1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) STMicroelectronics 2022 - All Rights Reserved 4 * Author: Gabriel Fernandez <gabriel.fernandez@foss.st.com> for STMicroelectronics. 5 */ 6 7 #include <linux/clk.h> 8 #include <linux/delay.h> 9 #include <linux/device.h> 10 #include <linux/err.h> 11 #include <linux/io.h> 12 #include <linux/of.h> 13 #include <linux/of_address.h> 14 #include <linux/slab.h> 15 #include <linux/spinlock.h> 16 17 #include "clk-stm32-core.h" 18 #include "reset-stm32.h" 19 20 static DEFINE_SPINLOCK(rlock); 21 22 static int stm32_rcc_clock_init(struct device *dev, 23 const struct of_device_id *match, 24 void __iomem *base) 25 { 26 const struct stm32_rcc_match_data *data = match->data; 27 struct clk_hw_onecell_data *clk_data = data->hw_clks; 28 struct device_node *np = dev_of_node(dev); 29 struct clk_hw **hws; 30 int n, max_binding; 31 32 max_binding = data->maxbinding; 33 34 clk_data = devm_kzalloc(dev, struct_size(clk_data, hws, max_binding), GFP_KERNEL); 35 if (!clk_data) 36 return -ENOMEM; 37 38 clk_data->num = max_binding; 39 40 hws = clk_data->hws; 41 42 for (n = 0; n < max_binding; n++) 43 hws[n] = ERR_PTR(-ENOENT); 44 45 for (n = 0; n < data->num_clocks; n++) { 46 const struct clock_config *cfg_clock = &data->tab_clocks[n]; 47 struct clk_hw *hw = ERR_PTR(-ENOENT); 48 49 if (data->check_security && 50 data->check_security(base, cfg_clock)) 51 continue; 52 53 if (cfg_clock->func) 54 hw = (*cfg_clock->func)(dev, data, base, &rlock, 55 cfg_clock); 56 57 if (IS_ERR(hw)) { 58 dev_err(dev, "Can't register clk %d: %ld\n", n, 59 PTR_ERR(hw)); 60 return PTR_ERR(hw); 61 } 62 63 if (cfg_clock->id != NO_ID) 64 hws[cfg_clock->id] = hw; 65 } 66 67 return of_clk_add_hw_provider(np, of_clk_hw_onecell_get, clk_data); 68 } 69 70 int stm32_rcc_init(struct device *dev, const struct of_device_id *match_data, 71 void __iomem *base) 72 { 73 const struct of_device_id *match; 74 int err; 75 76 match = of_match_node(match_data, dev_of_node(dev)); 77 if (!match) { 78 dev_err(dev, "match data not found\n"); 79 return -ENODEV; 80 } 81 82 /* RCC Reset Configuration */ 83 err = stm32_rcc_reset_init(dev, match, base); 84 if (err) { 85 pr_err("stm32 reset failed to initialize\n"); 86 return err; 87 } 88 89 /* RCC Clock Configuration */ 90 err = stm32_rcc_clock_init(dev, match, base); 91 if (err) { 92 pr_err("stm32 clock failed to initialize\n"); 93 return err; 94 } 95 96 return 0; 97 } 98 99 static u8 stm32_mux_get_parent(void __iomem *base, 100 struct clk_stm32_clock_data *data, 101 u16 mux_id) 102 { 103 const struct stm32_mux_cfg *mux = &data->muxes[mux_id]; 104 u32 mask = BIT(mux->width) - 1; 105 u32 val; 106 107 val = readl(base + mux->offset) >> mux->shift; 108 val &= mask; 109 110 return val; 111 } 112 113 static int stm32_mux_set_parent(void __iomem *base, 114 struct clk_stm32_clock_data *data, 115 u16 mux_id, u8 index) 116 { 117 const struct stm32_mux_cfg *mux = &data->muxes[mux_id]; 118 119 u32 mask = BIT(mux->width) - 1; 120 u32 reg = readl(base + mux->offset); 121 u32 val = index << mux->shift; 122 123 reg &= ~(mask << mux->shift); 124 reg |= val; 125 126 writel(reg, base + mux->offset); 127 128 return 0; 129 } 130 131 static void stm32_gate_endisable(void __iomem *base, 132 struct clk_stm32_clock_data *data, 133 u16 gate_id, int enable) 134 { 135 const struct stm32_gate_cfg *gate = &data->gates[gate_id]; 136 void __iomem *addr = base + gate->offset; 137 138 if (enable) { 139 if (data->gate_cpt[gate_id]++ > 0) 140 return; 141 142 if (gate->set_clr != 0) 143 writel(BIT(gate->bit_idx), addr); 144 else 145 writel(readl(addr) | BIT(gate->bit_idx), addr); 146 } else { 147 if (--data->gate_cpt[gate_id] > 0) 148 return; 149 150 if (gate->set_clr != 0) 151 writel(BIT(gate->bit_idx), addr + gate->set_clr); 152 else 153 writel(readl(addr) & ~BIT(gate->bit_idx), addr); 154 } 155 } 156 157 static void stm32_gate_disable_unused(void __iomem *base, 158 struct clk_stm32_clock_data *data, 159 u16 gate_id) 160 { 161 const struct stm32_gate_cfg *gate = &data->gates[gate_id]; 162 void __iomem *addr = base + gate->offset; 163 164 if (data->gate_cpt[gate_id] > 0) 165 return; 166 167 if (gate->set_clr != 0) 168 writel(BIT(gate->bit_idx), addr + gate->set_clr); 169 else 170 writel(readl(addr) & ~BIT(gate->bit_idx), addr); 171 } 172 173 static int stm32_gate_is_enabled(void __iomem *base, 174 struct clk_stm32_clock_data *data, 175 u16 gate_id) 176 { 177 const struct stm32_gate_cfg *gate = &data->gates[gate_id]; 178 179 return (readl(base + gate->offset) & BIT(gate->bit_idx)) != 0; 180 } 181 182 static unsigned int _get_table_div(const struct clk_div_table *table, 183 unsigned int val) 184 { 185 const struct clk_div_table *clkt; 186 187 for (clkt = table; clkt->div; clkt++) 188 if (clkt->val == val) 189 return clkt->div; 190 return 0; 191 } 192 193 static unsigned int _get_div(const struct clk_div_table *table, 194 unsigned int val, unsigned long flags, u8 width) 195 { 196 if (flags & CLK_DIVIDER_ONE_BASED) 197 return val; 198 if (flags & CLK_DIVIDER_POWER_OF_TWO) 199 return 1 << val; 200 if (table) 201 return _get_table_div(table, val); 202 return val + 1; 203 } 204 205 static unsigned long stm32_divider_get_rate(void __iomem *base, 206 struct clk_stm32_clock_data *data, 207 u16 div_id, 208 unsigned long parent_rate) 209 { 210 const struct stm32_div_cfg *divider = &data->dividers[div_id]; 211 unsigned int val; 212 unsigned int div; 213 214 val = readl(base + divider->offset) >> divider->shift; 215 val &= clk_div_mask(divider->width); 216 div = _get_div(divider->table, val, divider->flags, divider->width); 217 218 if (!div) { 219 WARN(!(divider->flags & CLK_DIVIDER_ALLOW_ZERO), 220 "%d: Zero divisor and CLK_DIVIDER_ALLOW_ZERO not set\n", 221 div_id); 222 return parent_rate; 223 } 224 225 return DIV_ROUND_UP_ULL((u64)parent_rate, div); 226 } 227 228 static int stm32_divider_set_rate(void __iomem *base, 229 struct clk_stm32_clock_data *data, 230 u16 div_id, unsigned long rate, 231 unsigned long parent_rate) 232 { 233 const struct stm32_div_cfg *divider = &data->dividers[div_id]; 234 int value; 235 u32 val; 236 237 value = divider_get_val(rate, parent_rate, divider->table, 238 divider->width, divider->flags); 239 if (value < 0) 240 return value; 241 242 if (divider->flags & CLK_DIVIDER_HIWORD_MASK) { 243 val = clk_div_mask(divider->width) << (divider->shift + 16); 244 } else { 245 val = readl(base + divider->offset); 246 val &= ~(clk_div_mask(divider->width) << divider->shift); 247 } 248 249 val |= (u32)value << divider->shift; 250 251 writel(val, base + divider->offset); 252 253 return 0; 254 } 255 256 static u8 clk_stm32_mux_get_parent(struct clk_hw *hw) 257 { 258 struct clk_stm32_mux *mux = to_clk_stm32_mux(hw); 259 260 return stm32_mux_get_parent(mux->base, mux->clock_data, mux->mux_id); 261 } 262 263 static int clk_stm32_mux_set_parent(struct clk_hw *hw, u8 index) 264 { 265 struct clk_stm32_mux *mux = to_clk_stm32_mux(hw); 266 unsigned long flags = 0; 267 268 spin_lock_irqsave(mux->lock, flags); 269 270 stm32_mux_set_parent(mux->base, mux->clock_data, mux->mux_id, index); 271 272 spin_unlock_irqrestore(mux->lock, flags); 273 274 return 0; 275 } 276 277 const struct clk_ops clk_stm32_mux_ops = { 278 .determine_rate = __clk_mux_determine_rate, 279 .get_parent = clk_stm32_mux_get_parent, 280 .set_parent = clk_stm32_mux_set_parent, 281 }; 282 283 static void clk_stm32_gate_endisable(struct clk_hw *hw, int enable) 284 { 285 struct clk_stm32_gate *gate = to_clk_stm32_gate(hw); 286 unsigned long flags = 0; 287 288 spin_lock_irqsave(gate->lock, flags); 289 290 stm32_gate_endisable(gate->base, gate->clock_data, gate->gate_id, enable); 291 292 spin_unlock_irqrestore(gate->lock, flags); 293 } 294 295 static int clk_stm32_gate_enable(struct clk_hw *hw) 296 { 297 clk_stm32_gate_endisable(hw, 1); 298 299 return 0; 300 } 301 302 static void clk_stm32_gate_disable(struct clk_hw *hw) 303 { 304 clk_stm32_gate_endisable(hw, 0); 305 } 306 307 static int clk_stm32_gate_is_enabled(struct clk_hw *hw) 308 { 309 struct clk_stm32_gate *gate = to_clk_stm32_gate(hw); 310 311 return stm32_gate_is_enabled(gate->base, gate->clock_data, gate->gate_id); 312 } 313 314 static void clk_stm32_gate_disable_unused(struct clk_hw *hw) 315 { 316 struct clk_stm32_gate *gate = to_clk_stm32_gate(hw); 317 unsigned long flags = 0; 318 319 spin_lock_irqsave(gate->lock, flags); 320 321 stm32_gate_disable_unused(gate->base, gate->clock_data, gate->gate_id); 322 323 spin_unlock_irqrestore(gate->lock, flags); 324 } 325 326 const struct clk_ops clk_stm32_gate_ops = { 327 .enable = clk_stm32_gate_enable, 328 .disable = clk_stm32_gate_disable, 329 .is_enabled = clk_stm32_gate_is_enabled, 330 .disable_unused = clk_stm32_gate_disable_unused, 331 }; 332 333 static int clk_stm32_divider_set_rate(struct clk_hw *hw, unsigned long rate, 334 unsigned long parent_rate) 335 { 336 struct clk_stm32_div *div = to_clk_stm32_divider(hw); 337 unsigned long flags = 0; 338 int ret; 339 340 if (div->div_id == NO_STM32_DIV) 341 return rate; 342 343 spin_lock_irqsave(div->lock, flags); 344 345 ret = stm32_divider_set_rate(div->base, div->clock_data, div->div_id, rate, parent_rate); 346 347 spin_unlock_irqrestore(div->lock, flags); 348 349 return ret; 350 } 351 352 static long clk_stm32_divider_round_rate(struct clk_hw *hw, unsigned long rate, 353 unsigned long *prate) 354 { 355 struct clk_stm32_div *div = to_clk_stm32_divider(hw); 356 const struct stm32_div_cfg *divider; 357 358 if (div->div_id == NO_STM32_DIV) 359 return rate; 360 361 divider = &div->clock_data->dividers[div->div_id]; 362 363 /* if read only, just return current value */ 364 if (divider->flags & CLK_DIVIDER_READ_ONLY) { 