xref: /openbmc/linux/drivers/clk/st/clkgen-fsyn.c (revision 530e7a660fb795452357b36cce26b839a9a187a9)
1 /*
2  * Copyright (C) 2014 STMicroelectronics R&D Ltd
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  */
9 
10 /*
11  * Authors:
12  * Stephen Gallimore <stephen.gallimore@st.com>,
13  * Pankaj Dev <pankaj.dev@st.com>.
14  */
15 
16 #include <linux/slab.h>
17 #include <linux/of_address.h>
18 #include <linux/clk.h>
19 #include <linux/clk-provider.h>
20 
21 #include "clkgen.h"
22 
23 /*
24  * Maximum input clock to the PLL before we divide it down by 2
25  * although in reality in actual systems this has never been seen to
26  * be used.
27  */
28 #define QUADFS_NDIV_THRESHOLD 30000000
29 
30 #define PLL_BW_GOODREF   (0L)
31 #define PLL_BW_VBADREF   (1L)
32 #define PLL_BW_BADREF    (2L)
33 #define PLL_BW_VGOODREF  (3L)
34 
35 #define QUADFS_MAX_CHAN 4
36 
37 struct stm_fs {
38 	unsigned long ndiv;
39 	unsigned long mdiv;
40 	unsigned long pe;
41 	unsigned long sdiv;
42 	unsigned long nsdiv;
43 };
44 
45 struct clkgen_quadfs_data {
46 	bool reset_present;
47 	bool bwfilter_present;
48 	bool lockstatus_present;
49 	bool powerup_polarity;
50 	bool standby_polarity;
51 	bool nsdiv_present;
52 	bool nrst_present;
53 	struct clkgen_field ndiv;
54 	struct clkgen_field ref_bw;
55 	struct clkgen_field nreset;
56 	struct clkgen_field npda;
57 	struct clkgen_field lock_status;
58 
59 	struct clkgen_field nrst[QUADFS_MAX_CHAN];
60 	struct clkgen_field nsb[QUADFS_MAX_CHAN];
61 	struct clkgen_field en[QUADFS_MAX_CHAN];
62 	struct clkgen_field mdiv[QUADFS_MAX_CHAN];
63 	struct clkgen_field pe[QUADFS_MAX_CHAN];
64 	struct clkgen_field sdiv[QUADFS_MAX_CHAN];
65 	struct clkgen_field nsdiv[QUADFS_MAX_CHAN];
66 
67 	const struct clk_ops *pll_ops;
68 	int  (*get_params)(unsigned long, unsigned long, struct stm_fs *);
69 	int  (*get_rate)(unsigned long , const struct stm_fs *,
70 			unsigned long *);
71 };
72 
73 static const struct clk_ops st_quadfs_pll_c32_ops;
74 static const struct clk_ops st_quadfs_fs660c32_ops;
75 
76 static int clk_fs660c32_dig_get_params(unsigned long input,
77 		unsigned long output, struct stm_fs *fs);
78 static int clk_fs660c32_dig_get_rate(unsigned long, const struct stm_fs *,
79 		unsigned long *);
80 
81 static const struct clkgen_quadfs_data st_fs660c32_C = {
82 	.nrst_present = true,
83 	.nrst	= { CLKGEN_FIELD(0x2f0, 0x1, 0),
84 		    CLKGEN_FIELD(0x2f0, 0x1, 1),
85 		    CLKGEN_FIELD(0x2f0, 0x1, 2),
86 		    CLKGEN_FIELD(0x2f0, 0x1, 3) },
87 	.npda	= CLKGEN_FIELD(0x2f0, 0x1, 12),
88 	.nsb	= { CLKGEN_FIELD(0x2f0, 0x1, 8),
89 		    CLKGEN_FIELD(0x2f0, 0x1, 9),
90 		    CLKGEN_FIELD(0x2f0, 0x1, 10),
91 		    CLKGEN_FIELD(0x2f0, 0x1, 11) },
92 	.nsdiv_present = true,
93 	.nsdiv	= { CLKGEN_FIELD(0x304, 0x1, 24),
94 		    CLKGEN_FIELD(0x308, 0x1, 24),
95 		    CLKGEN_FIELD(0x30c, 0x1, 24),
96 		    CLKGEN_FIELD(0x310, 0x1, 24) },
97 	.mdiv	= { CLKGEN_FIELD(0x304, 0x1f, 15),
98 		    CLKGEN_FIELD(0x308, 0x1f, 15),
99 		    CLKGEN_FIELD(0x30c, 0x1f, 15),
100 		    CLKGEN_FIELD(0x310, 0x1f, 15) },
101 	.en	= { CLKGEN_FIELD(0x2fc, 0x1, 0),
102 		    CLKGEN_FIELD(0x2fc, 0x1, 1),
103 		    CLKGEN_FIELD(0x2fc, 0x1, 2),
