xref: /openbmc/linux/drivers/clk/sunxi/clk-sunxi.c (revision 110e6f26)
1 /*
2  * Copyright 2013 Emilio López
3  *
4  * Emilio López <emilio@elopez.com.ar>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 #include <linux/clk.h>
18 #include <linux/clk-provider.h>
19 #include <linux/clkdev.h>
20 #include <linux/of.h>
21 #include <linux/of_address.h>
22 #include <linux/reset-controller.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 #include <linux/log2.h>
26 
27 #include "clk-factors.h"
28 
29 static DEFINE_SPINLOCK(clk_lock);
30 
31 /* Maximum number of parents our clocks have */
32 #define SUNXI_MAX_PARENTS	5
33 
34 /**
35  * sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1
36  * PLL1 rate is calculated as follows
37  * rate = (parent_rate * n * (k + 1) >> p) / (m + 1);
38  * parent_rate is always 24Mhz
39  */
40 
41 static void sun4i_get_pll1_factors(struct factors_request *req)
42 {
43 	u8 div;
44 
45 	/* Normalize value to a 6M multiple */
46 	div = req->rate / 6000000;
47 	req->rate = 6000000 * div;
48 
49 	/* m is always zero for pll1 */
50 	req->m = 0;
51 
52 	/* k is 1 only on these cases */
53 	if (req->rate >= 768000000 || req->rate == 42000000 ||
54 			req->rate == 54000000)
55 		req->k = 1;
56 	else
57 		req->k = 0;
58 
59 	/* p will be 3 for divs under 10 */
60 	if (div < 10)
61 		req->p = 3;
62 
63 	/* p will be 2 for divs between 10 - 20 and odd divs under 32 */
64 	else if (div < 20 || (div < 32 && (div & 1)))
65 		req->p = 2;
66 
67 	/* p will be 1 for even divs under 32, divs under 40 and odd pairs
68 	 * of divs between 40-62 */
69 	else if (div < 40 || (div < 64 && (div & 2)))
70 		req->p = 1;
71 
72 	/* any other entries have p = 0 */
73 	else
74 		req->p = 0;
75 
76 	/* calculate a suitable n based on k and p */
77 	div <<= req->p;
78 	div /= (req->k + 1);
79 	req->n = div / 4;
80 }
81 
82 /**
83  * sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1
84  * PLL1 rate is calculated as follows
85  * rate = parent_rate * (n + 1) * (k + 1) / (m + 1);
86  * parent_rate should always be 24MHz
87  */
88 static void sun6i_a31_get_pll1_factors(struct factors_request *req)
89 {
90 	/*
91 	 * We can operate only on MHz, this will make our life easier
92 	 * later.
93 	 */
94 	u32 freq_mhz = req->rate / 1000000;
95 	u32 parent_freq_mhz = req->parent_rate / 1000000;
96 
97 	/*
98 	 * Round down the frequency to the closest multiple of either
99 	 * 6 or 16
100 	 */
101 	u32 round_freq_6 = round_down(freq_mhz, 6);
102 	u32 round_freq_16 = round_down(freq_mhz, 16);
103 
104 	if (round_freq_6 > round_freq_16)
105 		freq_mhz = round_freq_6;
106 	else
107 		freq_mhz = round_freq_16;
108 
109 	req->rate = freq_mhz * 1000000;
110 
111 	/* If the frequency is a multiple of 32 MHz, k is always 3 */
112 	if (!(freq_mhz % 32))
113 		req->k = 3;
114 	/* If the frequency is a multiple of 9 MHz, k is always 2 */
115 	else if (!(freq_mhz % 9))
116 		req->k = 2;
117 	/* If the frequency is a multiple of 8 MHz, k is always 1 */
118 	else if (!(freq_mhz % 8))
119 		req->k = 1;
120 	/* Otherwise, we don't use the k factor */
121 	else
122 		req->k = 0;
123 
124 	/*
125 	 * If the frequency is a multiple of 2 but not a multiple of
126 	 * 3, m is 3. This is the first time we use 6 here, yet we
127 	 * will use it on several other places.
128 	 * We use this number because it's the lowest frequency we can
129 	 * generate (with n = 0, k = 0, m = 3), so every other frequency
130 	 * somehow relates to this frequency.
131 	 */
132 	if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4)
133 		req->m = 2;
134 	/*
135 	 * If the frequency is a multiple of 6MHz, but the factor is
136 	 * odd, m will be 3
137 	 */
138 	else if ((freq_mhz / 6) & 1)
139 		req->m = 3;
140 	/* Otherwise, we end up with m = 1 */
141 	else
142 		req->m = 1;
143 
144 	/* Calculate n thanks to the above factors we already got */
145 	req->n = freq_mhz * (req->m + 1) / ((req->k + 1) * parent_freq_mhz)
146 		 - 1;
147 
148 	/*
149 	 * If n end up being outbound, and that we can still decrease
150 	 * m, do it.
