xref: /openbmc/linux/drivers/clk/sunxi/clk-mod0.c (revision a2cce7a9)
1 /*
2  * Copyright 2013 Emilio López
3  *
4  * Emilio López <emilio@elopez.com.ar>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 #include <linux/clk.h>
18 #include <linux/clk-provider.h>
19 #include <linux/of_address.h>
20 #include <linux/platform_device.h>
21 #include <linux/slab.h>
22 
23 #include "clk-factors.h"
24 
25 /**
26  * sun4i_get_mod0_factors() - calculates m, n factors for MOD0-style clocks
27  * MOD0 rate is calculated as follows
28  * rate = (parent_rate >> p) / (m + 1);
29  */
30 
31 static void sun4i_a10_get_mod0_factors(u32 *freq, u32 parent_rate,
32 				       u8 *n, u8 *k, u8 *m, u8 *p)
33 {
34 	u8 div, calcm, calcp;
35 
36 	/* These clocks can only divide, so we will never be able to achieve
37 	 * frequencies higher than the parent frequency */
38 	if (*freq > parent_rate)
39 		*freq = parent_rate;
40 
41 	div = DIV_ROUND_UP(parent_rate, *freq);
42 
43 	if (div < 16)
44 		calcp = 0;
45 	else if (div / 2 < 16)
46 		calcp = 1;
47 	else if (div / 4 < 16)
48 		calcp = 2;
49 	else
50 		calcp = 3;
51 
52 	calcm = DIV_ROUND_UP(div, 1 << calcp);
53 
54 	*freq = (parent_rate >> calcp) / calcm;
55 
56 	/* we were called to round the frequency, we can now return */
57 	if (n == NULL)
58 		return;
59 
60 	*m = calcm - 1;
61 	*p = calcp;
62 }
63 
64 /* user manual says "n" but it's really "p" */
65 static struct clk_factors_config sun4i_a10_mod0_config = {
66 	.mshift = 0,
67 	.mwidth = 4,
68 	.pshift = 16,
69 	.pwidth = 2,
70 };
71 
72 static const struct factors_data sun4i_a10_mod0_data = {
73 	.enable = 31,
74 	.mux = 24,
75 	.muxmask = BIT(1) | BIT(0),
76 	.table = &sun4i_a10_mod0_config,
77 	.getter = sun4i_a10_get_mod0_factors,
78 };
79 
80 static DEFINE_SPINLOCK(sun4i_a10_mod0_lock);
81 
82 static void __init sun4i_a10_mod0_setup(struct device_node *node)
83 {
84 	void __iomem *reg;
85 
86 	reg = of_iomap(node, 0);
87 	if (!reg) {
88 		/*
89 		 * This happens with mod0 clk nodes instantiated through
90 		 * mfd, as those do not have their resources assigned at
91 		 * CLK_OF_DECLARE time yet, so do not print an error.
92 		 */
93 		return;
94 	}
95 
96 	sunxi_factors_register(node, &sun4i_a10_mod0_data,
97 			       &sun4i_a10_mod0_lock, reg);
98 }
99 CLK_OF_DECLARE(sun4i_a10_mod0, "allwinner,sun4i-a10-mod0-clk", sun4i_a10_mod0_setup);
100 
101 static int sun4i_a10_mod0_clk_probe(struct platform_device *pdev)
102 {
103 	struct device_node *np = pdev->dev.of_node;
104 	struct resource *r;
105 	void __iomem *reg;
106 
107 	if (!np)
108 		return -ENODEV;
109 
110 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
111 	reg = devm_ioremap_resource(&pdev->dev, r);
112 	if (IS_ERR(reg))
113 		return PTR_ERR(reg);
114 
115 	sunxi_factors_register(np, &sun4i_a10_mod0_data,
116 			       &sun4i_a10_mod0_lock, reg);
117 	return 0;
118 }
119 
120 static const struct of_device_id sun4i_a10_mod0_clk_dt_ids[] = {
121 	{ .compatible = "allwinner,sun4i-a10-mod0-clk" },
122 	{ /* sentinel */ }
123 };
124 
125 static struct platform_driver sun4i_a10_mod0_clk_driver = {
126 	.driver = {
127 		.name = "sun4i-a10-mod0-clk",
128 		.of_match_table = sun4i_a10_mod0_clk_dt_ids,
129 	},
130 	.probe = sun4i_a10_mod0_clk_probe,
131 };
132 builtin_platform_driver(sun4i_a10_mod0_clk_driver);
133 
134 static const struct factors_data sun9i_a80_mod0_data __initconst = {
135 	.enable = 31,
136 	.mux = 24,
137 	.muxmask = BIT(3) | BIT(2) | BIT(1) | BIT(0),