104 		    CLKGEN_FIELD(0x2fc, 0x1, 3) },
105 	.ndiv	= CLKGEN_FIELD(0x2f4, 0x7, 16),
106 	.pe	= { CLKGEN_FIELD(0x304, 0x7fff, 0),
107 		    CLKGEN_FIELD(0x308, 0x7fff, 0),
108 		    CLKGEN_FIELD(0x30c, 0x7fff, 0),
109 		    CLKGEN_FIELD(0x310, 0x7fff, 0) },
110 	.sdiv	= { CLKGEN_FIELD(0x304, 0xf, 20),
111 		    CLKGEN_FIELD(0x308, 0xf, 20),
112 		    CLKGEN_FIELD(0x30c, 0xf, 20),
113 		    CLKGEN_FIELD(0x310, 0xf, 20) },
114 	.lockstatus_present = true,
115 	.lock_status = CLKGEN_FIELD(0x2f0, 0x1, 24),
116 	.powerup_polarity = 1,
117 	.standby_polarity = 1,
118 	.pll_ops	= &st_quadfs_pll_c32_ops,
119 	.get_params	= clk_fs660c32_dig_get_params,
120 	.get_rate	= clk_fs660c32_dig_get_rate,
121 };
122 
123 static const struct clkgen_quadfs_data st_fs660c32_D = {
124 	.nrst_present = true,
125 	.nrst	= { CLKGEN_FIELD(0x2a0, 0x1, 0),
126 		    CLKGEN_FIELD(0x2a0, 0x1, 1),
127 		    CLKGEN_FIELD(0x2a0, 0x1, 2),
128 		    CLKGEN_FIELD(0x2a0, 0x1, 3) },
129 	.ndiv	= CLKGEN_FIELD(0x2a4, 0x7, 16),
130 	.pe	= { CLKGEN_FIELD(0x2b4, 0x7fff, 0),
131 		    CLKGEN_FIELD(0x2b8, 0x7fff, 0),
132 		    CLKGEN_FIELD(0x2bc, 0x7fff, 0),
133 		    CLKGEN_FIELD(0x2c0, 0x7fff, 0) },
134 	.sdiv	= { CLKGEN_FIELD(0x2b4, 0xf, 20),
135 		    CLKGEN_FIELD(0x2b8, 0xf, 20),
136 		    CLKGEN_FIELD(0x2bc, 0xf, 20),
137 		    CLKGEN_FIELD(0x2c0, 0xf, 20) },
138 	.npda	= CLKGEN_FIELD(0x2a0, 0x1, 12),
139 	.nsb	= { CLKGEN_FIELD(0x2a0, 0x1, 8),
140 		    CLKGEN_FIELD(0x2a0, 0x1, 9),
141 		    CLKGEN_FIELD(0x2a0, 0x1, 10),
142 		    CLKGEN_FIELD(0x2a0, 0x1, 11) },
143 	.nsdiv_present = true,
144 	.nsdiv	= { CLKGEN_FIELD(0x2b4, 0x1, 24),
145 		    CLKGEN_FIELD(0x2b8, 0x1, 24),
146 		    CLKGEN_FIELD(0x2bc, 0x1, 24),
147 		    CLKGEN_FIELD(0x2c0, 0x1, 24) },
148 	.mdiv	= { CLKGEN_FIELD(0x2b4, 0x1f, 15),
149 		    CLKGEN_FIELD(0x2b8, 0x1f, 15),
150 		    CLKGEN_FIELD(0x2bc, 0x1f, 15),
151 		    CLKGEN_FIELD(0x2c0, 0x1f, 15) },
152 	.en	= { CLKGEN_FIELD(0x2ac, 0x1, 0),
153 		    CLKGEN_FIELD(0x2ac, 0x1, 1),
154 		    CLKGEN_FIELD(0x2ac, 0x1, 2),
155 		    CLKGEN_FIELD(0x2ac, 0x1, 3) },
156 	.lockstatus_present = true,
157 	.lock_status = CLKGEN_FIELD(0x2A0, 0x1, 24),
158 	.powerup_polarity = 1,
159 	.standby_polarity = 1,
160 	.pll_ops	= &st_quadfs_pll_c32_ops,
161 	.get_params	= clk_fs660c32_dig_get_params,
162 	.get_rate	= clk_fs660c32_dig_get_rate,};
163 
164 /**
165  * DOC: A Frequency Synthesizer that multiples its input clock by a fixed factor
166  *
167  * Traits of this clock:
168  * prepare - clk_(un)prepare only ensures parent is (un)prepared
169  * enable - clk_enable and clk_disable are functional & control the Fsyn
170  * rate - inherits rate from parent. set_rate/round_rate/recalc_rate
171  * parent - fixed parent.  No clk_set_parent support
172  */
173 
174 /**
175  * struct st_clk_quadfs_pll - A pll which outputs a fixed multiplier of
176  *                                  its parent clock, found inside a type of
177  *                                  ST quad channel frequency synthesizer block
178  *
179  * @hw: handle between common and hardware-specific interfaces.
180  * @ndiv: regmap field for the ndiv control.
