_DECLARE(sun8i_pll1, "allwinner,sun8i-a23-pll1-clk",
599 	       sun8i_pll1_clk_setup);
600 
601 static void __init sun7i_pll4_clk_setup(struct device_node *node)
602 {
603 	sunxi_factors_clk_setup(node, &sun7i_a20_pll4_data);
604 }
605 CLK_OF_DECLARE(sun7i_pll4, "allwinner,sun7i-a20-pll4-clk",
606 	       sun7i_pll4_clk_setup);
607 
608 static void __init sun5i_ahb_clk_setup(struct device_node *node)
609 {
610 	sunxi_factors_clk_setup(node, &sun5i_a13_ahb_data);
611 }
612 CLK_OF_DECLARE(sun5i_ahb, "allwinner,sun5i-a13-ahb-clk",
613 	       sun5i_ahb_clk_setup);
614 
615 static void __init sun6i_ahb1_clk_setup(struct device_node *node)
616 {
617 	sunxi_factors_clk_setup(node, &sun6i_ahb1_data);
618 }
619 CLK_OF_DECLARE(sun6i_a31_ahb1, "allwinner,sun6i-a31-ahb1-clk",
620 	       sun6i_ahb1_clk_setup);
621 
622 static void __init sun4i_apb1_clk_setup(struct device_node *node)
623 {
624 	sunxi_factors_clk_setup(node, &sun4i_apb1_data);
625 }
626 CLK_OF_DECLARE(sun4i_apb1, "allwinner,sun4i-a10-apb1-clk",
627 	       sun4i_apb1_clk_setup);
628 
629 static void __init sun7i_out_clk_setup(struct device_node *node)
630 {
631 	sunxi_factors_clk_setup(node, &sun7i_a20_out_data);
632 }
633 CLK_OF_DECLARE(sun7i_out, "allwinner,sun7i-a20-out-clk",
634 	       sun7i_out_clk_setup);
635 
636 
637 /**
638  * sunxi_mux_clk_setup() - Setup function for muxes
639  */
640 
641 #define SUNXI_MUX_GATE_WIDTH	2
642 
643 struct mux_data {
644 	u8 shift;
645 };
646 
647 static const struct mux_data sun4i_cpu_mux_data __initconst = {
648 	.shift = 16,
649 };
650 
651 static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = {
652 	.shift = 12,
653 };
654 
655 static const struct mux_data sun8i_h3_ahb2_mux_data __initconst = {
656 	.shift = 0,
657 };
658 
659 static struct clk * __init sunxi_mux_clk_setup(struct device_node *node,
660 					       const struct mux_data *data,
661 					       unsigned long flags)
662 {
663 	struct clk *clk;
664 	const char *clk_name = node->name;
665 	const char *parents[SUNXI_MAX_PARENTS];
666 	void __iomem *reg;
667 	int i;
668 
669 	reg = of_iomap(node, 0);
670 	if (!reg) {
671 		pr_err("Could not map registers for mux-clk: %pOF\n", node);
672 		return NULL;
673 	}
674 
675 	i = of_clk_parent_fill(node, parents, SUNXI_MAX_PARENTS);
676 	if (of_property_read_string(node, "clock-output-names", &clk_name)) {
677 		pr_err("%s: could not read clock-output-names from \"%pOF\"\n",
678 		       __func__, node);
679 		goto out_unmap;
680 	}
681 
682 	clk = clk_register_mux(NULL, clk_name, parents, i,
683 			       CLK_SET_RATE_PARENT | flags, reg,
684 			       data->shift, SUNXI_MUX_GATE_WIDTH,
685 			       0, &clk_lock);
686 
687 	if (IS_ERR(clk)) {
688 		pr_err("%s: failed to register mux clock %s: %ld\n", __func__,
689 		       clk_name, PTR_ERR(clk));
690 		goto out_unmap;
691 	}
692 
693 	if (of_clk_add_provider(node, of_clk_src_simple_get, clk)) {
694 		pr_err("%s: failed to add clock provider for %s\n",
695 		       __func__, clk_name);
696 		clk_unregister_divider(clk);
697 		goto out_unmap;
698 	}
699 
700 	return clk;
701 out_unmap:
702 	iounmap(reg);
703 	return NULL;
704 }
705 
706 static void __init sun4i_cpu_clk_setup(struct device_node *node)
707 {
708 	/* Protect CPU clock */
709 	sunxi_mux_clk_setup(node, &sun4i_cpu_mux_data, CLK_IS_CRITICAL);
710 }
711 CLK_OF_DECLARE(sun4i_cpu, "allwinner,sun4i-a10-cpu-clk",
712 	       sun4i_cpu_clk_setup);
713 
714 static void __init sun6i_ahb1_mux_clk_setup(struct device_node *node)
715 {
716 	sunxi_mux_clk_setup(node, &sun6i_a31_ahb1_mux_data, 0);
717 }
718 CLK_OF_DECLARE(sun6i_ahb1_mux, "allwinner,sun6i-a31-ahb1-mux-clk",