151 	 */
152 	if ((req->n + 1) > 31 && (req->m + 1) > 1) {
153 		req->n = (req->n + 1) / 2 - 1;
154 		req->m = (req->m + 1) / 2 - 1;
155 	}
156 }
157 
158 /**
159  * sun8i_a23_get_pll1_factors() - calculates n, k, m, p factors for PLL1
160  * PLL1 rate is calculated as follows
161  * rate = (parent_rate * (n + 1) * (k + 1) >> p) / (m + 1);
162  * parent_rate is always 24Mhz
163  */
164 
165 static void sun8i_a23_get_pll1_factors(struct factors_request *req)
166 {
167 	u8 div;
168 
169 	/* Normalize value to a 6M multiple */
170 	div = req->rate / 6000000;
171 	req->rate = 6000000 * div;
172 
173 	/* m is always zero for pll1 */
174 	req->m = 0;
175 
176 	/* k is 1 only on these cases */
177 	if (req->rate >= 768000000 || req->rate == 42000000 ||
178 			req->rate == 54000000)
179 		req->k = 1;
180 	else
181 		req->k = 0;
182 
183 	/* p will be 2 for divs under 20 and odd divs under 32 */
184 	if (div < 20 || (div < 32 && (div & 1)))
185 		req->p = 2;
186 
187 	/* p will be 1 for even divs under 32, divs under 40 and odd pairs
188 	 * of divs between 40-62 */
189 	else if (div < 40 || (div < 64 && (div & 2)))
190 		req->p = 1;
191 
192 	/* any other entries have p = 0 */
193 	else
194 		req->p = 0;
195 
196 	/* calculate a suitable n based on k and p */
197 	div <<= req->p;
198 	div /= (req->k + 1);
199 	req->n = div / 4 - 1;
200 }
201 
202 /**
203  * sun4i_get_pll5_factors() - calculates n, k factors for PLL5
204  * PLL5 rate is calculated as follows
205  * rate = parent_rate * n * (k + 1)
206  * parent_rate is always 24Mhz
207  */
208 
209 static void sun4i_get_pll5_factors(struct factors_request *req)
210 {
211 	u8 div;
212 
213 	/* Normalize value to a parent_rate multiple (24M) */
214 	div = req->rate / req->parent_rate;
215 	req->rate = req->parent_rate * div;
216 
217 	if (div < 31)
218 		req->k = 0;
219 	else if (div / 2 < 31)
220 		req->k = 1;
221 	else if (div / 3 < 31)
222 		req->k = 2;
223 	else
224 		req->k = 3;
225 
226 	req->n = DIV_ROUND_UP(div, (req->k + 1));
227 }
228 
229 /**
230  * sun6i_a31_get_pll6_factors() - calculates n, k factors for A31 PLL6x2
231  * PLL6x2 rate is calculated as follows
232  * rate = parent_rate * (n + 1) * (k + 1)
233  * parent_rate is always 24Mhz
234  */
235 
236 static void sun6i_a31_get_pll6_factors(struct factors_request *req)
237 {
238 	u8 div;
239 
240 	/* Normalize value to a parent_rate multiple (24M) */
241 	div = req->rate / req->parent_rate;
242 	req->rate = req->parent_rate * div;
243 
244 	req->k = div / 32;
245 	if (req->k > 3)
246 		req->k = 3;
247 
248 	req->n = DIV_ROUND_UP(div, (req->k + 1)) - 1;
249 }
250 
251 /**
252  * sun5i_a13_get_ahb_factors() - calculates m, p factors for AHB
253  * AHB rate is calculated as follows
254  * rate = parent_rate >> p
255  */
256 
257 static void sun5i_a13_get_ahb_factors(struct factors_request *req)
258 {
259 	u32 div;
260 
261 	/* divide only */
262 	if (req->parent_rate < req->rate)
263 		req->rate = req->parent_rate;
264 
265 	/*
266 	 * user manual says valid speed is 8k ~ 276M, but tests show it
267 	 * can work at speeds up to 300M, just after reparenting to pll6
268 	 */
269 	if (req->rate < 8000)
270 		req->rate = 8000;
271 	if (req->rate > 300000000)
272 		req->rate = 300000000;
273 
274 	div = order_base_2(DIV_ROUND_UP(req->parent_rate, req->rate));
275 
276 	/* p = 0 ~ 3 */
277 	if (div > 3)
278 		div = 3;
279 
280 	req->rate = req->parent_rate >> div;
281 
282 	req->p = div;
283 }
284 
285 #define SUN6I_AHB1_PARENT_PLL6	3
286 
287 /**
288  * sun6i_a31_get_ahb_factors() - calculates m, p factors for AHB
289  * AHB rate is calculated as follows
290  * rate = parent_rate >> p
291  *
292  * if parent is pll6, then
293  * parent_rate = pll6 rate / (m + 1)
294  */
295 
296 static void sun6i_get_ahb1_factors(struct factors_request *req)
297 {
298 	u8 div, calcp, calcm = 1;
299 
300 	/*