181  * @regs_base: base address of the configuration registers.
182  * @lock: spinlock.
183  *
184  */
185 struct st_clk_quadfs_pll {
186 	struct clk_hw	hw;
187 	void __iomem	*regs_base;
188 	spinlock_t	*lock;
189 	struct clkgen_quadfs_data *data;
190 	u32 ndiv;
191 };
192 
193 #define to_quadfs_pll(_hw) container_of(_hw, struct st_clk_quadfs_pll, hw)
194 
195 static int quadfs_pll_enable(struct clk_hw *hw)
196 {
197 	struct st_clk_quadfs_pll *pll = to_quadfs_pll(hw);
198 	unsigned long flags = 0, timeout = jiffies + msecs_to_jiffies(10);
199 
200 	if (pll->lock)
201 		spin_lock_irqsave(pll->lock, flags);
202 
203 	/*
204 	 * Bring block out of reset if we have reset control.
205 	 */
206 	if (pll->data->reset_present)
207 		CLKGEN_WRITE(pll, nreset, 1);
208 
209 	/*
210 	 * Use a fixed input clock noise bandwidth filter for the moment
211 	 */
212 	if (pll->data->bwfilter_present)
213 		CLKGEN_WRITE(pll, ref_bw, PLL_BW_GOODREF);
214 
215 
216 	CLKGEN_WRITE(pll, ndiv, pll->ndiv);
217 
218 	/*
219 	 * Power up the PLL
220 	 */
221 	CLKGEN_WRITE(pll, npda, !pll->data->powerup_polarity);
222 
223 	if (pll->lock)
224 		spin_unlock_irqrestore(pll->lock, flags);
225 
226 	if (pll->data->lockstatus_present)
227 		while (!CLKGEN_READ(pll, lock_status)) {
228 			if (time_after(jiffies, timeout))
229 				return -ETIMEDOUT;
230 			cpu_relax();
231 		}
232 
233 	return 0;
234 }
235 
236 static void quadfs_pll_disable(struct clk_hw *hw)
237 {
238 	struct st_clk_quadfs_pll *pll = to_quadfs_pll(hw);
239 	unsigned long flags = 0;
240 
241 	if (pll->lock)
242 		spin_lock_irqsave(pll->lock, flags);
243 
244 	/*
245 	 * Powerdown the PLL and then put block into soft reset if we have
246 	 * reset control.
247 	 */
248 	CLKGEN_WRITE(pll, npda, pll->data->powerup_polarity);
249 
250 	if (pll->data->reset_present)
251 		CLKGEN_WRITE(pll, nreset, 0);
252 
253 	if (pll->lock)
254 		spin_unlock_irqrestore(pll->lock, flags);
255 }
256 
257 static int quadfs_pll_is_enabled(struct clk_hw *hw)
258 {
259 	struct st_clk_quadfs_pll *pll = to_quadfs_pll(hw);
260 	u32 npda = CLKGEN_READ(pll, npda);
261 
262 	return pll->data->powerup_polarity ? !npda : !!npda;
263 }
264 
265 static int clk_fs660c32_vco_get_rate(unsigned long input, struct stm_fs *fs,
266 			   unsigned long *rate)
267 {
268 	unsigned long nd = fs->ndiv + 16; /* ndiv value */
269 
270 	*rate = input * nd;
271 
272 	return 0;
273 }
274 
275 static unsigned long quadfs_pll_fs660c32_recalc_rate(struct clk_hw *hw,
276 					unsigned long parent_rate)
277 {
278 	struct st_clk_quadfs_pll *pll = to_quadfs_pll(hw);
279 	unsigned long rate = 0;
280 	struct stm_fs params;
281 
282 	params.ndiv = CLKGEN_READ(pll, ndiv);
283 	if (clk_fs660c32_vco_get_rate(parent_rate, &params, &rate))
284 		pr_err("%s:%s error calculating rate\n",
285 		       clk_hw_get_name(hw), __func__);
286 
287 	pll->ndiv = params.ndiv;
288 
289 	return rate;
290 }
291 
292 static int clk_fs660c32_vco_get_params(unsigned long input,
293 				unsigned long output, struct stm_fs *fs)
294 {
295 /* Formula
296    VCO frequency = (fin x ndiv) / pdiv
297    ndiv = VCOfreq * pdiv / fin
298    */
299 	unsigned long pdiv = 1, n;
300 
301 	/* Output clock range: 384Mhz to 660Mhz */
302 	if (output < 384000000 || output > 660000000)
303 		return -EINVAL;
304 
305 	if (input > 40000000)
306 		/* This means that PDIV would be 2 instead of 1.