719 	       sun6i_ahb1_mux_clk_setup);
720 
721 static void __init sun8i_ahb2_clk_setup(struct device_node *node)
722 {
723 	sunxi_mux_clk_setup(node, &sun8i_h3_ahb2_mux_data, 0);
724 }
725 CLK_OF_DECLARE(sun8i_ahb2, "allwinner,sun8i-h3-ahb2-clk",
726 	       sun8i_ahb2_clk_setup);
727 
728 
729 /**
730  * sunxi_divider_clk_setup() - Setup function for simple divider clocks
731  */
732 
733 struct div_data {
734 	u8	shift;
735 	u8	pow;
736 	u8	width;
737 	const struct clk_div_table *table;
738 };
739 
740 static const struct div_data sun4i_axi_data __initconst = {
741 	.shift	= 0,
742 	.pow	= 0,
743 	.width	= 2,
744 };
745 
746 static const struct clk_div_table sun8i_a23_axi_table[] __initconst = {
747 	{ .val = 0, .div = 1 },
748 	{ .val = 1, .div = 2 },
749 	{ .val = 2, .div = 3 },
750 	{ .val = 3, .div = 4 },
751 	{ .val = 4, .div = 4 },
752 	{ .val = 5, .div = 4 },
753 	{ .val = 6, .div = 4 },
754 	{ .val = 7, .div = 4 },
755 	{ } /* sentinel */
756 };
757 
758 static const struct div_data sun8i_a23_axi_data __initconst = {
759 	.width	= 3,
760 	.table	= sun8i_a23_axi_table,
761 };
762 
763 static const struct div_data sun4i_ahb_data __initconst = {
764 	.shift	= 4,
765 	.pow	= 1,
766 	.width	= 2,
767 };
768 
769 static const struct clk_div_table sun4i_apb0_table[] __initconst = {
770 	{ .val = 0, .div = 2 },
771 	{ .val = 1, .div = 2 },
772 	{ .val = 2, .div = 4 },
773 	{ .val = 3, .div = 8 },
774 	{ } /* sentinel */
775 };
776 
777 static const struct div_data sun4i_apb0_data __initconst = {
778 	.shift	= 8,
779 	.pow	= 1,
780 	.width	= 2,
781 	.table	= sun4i_apb0_table,
782 };
783 
784 static void __init sunxi_divider_clk_setup(struct device_node *node,
785 					   const struct div_data *data)
786 {
787 	struct clk *clk;
788 	const char *clk_name = node->name;
789 	const char *clk_parent;
790 	void __iomem *reg;
791 
792 	reg = of_iomap(node, 0);
793 	if (!reg) {
794 		pr_err("Could not map registers for mux-clk: %pOF\n", node);
795 		return;
796 	}
797 
798 	clk_parent = of_clk_get_parent_name(node, 0);
799 
800 	if (of_property_read_string(node, "clock-output-names", &clk_name)) {
801 		pr_err("%s: could not read clock-output-names from \"%pOF\"\n",
802 		       __func__, node);
803 		goto out_unmap;
804 	}
805 
806 	clk = clk_register_divider_table(NULL, clk_name, clk_parent, 0,
807 					 reg, data->shift, data->width,
808 					 data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0,
809 					 data->table, &clk_lock);
810 	if (IS_ERR(clk)) {
811 		pr_err("%s: failed to register divider clock %s: %ld\n",
812 		       __func__, clk_name, PTR_ERR(clk));
813 		goto out_unmap;
814 	}
815 
816 	if (of_clk_add_provider(node, of_clk_src_simple_get, clk)) {
817 		pr_err("%s: failed to add clock provider for %s\n",
818 		       __func__, clk_name);
819 		goto out_unregister;
820 	}
821 
822 	if (clk_register_clkdev(clk, clk_name, NULL)) {
823 		of_clk_del_provider(node);
824 		goto out_unregister;
825 	}
826 
827 	return;
828 out_unregister:
829 	clk_unregister_divider(clk);
830 
831 out_unmap:
832 	iounmap(reg);
833 }
834 
835 static void __init sun4i_ahb_clk_setup(struct device_node *node)
836 {
837 	sunxi_divider_clk_setup(node, &sun4i_ahb_data);
838 }
839 CLK_OF_DECLARE(sun4i_ahb, "allwinner,sun4i-a10-ahb-clk",
840 	       sun4i_ahb_clk_setup);
841 
842 static void __init sun4i_apb0_clk_setup(struct device_node *node)
843 {
844 	sunxi_divider_clk_setup(node, &sun4i_apb0_data);
845 }
846 CLK_OF_DECLARE(sun4i_apb0, "allwinner,sun4i-a10-apb0-clk",
847 	       sun4i_apb0_clk_setup);
848 
849 static void __init sun4i_axi_clk_setup(struct device_node *node)
850 {