301 	 * clock can only divide, so we will never be able to achieve
302 	 * frequencies higher than the parent frequency
303 	 */
304 	if (req->parent_rate && req->rate > req->parent_rate)
305 		req->rate = req->parent_rate;
306 
307 	div = DIV_ROUND_UP(req->parent_rate, req->rate);
308 
309 	/* calculate pre-divider if parent is pll6 */
310 	if (req->parent_index == SUN6I_AHB1_PARENT_PLL6) {
311 		if (div < 4)
312 			calcp = 0;
313 		else if (div / 2 < 4)
314 			calcp = 1;
315 		else if (div / 4 < 4)
316 			calcp = 2;
317 		else
318 			calcp = 3;
319 
320 		calcm = DIV_ROUND_UP(div, 1 << calcp);
321 	} else {
322 		calcp = __roundup_pow_of_two(div);
323 		calcp = calcp > 3 ? 3 : calcp;
324 	}
325 
326 	req->rate = (req->parent_rate / calcm) >> calcp;
327 	req->p = calcp;
328 	req->m = calcm - 1;
329 }
330 
331 /**
332  * sun6i_ahb1_recalc() - calculates AHB clock rate from m, p factors and
333  *			 parent index
334  */
335 static void sun6i_ahb1_recalc(struct factors_request *req)
336 {
337 	req->rate = req->parent_rate;
338 
339 	/* apply pre-divider first if parent is pll6 */
340 	if (req->parent_index == SUN6I_AHB1_PARENT_PLL6)
341 		req->rate /= req->m + 1;
342 
343 	/* clk divider */
344 	req->rate >>= req->p;
345 }
346 
347 /**
348  * sun4i_get_apb1_factors() - calculates m, p factors for APB1
349  * APB1 rate is calculated as follows
350  * rate = (parent_rate >> p) / (m + 1);
351  */
352 
353 static void sun4i_get_apb1_factors(struct factors_request *req)
354 {
355 	u8 calcm, calcp;
356 	int div;
357 
358 	if (req->parent_rate < req->rate)
359 		req->rate = req->parent_rate;
360 
361 	div = DIV_ROUND_UP(req->parent_rate, req->rate);
362 
363 	/* Invalid rate! */
364 	if (div > 32)
365 		return;
366 
367 	if (div <= 4)
368 		calcp = 0;
369 	else if (div <= 8)
370 		calcp = 1;
371 	else if (div <= 16)
372 		calcp = 2;
373 	else
374 		calcp = 3;
375 
376 	calcm = (req->parent_rate >> calcp) - 1;
377 
378 	req->rate = (req->parent_rate >> calcp) / (calcm + 1);
379 	req->m = calcm;
380 	req->p = calcp;
381 }
382 
383 
384 
385 
386 /**
387  * sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B
388  * CLK_OUT rate is calculated as follows
389  * rate = (parent_rate >> p) / (m + 1);
390  */
391 
392 static void sun7i_a20_get_out_factors(struct factors_request *req)
393 {
394 	u8 div, calcm, calcp;
395 
396 	/* These clocks can only divide, so we will never be able to achieve
397 	 * frequencies higher than the parent frequency */
398 	if (req->rate > req->parent_rate)
399 		req->rate = req->parent_rate;
400 
401 	div = DIV_ROUND_UP(req->parent_rate, req->rate);
402 
403 	if (div < 32)
404 		calcp = 0;
405 	else if (div / 2 < 32)
406 		calcp = 1;
407 	else if (div / 4 < 32)
408 		calcp = 2;
409 	else
410 		calcp = 3;
411 
412 	calcm = DIV_ROUND_UP(div, 1 << calcp);
413 
414 	req->rate = (req->parent_rate >> calcp) / calcm;
415 	req->m = calcm - 1;
416 	req->p = calcp;
417 }
418 
419 /**
420  * sunxi_factors_clk_setup() - Setup function for factor clocks
421  */
422 
423 static const struct clk_factors_config sun4i_pll1_config = {
424 	.nshift = 8,
425 	.nwidth = 5,
426 	.kshift = 4,
427 	.kwidth = 2,
428 	.mshift = 0,
429 	.mwidth = 2,
430 	.pshift = 16,
431 	.pwidth = 2,
432 };
433 
434 static const struct clk_factors_config sun6i_a31_pll1_config = {
435 	.nshift	= 8,
436 	.nwidth = 5,
437 	.kshift = 4,
438 	.kwidth = 2,
439 	.mshift = 0,
440 	.mwidth = 2,
441 	.n_start = 1,
442 };
443 
444 static const struct clk_factors_config sun8i_a23_pll1_config = {
445 	.nshift = 8,
446 	.nwidth = 5,
447 	.kshift = 4,
448 	.kwidth = 2,
449 	.mshift = 0,
450 	.mwidth = 2,
451 	.pshift = 16,
452 	.pwidth = 2,
453 	.n_start = 1,
454 };
455 
456 static const struct clk_factors_config sun4i_pll5_config = {
457 	.nshift = 8,
458 	.nwidth = 5,
459 	.kshift = 4,
460 	.kwidth = 2,
461 };
462 
