xref: /openbmc/linux/drivers/clk/sunxi-ng/ccu_mp.c (revision 5b448065)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2016 Maxime Ripard
4  * Maxime Ripard <maxime.ripard@free-electrons.com>
5  */
6 
7 #include <linux/clk-provider.h>
8 #include <linux/io.h>
9 
10 #include "ccu_gate.h"
11 #include "ccu_mp.h"
12 
13 static void ccu_mp_find_best(unsigned long parent, unsigned long rate,
14 			     unsigned int max_m, unsigned int max_p,
15 			     unsigned int *m, unsigned int *p)
16 {
17 	unsigned long best_rate = 0;
18 	unsigned int best_m = 0, best_p = 0;
19 	unsigned int _m, _p;
20 
21 	for (_p = 1; _p <= max_p; _p <<= 1) {
22 		for (_m = 1; _m <= max_m; _m++) {
23 			unsigned long tmp_rate = parent / _p / _m;
24 
25 			if (tmp_rate > rate)
26 				continue;
27 
28 			if ((rate - tmp_rate) < (rate - best_rate)) {
29 				best_rate = tmp_rate;
30 				best_m = _m;
31 				best_p = _p;
32 			}
33 		}
34 	}
35 
36 	*m = best_m;
37 	*p = best_p;
38 }
39 
40 static unsigned long ccu_mp_find_best_with_parent_adj(struct clk_hw *hw,
41 						      unsigned long *parent,
42 						      unsigned long rate,
43 						      unsigned int max_m,
44 						      unsigned int max_p)
45 {
46 	unsigned long parent_rate_saved;
47 	unsigned long parent_rate, now;
48 	unsigned long best_rate = 0;
49 	unsigned int _m, _p, div;
50 	unsigned long maxdiv;
51 
52 	parent_rate_saved = *parent;
53 
54 	/*
55 	 * The maximum divider we can use without overflowing
56 	 * unsigned long in rate * m * p below
57 	 */
58 	maxdiv = max_m * max_p;
59 	maxdiv = min(ULONG_MAX / rate, maxdiv);
60 
61 	for (_p = 1; _p <= max_p; _p <<= 1) {
62 		for (_m = 1; _m <= max_m; _m++) {
63 			div = _m * _p;
64 
65 			if (div > maxdiv)
66 				break;
67 
68 			if (rate * div == parent_rate_saved) {
69 				/*
70 				 * It's the most ideal case if the requested
71 				 * rate can be divided from parent clock without
72 				 * needing to change parent rate, so return the
73 				 * divider immediately.
74 				 */
75 				*parent = parent_rate_saved;
76 				return rate;
77 			}
78 
79 			parent_rate = clk_hw_round_rate(hw, rate * div);
80 			now = parent_rate / div;
81 
82 			if (now <= rate && now > best_rate) {
83 				best_rate = now;
84 				*parent = parent_rate;
85 
86 				if (now == rate)
87 					return rate;
88 			}
89 		}
90 	}
91 
92 	return best_rate;
93 }
94 
95 static unsigned long ccu_mp_round_rate(struct ccu_mux_internal *mux,
96 				       struct clk_hw *hw,
97 				       unsigned long *parent_rate,
98 				       unsigned long rate,
99 				       void *data)
100 {
101 	struct ccu_mp *cmp = data;
102 	unsigned int max_m, max_p;
103 	unsigned int m, p;
104 
105 	if (cmp->common.features & CCU_FEATURE_FIXED_POSTDIV)
106 		rate *= cmp->fixed_post_div;
107 
108 	max_m = cmp->m.max ?: 1 << cmp->m.width;
109 	max_p = cmp->p.max ?: 1 << ((1 << cmp->p.width) - 1);
110 
111 	if (!clk_hw_can_set_rate_parent(&cmp->common.hw)) {
112 		ccu_mp_find_best(*parent_rate, rate, max_m, max_p, &m, &p);
113 		rate = *parent_rate / p / m;
114 	} else {
115 		rate = ccu_mp_find_best_with_parent_adj(hw, parent_rate, rate,
116 							max_m, max_p);
117 	}
118 
119 	if (cmp->common.features & CCU_FEATURE_FIXED_POSTDIV)
120 		rate /= cmp->fixed_post_div;
121 
122 	return rate;
123 }
124 
125 static void ccu_mp_disable(struct clk_hw *hw)
126 {
127 	struct ccu_mp *cmp = hw_to_ccu_mp(hw);
128 
129 	return ccu_gate_helper_disable(&cmp->common, cmp->enable);
130 }
131 
132 static int ccu_mp_enable(struct clk_hw *hw)
133 {
134 	struct ccu_mp *cmp = hw_to_ccu_mp(hw);