138 	.table = &sun4i_a10_mod0_config,
139 	.getter = sun4i_a10_get_mod0_factors,
140 };
141 
142 static void __init sun9i_a80_mod0_setup(struct device_node *node)
143 {
144 	void __iomem *reg;
145 
146 	reg = of_io_request_and_map(node, 0, of_node_full_name(node));
147 	if (IS_ERR(reg)) {
148 		pr_err("Could not get registers for mod0-clk: %s\n",
149 		       node->name);
150 		return;
151 	}
152 
153 	sunxi_factors_register(node, &sun9i_a80_mod0_data,
154 			       &sun4i_a10_mod0_lock, reg);
155 }
156 CLK_OF_DECLARE(sun9i_a80_mod0, "allwinner,sun9i-a80-mod0-clk", sun9i_a80_mod0_setup);
157 
158 static DEFINE_SPINLOCK(sun5i_a13_mbus_lock);
159 
160 static void __init sun5i_a13_mbus_setup(struct device_node *node)
161 {
162 	struct clk *mbus;
163 	void __iomem *reg;
164 
165 	reg = of_iomap(node, 0);
166 	if (!reg) {
167 		pr_err("Could not get registers for a13-mbus-clk\n");
168 		return;
169 	}
170 
171 	mbus = sunxi_factors_register(node, &sun4i_a10_mod0_data,
172 				      &sun5i_a13_mbus_lock, reg);
173 
174 	/* The MBUS clocks needs to be always enabled */
175 	__clk_get(mbus);
176 	clk_prepare_enable(mbus);
177 }
178 CLK_OF_DECLARE(sun5i_a13_mbus, "allwinner,sun5i-a13-mbus-clk", sun5i_a13_mbus_setup);
179 
180 struct mmc_phase {
181 	struct clk_hw		hw;
182 	u8			offset;
183 	void __iomem		*reg;
184 	spinlock_t		*lock;
185 };
186 
187 #define to_mmc_phase(_hw) container_of(_hw, struct mmc_phase, hw)
188 
189 static int mmc_get_phase(struct clk_hw *hw)
190 {
191 	struct clk *mmc, *mmc_parent, *clk = hw->clk;
192 	struct mmc_phase *phase = to_mmc_phase(hw);
193 	unsigned int mmc_rate, mmc_parent_rate;
194 	u16 step, mmc_div;
195 	u32 value;
196 	u8 delay;
197 
198 	value = readl(phase->reg);
199 	delay = (value >> phase->offset) & 0x3;
200 
201 	if (!delay)
202 		return 180;
203 
204 	/* Get the main MMC clock */
205 	mmc = clk_get_parent(clk);
206 	if (!mmc)
207 		return -EINVAL;
208 
209 	/* And its rate */
210 	mmc_rate = clk_get_rate(mmc);
211 	if (!mmc_rate)
212 		return -EINVAL;
213 
214 	/* Now, get the MMC parent (most likely some PLL) */
215 	mmc_parent = clk_get_parent(mmc);
216 	if (!mmc_parent)
217 		return -EINVAL;
218 
219 	/* And its rate */
220 	mmc_parent_rate = clk_get_rate(mmc_parent);
221 	if (!mmc_parent_rate)
222 		return -EINVAL;
223 
224 	/* Get MMC clock divider */
225 	mmc_div = mmc_parent_rate / mmc_rate;
226 
227 	step = DIV_ROUND_CLOSEST(360, mmc_div);
228 	return delay * step;
229 }
230 
231 static int mmc_set_phase(struct clk_hw *hw, int degrees)
232 {
233 	struct clk *mmc, *mmc_parent, *clk = hw->clk;
234 	struct mmc_phase *phase = to_mmc_phase(hw);
235 	unsigned int mmc_rate, mmc_parent_rate;
236 	unsigned long flags;
237 	u32 value;
238 	u8 delay;
239 
240 	/* Get the main MMC clock */
241 	mmc = clk_get_parent(clk);
242 	if (!mmc)
243 		return -EINVAL;
244 
245 	/* And its rate */
246 	mmc_rate = clk_get_rate(mmc);
247 	if (!mmc_rate)
248 		return -EINVAL;
249 
250 	/* Now, get the MMC parent (most likely some PLL) */
251 	mmc_parent = clk_get_parent(mmc);
252 	if (!mmc_parent)
253 		return -EINVAL;
254 
255 	/* And its rate */
256 	mmc_parent_rate = clk_get_rate(mmc_parent);
257 	if (!mmc_parent_rate)
258 		return -EINVAL;
259 
260 	if (degrees != 180) {
261 		u16 step, mmc_div;
262 
263 		/* Get MMC clock divider */
264 		mmc_div = mmc_parent_rate / mmc_rate;
265 
266 		/*
267 		 * We can only outphase the clocks by multiple of the
268 		 * PLL's period.