463 static const struct clk_factors_config sun6i_a31_pll6_config = {
464 	.nshift	= 8,
465 	.nwidth = 5,
466 	.kshift = 4,
467 	.kwidth = 2,
468 	.n_start = 1,
469 };
470 
471 static const struct clk_factors_config sun5i_a13_ahb_config = {
472 	.pshift = 4,
473 	.pwidth = 2,
474 };
475 
476 static const struct clk_factors_config sun6i_ahb1_config = {
477 	.mshift = 6,
478 	.mwidth = 2,
479 	.pshift = 4,
480 	.pwidth = 2,
481 };
482 
483 static const struct clk_factors_config sun4i_apb1_config = {
484 	.mshift = 0,
485 	.mwidth = 5,
486 	.pshift = 16,
487 	.pwidth = 2,
488 };
489 
490 /* user manual says "n" but it's really "p" */
491 static const struct clk_factors_config sun7i_a20_out_config = {
492 	.mshift = 8,
493 	.mwidth = 5,
494 	.pshift = 20,
495 	.pwidth = 2,
496 };
497 
498 static const struct factors_data sun4i_pll1_data __initconst = {
499 	.enable = 31,
500 	.table = &sun4i_pll1_config,
501 	.getter = sun4i_get_pll1_factors,
502 };
503 
504 static const struct factors_data sun6i_a31_pll1_data __initconst = {
505 	.enable = 31,
506 	.table = &sun6i_a31_pll1_config,
507 	.getter = sun6i_a31_get_pll1_factors,
508 };
509 
510 static const struct factors_data sun8i_a23_pll1_data __initconst = {
511 	.enable = 31,
512 	.table = &sun8i_a23_pll1_config,
513 	.getter = sun8i_a23_get_pll1_factors,
514 };
515 
516 static const struct factors_data sun7i_a20_pll4_data __initconst = {
517 	.enable = 31,
518 	.table = &sun4i_pll5_config,
519 	.getter = sun4i_get_pll5_factors,
520 };
521 
522 static const struct factors_data sun4i_pll5_data __initconst = {
523 	.enable = 31,
524 	.table = &sun4i_pll5_config,
525 	.getter = sun4i_get_pll5_factors,
526 	.name = "pll5",
527 };
528 
529 static const struct factors_data sun4i_pll6_data __initconst = {
530 	.enable = 31,
531 	.table = &sun4i_pll5_config,
532 	.getter = sun4i_get_pll5_factors,
533 	.name = "pll6",
534 };
535 
536 static const struct factors_data sun6i_a31_pll6_data __initconst = {
537 	.enable = 31,
538 	.table = &sun6i_a31_pll6_config,
539 	.getter = sun6i_a31_get_pll6_factors,
540 	.name = "pll6x2",
541 };
542 
543 static const struct factors_data sun5i_a13_ahb_data __initconst = {
544 	.mux = 6,
545 	.muxmask = BIT(1) | BIT(0),
546 	.table = &sun5i_a13_ahb_config,
547 	.getter = sun5i_a13_get_ahb_factors,
548 };
549 
550 static const struct factors_data sun6i_ahb1_data __initconst = {
551 	.mux = 12,
552 	.muxmask = BIT(1) | BIT(0),
553 	.table = &sun6i_ahb1_config,
554 	.getter = sun6i_get_ahb1_factors,
555 	.recalc = sun6i_ahb1_recalc,
556 };
557 
558 static const struct factors_data sun4i_apb1_data __initconst = {
559 	.mux = 24,
560 	.muxmask = BIT(1) | BIT(0),
561 	.table = &sun4i_apb1_config,
562 	.getter = sun4i_get_apb1_factors,
563 };
564 
565 static const struct factors_data sun7i_a20_out_data __initconst = {
566 	.enable = 31,
567 	.mux = 24,
568 	.muxmask = BIT(1) | BIT(0),
569 	.table = &sun7i_a20_out_config,
570 	.getter = sun7i_a20_get_out_factors,
571 };
572 
573 static struct clk * __init sunxi_factors_clk_setup(struct device_node *node,
574 						   const struct factors_data *data)
575 {
576 	void __iomem *reg;
577 
578 	reg = of_iomap(node, 0);
579 	if (!reg) {
580 		pr_err("Could not get registers for factors-clk: %s\n",
581 		       node->name);
582 		return NULL;
583 	}
584 
585 	return sunxi_factors_register(node, data, &clk_lock, reg);
586 }
587 
588 static void __init sun4i_pll1_clk_setup(struct device_node *node)
589 {
590 	sunxi_factors_clk_setup(node, &sun4i_pll1_data);
591 }
592 CLK_OF_DECLARE(sun4i_pll1, "allwinner,sun4i-a10-pll1-clk",
593 	       sun4i_pll1_clk_setup);
594 
595 static void __init sun6i_pll1_clk_setup(struct device_node *node)
596 {
597 	sunxi_factors_clk_setup(node, &sun6i_a31_pll1_data);
598 }
599 CLK_OF_DECLARE(sun6i_pll1, "allwinner,sun6i-a31-pll1-clk",
600 	       sun6i_pll1_clk_setup);