307 		   Not supported today. */
308 		return -EINVAL;
309 
310 	input /= 1000;
311 	output /= 1000;
312 
313 	n = output * pdiv / input;
314 	if (n < 16)
315 		n = 16;
316 	fs->ndiv = n - 16; /* Converting formula value to reg value */
317 
318 	return 0;
319 }
320 
321 static long quadfs_pll_fs660c32_round_rate(struct clk_hw *hw,
322 					   unsigned long rate,
323 					   unsigned long *prate)
324 {
325 	struct stm_fs params;
326 
327 	if (clk_fs660c32_vco_get_params(*prate, rate, &params))
328 		return rate;
329 
330 	clk_fs660c32_vco_get_rate(*prate, &params, &rate);
331 
332 	pr_debug("%s: %s new rate %ld [ndiv=%u]\n",
333 		 __func__, clk_hw_get_name(hw),
334 		 rate, (unsigned int)params.ndiv);
335 
336 	return rate;
337 }
338 
339 static int quadfs_pll_fs660c32_set_rate(struct clk_hw *hw, unsigned long rate,
340 				unsigned long parent_rate)
341 {
342 	struct st_clk_quadfs_pll *pll = to_quadfs_pll(hw);
343 	struct stm_fs params;
344 	long hwrate = 0;
345 	unsigned long flags = 0;
346 	int ret;
347 
348 	if (!rate || !parent_rate)
349 		return -EINVAL;
350 
351 	ret = clk_fs660c32_vco_get_params(parent_rate, rate, &params);
352 	if (ret)
353 		return ret;
354 
355 	clk_fs660c32_vco_get_rate(parent_rate, &params, &hwrate);
356 
357 	pr_debug("%s: %s new rate %ld [ndiv=0x%x]\n",
358 		 __func__, clk_hw_get_name(hw),
359 		 hwrate, (unsigned int)params.ndiv);
360 
361 	if (!hwrate)
362 		return -EINVAL;
363 
364 	pll->ndiv = params.ndiv;
365 
366 	if (pll->lock)
367 		spin_lock_irqsave(pll->lock, flags);
368 
369 	CLKGEN_WRITE(pll, ndiv, pll->ndiv);
370 
371 	if (pll->lock)
372 		spin_unlock_irqrestore(pll->lock, flags);
373 
374 	return 0;
375 }
376 
377 static const struct clk_ops st_quadfs_pll_c32_ops = {
378 	.enable		= quadfs_pll_enable,
379 	.disable	= quadfs_pll_disable,
380 	.is_enabled	= quadfs_pll_is_enabled,
381 	.recalc_rate	= quadfs_pll_fs660c32_recalc_rate,
382 	.round_rate	= quadfs_pll_fs660c32_round_rate,
383 	.set_rate	= quadfs_pll_fs660c32_set_rate,
384 };
385 
386 static struct clk * __init st_clk_register_quadfs_pll(
387 		const char *name, const char *parent_name,
388 		struct clkgen_quadfs_data *quadfs, void __iomem *reg,
389 		spinlock_t *lock)
390 {
391 	struct st_clk_quadfs_pll *pll;
392 	struct clk *clk;
393 	struct clk_init_data init;
394 
395 	/*
396 	 * Sanity check required pointers.
397 	 */
398 	if (WARN_ON(!name || !parent_name))
399 		return ERR_PTR(-EINVAL);
400 
401 	pll = kzalloc(sizeof(*pll), GFP_KERNEL);
402 	if (!pll)
403 		return ERR_PTR(-ENOMEM);
404 
405 	init.name = name;
406 	init.ops = quadfs->pll_ops;
407 	init.flags = CLK_IS_BASIC | CLK_GET_RATE_NOCACHE;
408 	init.parent_names = &parent_name;
409 	init.num_parents = 1;
410 
411 	pll->data = quadfs;
412 	pll->regs_base = reg;
413 	pll->lock = lock;
414 	pll->hw.init = &init;
415 
416 	clk = clk_register(NULL, &pll->hw);
417 
418 	if (IS_ERR(clk))
419 		kfree(pll);
420 
421 	return clk;
422 }
423 
424 /**
425  * DOC: A digital frequency synthesizer
426  *
427  * Traits of this clock:
428  * prepare - clk_(un)prepare only ensures parent is (un)prepared
429  * enable - clk_enable and clk_disable are functional
430  * rate - set rate is functional
431  * parent - fixed parent.  No clk_set_parent support
432  */
433 
434 /**
435  * struct st_clk_quadfs_fsynth - One clock output from a four channel digital
436  *                                  frequency synthesizer (fsynth) block.
437  *
438  * @hw: handle between common and hardware-specific interfaces
439  *
440  * @nsb: regmap field in the output control register for the digital
441  *       standby of this fsynth channel. This control is active low so
442  *       the channel is in standby when the control bit is cleared.
443  *
444  * @nsdiv: regmap field in the output control register for
445  *          for the optional divide by 3 of this fsynth channel. This control
446  *          is active low so the divide by 3 is active when the control bit is
447  *          cleared and the divide is bypassed when the bit is set.