135 
136 	return ccu_gate_helper_enable(&cmp->common, cmp->enable);
137 }
138 
139 static int ccu_mp_is_enabled(struct clk_hw *hw)
140 {
141 	struct ccu_mp *cmp = hw_to_ccu_mp(hw);
142 
143 	return ccu_gate_helper_is_enabled(&cmp->common, cmp->enable);
144 }
145 
146 static unsigned long ccu_mp_recalc_rate(struct clk_hw *hw,
147 					unsigned long parent_rate)
148 {
149 	struct ccu_mp *cmp = hw_to_ccu_mp(hw);
150 	unsigned long rate;
151 	unsigned int m, p;
152 	u32 reg;
153 
154 	/* Adjust parent_rate according to pre-dividers */
155 	parent_rate = ccu_mux_helper_apply_prediv(&cmp->common, &cmp->mux, -1,
156 						  parent_rate);
157 
158 	reg = readl(cmp->common.base + cmp->common.reg);
159 
160 	m = reg >> cmp->m.shift;
161 	m &= (1 << cmp->m.width) - 1;
162 	m += cmp->m.offset;
163 	if (!m)
164 		m++;
165 
166 	p = reg >> cmp->p.shift;
167 	p &= (1 << cmp->p.width) - 1;
168 
169 	rate = (parent_rate >> p) / m;
170 	if (cmp->common.features & CCU_FEATURE_FIXED_POSTDIV)
171 		rate /= cmp->fixed_post_div;
172 
173 	return rate;
174 }
175 
176 static int ccu_mp_determine_rate(struct clk_hw *hw,
177 				 struct clk_rate_request *req)
178 {
179 	struct ccu_mp *cmp = hw_to_ccu_mp(hw);
180 
181 	return ccu_mux_helper_determine_rate(&cmp->common, &cmp->mux,
182 					     req, ccu_mp_round_rate, cmp);
183 }
184 
185 static int ccu_mp_set_rate(struct clk_hw *hw, unsigned long rate,
186 			   unsigned long parent_rate)
187 {
188 	struct ccu_mp *cmp = hw_to_ccu_mp(hw);
189 	unsigned long flags;
190 	unsigned int max_m, max_p;
191 	unsigned int m, p;
192 	u32 reg;
193 
194 	/* Adjust parent_rate according to pre-dividers */
195 	parent_rate = ccu_mux_helper_apply_prediv(&cmp->common, &cmp->mux, -1,
196 						  parent_rate);
197 
198 	max_m = cmp->m.max ?: 1 << cmp->m.width;
199 	max_p = cmp->p.max ?: 1 << ((1 << cmp->p.width) - 1);
200 
201 	/* Adjust target rate according to post-dividers */
202 	if (cmp->common.features & CCU_FEATURE_FIXED_POSTDIV)
203 		rate = rate * cmp->fixed_post_div;
204 
205 	ccu_mp_find_best(parent_rate, rate, max_m, max_p, &m, &p);
206 
207 	spin_lock_irqsave(cmp->common.lock, flags);
208 
209 	reg = readl(cmp->common.base + cmp->common.reg);
210 	reg &= ~GENMASK(cmp->m.width + cmp->m.shift - 1, cmp->m.shift);
211 	reg &= ~GENMASK(cmp->p.width + cmp->p.shift - 1, cmp->p.shift);
212 	reg |= (m - cmp->m.offset) << cmp->m.shift;
213 	reg |= ilog2(p) << cmp->p.shift;
214 
215 	writel(reg, cmp->common.base + cmp->common.reg);
216 
217 	spin_unlock_irqrestore(cmp->common.lock, flags);
218 
219 	return 0;
220 }
221 
222 static u8 ccu_mp_get_parent(struct clk_hw *hw)
223 {
224 	struct ccu_mp *cmp = hw_to_ccu_mp(hw);
225 
226 	return ccu_mux_helper_get_parent(&cmp->common, &cmp->mux);
227 }
228 
229 static int ccu_mp_set_parent(struct clk_hw *hw, u8 index)
230 {
231 	struct ccu_mp *cmp = hw_to_ccu_mp(hw);
232 
233 	return ccu_mux_helper_set_parent(&cmp->common, &cmp->mux, index);
234 }
235 
236 const struct clk_ops ccu_mp_ops = {
237 	.disable	= ccu_mp_disable,
238 	.enable		= ccu_mp_enable,
239 	.is_enabled	= ccu_mp_is_enabled,
240 
241 	.get_parent	= ccu_mp_get_parent,
242 	.set_parent	= ccu_mp_set_parent,
243 
244 	.determine_rate	= ccu_mp_determine_rate,
245 	.recalc_rate	= ccu_mp_recalc_rate,
246 	.set_rate	= ccu_mp_set_rate,
247 };
248 
249 /*
250  * Support for MMC timing mode switching
251  *
252  * The MMC clocks on some SoCs support switching between old and
253  * new timing modes. A platform specific API is provided to query
254  * and set the timing mode on supported SoCs.