601 
602 static void __init sun8i_pll1_clk_setup(struct device_node *node)
603 {
604 	sunxi_factors_clk_setup(node, &sun8i_a23_pll1_data);
605 }
606 CLK_OF_DECLARE(sun8i_pll1, "allwinner,sun8i-a23-pll1-clk",
607 	       sun8i_pll1_clk_setup);
608 
609 static void __init sun7i_pll4_clk_setup(struct device_node *node)
610 {
611 	sunxi_factors_clk_setup(node, &sun7i_a20_pll4_data);
612 }
613 CLK_OF_DECLARE(sun7i_pll4, "allwinner,sun7i-a20-pll4-clk",
614 	       sun7i_pll4_clk_setup);
615 
616 static void __init sun5i_ahb_clk_setup(struct device_node *node)
617 {
618 	sunxi_factors_clk_setup(node, &sun5i_a13_ahb_data);
619 }
620 CLK_OF_DECLARE(sun5i_ahb, "allwinner,sun5i-a13-ahb-clk",
621 	       sun5i_ahb_clk_setup);
622 
623 static void __init sun6i_ahb1_clk_setup(struct device_node *node)
624 {
625 	sunxi_factors_clk_setup(node, &sun6i_ahb1_data);
626 }
627 CLK_OF_DECLARE(sun6i_a31_ahb1, "allwinner,sun6i-a31-ahb1-clk",
628 	       sun6i_ahb1_clk_setup);
629 
630 static void __init sun4i_apb1_clk_setup(struct device_node *node)
631 {
632 	sunxi_factors_clk_setup(node, &sun4i_apb1_data);
633 }
634 CLK_OF_DECLARE(sun4i_apb1, "allwinner,sun4i-a10-apb1-clk",
635 	       sun4i_apb1_clk_setup);
636 
637 static void __init sun7i_out_clk_setup(struct device_node *node)
638 {
639 	sunxi_factors_clk_setup(node, &sun7i_a20_out_data);
640 }
641 CLK_OF_DECLARE(sun7i_out, "allwinner,sun7i-a20-out-clk",
642 	       sun7i_out_clk_setup);
643 
644 
645 /**
646  * sunxi_mux_clk_setup() - Setup function for muxes
647  */
648 
649 #define SUNXI_MUX_GATE_WIDTH	2
650 
651 struct mux_data {
652 	u8 shift;
653 };
654 
655 static const struct mux_data sun4i_cpu_mux_data __initconst = {
656 	.shift = 16,
657 };
658 
659 static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = {
660 	.shift = 12,
661 };
662 
663 static const struct mux_data sun8i_h3_ahb2_mux_data __initconst = {
664 	.shift = 0,
665 };
666 
667 static struct clk * __init sunxi_mux_clk_setup(struct device_node *node,
668 					       const struct mux_data *data)
669 {
670 	struct clk *clk;
671 	const char *clk_name = node->name;
672 	const char *parents[SUNXI_MAX_PARENTS];
673 	void __iomem *reg;
674 	int i;
675 
676 	reg = of_iomap(node, 0);
677 	if (!reg) {
678 		pr_err("Could not map registers for mux-clk: %s\n",
679 		       of_node_full_name(node));
680 		return NULL;
681 	}
682 
683 	i = of_clk_parent_fill(node, parents, SUNXI_MAX_PARENTS);
684 	if (of_property_read_string(node, "clock-output-names", &clk_name)) {
685 		pr_err("%s: could not read clock-output-names from \"%s\"\n",
686 		       __func__, of_node_full_name(node));
687 		goto out_unmap;
688 	}
689 
690 	clk = clk_register_mux(NULL, clk_name, parents, i,
691 			       CLK_SET_RATE_PARENT, reg,
692 			       data->shift, SUNXI_MUX_GATE_WIDTH,
693 			       0, &clk_lock);
694 
695 	if (IS_ERR(clk)) {
696 		pr_err("%s: failed to register mux clock %s: %ld\n", __func__,
697 		       clk_name, PTR_ERR(clk));
698 		goto out_unmap;
699 	}
700 
701 	if (of_clk_add_provider(node, of_clk_src_simple_get, clk)) {
702 		pr_err("%s: failed to add clock provider for %s\n",
703 		       __func__, clk_name);
704 		clk_unregister_divider(clk);
705 		goto out_unmap;
706 	}
707 
708 	return clk;
709 out_unmap:
710 	iounmap(reg);
711 	return NULL;
712 }
713 
714 static void __init sun4i_cpu_clk_setup(struct device_node *node)
715 {
716 	struct clk *clk;
717 
718 	clk = sunxi_mux_clk_setup(node, &sun4i_cpu_mux_data);
719 	if (!clk)
720 		return;
721 
722 	/* Protect CPU clock */
723 	__clk_get(clk);
724 	clk_prepare_enable(clk);
725 }
726 CLK_OF_DECLARE(sun4i_cpu, "allwinner,sun4i-a10-cpu-clk",
727 	       sun4i_cpu_clk_setup);
728 
729 static void __init sun6i_ahb1_mux_clk_setup(struct device_node *node)
730 {
731 	sunxi_mux_clk_setup(node, &sun6i_a31_ahb1_mux_data);
732 }