365 u32 val; 366 367 val = readl(div->base + divider->offset) >> divider->shift; 368 val &= clk_div_mask(divider->width); 369 370 return divider_ro_round_rate(hw, rate, prate, divider->table, 371 divider->width, divider->flags, 372 val); 373 } 374 375 return divider_round_rate_parent(hw, clk_hw_get_parent(hw), 376 rate, prate, divider->table, 377 divider->width, divider->flags); 378 } 379 380 static unsigned long clk_stm32_divider_recalc_rate(struct clk_hw *hw, 381 unsigned long parent_rate) 382 { 383 struct clk_stm32_div *div = to_clk_stm32_divider(hw); 384 385 if (div->div_id == NO_STM32_DIV) 386 return parent_rate; 387 388 return stm32_divider_get_rate(div->base, div->clock_data, div->div_id, parent_rate); 389 } 390 391 const struct clk_ops clk_stm32_divider_ops = { 392 .recalc_rate = clk_stm32_divider_recalc_rate, 393 .round_rate = clk_stm32_divider_round_rate, 394 .set_rate = clk_stm32_divider_set_rate, 395 }; 396 397 static int clk_stm32_composite_set_rate(struct clk_hw *hw, unsigned long rate, 398 unsigned long parent_rate) 399 { 400 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 401 unsigned long flags = 0; 402 int ret; 403 404 if (composite->div_id == NO_STM32_DIV) 405 return rate; 406 407 spin_lock_irqsave(composite->lock, flags); 408 409 ret = stm32_divider_set_rate(composite->base, composite->clock_data, 410 composite->div_id, rate, parent_rate); 411 412 spin_unlock_irqrestore(composite->lock, flags); 413 414 return ret; 415 } 416 417 static unsigned long clk_stm32_composite_recalc_rate(struct clk_hw *hw, 418 unsigned long parent_rate) 419 { 420 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 421 422 if (composite->div_id == NO_STM32_DIV) 423 return parent_rate; 424 425 return stm32_divider_get_rate(composite->base, composite->clock_data, 426 composite->div_id, parent_rate); 427 } 428 429 static int clk_stm32_composite_determine_rate(struct clk_hw *hw, 430 struct clk_rate_request *req) 431 { 432 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 433 const struct stm32_div_cfg *divider; 434 long rate; 435 436 if (composite->div_id == NO_STM32_DIV) 437 return 0; 438 439 divider = &composite->clock_data->dividers[composite->div_id]; 440 441 /* if read only, just return current value */ 442 if (divider->flags & CLK_DIVIDER_READ_ONLY) { 443 u32 val; 444 445 val = readl(composite->base + divider->offset) >> divider->shift; 446 val &= clk_div_mask(divider->width); 447 448 rate = divider_ro_round_rate(hw, req->rate, &req->best_parent_rate, 449 divider->table, divider->width, divider->flags, 450 val); 451 if (rate < 0) 452 return rate; 453 454 req->rate = rate; 455 return 0; 456 } 457 458 rate = divider_round_rate_parent(hw, clk_hw_get_parent(hw), 459 req->rate, &req->best_parent_rate, 460 divider->table, divider->width, divider->flags); 461 if (rate < 0) 462 return rate; 463 464 req->rate = rate; 465 return 0; 466 } 467 468 static u8 clk_stm32_composite_get_parent(struct clk_hw *hw) 469 { 470 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 471 472 return stm32_mux_get_parent(composite->base, composite->clock_data, composite->mux_id); 473 } 474 475 static int clk_stm32_composite_set_parent(struct clk_hw *hw, u8 index) 476 { 477 