255  *
256  * In addition, a special class of ccu_mp_ops is provided, which
257  * takes in to account the timing mode switch. When the new timing
258  * mode is active, the clock output rate is halved. This new class
259  * is a wrapper around the generic ccu_mp_ops. When clock rates
260  * are passed through to ccu_mp_ops callbacks, they are doubled
261  * if the new timing mode bit is set, to account for the post
262  * divider. Conversely, when clock rates are passed back, they
263  * are halved if the mode bit is set.
264  */
265 
266 static unsigned long ccu_mp_mmc_recalc_rate(struct clk_hw *hw,
267 					    unsigned long parent_rate)
268 {
269 	unsigned long rate = ccu_mp_recalc_rate(hw, parent_rate);
270 	struct ccu_common *cm = hw_to_ccu_common(hw);
271 	u32 val = readl(cm->base + cm->reg);
272 
273 	if (val & CCU_MMC_NEW_TIMING_MODE)
274 		return rate / 2;
275 	return rate;
276 }
277 
278 static int ccu_mp_mmc_determine_rate(struct clk_hw *hw,
279 				     struct clk_rate_request *req)
280 {
281 	struct ccu_common *cm = hw_to_ccu_common(hw);
282 	u32 val = readl(cm->base + cm->reg);
283 	int ret;
284 
285 	/* adjust the requested clock rate */
286 	if (val & CCU_MMC_NEW_TIMING_MODE) {
287 		req->rate *= 2;
288 		req->min_rate *= 2;
289 		req->max_rate *= 2;
290 	}
291 
292 	ret = ccu_mp_determine_rate(hw, req);
293 
294 	/* re-adjust the requested clock rate back */
295 	if (val & CCU_MMC_NEW_TIMING_MODE) {
296 		req->rate /= 2;
297 		req->min_rate /= 2;
298 		req->max_rate /= 2;
299 	}
300 
301 	return ret;
302 }
303 
304 static int ccu_mp_mmc_set_rate(struct clk_hw *hw, unsigned long rate,
305 			       unsigned long parent_rate)
306 {
307 	struct ccu_common *cm = hw_to_ccu_common(hw);
308 	u32 val = readl(cm->base + cm->reg);
309 
310 	if (val & CCU_MMC_NEW_TIMING_MODE)
311 		rate *= 2;
312 
313 	return ccu_mp_set_rate(hw, rate, parent_rate);
314 }
315 
316 const struct clk_ops ccu_mp_mmc_ops = {
317 	.disable	= ccu_mp_disable,
318 	.enable		= ccu_mp_enable,
319 	.is_enabled	= ccu_mp_is_enabled,
320 
321 	.get_parent	= ccu_mp_get_parent,
322 	.set_parent	= ccu_mp_set_parent,
323 
324 	.determine_rate	= ccu_mp_mmc_determine_rate,
325 	.recalc_rate	= ccu_mp_mmc_recalc_rate,
326 	.set_rate	= ccu_mp_mmc_set_rate,
327 };
328