733 CLK_OF_DECLARE(sun6i_ahb1_mux, "allwinner,sun6i-a31-ahb1-mux-clk",
734 	       sun6i_ahb1_mux_clk_setup);
735 
736 static void __init sun8i_ahb2_clk_setup(struct device_node *node)
737 {
738 	sunxi_mux_clk_setup(node, &sun8i_h3_ahb2_mux_data);
739 }
740 CLK_OF_DECLARE(sun8i_ahb2, "allwinner,sun8i-h3-ahb2-clk",
741 	       sun8i_ahb2_clk_setup);
742 
743 
744 /**
745  * sunxi_divider_clk_setup() - Setup function for simple divider clocks
746  */
747 
748 struct div_data {
749 	u8	shift;
750 	u8	pow;
751 	u8	width;
752 	const struct clk_div_table *table;
753 };
754 
755 static const struct div_data sun4i_axi_data __initconst = {
756 	.shift	= 0,
757 	.pow	= 0,
758 	.width	= 2,
759 };
760 
761 static const struct clk_div_table sun8i_a23_axi_table[] __initconst = {
762 	{ .val = 0, .div = 1 },
763 	{ .val = 1, .div = 2 },
764 	{ .val = 2, .div = 3 },
765 	{ .val = 3, .div = 4 },
766 	{ .val = 4, .div = 4 },
767 	{ .val = 5, .div = 4 },
768 	{ .val = 6, .div = 4 },
769 	{ .val = 7, .div = 4 },
770 	{ } /* sentinel */
771 };
772 
773 static const struct div_data sun8i_a23_axi_data __initconst = {
774 	.width	= 3,
775 	.table	= sun8i_a23_axi_table,
776 };
777 
778 static const struct div_data sun4i_ahb_data __initconst = {
779 	.shift	= 4,
780 	.pow	= 1,
781 	.width	= 2,
782 };
783 
784 static const struct clk_div_table sun4i_apb0_table[] __initconst = {
785 	{ .val = 0, .div = 2 },
786 	{ .val = 1, .div = 2 },
787 	{ .val = 2, .div = 4 },
788 	{ .val = 3, .div = 8 },
789 	{ } /* sentinel */
790 };
791 
792 static const struct div_data sun4i_apb0_data __initconst = {
793 	.shift	= 8,
794 	.pow	= 1,
795 	.width	= 2,
796 	.table	= sun4i_apb0_table,
797 };
798 
799 static void __init sunxi_divider_clk_setup(struct device_node *node,
800 					   const struct div_data *data)
801 {
802 	struct clk *clk;
803 	const char *clk_name = node->name;
804 	const char *clk_parent;
805 	void __iomem *reg;
806 
807 	reg = of_iomap(node, 0);
808 	if (!reg) {
809 		pr_err("Could not map registers for mux-clk: %s\n",
810 		       of_node_full_name(node));
811 		return;
812 	}
813 
814 	clk_parent = of_clk_get_parent_name(node, 0);
815 
816 	if (of_property_read_string(node, "clock-output-names", &clk_name)) {
817 		pr_err("%s: could not read clock-output-names from \"%s\"\n",
818 		       __func__, of_node_full_name(node));
819 		goto out_unmap;
820 	}
821 
822 	clk = clk_register_divider_table(NULL, clk_name, clk_parent, 0,
823 					 reg, data->shift, data->width,
824 					 data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0,
825 					 data->table, &clk_lock);
826 	if (IS_ERR(clk)) {
827 		pr_err("%s: failed to register divider clock %s: %ld\n",
828 		       __func__, clk_name, PTR_ERR(clk));
829 		goto out_unmap;
830 	}
831 
832 	if (of_clk_add_provider(node, of_clk_src_simple_get, clk)) {
833 		pr_err("%s: failed to add clock provider for %s\n",
834 		       __func__, clk_name);
835 		goto out_unregister;
836 	}
837 
838 	if (clk_register_clkdev(clk, clk_name, NULL)) {
839 		of_clk_del_provider(node);
840 		goto out_unregister;
841 	}
842 
843 	return;
844 out_unregister:
845 	clk_unregister_divider(clk);
846 
847 out_unmap:
848 	iounmap(reg);
849 }
850 
851 static void __init sun4i_ahb_clk_setup(struct device_node *node)
852 {
853 	sunxi_divider_clk_setup(node, &sun4i_ahb_data);
854 }
855 CLK_OF_DECLARE(sun4i_ahb, "allwinner,sun4i-a10-ahb-clk",
856 	       sun4i_ahb_clk_setup);
857 
858 static void __init sun4i_apb0_clk_setup(struct device_node *node)
859 {
860 	sunxi_divider_clk_setup(node, &sun4i_apb0_data);
861 }
862 CLK_OF_DECLARE(sun4i_apb0, "allwinner,sun4i-a10-apb0-clk",
863 	       sun4i_apb0_clk_setup);
864 
865 static void __init sun4i_axi_clk_setup(struct device_node *node)
866 {
867 	sunxi_divider_clk_setup(node, &sun4i_axi_data);
868 }
869 CLK_OF_DECLARE(sun4i_axi, "allwinner,sun4i-a10-axi-clk",
870 	       sun4i_axi_clk_setup);