851 	sunxi_divider_clk_setup(node, &sun4i_axi_data);
852 }
853 CLK_OF_DECLARE(sun4i_axi, "allwinner,sun4i-a10-axi-clk",
854 	       sun4i_axi_clk_setup);
855 
856 static void __init sun8i_axi_clk_setup(struct device_node *node)
857 {
858 	sunxi_divider_clk_setup(node, &sun8i_a23_axi_data);
859 }
860 CLK_OF_DECLARE(sun8i_axi, "allwinner,sun8i-a23-axi-clk",
861 	       sun8i_axi_clk_setup);
862 
863 
864 
865 /**
866  * sunxi_gates_clk_setup() - Setup function for leaf gates on clocks
867  */
868 
869 #define SUNXI_GATES_MAX_SIZE	64
870 
871 struct gates_data {
872 	DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE);
873 };
874 
875 /**
876  * sunxi_divs_clk_setup() helper data
877  */
878 
879 #define SUNXI_DIVS_MAX_QTY	4
880 #define SUNXI_DIVISOR_WIDTH	2
881 
882 struct divs_data {
883 	const struct factors_data *factors; /* data for the factor clock */
884 	int ndivs; /* number of outputs */
885 	/*
886 	 * List of outputs. Refer to the diagram for sunxi_divs_clk_setup():
887 	 * self or base factor clock refers to the output from the pll
888 	 * itself. The remaining refer to fixed or configurable divider
889 	 * outputs.
890 	 */
891 	struct {
892 		u8 self; /* is it the base factor clock? (only one) */
893 		u8 fixed; /* is it a fixed divisor? if not... */
894 		struct clk_div_table *table; /* is it a table based divisor? */
895 		u8 shift; /* otherwise it's a normal divisor with this shift */
896 		u8 pow;   /* is it power-of-two based? */
897 		u8 gate;  /* is it independently gateable? */
898 		bool critical;
899 	} div[SUNXI_DIVS_MAX_QTY];
900 };
901 
902 static struct clk_div_table pll6_sata_tbl[] = {
903 	{ .val = 0, .div = 6, },
904 	{ .val = 1, .div = 12, },
905 	{ .val = 2, .div = 18, },
906 	{ .val = 3, .div = 24, },
907 	{ } /* sentinel */
908 };
909 
910 static const struct divs_data pll5_divs_data __initconst = {
911 	.factors = &sun4i_pll5_data,
912 	.ndivs = 2,
913 	.div = {
914 		/* Protect PLL5_DDR */
915 		{ .shift = 0, .pow = 0, .critical = true }, /* M, DDR */
916 		{ .shift = 16, .pow = 1, }, /* P, other */
917 		/* No output for the base factor clock */
918 	}
919 };
920 
921 static const struct divs_data pll6_divs_data __initconst = {
922 	.factors = &sun4i_pll5_data,
923 	.ndivs = 4,
924 	.div = {
925 		{ .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */
926 		{ .fixed = 2 }, /* P, other */
927 		{ .self = 1 }, /* base factor clock, 2x */
928 		{ .fixed = 4 }, /* pll6 / 4, used as ahb input */
929 	}
930 };
931 
932 static const struct divs_data sun6i_a31_pll6_divs_data __initconst = {
933 	.factors = &sun6i_a31_pll6_data,
934 	.ndivs = 2,
935 	.div = {
936 		{ .fixed = 2 }, /* normal output */
937 		{ .self = 1 }, /* base factor clock, 2x */
938 	}
939 };
940 
941 /**
942  * sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks
943  *
944  * These clocks look something like this
945  *            ________________________
946  *           |         ___divisor 1---|----> to consumer
947  * parent >--|  pll___/___divisor 2---|----> to consumer
948  *           |        \_______________|____> to consumer
949  *           |________________________|
950  */
951 
952 static struct clk ** __init sunxi_divs_clk_setup(struct device_node *node,
953 						 const struct divs_data *data)
954 {
955 	struct clk_onecell_data *clk_data;
956 	const char *parent;
957 	const char *clk_name;
958 	struct clk **clks, *pclk;
959 	struct clk_hw *gate_hw, *rate_hw;
960 	const struct clk_ops *rate_ops;
961 	struct clk_gate *gate = NULL;
962 	struct clk_fixed_factor *fix_factor;
963 	struct clk_divider *divider;
964 	struct factors_data factors = *data->factors;
965 	char *derived_name = NULL;