448  */
449 struct st_clk_quadfs_fsynth {
450 	struct clk_hw	hw;
451 	void __iomem	*regs_base;
452 	spinlock_t	*lock;
453 	struct clkgen_quadfs_data *data;
454 
455 	u32 chan;
456 	/*
457 	 * Cached hardware values from set_rate so we can program the
458 	 * hardware in enable. There are two reasons for this:
459 	 *
460 	 *  1. The registers may not be writable until the parent has been
461 	 *     enabled.
462 	 *
463 	 *  2. It restores the clock rate when a driver does an enable
464 	 *     on PM restore, after a suspend to RAM has lost the hardware
465 	 *     setup.
466 	 */
467 	u32 md;
468 	u32 pe;
469 	u32 sdiv;
470 	u32 nsdiv;
471 };
472 
473 #define to_quadfs_fsynth(_hw) \
474 	container_of(_hw, struct st_clk_quadfs_fsynth, hw)
475 
476 static void quadfs_fsynth_program_enable(struct st_clk_quadfs_fsynth *fs)
477 {
478 	/*
479 	 * Pulse the program enable register lsb to make the hardware take
480 	 * notice of the new md/pe values with a glitchless transition.
481 	 */
482 	CLKGEN_WRITE(fs, en[fs->chan], 1);
483 	CLKGEN_WRITE(fs, en[fs->chan], 0);
484 }
485 
486 static void quadfs_fsynth_program_rate(struct st_clk_quadfs_fsynth *fs)
487 {
488 	unsigned long flags = 0;
489 
490 	/*
491 	 * Ensure the md/pe parameters are ignored while we are
492 	 * reprogramming them so we can get a glitchless change
493 	 * when fine tuning the speed of a running clock.
494 	 */
495 	CLKGEN_WRITE(fs, en[fs->chan], 0);
496 
497 	CLKGEN_WRITE(fs, mdiv[fs->chan], fs->md);
498 	CLKGEN_WRITE(fs, pe[fs->chan], fs->pe);
499 	CLKGEN_WRITE(fs, sdiv[fs->chan], fs->sdiv);
500 
501 	if (fs->lock)
502 		spin_lock_irqsave(fs->lock, flags);
503 
504 	if (fs->data->nsdiv_present)
505 		CLKGEN_WRITE(fs, nsdiv[fs->chan], fs->nsdiv);
506 
507 	if (fs->lock)
508 		spin_unlock_irqrestore(fs->lock, flags);
509 }
510 
511 static int quadfs_fsynth_enable(struct clk_hw *hw)
512 {
513 	struct st_clk_quadfs_fsynth *fs = to_quadfs_fsynth(hw);
514 	unsigned long flags = 0;
515 
516 	pr_debug("%s: %s\n", __func__, clk_hw_get_name(hw));
517 
518 	quadfs_fsynth_program_rate(fs);
519 
520 	if (fs->lock)
521 		spin_lock_irqsave(fs->lock, flags);
522 
523 	CLKGEN_WRITE(fs, nsb[fs->chan], !fs->data->standby_polarity);
524 
525 	if (fs->data->nrst_present)
526 		CLKGEN_WRITE(fs, nrst[fs->chan], 0);
527 
528 	if (fs->lock)
529 		spin_unlock_irqrestore(fs->lock, flags);
530 
531 	quadfs_fsynth_program_enable(fs);
532 
533 	return 0;
534 }
535 
536 static void quadfs_fsynth_disable(struct clk_hw *hw)
537 {
538 	struct st_clk_quadfs_fsynth *fs = to_quadfs_fsynth(hw);
539 	unsigned long flags = 0;
540 
541 	pr_debug("%s: %s\n", __func__, clk_hw_get_name(hw));
542 
543 	if (fs->lock)
544 		spin_lock_irqsave(fs->lock, flags);
545 
546 	CLKGEN_WRITE(fs, nsb[fs->chan], fs->data->standby_polarity);
547 
548 	if (fs->lock)
549 		spin_unlock_irqrestore(fs->lock, flags);
550 }
551 
552 static int quadfs_fsynth_is_enabled(struct clk_hw *hw)
553 {
554 	struct st_clk_quadfs_fsynth *fs = to_quadfs_fsynth(hw);
555 	u32 nsb = CLKGEN_READ(fs, nsb[fs->chan]);
556 
557 	pr_debug("%s: %s enable bit = 0x%x\n",
558 		 __func__, clk_hw_get_name(hw), nsb);
559 
560 	return fs->data->standby_polarity ? !nsb : !!nsb;
561 }
562 
563 #define P20		(uint64_t)(1 << 20)
564 
565 static int clk_fs660c32_dig_get_rate(unsigned long input,
566 				const struct stm_fs *fs, unsigned long *rate)
567 {
568 	unsigned long s = (1 << fs->sdiv);
569 	unsigned long ns;
570 	uint64_t res;
571 
572 	/*
573 	 * 'nsdiv' is a register value ('BIN') which is translated
574 	 * to a decimal value according to following rules.