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 478 unsigned long flags = 0; 479 480 spin_lock_irqsave(composite->lock, flags); 481 482 stm32_mux_set_parent(composite->base, composite->clock_data, composite->mux_id, index); 483 484 spin_unlock_irqrestore(composite->lock, flags); 485 486 if (composite->clock_data->is_multi_mux) { 487 struct clk_hw *other_mux_hw = composite->clock_data->is_multi_mux(hw); 488 489 if (other_mux_hw) { 490 struct clk_hw *hwp = clk_hw_get_parent_by_index(hw, index); 491 492 clk_hw_reparent(other_mux_hw, hwp); 493 } 494 } 495 496 return 0; 497 } 498 499 static int clk_stm32_composite_is_enabled(struct clk_hw *hw) 500 { 501 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 502 503 if (composite->gate_id == NO_STM32_GATE) 504 return (__clk_get_enable_count(hw->clk) > 0); 505 506 return stm32_gate_is_enabled(composite->base, composite->clock_data, composite->gate_id); 507 } 508 509 #define MUX_SAFE_POSITION 0 510 511 static int clk_stm32_has_safe_mux(struct clk_hw *hw) 512 { 513 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 514 const struct stm32_mux_cfg *mux = &composite->clock_data->muxes[composite->mux_id]; 515 516 return !!(mux->flags & MUX_SAFE); 517 } 518 519 static void clk_stm32_set_safe_position_mux(struct clk_hw *hw) 520 { 521 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 522 523 if (!clk_stm32_composite_is_enabled(hw)) { 524 unsigned long flags = 0; 525 526 if (composite->clock_data->is_multi_mux) { 527 struct clk_hw *other_mux_hw = NULL; 528 529 other_mux_hw = composite->clock_data->is_multi_mux(hw); 530 531 if (!other_mux_hw || clk_stm32_composite_is_enabled(other_mux_hw)) 532 return; 533 } 534 535 spin_lock_irqsave(composite->lock, flags); 536 537 stm32_mux_set_parent(composite->base, composite->clock_data, 538 composite->mux_id, MUX_SAFE_POSITION); 539 540 spin_unlock_irqrestore(composite->lock, flags); 541 } 542 } 543 544 static void clk_stm32_safe_restore_position_mux(struct clk_hw *hw) 545 { 546 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 547 int sel = clk_hw_get_parent_index(hw); 548 unsigned long flags = 0; 549 550 spin_lock_irqsave(composite->lock, flags); 551 552 stm32_mux_set_parent(composite->base, composite->clock_data, composite->mux_id, sel); 553 554 spin_unlock_irqrestore(composite->lock, flags); 555 } 556 557 static void clk_stm32_composite_gate_endisable(struct clk_hw *hw, int enable) 558 { 559 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 560 unsigned long flags = 0; 561 562 spin_lock_irqsave(composite->lock, flags); 563 564 stm32_gate_endisable(composite->base, composite->clock_data, composite->gate_id, enable); 565 566 spin_unlock_irqrestore(composite->lock, flags); 567 } 568 569 static int clk_stm32_composite_gate_enable(struct clk_hw *hw) 570 { 571 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 572 573 if (composite->gate_id == NO_STM32_GATE) 574 return 0; 575 576 clk_stm32_composite_gate_endisable(hw, 1); 577 578 if (composite->mux_id != NO_STM32_MUX && clk_stm32_has_safe_mux(hw)) 579 clk_stm32_safe_restore_position_mux(hw); 580 581 return 0; 582 } 583 584 static void clk_stm32_composite_gate_disable(struct clk_hw *hw) 585 { 586 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 