966 	void __iomem *reg;
967 	int ndivs = SUNXI_DIVS_MAX_QTY, i = 0;
968 	int flags, clkflags;
969 
970 	/* if number of children known, use it */
971 	if (data->ndivs)
972 		ndivs = data->ndivs;
973 
974 	/* Try to find a name for base factor clock */
975 	for (i = 0; i < ndivs; i++) {
976 		if (data->div[i].self) {
977 			of_property_read_string_index(node, "clock-output-names",
978 						      i, &factors.name);
979 			break;
980 		}
981 	}
982 	/* If we don't have a .self clk use the first output-name up to '_' */
983 	if (factors.name == NULL) {
984 		char *endp;
985 
986 		of_property_read_string_index(node, "clock-output-names",
987 						      0, &clk_name);
988 		endp = strchr(clk_name, '_');
989 		if (endp) {
990 			derived_name = kstrndup(clk_name, endp - clk_name,
991 						GFP_KERNEL);
992 			factors.name = derived_name;
993 		} else {
994 			factors.name = clk_name;
995 		}
996 	}
997 
998 	/* Set up factor clock that we will be dividing */
999 	pclk = sunxi_factors_clk_setup(node, &factors);
1000 	if (!pclk)
1001 		return NULL;
1002 
1003 	parent = __clk_get_name(pclk);
1004 	kfree(derived_name);
1005 
1006 	reg = of_iomap(node, 0);
1007 	if (!reg) {
1008 		pr_err("Could not map registers for divs-clk: %pOF\n", node);
1009 		return NULL;
1010 	}
1011 
1012 	clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
1013 	if (!clk_data)
1014 		goto out_unmap;
1015 
1016 	clks = kcalloc(ndivs, sizeof(*clks), GFP_KERNEL);
1017 	if (!clks)
1018 		goto free_clkdata;
1019 
1020 	clk_data->clks = clks;
1021 
1022 	/* It's not a good idea to have automatic reparenting changing
1023 	 * our RAM clock! */
1024 	clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT;
1025 
1026 	for (i = 0; i < ndivs; i++) {
1027 		if (of_property_read_string_index(node, "clock-output-names",
1028 						  i, &clk_name) != 0)
1029 			break;
1030 
1031 		/* If this is the base factor clock, only update clks */
1032 		if (data->div[i].self) {
1033 			clk_data->clks[i] = pclk;
1034 			continue;
1035 		}
1036 
1037 		gate_hw = NULL;
1038 		rate_hw = NULL;
1039 		rate_ops = NULL;
1040 
1041 		/* If this leaf clock can be gated, create a gate */
1042 		if (data->div[i].gate) {
1043 			gate = kzalloc(sizeof(*gate), GFP_KERNEL);
1044 			if (!gate)
1045 				goto free_clks;
1046 
1047 			gate->reg = reg;
1048 			gate->bit_idx = data->div[i].gate;
1049 			gate->lock = &clk_lock;
1050 
1051 			gate_hw = &gate->hw;
1052 		}
1053 
1054 		/* Leaves can be fixed or configurable divisors */
1055 		if (data->div[i].fixed) {
1056 			fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL);
1057 			if (!fix_factor)
1058 				goto free_gate;
1059 
1060 			fix_factor->mult = 1;
1061 			fix_factor->div = data->div[i].fixed;
1062 
1063 			rate_hw = &fix_factor->hw;
1064 			rate_ops = &clk_fixed_factor_ops;
1065 		} else {
1066 			divider = kzalloc(sizeof(*divider), GFP_KERNEL);
1067 			if (!divider)
1068 				goto free_gate;
1069 
1070 			flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0;
1071 
1072 			divider->reg = reg;
1073 			divider->shift = data->div[i].shift;
1074 			divider->width = SUNXI_DIVISOR_WIDTH;
1075 			divider->flags = flags;
1076 			divider->lock = &clk_lock;
1077 			divider->table = data->div[i].table;
1078 
1079 			rate_hw = &divider->hw;
1080 			rate_ops = &clk_divider_ops;
1081 		}
1082 
1083 		/* Wrap the (potential) gate and the divisor on a composite
1084 		 * clock to unify them */
1085 		clks[i] = clk_register_composite(NULL, clk_name, &parent, 1,
1086 						 NULL, NULL,
1087 						 rate_hw, rate_ops,
1088 						 gate_hw, &clk_gate_ops,
1089 						 clkflags |
1090 						 data->div[i].critical ?