269 		 *
270 		 * Since the MMC clock in only a divider, and the
271 		 * formula to get the outphasing in degrees is deg =
272 		 * 360 * delta / period
273 		 *
274 		 * If we simplify this formula, we can see that the
275 		 * only thing that we're concerned about is the number
276 		 * of period we want to outphase our clock from, and
277 		 * the divider set by the MMC clock.
278 		 */
279 		step = DIV_ROUND_CLOSEST(360, mmc_div);
280 		delay = DIV_ROUND_CLOSEST(degrees, step);
281 	} else {
282 		delay = 0;
283 	}
284 
285 	spin_lock_irqsave(phase->lock, flags);
286 	value = readl(phase->reg);
287 	value &= ~GENMASK(phase->offset + 3, phase->offset);
288 	value |= delay << phase->offset;
289 	writel(value, phase->reg);
290 	spin_unlock_irqrestore(phase->lock, flags);
291 
292 	return 0;
293 }
294 
295 static const struct clk_ops mmc_clk_ops = {
296 	.get_phase	= mmc_get_phase,
297 	.set_phase	= mmc_set_phase,
298 };
299 
300 /*
301  * sunxi_mmc_setup - Common setup function for mmc module clocks
302  *
303  * The only difference between module clocks on different platforms is the
304  * width of the mux register bits and the valid values, which are passed in
305  * through struct factors_data. The phase clocks parts are identical.
306  */
307 static void __init sunxi_mmc_setup(struct device_node *node,
308 				   const struct factors_data *data,
309 				   spinlock_t *lock)
310 {
311 	struct clk_onecell_data *clk_data;
312 	const char *parent;
313 	void __iomem *reg;
314 	int i;
315 
316 	reg = of_io_request_and_map(node, 0, of_node_full_name(node));
317 	if (IS_ERR(reg)) {
318 		pr_err("Couldn't map the %s clock registers\n", node->name);
319 		return;
320 	}
321 
322 	clk_data = kmalloc(sizeof(*clk_data), GFP_KERNEL);
323 	if (!clk_data)
324 		return;
325 
326 	clk_data->clks = kcalloc(3, sizeof(*clk_data->clks), GFP_KERNEL);
327 	if (!clk_data->clks)
328 		goto err_free_data;
329 
330 	clk_data->clk_num = 3;
331 	clk_data->clks[0] = sunxi_factors_register(node, data, lock, reg);
332 	if (!clk_data->clks[0])
333 		goto err_free_clks;
334 
335 	parent = __clk_get_name(clk_data->clks[0]);
336 
337 	for (i = 1; i < 3; i++) {
338 		struct clk_init_data init = {
339 			.num_parents	= 1,
340 			.parent_names	= &parent,
341 			.ops		= &mmc_clk_ops,
342 		};
343 		struct mmc_phase *phase;
344 
345 		phase = kmalloc(sizeof(*phase), GFP_KERNEL);
346 		if (!phase)
347 			continue;
348 
349 		phase->hw.init = &init;
350 		phase->reg = reg;
351 		phase->lock = lock;
352 
353 		if (i == 1)
354 			phase->offset = 8;
355 		else
356 			phase->offset = 20;
357 
358 		if (of_property_read_string_index(node, "clock-output-names",
359 						  i, &init.name))
360 			init.name = node->name;
361 
362 		clk_data->clks[i] = clk_register(NULL, &phase->hw);
363 		if (IS_ERR(clk_data->clks[i])) {
364 			kfree(phase);
365 			continue;
366 		}
367 	}
368 
369 	of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
370 
371 	return;
372 
373 err_free_clks:
374 	kfree(clk_data->clks);
375 err_free_data:
376 	kfree(clk_data);
377 }
378 
379 static DEFINE_SPINLOCK(sun4i_a10_mmc_lock);
380 
381 static void __init sun4i_a10_mmc_setup(struct device_node *node)
382 {
383 	sunxi_mmc_setup(node, &sun4i_a10_mod0_data, &sun4i_a10_mmc_lock);
384 }
385 CLK_OF_DECLARE(sun4i_a10_mmc, "allwinner,sun4i-a10-mmc-clk", sun4i_a10_mmc_setup);
386 
387 static DEFINE_SPINLOCK(sun9i_a80_mmc_lock);
388 
389 static void __init sun9i_a80_mmc_setup(struct device_node *node)
390 {
391 	sunxi_mmc_setup(node, &sun9i_a80_mod0_data, &sun9i_a80_mmc_lock);
392 }
393 CLK_OF_DECLARE(sun9i_a80_mmc, "allwinner,sun9i-a80-mmc-clk", sun9i_a80_mmc_setup);
394