587 588 if (composite->gate_id == NO_STM32_GATE) 589 return; 590 591 clk_stm32_composite_gate_endisable(hw, 0); 592 593 if (composite->mux_id != NO_STM32_MUX && clk_stm32_has_safe_mux(hw)) 594 clk_stm32_set_safe_position_mux(hw); 595 } 596 597 static void clk_stm32_composite_disable_unused(struct clk_hw *hw) 598 { 599 struct clk_stm32_composite *composite = to_clk_stm32_composite(hw); 600 unsigned long flags = 0; 601 602 if (composite->gate_id == NO_STM32_GATE) 603 return; 604 605 spin_lock_irqsave(composite->lock, flags); 606 607 stm32_gate_disable_unused(composite->base, composite->clock_data, composite->gate_id); 608 609 spin_unlock_irqrestore(composite->lock, flags); 610 } 611 612 const struct clk_ops clk_stm32_composite_ops = { 613 .set_rate = clk_stm32_composite_set_rate, 614 .recalc_rate = clk_stm32_composite_recalc_rate, 615 .determine_rate = clk_stm32_composite_determine_rate, 616 .get_parent = clk_stm32_composite_get_parent, 617 .set_parent = clk_stm32_composite_set_parent, 618 .enable = clk_stm32_composite_gate_enable, 619 .disable = clk_stm32_composite_gate_disable, 620 .is_enabled = clk_stm32_composite_is_enabled, 621 .disable_unused = clk_stm32_composite_disable_unused, 622 }; 623 624 struct clk_hw *clk_stm32_mux_register(struct device *dev, 625 const struct stm32_rcc_match_data *data, 626 void __iomem *base, 627 spinlock_t *lock, 628 const struct clock_config *cfg) 629 { 630 struct clk_stm32_mux *mux = cfg->clock_cfg; 631 struct clk_hw *hw = &mux->hw; 632 int err; 633 634 mux->base = base; 635 mux->lock = lock; 636 mux->clock_data = data->clock_data; 637 638 err = clk_hw_register(dev, hw); 639 if (err) 640 return ERR_PTR(err); 641 642 return hw; 643 } 644 645 struct clk_hw *clk_stm32_gate_register(struct device *dev, 646 const struct stm32_rcc_match_data *data, 647 void __iomem *base, 648 spinlock_t *lock, 649 const struct clock_config *cfg) 650 { 651 struct clk_stm32_gate *gate = cfg->clock_cfg; 652 struct clk_hw *hw = &gate->hw; 653 int err; 654 655 gate->base = base; 656 gate->lock = lock; 657 gate->clock_data = data->clock_data; 658 659 err = clk_hw_register(dev, hw); 660 if (err) 661 return ERR_PTR(err); 662 663 return hw; 664 } 665 666 struct clk_hw *clk_stm32_div_register(struct device *dev, 667 const struct stm32_rcc_match_data *data, 668 void __iomem *base, 669 spinlock_t *lock, 670 const struct clock_config *cfg) 671 { 672 struct clk_stm32_div *div = cfg->clock_cfg; 673 struct clk_hw *hw = &div->hw; 674 int err; 675 676 div->base = base; 677 div->lock = lock; 678 div->clock_data = data->clock_data; 679 680 err = clk_hw_register(dev, hw); 681 if (err) 682 return ERR_PTR(err); 683 684 return hw; 685 } 686 687 struct clk_hw *clk_stm32_composite_register(struct device *dev, 688 const struct stm32_rcc_match_data *data, 689 void __iomem *base, 690 spinlock_t *lock, 691 const struct clock_config *cfg) 692 { 693 struct clk_stm32_composite *composite = cfg->clock_cfg; 694 struct clk_hw *hw = &composite->hw; 695 int err; 696 697 composite->base = base; 698 composite->lock = lock; 699 composite->clock_data = data->clock_data; 700 701 err = clk_hw_register(dev, hw); 702 if (err) 703 return ERR_PTR(err); 704 705 return hw; 706 } 707