1091 							CLK_IS_CRITICAL : 0);
1092 
1093 		WARN_ON(IS_ERR(clk_data->clks[i]));
1094 	}
1095 
1096 	/* Adjust to the real max */
1097 	clk_data->clk_num = i;
1098 
1099 	if (of_clk_add_provider(node, of_clk_src_onecell_get, clk_data)) {
1100 		pr_err("%s: failed to add clock provider for %s\n",
1101 		       __func__, clk_name);
1102 		goto free_gate;
1103 	}
1104 
1105 	return clks;
1106 free_gate:
1107 	kfree(gate);
1108 free_clks:
1109 	kfree(clks);
1110 free_clkdata:
1111 	kfree(clk_data);
1112 out_unmap:
1113 	iounmap(reg);
1114 	return NULL;
1115 }
1116 
1117 static void __init sun4i_pll5_clk_setup(struct device_node *node)
1118 {
1119 	sunxi_divs_clk_setup(node, &pll5_divs_data);
1120 }
1121 CLK_OF_DECLARE(sun4i_pll5, "allwinner,sun4i-a10-pll5-clk",
1122 	       sun4i_pll5_clk_setup);
1123 
1124 static void __init sun4i_pll6_clk_setup(struct device_node *node)
1125 {
1126 	sunxi_divs_clk_setup(node, &pll6_divs_data);
1127 }
1128 CLK_OF_DECLARE(sun4i_pll6, "allwinner,sun4i-a10-pll6-clk",
1129 	       sun4i_pll6_clk_setup);
1130 
1131 static void __init sun6i_pll6_clk_setup(struct device_node *node)
1132 {
1133 	sunxi_divs_clk_setup(node, &sun6i_a31_pll6_divs_data);
1134 }
1135 CLK_OF_DECLARE(sun6i_pll6, "allwinner,sun6i-a31-pll6-clk",
1136 	       sun6i_pll6_clk_setup);
1137 
1138 /*
1139  * sun6i display
1140  *
1141  * rate = parent_rate / (m + 1);
1142  */
1143 static void sun6i_display_factors(struct factors_request *req)
1144 {
1145 	u8 m;
1146 
1147 	if (req->rate > req->parent_rate)
1148 		req->rate = req->parent_rate;
1149 
1150 	m = DIV_ROUND_UP(req->parent_rate, req->rate);
1151 
1152 	req->rate = req->parent_rate / m;
1153 	req->m = m - 1;
1154 }
1155 
1156 static const struct clk_factors_config sun6i_display_config = {
1157 	.mshift = 0,
1158 	.mwidth = 4,
1159 };
1160 
1161 static const struct factors_data sun6i_display_data __initconst = {
1162 	.enable = 31,
1163 	.mux = 24,
1164 	.muxmask = BIT(2) | BIT(1) | BIT(0),
1165 	.table = &sun6i_display_config,
1166 	.getter = sun6i_display_factors,
1167 };
1168 
1169 static void __init sun6i_display_setup(struct device_node *node)
1170 {
1171 	sunxi_factors_clk_setup(node, &sun6i_display_data);
1172 }
1173 CLK_OF_DECLARE(sun6i_display, "allwinner,sun6i-a31-display-clk",
1174 	       sun6i_display_setup);
1175