575 	 *
576 	 *     nsdiv      ns.dec
577 	 *       0        3
578 	 *       1        1
579 	 */
580 	ns = (fs->nsdiv == 1) ? 1 : 3;
581 
582 	res = (P20 * (32 + fs->mdiv) + 32 * fs->pe) * s * ns;
583 	*rate = (unsigned long)div64_u64(input * P20 * 32, res);
584 
585 	return 0;
586 }
587 
588 
589 static int clk_fs660c32_get_pe(int m, int si, unsigned long *deviation,
590 		signed long input, unsigned long output, uint64_t *p,
591 		struct stm_fs *fs)
592 {
593 	unsigned long new_freq, new_deviation;
594 	struct stm_fs fs_tmp;
595 	uint64_t val;
596 
597 	val = (uint64_t)output << si;
598 
599 	*p = (uint64_t)input * P20 - (32LL  + (uint64_t)m) * val * (P20 / 32LL);
600 
601 	*p = div64_u64(*p, val);
602 
603 	if (*p > 32767LL)
604 		return 1;
605 
606 	fs_tmp.mdiv = (unsigned long) m;
607 	fs_tmp.pe = (unsigned long)*p;
608 	fs_tmp.sdiv = si;
609 	fs_tmp.nsdiv = 1;
610 
611 	clk_fs660c32_dig_get_rate(input, &fs_tmp, &new_freq);
612 
613 	new_deviation = abs(output - new_freq);
614 
615 	if (new_deviation < *deviation) {
616 		fs->mdiv = m;
617 		fs->pe = (unsigned long)*p;
618 		fs->sdiv = si;
619 		fs->nsdiv = 1;
620 		*deviation = new_deviation;
621 	}
622 	return 0;
623 }
624 
625 static int clk_fs660c32_dig_get_params(unsigned long input,
626 		unsigned long output, struct stm_fs *fs)
627 {
628 	int si;	/* sdiv_reg (8 downto 0) */
629 	int m; /* md value */
630 	unsigned long new_freq, new_deviation;
631 	/* initial condition to say: "infinite deviation" */
632 	unsigned long deviation = ~0;
633 	uint64_t p, p1, p2;	/* pe value */
634 	int r1, r2;
635 
636 	struct stm_fs fs_tmp;
637 
638 	for (si = 0; (si <= 8) && deviation; si++) {
639 
640 		/* Boundary test to avoid useless iteration */
641 		r1 = clk_fs660c32_get_pe(0, si, &deviation,
642 				input, output, &p1, fs);
643 		r2 = clk_fs660c32_get_pe(31, si, &deviation,
644 				input, output, &p2, fs);
645 
646 		/* No solution */
647 		if (r1 && r2 && (p1 > p2))
648 			continue;
649 
650 		/* Try to find best deviation */
651 		for (m = 1; (m < 31) && deviation; m++)
652 			clk_fs660c32_get_pe(m, si, &deviation,
653 					input, output, &p, fs);
654 
655 	}
656 
657 	if (deviation == ~0) /* No solution found */
658 		return -1;
659 
660 	/* pe fine tuning if deviation not 0: +/- 2 around computed pe value */
661 	if (deviation) {
662 		fs_tmp.mdiv = fs->mdiv;
663 		fs_tmp.sdiv = fs->sdiv;
664 		fs_tmp.nsdiv = fs->nsdiv;
665 
666 		if (fs->pe > 2)
667 			p2 = fs->pe - 2;
668 		else
669 			p2 = 0;
670 
671 		for (; p2 < 32768ll && (p2 <= (fs->pe + 2)); p2++) {
672 			fs_tmp.pe = (unsigned long)p2;
673 
674 			clk_fs660c32_dig_get_rate(input, &fs_tmp, &new_freq);
675 
676 			new_deviation = abs(output - new_freq);
677 
678 			/* Check if this is a better solution */
679 			if (new_deviation < deviation) {
680 				fs->pe = (unsigned long)p2;
681 				deviation = new_deviation;
682 
683 			}
684 		}
685 	}
686 	return 0;
687 }
688 
689 static int quadfs_fsynt_get_hw_value_for_recalc(struct st_clk_quadfs_fsynth *fs,
690 		struct stm_fs *params)
691 {
692 	/*
693 	 * Get the initial hardware values for recalc_rate
694 	 */
695 	params->mdiv	= CLKGEN_READ(fs, mdiv[fs->chan]);
696 	params->pe	= CLKGEN_READ(fs, pe[fs->chan]);
697 	params->sdiv	= CLKGEN_READ(fs, sdiv[fs->chan]);
698 
699 	if (fs->data->nsdiv_present)
700 		params->nsdiv = CLKGEN_READ(fs, nsdiv[fs->chan]);
701 	else
702 		params->nsdiv = 1;
703 
704 	/*
705 	 * If All are NULL then assume no clock rate is programmed.
