xref: /openbmc/linux/drivers/clk/sunxi/clk-mod0.c (revision df3305156f989339529b3d6744b898d498fb1f7b)
1 /*
2  * Copyright 2013 Emilio López
3  *
4  * Emilio López <emilio@elopez.com.ar>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 #include <linux/clk-provider.h>
18 #include <linux/clkdev.h>
19 #include <linux/of_address.h>
20 #include <linux/platform_device.h>
21 
22 #include "clk-factors.h"
23 
24 /**
25  * sun4i_get_mod0_factors() - calculates m, n factors for MOD0-style clocks
26  * MOD0 rate is calculated as follows
27  * rate = (parent_rate >> p) / (m + 1);
28  */
29 
30 static void sun4i_a10_get_mod0_factors(u32 *freq, u32 parent_rate,
31 				       u8 *n, u8 *k, u8 *m, u8 *p)
32 {
33 	u8 div, calcm, calcp;
34 
35 	/* These clocks can only divide, so we will never be able to achieve
36 	 * frequencies higher than the parent frequency */
37 	if (*freq > parent_rate)
38 		*freq = parent_rate;
39 
40 	div = DIV_ROUND_UP(parent_rate, *freq);
41 
42 	if (div < 16)
43 		calcp = 0;
44 	else if (div / 2 < 16)
45 		calcp = 1;
46 	else if (div / 4 < 16)
47 		calcp = 2;
48 	else
49 		calcp = 3;
50 
51 	calcm = DIV_ROUND_UP(div, 1 << calcp);
52 
53 	*freq = (parent_rate >> calcp) / calcm;
54 
55 	/* we were called to round the frequency, we can now return */
56 	if (n == NULL)
57 		return;
58 
59 	*m = calcm - 1;
60 	*p = calcp;
61 }
62 
63 /* user manual says "n" but it's really "p" */
64 static struct clk_factors_config sun4i_a10_mod0_config = {
65 	.mshift = 0,
66 	.mwidth = 4,
67 	.pshift = 16,
68 	.pwidth = 2,
69 };
70 
71 static const struct factors_data sun4i_a10_mod0_data = {
72 	.enable = 31,
73 	.mux = 24,
74 	.muxmask = BIT(1) | BIT(0),
75 	.table = &sun4i_a10_mod0_config,
76 	.getter = sun4i_a10_get_mod0_factors,
77 };
78 
79 static DEFINE_SPINLOCK(sun4i_a10_mod0_lock);
80 
81 static void __init sun4i_a10_mod0_setup(struct device_node *node)
82 {
83 	void __iomem *reg;
84 
85 	reg = of_iomap(node, 0);
86 	if (!reg) {
87 		/*
88 		 * This happens with mod0 clk nodes instantiated through
89 		 * mfd, as those do not have their resources assigned at
90 		 * CLK_OF_DECLARE time yet, so do not print an error.
91 		 */
92 		return;
93 	}
94 
95 	sunxi_factors_register(node, &sun4i_a10_mod0_data,
96 			       &sun4i_a10_mod0_lock, reg);
97 }
98 CLK_OF_DECLARE(sun4i_a10_mod0, "allwinner,sun4i-a10-mod0-clk", sun4i_a10_mod0_setup);
99 
100 static int sun4i_a10_mod0_clk_probe(struct platform_device *pdev)
101 {
102 	struct device_node *np = pdev->dev.of_node;
103 	struct resource *r;
104 	void __iomem *reg;
105 
106 	if (!np)
107 		return -ENODEV;
108 
109 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
110 	reg = devm_ioremap_resource(&pdev->dev, r);
111 	if (IS_ERR(reg))
112 		return PTR_ERR(reg);
113 
114 	sunxi_factors_register(np, &sun4i_a10_mod0_data,
115 			       &sun4i_a10_mod0_lock, reg);
116 	return 0;
117 }
118 
119 static const struct of_device_id sun4i_a10_mod0_clk_dt_ids[] = {
120 	{ .compatible = "allwinner,sun4i-a10-mod0-clk" },
121 	{ /* sentinel */ }
122 };
123 
124 static struct platform_driver sun4i_a10_mod0_clk_driver = {
125 	.driver = {
126 		.name = "sun4i-a10-mod0-clk",
127 		.of_match_table = sun4i_a10_mod0_clk_dt_ids,
128 	},
129 	.probe = sun4i_a10_mod0_clk_probe,
130 };
131 module_platform_driver(sun4i_a10_mod0_clk_driver);
132 
133 static const struct factors_data sun9i_a80_mod0_data __initconst = {
134 	.enable = 31,
135 	.mux = 24,
136 	.muxmask = BIT(3) | BIT(2) | BIT(1) | BIT(0),