871 
872 static void __init sun8i_axi_clk_setup(struct device_node *node)
873 {
874 	sunxi_divider_clk_setup(node, &sun8i_a23_axi_data);
875 }
876 CLK_OF_DECLARE(sun8i_axi, "allwinner,sun8i-a23-axi-clk",
877 	       sun8i_axi_clk_setup);
878 
879 
880 
881 /**
882  * sunxi_gates_clk_setup() - Setup function for leaf gates on clocks
883  */
884 
885 #define SUNXI_GATES_MAX_SIZE	64
886 
887 struct gates_data {
888 	DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE);
889 };
890 
891 /**
892  * sunxi_divs_clk_setup() helper data
893  */
894 
895 #define SUNXI_DIVS_MAX_QTY	4
896 #define SUNXI_DIVISOR_WIDTH	2
897 
898 struct divs_data {
899 	const struct factors_data *factors; /* data for the factor clock */
900 	int ndivs; /* number of outputs */
901 	/*
902 	 * List of outputs. Refer to the diagram for sunxi_divs_clk_setup():
903 	 * self or base factor clock refers to the output from the pll
904 	 * itself. The remaining refer to fixed or configurable divider
905 	 * outputs.
906 	 */
907 	struct {
908 		u8 self; /* is it the base factor clock? (only one) */
909 		u8 fixed; /* is it a fixed divisor? if not... */
910 		struct clk_div_table *table; /* is it a table based divisor? */
911 		u8 shift; /* otherwise it's a normal divisor with this shift */
912 		u8 pow;   /* is it power-of-two based? */
913 		u8 gate;  /* is it independently gateable? */
914 	} div[SUNXI_DIVS_MAX_QTY];
915 };
916 
917 static struct clk_div_table pll6_sata_tbl[] = {
918 	{ .val = 0, .div = 6, },
919 	{ .val = 1, .div = 12, },
920 	{ .val = 2, .div = 18, },
921 	{ .val = 3, .div = 24, },
922 	{ } /* sentinel */
923 };
924 
925 static const struct divs_data pll5_divs_data __initconst = {
926 	.factors = &sun4i_pll5_data,
927 	.ndivs = 2,
928 	.div = {
929 		{ .shift = 0, .pow = 0, }, /* M, DDR */
930 		{ .shift = 16, .pow = 1, }, /* P, other */
931 		/* No output for the base factor clock */
932 	}
933 };
934 
935 static const struct divs_data pll6_divs_data __initconst = {
936 	.factors = &sun4i_pll6_data,
937 	.ndivs = 4,
938 	.div = {
939 		{ .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */
940 		{ .fixed = 2 }, /* P, other */
941 		{ .self = 1 }, /* base factor clock, 2x */
942 		{ .fixed = 4 }, /* pll6 / 4, used as ahb input */
943 	}
944 };
945 
946 static const struct divs_data sun6i_a31_pll6_divs_data __initconst = {
947 	.factors = &sun6i_a31_pll6_data,
948 	.ndivs = 2,
949 	.div = {
950 		{ .fixed = 2 }, /* normal output */
951 		{ .self = 1 }, /* base factor clock, 2x */
952 	}
953 };
954 
955 /**
956  * sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks
957  *
958  * These clocks look something like this
959  *            ________________________
960  *           |         ___divisor 1---|----> to consumer
961  * parent >--|  pll___/___divisor 2---|----> to consumer
962  *           |        \_______________|____> to consumer
963  *           |________________________|
964  */
965 
966 static struct clk ** __init sunxi_divs_clk_setup(struct device_node *node,
967 						 const struct divs_data *data)
968 {
969 	struct clk_onecell_data *clk_data;
970 	const char *parent;
971 	const char *clk_name;
972 	struct clk **clks, *pclk;
973 	struct clk_hw *gate_hw, *rate_hw;
974 	const struct clk_ops *rate_ops;
975 	struct clk_gate *gate = NULL;
976 	struct clk_fixed_factor *fix_factor;
977 	struct clk_divider *divider;
978 	void __iomem *reg;
979 	int ndivs = SUNXI_DIVS_MAX_QTY, i = 0;
980 	int flags, clkflags;
981 
982 	/* if number of children known, use it */
983 	if (data->ndivs)
984 		ndivs = data->ndivs;
985 
986 	/* Set up factor clock that we will be dividing */
987 	pclk = sunxi_factors_clk_setup(node, data->factors);
988 	if (!pclk)
989 		return NULL;
990 	parent = __clk_get_name(pclk);
991 
992 	reg = of_iomap(node, 0);
993 	if (!reg) {
994 		pr_err("Could not map registers for divs-clk: %s\n",