706 	 */
707 	if (!params->mdiv && !params->pe && !params->sdiv)
708 		return 1;
709 
710 	fs->md = params->mdiv;
711 	fs->pe = params->pe;
712 	fs->sdiv = params->sdiv;
713 	fs->nsdiv = params->nsdiv;
714 
715 	return 0;
716 }
717 
718 static long quadfs_find_best_rate(struct clk_hw *hw, unsigned long drate,
719 				unsigned long prate, struct stm_fs *params)
720 {
721 	struct st_clk_quadfs_fsynth *fs = to_quadfs_fsynth(hw);
722 	int (*clk_fs_get_rate)(unsigned long ,
723 				const struct stm_fs *, unsigned long *);
724 	int (*clk_fs_get_params)(unsigned long, unsigned long, struct stm_fs *);
725 	unsigned long rate = 0;
726 
727 	clk_fs_get_rate = fs->data->get_rate;
728 	clk_fs_get_params = fs->data->get_params;
729 
730 	if (!clk_fs_get_params(prate, drate, params))
731 		clk_fs_get_rate(prate, params, &rate);
732 
733 	return rate;
734 }
735 
736 static unsigned long quadfs_recalc_rate(struct clk_hw *hw,
737 		unsigned long parent_rate)
738 {
739 	struct st_clk_quadfs_fsynth *fs = to_quadfs_fsynth(hw);
740 	unsigned long rate = 0;
741 	struct stm_fs params;
742 	int (*clk_fs_get_rate)(unsigned long ,
743 				const struct stm_fs *, unsigned long *);
744 
745 	clk_fs_get_rate = fs->data->get_rate;
746 
747 	if (quadfs_fsynt_get_hw_value_for_recalc(fs, &params))
748 		return 0;
749 
750 	if (clk_fs_get_rate(parent_rate, &params, &rate)) {
751 		pr_err("%s:%s error calculating rate\n",
752 		       clk_hw_get_name(hw), __func__);
753 	}
754 
755 	pr_debug("%s:%s rate %lu\n", clk_hw_get_name(hw), __func__, rate);
756 
757 	return rate;
758 }
759 
760 static long quadfs_round_rate(struct clk_hw *hw, unsigned long rate,
761 				     unsigned long *prate)
762 {
763 	struct stm_fs params;
764 
765 	rate = quadfs_find_best_rate(hw, rate, *prate, &params);
766 
767 	pr_debug("%s: %s new rate %ld [sdiv=0x%x,md=0x%x,pe=0x%x,nsdiv3=%u]\n",
768 		 __func__, clk_hw_get_name(hw),
769 		 rate, (unsigned int)params.sdiv, (unsigned int)params.mdiv,
770 			 (unsigned int)params.pe, (unsigned int)params.nsdiv);
771 
772 	return rate;
773 }
774 
775 
776 static void quadfs_program_and_enable(struct st_clk_quadfs_fsynth *fs,
777 		struct stm_fs *params)
778 {
779 	fs->md = params->mdiv;
780 	fs->pe = params->pe;
781 	fs->sdiv = params->sdiv;
782 	fs->nsdiv = params->nsdiv;
783 
784 	/*
785 	 * In some integrations you can only change the fsynth programming when
786 	 * the parent entity containing it is enabled.
787 	 */
788 	quadfs_fsynth_program_rate(fs);
789 	quadfs_fsynth_program_enable(fs);
790 }
791 
792 static int quadfs_set_rate(struct clk_hw *hw, unsigned long rate,
793 				  unsigned long parent_rate)
794 {
795 	struct st_clk_quadfs_fsynth *fs = to_quadfs_fsynth(hw);
796 	struct stm_fs params;
797 	long hwrate;
798 	int uninitialized_var(i);
799 
800 	if (!rate || !parent_rate)
801 		return -EINVAL;
802 
803 	memset(&params, 0, sizeof(struct stm_fs));
804 
805 	hwrate = quadfs_find_best_rate(hw, rate, parent_rate, &params);
806 	if (!hwrate)
807 		return -EINVAL;
808 
809 	quadfs_program_and_enable(fs, &params);
810 
811 	return 0;
812 }
813 
814 
815 
816 static const struct clk_ops st_quadfs_ops = {
817 	.enable		= quadfs_fsynth_enable,
818 	.disable	= quadfs_fsynth_disable,
819 	.is_enabled	= quadfs_fsynth_is_enabled,
820 	.round_rate	= quadfs_round_rate,
821 	.set_rate	= quadfs_set_rate,
822 	.recalc_rate	= quadfs_recalc_rate,
823 };
824 
825 static struct clk * __init st_clk_register_quadfs_fsynth(
826 		const char *name, const char *parent_name,
827 		struct clkgen_quadfs_data *quadfs, void __iomem *reg, u32 chan,
828 		unsigned long flags, spinlock_t *lock)
829 {
830 	struct st_clk_quadfs_fsynth *fs;
831 	struct clk *clk;
832 	struct clk_init_data init;
833 
834 	/*
835 	 * Sanity check required pointers, note that nsdiv3 is optional.