137 	.table = &sun4i_a10_mod0_config,
138 	.getter = sun4i_a10_get_mod0_factors,
139 };
140 
141 static void __init sun9i_a80_mod0_setup(struct device_node *node)
142 {
143 	void __iomem *reg;
144 
145 	reg = of_io_request_and_map(node, 0, of_node_full_name(node));
146 	if (IS_ERR(reg)) {
147 		pr_err("Could not get registers for mod0-clk: %s\n",
148 		       node->name);
149 		return;
150 	}
151 
152 	sunxi_factors_register(node, &sun9i_a80_mod0_data,
153 			       &sun4i_a10_mod0_lock, reg);
154 }
155 CLK_OF_DECLARE(sun9i_a80_mod0, "allwinner,sun9i-a80-mod0-clk", sun9i_a80_mod0_setup);
156 
157 static DEFINE_SPINLOCK(sun5i_a13_mbus_lock);
158 
159 static void __init sun5i_a13_mbus_setup(struct device_node *node)
160 {
161 	struct clk *mbus;
162 	void __iomem *reg;
163 
164 	reg = of_iomap(node, 0);
165 	if (!reg) {
166 		pr_err("Could not get registers for a13-mbus-clk\n");
167 		return;
168 	}
169 
170 	mbus = sunxi_factors_register(node, &sun4i_a10_mod0_data,
171 				      &sun5i_a13_mbus_lock, reg);
172 
173 	/* The MBUS clocks needs to be always enabled */
174 	__clk_get(mbus);
175 	clk_prepare_enable(mbus);
176 }
177 CLK_OF_DECLARE(sun5i_a13_mbus, "allwinner,sun5i-a13-mbus-clk", sun5i_a13_mbus_setup);
178 
179 struct mmc_phase {
180 	struct clk_hw		hw;
181 	u8			offset;
182 	void __iomem		*reg;
183 	spinlock_t		*lock;
184 };
185 
186 #define to_mmc_phase(_hw) container_of(_hw, struct mmc_phase, hw)
187 
188 static int mmc_get_phase(struct clk_hw *hw)
189 {
190 	struct clk *mmc, *mmc_parent, *clk = hw->clk;
191 	struct mmc_phase *phase = to_mmc_phase(hw);
192 	unsigned int mmc_rate, mmc_parent_rate;
193 	u16 step, mmc_div;
194 	u32 value;
195 	u8 delay;
196 
197 	value = readl(phase->reg);
198 	delay = (value >> phase->offset) & 0x3;
199 
200 	if (!delay)
201 		return 180;
202 
203 	/* Get the main MMC clock */
204 	mmc = clk_get_parent(clk);
205 	if (!mmc)
206 		return -EINVAL;
207 
208 	/* And its rate */
209 	mmc_rate = clk_get_rate(mmc);
210 	if (!mmc_rate)
211 		return -EINVAL;
212 
213 	/* Now, get the MMC parent (most likely some PLL) */
214 	mmc_parent = clk_get_parent(mmc);
215 	if (!mmc_parent)
216 		return -EINVAL;
217 
218 	/* And its rate */
219 	mmc_parent_rate = clk_get_rate(mmc_parent);
220 	if (!mmc_parent_rate)
221 		return -EINVAL;
222 
223 	/* Get MMC clock divider */
224 	mmc_div = mmc_parent_rate / mmc_rate;
225 
226 	step = DIV_ROUND_CLOSEST(360, mmc_div);
227 	return delay * step;
228 }
229 
230 static int mmc_set_phase(struct clk_hw *hw, int degrees)
231 {
232 	struct clk *mmc, *mmc_parent, *clk = hw->clk;
233 	struct mmc_phase *phase = to_mmc_phase(hw);
234 	unsigned int mmc_rate, mmc_parent_rate;
235 	unsigned long flags;
236 	u32 value;
237 	u8 delay;
238 
239 	/* Get the main MMC clock */
240 	mmc = clk_get_parent(clk);
241 	if (!mmc)
242 		return -EINVAL;
243 
244 	/* And its rate */
245 	mmc_rate = clk_get_rate(mmc);
246 	if (!mmc_rate)
247 		return -EINVAL;
248 
249 	/* Now, get the MMC parent (most likely some PLL) */
250 	mmc_parent = clk_get_parent(mmc);
251 	if (!mmc_parent)
252 		return -EINVAL;
253 
254 	/* And its rate */
255 	mmc_parent_rate = clk_get_rate(mmc_parent);
256 	if (!mmc_parent_rate)
257 		return -EINVAL;
258 
259 	if (degrees != 180) {
260 		u16 step, mmc_div;
261 
262 		/* Get MMC clock divider */
263 		mmc_div = mmc_parent_rate / mmc_rate;
264 
265 		/*
266 		 * We can only outphase the clocks by multiple of the
267 		 * PLL's period.