995 		       of_node_full_name(node));
996 		return NULL;
997 	}
998 
999 	clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
1000 	if (!clk_data)
1001 		goto out_unmap;
1002 
1003 	clks = kcalloc(ndivs, sizeof(*clks), GFP_KERNEL);
1004 	if (!clks)
1005 		goto free_clkdata;
1006 
1007 	clk_data->clks = clks;
1008 
1009 	/* It's not a good idea to have automatic reparenting changing
1010 	 * our RAM clock! */
1011 	clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT;
1012 
1013 	for (i = 0; i < ndivs; i++) {
1014 		if (of_property_read_string_index(node, "clock-output-names",
1015 						  i, &clk_name) != 0)
1016 			break;
1017 
1018 		/* If this is the base factor clock, only update clks */
1019 		if (data->div[i].self) {
1020 			clk_data->clks[i] = pclk;
1021 			continue;
1022 		}
1023 
1024 		gate_hw = NULL;
1025 		rate_hw = NULL;
1026 		rate_ops = NULL;
1027 
1028 		/* If this leaf clock can be gated, create a gate */
1029 		if (data->div[i].gate) {
1030 			gate = kzalloc(sizeof(*gate), GFP_KERNEL);
1031 			if (!gate)
1032 				goto free_clks;
1033 
1034 			gate->reg = reg;
1035 			gate->bit_idx = data->div[i].gate;
1036 			gate->lock = &clk_lock;
1037 
1038 			gate_hw = &gate->hw;
1039 		}
1040 
1041 		/* Leaves can be fixed or configurable divisors */
1042 		if (data->div[i].fixed) {
1043 			fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL);
1044 			if (!fix_factor)
1045 				goto free_gate;
1046 
1047 			fix_factor->mult = 1;
1048 			fix_factor->div = data->div[i].fixed;
1049 
1050 			rate_hw = &fix_factor->hw;
1051 			rate_ops = &clk_fixed_factor_ops;
1052 		} else {
1053 			divider = kzalloc(sizeof(*divider), GFP_KERNEL);
1054 			if (!divider)
1055 				goto free_gate;
1056 
1057 			flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0;
1058 
1059 			divider->reg = reg;
1060 			divider->shift = data->div[i].shift;
1061 			divider->width = SUNXI_DIVISOR_WIDTH;
1062 			divider->flags = flags;
1063 			divider->lock = &clk_lock;
1064 			divider->table = data->div[i].table;
1065 
1066 			rate_hw = &divider->hw;
1067 			rate_ops = &clk_divider_ops;
1068 		}
1069 
1070 		/* Wrap the (potential) gate and the divisor on a composite
1071 		 * clock to unify them */
1072 		clks[i] = clk_register_composite(NULL, clk_name, &parent, 1,
1073 						 NULL, NULL,
1074 						 rate_hw, rate_ops,
1075 						 gate_hw, &clk_gate_ops,
1076 						 clkflags);
1077 
1078 		WARN_ON(IS_ERR(clk_data->clks[i]));
1079 	}
1080 
1081 	/* Adjust to the real max */
1082 	clk_data->clk_num = i;
1083 
1084 	if (of_clk_add_provider(node, of_clk_src_onecell_get, clk_data)) {
1085 		pr_err("%s: failed to add clock provider for %s\n",
1086 		       __func__, clk_name);
1087 		goto free_gate;
1088 	}
1089 
1090 	return clks;
1091 free_gate:
1092 	kfree(gate);
1093 free_clks:
1094 	kfree(clks);
1095 free_clkdata:
1096 	kfree(clk_data);
1097 out_unmap:
1098 	iounmap(reg);
1099 	return NULL;
1100 }
1101 
1102 static void __init sun4i_pll5_clk_setup(struct device_node *node)
1103 {
1104 	struct clk **clks;
1105 
1106 	clks = sunxi_divs_clk_setup(node, &pll5_divs_data);
1107 	if (!clks)
1108 		return;
1109 
1110 	/* Protect PLL5_DDR */
1111 	__clk_get(clks[0]);
1112 	clk_prepare_enable(clks[0]);
1113 }
1114 CLK_OF_DECLARE(sun4i_pll5, "allwinner,sun4i-a10-pll5-clk",
1115 	       sun4i_pll5_clk_setup);
1116 
1117 static void __init sun4i_pll6_clk_setup(struct device_node *node)
1118 {
1119 	sunxi_divs_clk_setup(node, &pll6_divs_data);
1120 }
1121 CLK_OF_DECLARE(sun4i_pll6, "allwinner,sun4i-a10-pll6-clk",
1122 	       sun4i_pll6_clk_setup);
1123 
1124 static void __init sun6i_pll6_clk_setup(struct device_node *node)
1125 {
1126 	sunxi_divs_clk_setup(node, &sun6i_a31_pll6_divs_data);
1127 }
1128 CLK_OF_DECLARE(sun6i_pll6, "allwinner,sun6i-a31-pll6-clk",
1129 	       sun6i_pll6_clk_setup);
1130