836 	 */
837 	if (WARN_ON(!name || !parent_name))
838 		return ERR_PTR(-EINVAL);
839 
840 	fs = kzalloc(sizeof(*fs), GFP_KERNEL);
841 	if (!fs)
842 		return ERR_PTR(-ENOMEM);
843 
844 	init.name = name;
845 	init.ops = &st_quadfs_ops;
846 	init.flags = flags | CLK_GET_RATE_NOCACHE | CLK_IS_BASIC;
847 	init.parent_names = &parent_name;
848 	init.num_parents = 1;
849 
850 	fs->data = quadfs;
851 	fs->regs_base = reg;
852 	fs->chan = chan;
853 	fs->lock = lock;
854 	fs->hw.init = &init;
855 
856 	clk = clk_register(NULL, &fs->hw);
857 
858 	if (IS_ERR(clk))
859 		kfree(fs);
860 
861 	return clk;
862 }
863 
864 static void __init st_of_create_quadfs_fsynths(
865 		struct device_node *np, const char *pll_name,
866 		struct clkgen_quadfs_data *quadfs, void __iomem *reg,
867 		spinlock_t *lock)
868 {
869 	struct clk_onecell_data *clk_data;
870 	int fschan;
871 
872 	clk_data = kzalloc(sizeof(*clk_data), GFP_KERNEL);
873 	if (!clk_data)
874 		return;
875 
876 	clk_data->clk_num = QUADFS_MAX_CHAN;
877 	clk_data->clks = kcalloc(QUADFS_MAX_CHAN, sizeof(struct clk *),
878 				 GFP_KERNEL);
879 
880 	if (!clk_data->clks) {
881 		kfree(clk_data);
882 		return;
883 	}
884 
885 	for (fschan = 0; fschan < QUADFS_MAX_CHAN; fschan++) {
886 		struct clk *clk;
887 		const char *clk_name;
888 		unsigned long flags = 0;
889 
890 		if (of_property_read_string_index(np, "clock-output-names",
891 						  fschan, &clk_name)) {
892 			break;
893 		}
894 
895 		/*
896 		 * If we read an empty clock name then the channel is unused
897 		 */
898 		if (*clk_name == '\0')
899 			continue;
900 
901 		of_clk_detect_critical(np, fschan, &flags);
902 
903 		clk = st_clk_register_quadfs_fsynth(clk_name, pll_name,
904 						    quadfs, reg, fschan,
905 						    flags, lock);
906 
907 		/*
908 		 * If there was an error registering this clock output, clean
909 		 * up and move on to the next one.
910 		 */
911 		if (!IS_ERR(clk)) {
912 			clk_data->clks[fschan] = clk;
913 			pr_debug("%s: parent %s rate %u\n",
914 				__clk_get_name(clk),
915 				__clk_get_name(clk_get_parent(clk)),
916 				(unsigned int)clk_get_rate(clk));
917 		}
918 	}
919 
920 	of_clk_add_provider(np, of_clk_src_onecell_get, clk_data);
921 }
922 
923 static void __init st_of_quadfs_setup(struct device_node *np,
924 		struct clkgen_quadfs_data *data)
925 {
926 	struct clk *clk;
927 	const char *pll_name, *clk_parent_name;
928 	void __iomem *reg;
929 	spinlock_t *lock;
930 
931 	reg = of_iomap(np, 0);
932 	if (!reg)
933 		return;
934 
935 	clk_parent_name = of_clk_get_parent_name(np, 0);
936 	if (!clk_parent_name)
937 		return;
938 
939 	pll_name = kasprintf(GFP_KERNEL, "%s.pll", np->name);
940 	if (!pll_name)
941 		return;
942 
943 	lock = kzalloc(sizeof(*lock), GFP_KERNEL);
944 	if (!lock)
945 		goto err_exit;
946 
947 	spin_lock_init(lock);
948 
949 	clk = st_clk_register_quadfs_pll(pll_name, clk_parent_name, data,
950 			reg, lock);
951 	if (IS_ERR(clk))
952 		goto err_exit;
953 	else
954 		pr_debug("%s: parent %s rate %u\n",
955 			__clk_get_name(clk),
956 			__clk_get_name(clk_get_parent(clk)),
957 			(unsigned int)clk_get_rate(clk));
958 
959 	st_of_create_quadfs_fsynths(np, pll_name, data, reg, lock);
960 
961 err_exit:
962 	kfree(pll_name); /* No longer need local copy of the PLL name */
963 }
964 
965 static void __init st_of_quadfs660C_setup(struct device_node *np)
966 {
967 	st_of_quadfs_setup(np, (struct clkgen_quadfs_data *) &st_fs660c32_C);
968 }
969 CLK_OF_DECLARE(quadfs660C, "st,quadfs-pll", st_of_quadfs660C_setup);
970 
971 static void __init st_of_quadfs660D_setup(struct device_node *np)
972 {
973 	st_of_quadfs_setup(np, (struct clkgen_quadfs_data *) &st_fs660c32_D);
974 }
975 CLK_OF_DECLARE(quadfs660D, "st,quadfs", st_of_quadfs660D_setup);
976