268 		 *
269 		 * Since the MMC clock in only a divider, and the
270 		 * formula to get the outphasing in degrees is deg =
271 		 * 360 * delta / period
272 		 *
273 		 * If we simplify this formula, we can see that the
274 		 * only thing that we're concerned about is the number
275 		 * of period we want to outphase our clock from, and
276 		 * the divider set by the MMC clock.
277 		 */
278 		step = DIV_ROUND_CLOSEST(360, mmc_div);
279 		delay = DIV_ROUND_CLOSEST(degrees, step);
280 	} else {
281 		delay = 0;
282 	}
283 
284 	spin_lock_irqsave(phase->lock, flags);
285 	value = readl(phase->reg);
286 	value &= ~GENMASK(phase->offset + 3, phase->offset);
287 	value |= delay << phase->offset;
288 	writel(value, phase->reg);
289 	spin_unlock_irqrestore(phase->lock, flags);
290 
291 	return 0;
292 }
293 
294 static const struct clk_ops mmc_clk_ops = {
295 	.get_phase	= mmc_get_phase,
296 	.set_phase	= mmc_set_phase,
297 };
298 
299 /*
300  * sunxi_mmc_setup - Common setup function for mmc module clocks
301  *
302  * The only difference between module clocks on different platforms is the
303  * width of the mux register bits and the valid values, which are passed in
304  * through struct factors_data. The phase clocks parts are identical.
305  */
306 static void __init sunxi_mmc_setup(struct device_node *node,
307 				   const struct factors_data *data,
308 				   spinlock_t *lock)
309 {
310 	struct clk_onecell_data *clk_data;
311 	const char *parent;
312 	void __iomem *reg;
313 	int i;
314 
315 	reg = of_io_request_and_map(node, 0, of_node_full_name(node));
316 	if (IS_ERR(reg)) {
317 		pr_err("Couldn't map the %s clock registers\n", node->name);
318 		return;
319 	}
320 
321 	clk_data = kmalloc(sizeof(*clk_data), GFP_KERNEL);
322 	if (!clk_data)
323 		return;
324 
325 	clk_data->clks = kcalloc(3, sizeof(*clk_data->clks), GFP_KERNEL);
326 	if (!clk_data->clks)
327 		goto err_free_data;
328 
329 	clk_data->clk_num = 3;
330 	clk_data->clks[0] = sunxi_factors_register(node, data, lock, reg);
331 	if (!clk_data->clks[0])
332 		goto err_free_clks;
333 
334 	parent = __clk_get_name(clk_data->clks[0]);
335 
336 	for (i = 1; i < 3; i++) {
337 		struct clk_init_data init = {
338 			.num_parents	= 1,
339 			.parent_names	= &parent,
340 			.ops		= &mmc_clk_ops,
341 		};
342 		struct mmc_phase *phase;
343 
344 		phase = kmalloc(sizeof(*phase), GFP_KERNEL);
345 		if (!phase)
346 			continue;
347 
348 		phase->hw.init = &init;
349 		phase->reg = reg;
350 		phase->lock = lock;
351 
352 		if (i == 1)
353 			phase->offset = 8;
354 		else
355 			phase->offset = 20;
356 
357 		if (of_property_read_string_index(node, "clock-output-names",
358 						  i, &init.name))
359 			init.name = node->name;
360 
361 		clk_data->clks[i] = clk_register(NULL, &phase->hw);
362 		if (IS_ERR(clk_data->clks[i])) {
363 			kfree(phase);
364 			continue;
365 		}
366 	}
367 
368 	of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
369 
370 	return;
371 
372 err_free_clks:
373 	kfree(clk_data->clks);
374 err_free_data:
375 	kfree(clk_data);
376 }
377 
378 static DEFINE_SPINLOCK(sun4i_a10_mmc_lock);
379 
380 static void __init sun4i_a10_mmc_setup(struct device_node *node)
381 {
382 	sunxi_mmc_setup(node, &sun4i_a10_mod0_data, &sun4i_a10_mmc_lock);
383 }
384 CLK_OF_DECLARE(sun4i_a10_mmc, "allwinner,sun4i-a10-mmc-clk", sun4i_a10_mmc_setup);
385 
386 static DEFINE_SPINLOCK(sun9i_a80_mmc_lock);
387 
388 static void __init sun9i_a80_mmc_setup(struct device_node *node)
389 {
390 	sunxi_mmc_setup(node, &sun9i_a80_mod0_data, &sun9i_a80_mmc_lock);
391 }
392 CLK_OF_DECLARE(sun9i_a80_mmc, "allwinner,sun9i-a80-mmc-clk", sun9i_a80_mmc_setup);
393